Что такое заземление в электричестве

Что такое заземление и зачем оно нужно, заходите на сайт

Что такое заземление в электричестве

Что такое заземление и зачем оно нужно? В кругу специалистов вопрос покажется абсолютно тривиальным, однако для большинства среднестатистических граждан – это загадка то ли природы, то ли техники.А тем временем в основе лежат не слишком уж и таинственные физические явления; зато правильно выполненное заземление способно спасти жизнь и здоровье человека при возникновении электроЧП.

:

Риски
Заземление как панацея
«Физика и химия»
Идеал заземления

Немного физики

Электрический ток протекает между точками, которые имеют разный электрический потенциал – в первом приближении, разную величину электрического заряда. Чтобы ток побежал, эти точки нужно соединить проводящей средой – к примеру, медной проволокой.

Такая ситуация в электрической розетке: в одном из её гнёзд ±220 В, а в другом — ровным счётом 0 В.

Когда эти гнёзда замыкаются через включённый в розетку прибор, между ними начинает течь ток, который, собственно, и вдыхает жизнь в холодильник, фен, утюг, компьютер и т.д.

Земля считается абсолютным нулём – её заряд всегда 0 В. Это ключевой факт. А тело человека проводит ток – иногда не хуже, чем медный кабель.

Риски

А теперь – нередкая ситуация в квартире.

Представим обычную стиральную машину в обычной среднестатистической квартире. Ничто в мире не совершенно, а потому в стиральном приборе может повредиться изоляция в одном из многочисленных внутренних проводов. С огромной вероятностью повреждённый проводок, несущий напряжение 220В, коснётся внутренних металлических частей, которые соединены с корпусом машины. Корпус прибора мгновенно окажется под напряжением. Если к этому корпусу прикоснётся человек, то он получит удар током.

Дело в том, что потенциал корпуса машины равен 220 В, а потенциал поверхности, на которой находится человек – 0 В. Вспомним, что тело человека — среда очень даже проводящая. Потому-то ток ринется с корпуса машины на пол через тело прикоснувшегося – вот и вся схема удара током.

Говоря по правде, что если человек будет в резиновой обуви на абсолютно сухом полу с абсолютно сухими руками, касание 220-ти вольт не особо повредит ему, поскольку сухость и соотвтетствующая обувь воспрепятствуют движеную тока – но часто ли могут быть выполнены все эти «абсолютно»?

Конечно, при наличии УЗО электроснабжение будет оперативно отключено Однако это произойдет уже после удара током, последвствия которого могут быть плачевными.

Что самое интересное — напряжение может накопиться на корпусе прибора и не по причине неисправности, а из-за статического электричества. Это очень распространенная офисная проблема. Конечно, удар током не будет смертельным, однако вполне способен навредить здоровью. Уже начинаете понимать что такое заземление? Ну во всяком случае, мы продолжаем

Заземление как панацея

Казалось бы, явление неизбежно, и ударят ли током наши любимые электроприборы, решать только им. Ан нет! Серьёзную помощь может оказать заземление, будь оно правильно смонтированным и вообще будь оно. В описанной ситуации система заземления взяла бы удар током на себя, а человек ощутил бы лишь лёгкое покалывание.

«Физика и химия»

Заземление представляет собой процесс соединения металлических частей электроприборов с землёй. Выводятся «на землю» те части, которые могут прямым или косвенным образом грозить ударом током в случае, если по причине мини-ЧП окажутся под напряжением. Цель у заземления одна, но зато какая – обезопасить жизнь и здоровье человека.

Схема самодельного заземления могла бы выглядеть так. К корпусу электроприбора надёжно прикреплен провод, который выведен на улицу через дверь, окно и любой другой проём или отверстие. В землю вбит металлический штырь (уголок, прут, труба). К этому-то изделию и крепится провод, идущий от корпуса стиральной машины.

Почему такая схема работает? Начнём с того, что потенциал земли всегда 0 В, а на нашем корпусе может оказаться все 220 В – потому ток потечёт в землю, которая совершенно от этого не пострадает. Зато человек, коснувшийся корпуса, окажется в безопасности, поскольку ток выбирает для своего пути на землю лучший проводник и течёт через него. Если есть заземление, то оно и есть лучшим проводником электричества.

Идеал заземления

Но самое надёжное и грамотное заземление – то, которое предусмотрено в устройстве электрической проводки дома или квартиры. В таком случае в проводке помимо двух проводов (фаза и нуль) имеется и провод заземления – то есть кабель получается трехжильным. Третья жила и соединяется с землёй по всем правилам ПУЭ.

Заземляющая жила ветвится, подходя к каждой розетке. Розетка, в свою очередь, имеет дополнительный контакт – те самые «усики» по бокам гнезда, которые есть у многих современных розеток. Электроприбор, в котором предусмотрено заземление, имеет вилку с дополнительными боковыми контактами и трехпроводный шнур.

Третий провод – заземляющий, он соединён с корпусом прибора и другими металлическими элементами, которые могут оказаться под напряжением и быть опасными для человека. Заземляющий провод выводится на боковые контакты вилки, которые, в свою очередь, через «усики» розетки уведут невесть откуда возникшее напряжение в землю.

Однако следует иметь в виду, что розетка, имеющая заземляющие контакты, по-настоящему заземлена лишь в случае, если заземление есть и в схеме электропроводки.

К сожалению, в многоквартирных домах старой постройки подобное явление – большая редкость, как, впрочем, и в частных домах среднего возраста. Однако на первых этажах есть какая-никакая возможность восполнить электрический пробел и смонтировать заземление.

Заметим, что крайне желателен профессиональный монтаж заземления согласно правилам ПУЭ.

Нельзя вместо заземления использовать зануление – соединение заземляющего провода с нулевым. Также делают неграмотное заземление на трубы, радиаторы, а это запрещено так же строго, как и курение на бензоколонке.

Итак, учитывая увеличение количества электроприборов в наших жилищах, следует задуматься о профессиональном монтаже системы заземления в электропроводке жилища. Тем более, что некоторые современные приборы и вовсе строго запрещено эксплуатировать без профессионального заземления. Надеемся эта статья была полезна и вас больше не возникнет вопроса «Что такое заземление?»

Вам также может быть интересно:

Источник: https://ukrprovod.com.ua/chto_takoye_zazemleniye

Обозначение L и N в электрике

Что такое заземление в электричестве

Каждый раз, пытаясь подключить люстру или бра, датчик освещенности или движения, варочную панель или вытяжной вентилятор, терморегулятор теплого пола или блок питания светодиодной ленты, а также любое другое электрооборудование, вы можете увидеть следующие маркировки возле клемм подключения – L и N.

Давайте разберемся, о чем говорят обозначения L и N в электрике.

Как вы, наверное, сами догадались это не просто произвольные символы, каждый из них несет конкретное значение и выполняет роль подсказки, для правильного подключения электроприбора к сети.

 

« L » — Эта маркировка пришла в электрику из английского языка, и образована она от первой буквы слова «Line» (линия) – общепринятого названия фазного провода. Также, если вам удобнее, можно ориентироваться на такие понятия английских слов как Lead (подводящий провод, жила) или Live (под напряжением).

Соответственно обозначением L маркируются зажимы и контактные соединения, предназначенные для подключения фазного провода. В трехфазной сети, буквенно-цифровая идентификация (маркировка) фазных проводников «L1», «L2» и «L3».

По современным стандартам (ГОСТ Р 50462-2009 (МЭК 60446:2007), действующим в России, цвета фазных проводов – коричневый или черный. Но зачастую, может встречаться белый, розовый, серый или провод любого другого цвета, кроме синего, бело-синего, голубого, бело-голубого или желто-зеленого.

Обозначение N в электрике

 «N» — маркировка, образованная от первой буквы слова Neutral (нейтральный) – общепринятое название нулевого рабочего проводника, в России называемого чаще просто нулевым проводником или коротко Ноль (Нуль). В связи с этим, удачно подходит английское слово Null (нулевой), можно ориентироваться на него.

Обозначением N в электрике маркируются зажимы и контактные соединения для подключения нулевого рабочего проводника/нулевого провода. При этом это правило действует как в однофазной, так и трехфазной сети.

Цвета провода, которыми маркируется нулевой провод (нуль, ноль, нулевой рабочий проводник) строго синий (голубой) или бело-синий (бело-голубой).

Системы заземления TN-S, TN-C, TNC-S, TT, IT

Что такое заземление в электричестве

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление.

Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ).

В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия.

Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.

В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель.

Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство.

Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.

7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК).

Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией.

Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется.

На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников.

Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом.

Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода.

При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют.

Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века.

При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость.

Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C.

Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали.

Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN.

Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N».

На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

ЭТО ИНТЕРЕСНО:  Сколько ампер в Киловате

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков.

Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT.

Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование.

При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Смотрите также:

  • Вебинары с ведущими экспертами отрасли
  • Все для расчетов заземления и молниезащиты
  • Полезные материалы: статьи, рекомендации, примеры

Источник: https://zandz.com/ru/biblioteka/sistemy_zazemlenieya_TNS_TNC_TNCS_TT_IT.html

Контур защитного заземления в частном доме

13/07/2009 10:27:33

Говорят, что наивысшей ценностью обладает человеческая жизнь. А раз так, то ее, жизнь, нужно всячески оберегать и защищать. Много коварных вещей в мире угрожают здоровью и жизни человеческой. И одна из таких угроз — электрический ток.

Примечательно, что даже отсутствие электрической энергии может довольно пагубно отразится на состоянии здоровья современного человека (умрет от голода и холода). Но гораздо более опасно для жизни — непосредственное воздействие тока на человека.

И чем больше ток и дольше воздействие — тем опаснее.

Не удивительно, что на каждую опасность у человека припасен целый арсенал средств для защиты. Так, от кирпича — каска, от микробов — таблетки, а от поражения электрическим током — защитное заземление. Сразу оговорюсь, что заземление эффективное, но не единственное средство защиты человека и имущества от аварий в электрических установках. И лучше всего, когда применяются сразу несколько средств защиты в комплексе.

Немного теории

В поселках для обеспечения электроснабжения чаще всего применяются системы TN, в которых нейтраль источника питания (трансформатора) глухо заземлена. В случае 3-х фазного ввода 220/380В, к дому подводятся 4 провода (3 фазных проводника и нулевой проводник).

До непосредственного ввода в дом мы имеем систему TN-C, где нулевой защитный и нулевой рабочий проводники соединены на всем протяжении. В такой системе не только трансформатор, но и все столбы должны быть заземлены и соединены с нулевым проводником.

После ввода в дом, согласно последним рекомендациям, систему TN-C, лучше преобразовывать в систему TN-C-S. Делается это с помощью разделения в щитке общего нулевого защитного провода на два: отдельно нулевой рабочий N и отдельно защитный PE (который не обрывается на всем протяжении!).

Таким образом к конкретному потребителю 220В подходит 3 провода (фаза L, ноль N, защитный PE). Кроме того, на вводе в дом устраивается контур защитного заземления, который подключается к шине PE в щитке.

Зачем это надо?

Арсенал защитных средств составляют, прежде всего, автоматические выключатели (тепловые расцепители), УЗО (устройства защитного отключения), контур заземления. Автомат или тепловой расцепитель срабатывает, если ток, проходящий через него, выше номинала автомата. Это бывает в случаях, когда подключена мощная нагрузка (как правило, нагревательное оборудование) или произошло короткое замыкание.

Важно учитывать, что если номинальный ток автомата 25А, то при нагрузке в 27-30А автомат выбьет не сразу, а через какое-то время. Если автомат расположен за пределами дома, то в зимние холода порог срабатывания еще увеличивается.

Помимо этого, даже в случае КЗ (короткого замыкания) при большой длине проводов, неправильном выборе сечения провода и номинала автомата, последний и вовсе может не отключиться! Номинал автомата и сечение проводов необходимо всегда подбирать в соответствии с нагрузкой! Если максимальный ток потребления составляет 16А, крайне опасно устанавливать автомат на 63А. Прежде всего, автоматы предотвращают возгорания и пожары.

Но самое неприятное — это то, что в случае повреждения изоляции в электроприборе и попадания напряжения на незащищенные, открытые участки прибора, на корпус, автомат никак не защитит человека, который прикоснется к этому корпусу. В таких случаях необходимо, чтобы в системе электроснабжения дома были предусмотрены УЗО. УЗО — устройства, которые выявляют утечки. Если на корпусе прибора (компьютера, котла, стиральной машины и пр.

) у нас окажется 220В, то автомат не отключится. Не отключится и УЗО, так как нет утечки тока. Но как только человек прикоснется к неисправной стиральной машине и ток потечет в тело (кстати, кровь и жидкость спинного мозга имеют самое низкое сопротивление — ухватиться за 220В пальцами, имеющими раны и порезы очень опасно!), УЗО выявит утечку и отключит линию.

Время, за которое срабатывает УЗО очень небольшое, поэтому, как правило, оно спасает жизнь человеку, но при этом током его все же дернет. Однако лучше всего, если в системе присутствует контур заземления, а корпус прибора заземлен. В этом случае, даже при отсутствии УЗО, при попадании напряжения на корпус, ток потечет по защитному заземлению в землю.

На корпусе прибора по-прежнему будет напряжение и человека также может ударить током, но это напряжение уже будет значительно меньше. Какое именно — зависит от сопротивления контура заземления (измеряется в Омах). Чем оно ниже, тем меньше будет это напряжение. При хорошем заземлении на корпусе поврежденного прибора будет около 100В, что неприятно, но летальный исход маловероятен.

Когда же в системе кроме контура заземления присутствуют УЗО, это самый эффективный способ защиты, поскольку УЗО выключит потребителей сразу после повреждения изоляции и попадания напряжения на корпус прибора.
Другими словами, для защиты людей от поражения электрическим током, необходимо предусматривать защитную шину PE, защитное заземление, установку в щитках автоматических выключателей и УЗО. Только в этом случае можно говорить об эффективной защите от этого в общем-то полезного, но одновременно грозного спутника людского быта — электрического тока.

Делаем заземление

Итак, предположим у нас применяется сеть типа TN-C с глухозаземленной нейтралью. Нам необходимо обеспечить повторное заземление на вводе в дом, которое будет выполнять роль защитного заземления. Напряжение в сети 380/220В. На этот счет ПУЭ 1.7.103 нам сообщает, что сопротивления контура заземления не должно превышать 10 Ом в любое время года.

Меньше можно, больше не желательно. Но что такое 10 Ом? Сколько металла нужно зарыть в землю, чтобы получить требуемые 10 Ом? Для расчета контура заземления существует масса формул, учитывающих множество параметров, но есть и компьютерные программы, облегчающие расчет. У меня был проект, который я проверил в компьютерной программе и привожу результат.

Для обеспечения необходимого сопротивления заземления необходимо вбить в землю четыре вертикальных заземлителя, представляющих собой угловую сталь шириной 40-50 мм и длиной 2 метра таким образом, чтобы верх заземлителя был на глубине 0,5-0,7 метра.

Между собой заземлители должны соединяться арматурой диаметром 10-12 мм методом сварки. Расстояние между заземлителями не должно быть меньше их длины и в моем случае составляет как минимум 2 метра.

Располагать заземлители, можно вряд или квадратом или иным способом, если выдерживаются необходимые расстояния между ними.

https://www.youtube.com/watch?v=Uw5eRGM34v4

Практически делается это так:

Из дома выведено 4 ПНД-32 трубы (вода, электричество для садово-бытовых нужд, заземление). Для коммутации был предусмотрен технический колодец размером 100х100 см и глубиной 120 см. Первый раз опалубку попробовал сделать из экструдированного пенополистирола толщиной 30 мм (была пара листов) и не пожалел. Стенки получились ровными и гладкими. Доски в данном случае нужны для усиления пенопласта, чтобы бетон при заливке не сломал его. Копаем траншею глубиной 0,5-0,7 метра общей длиной 6 метров для размещения четырех вертикальных заземлителей на расстоянии не менее 2 метров друг от друга.
Режем болгаркой уголки по 2 метра и вбиваем их в землю. Я сделал отверстия шнековым буром глубиной 50 см, чтобы легче было вбивать, но уголки и без того хорошо заходят под ударами 5 кг кувалды. Конец уголка, который вбивается в землю, я немного заточил на шлифовальном станке. Так уголок легче забивать.
Уголки (вертикальные заземлители) соединяются между собой 12 арматурой (горизонтальными заземлителями) путем сварки. Места сварки желательно защищать битумным лаком. В техническом колодце соединяем полученный контур заземления с выводом из дома, который соединен в щитке с шиной PE, отделенной от шины N (для системы TN-C-S).

Забить 2 метровые уголки в землю нетрудно, уголки вбиваются относительно легко. С этой работой справится человек любой комплекции. Можно сократить число заземлителей до 3 шт, увеличив их длину до 2,3-2,5 метра. Думаю, еще 50 см вполне можно осилить. Интересный нюанс, 50-ый уголок забивается легче 40-го. Для заземления лучше использовать оцинкованный металл, который менее подвержен коррозии. Места сварки также рекомендуется дополнительно обработать антикоррозийными составами.

Иногда можно встретить рекомендации обеспечивать сопротивление заземления  не более 4 Ом. Такое сопротивление безусловно лучше (хотя и необязательно согласно требованиям ПУЭ для повторного заземления), но и создать контур с такими параметрами сложнее, так как в этом случае потребуется не 4, а 14 двухметровых заземлителей.

Некоторая справочная информация:

ПУЭ. Глава 1.7 (формат DOC)
ГОСТ 12.1.030-81. Электробезопасность. Защитное заземление. Зануление (формат DOC)
ГОСТ Р 50571.10-96. Часть 5. Глава 54. Заземляющие устройства и защитные проводники (формат DOC)

Источник: https://ab-log.ru/build/grounding

Буквенное обозначение фазы и нуля в электрике

Часто новички при взгляде на электросхемы чувствуют себя так, словно эти схемы написаны на китайском и долго не могут разобраться, что же такое $N$ и $L$ в электричестве и с какой стороны подойти к схеме.

Однако, не всё так сложно и у бывалых электриков не возникает вопросов, что же означает та или иная буква и как обозначается фаза и ноль в электрике. Давайте и мы с вами разбираться что к чему.

Как обозначается фаза в электричестве

Определение 1

Фазой в народе называют провод с электрическим током.

Если вы имеете дело с проводом, в котором только одна жила — фаза, то есть токопроводящая, то на схеме для обозначения фазы будет использоваться латинская буква $L$.

В случае же если вам приходится иметь дело со всеми тремя фазами (например, если вам по какой-то причине пришлось залезть в щиток в подъезде) — то все три фазы будут обозначаться буквами $L1$, $L2$, $L3$ соответственно.

Также для трёхфазной системы электроснабжения для обозначения всех трёх фазовых проводников возможно использование букв $A$, $B$, $C$, но по ГОСТ 2.709-89 для России более желательными обозначениями для фазовых проводов являются обозначения $L1$, $L2$, $L3$.

  • Курсовая работа 490 руб.
  • Реферат 220 руб.
  • Контрольная работа 200 руб.

Трёхфазная цепь с тремя проводами называется трёхпроводной, тогда как трёхфазная цепь с четырьмя проводами, один из которых нулевой, а остальные — фазовые, называется четырёхпроводной.

Как обозначается нуль в электричестве

Из уроков физики в школе кто-то, возможно, помнит, что ток может течь только по замкнутым контурам.

Определение 2

Нулевой провод — это как раз провод, необходимый для того чтобы сделать электрический контур замкнутым.

По этому проводу происходит возвращение остаточного тока.

На схеме ноль обозначается буквой $N$, а если нулевой провод совмещён с защитным нулевым (т.е. с заземлением), то такой проводник будет обозначаться буквами $PEN$.

Обозначение нулевого провода буквой $N$ произошло от английского neutral, что переводится как “нейтральный”.

Теперь, наверное, вам стало понятнее, как обозначают фазу и ноль в электрике.

Ниже приведена упрощённая схема снабжения обычной жилой квартиры электрическим током с данными обозначениями:

Рисунок 1. Обозначение фазы и нуля на схеме

На рис. 1 представлена упрощённая схема проведения одного фазного провода в квартиру от трёхфазного источника тока вместе с нулевым проводом, для которого использовано обозначение $N$. Буква же $L$ используется для обозначения фазы как обычно принято в электрике.

На рис. 2 изображено осуществление заземления непосредственно у источника тока, а символами $R_H$ обозначено сопротивление некоторого потребителя тока.

Также на этом рисунке видно, что нулевой провод проведён в квартиру непосредственно от источника тока. При этом заземлён рабочий нулевой провод также у источника. Заземление на рисунке обозначено буквами $ЗМЛ$.

На рисунке 3 представлен другой вариант проведения фазного провода с осуществлением заземления в квартире. Этот вариант является неправильным.

Нулевой провод необходимо проводить непосредственно от источника тока, иначе электрический контур будет незамкнутым.

Рисунок 2. Пример обозначений фазы и нуля в электрических схемах: фаза, ноль и земля и используемые для них буквы

На данном рисунке представлено схематическое изображение подключения розетки.

Нулевой провод обозначен буквой $N$, фазовые напряжения — буквами $L1, L2, L3$, нулевой защитный провод, совмещённый с нейтральным рабочим и проведённый от трасформатора — буквами $PEN$, а заземление на розетке, проведённое от трансформатора – буквами $PE$.

Как видно из рисунка, чтобы измерить фазное напряжение на любом участке сети, необходимо подсоединить вольтметр к нулевому и фазовому проводу.

Заземление на рисунке представлено с помощью специального символа, о котором мы расскажем вам чуть ниже.

Обозначение земли в электрике

Для проводников с напряжением до $1$ кВ заземление обычно обозначают буквами $PE$, эта аббревиатура взята из английского от слов Protective Earthing, что дословно можно перевести как “защитная земля”.

Для обозначения заземления далеко не всегда используются именно буквы, очень часто на схемах используются специальные символьные обозначения, например:

Рисунок 3. Обозначение земли на схемах

Иногда также можно встретить буквенное обозначение $GRD$, оно также произошло от английского и является сокращением слова ground (русс. “земля”), а на первом рисунке из этой статьи использовалось обозначение $ЗМЛ$.

Ну вот и всё, и мы надеемся, что наша статья помогла вам и у вас больше не возникнет вопросов, как обозначаются фаза и ноль на схеме.

Знания того, какие обозначения используются для фазы, ноля и земли на схеме помогут вам с лёгкостью починить розетку, а если вы достаточно хорошо понимаете разницу между обозначениями $N$ $L$ в электрике — то вас никогда не ударит током.

Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/bukvennoe_oboznachenie_fazy_i_nulya_v_elektrike/

Соединение заземления с рабочим нулем — Все об электричестве

Часто домашние мастера не понимают, как устроена система электроснабжения трехфазного типа, как происходит ввод электричества, как работает защитное оборудование, в чем различие между заземлением и занулением. Именно систему заземления и зануления, применяемую повсеместно, хочется рассмотреть наиболее подробно.

Заземление и зануление

В чем разница между заземлением и занулением

Перво-наперво, необходимо рассмотреть систему трехфазного переменного тока, чтобы точно понять, что такое заземление и зануление, а также какую функцию оно там выполняет.

ЭТО ИНТЕРЕСНО:  Как связаны фазное и линейное напряжение

Современная трехфазная система

На современном этапе развития энергетики самой выгодной и простой системой передачи энергии на дальние расстояния является система трёхфазного переменного тока. Удивительную простоту и гениальность этого изобретения сложно даже осознать. По сравнению с системой, базирующейся на генераторах постоянного тока, трехфазная система имеет огромные плюсы, а именно:

• Простота преобразования электрической мощности. С помощью трёхфазных трансформаторов можно получить любой вольтаж.

• Простота получения однофазного и двухфазного напряжения из трехфазного. Однофазный ток получается путем ответвления одного фазного провода и ноля. Двухфазный ток получают путем подключения трансформатора Скотта.

• Простота передачи энергии на дальние расстояния, достигаемая за счет использования повышающих трансформаторов переменного тока.

• Постоянный ток, к сожалению, полностью непригоден в тех случаях, когда речь идет о передачи электрической энергии на дальние расстояния с минимальными потерями в проводах. Серьезный нагрев проводов вкупе с трудностью и неэффективностью преобразования навсегда закрыли дорогу постоянному току в мир большой электроэнергетики.

Заземление и зануление в цепях переменного тока

По сути, ноль – провод синего цвета, промаркированный N. Зануление – это преднамеренное соединение либо средней точки в обмотке 3-х фазного генератора, либо соединение в нагрузке к рабочему нолю. Основных функций у зануления две: 1 – рабочая функция и 2 — защитная функция. Рабочая функция ярче всего проявляется в схеме распределения электроэнергии в многоквартирном доме.

Изначально ввод электричества выполняется только с помощью трехфазного тока, который равномерно распределяется по квартире. В качестве примера допустим, что в одном конкретном подъезде имеется 36 квартир. Следовательно, распределение нагрузки должно быть произведено максимально сбалансированно и равномерно: на фазу A подключаем 12 квартир, на фазу В 12 квартир, а на фазу С, естественно, оставшиеся 12 квартир.

Как бы не старались проектировщики сбалансировать схему потребления, практика однозначно говорит о том, что достичь баланса и равномерность нагрузки никогда на 100% не удается – кто-то тратит электричества больше, а кто-то меньше. Поэтому и была придумана линия N – рабочий ноль. Основная цель рабочего ноля – восстановить баланс напряжений по фазам, то есть не дать возникнуть перекосу напряжений.

К слову, именно внезапное отключение нулевого проводника может привести к тому, что в некоторых квартирах возникнет молниеносный всплеск рабочего напряжения до отметки 380 В. На жаргоне электриков данное явление называют отгоранием или отвалом ноля.

Трехфазная система требует наличие заземления и зануления средней точки рабочих обмоток, соединенных по схеме звезда. Чтобы четко понимать разницу между занулением и заземлением, давайте обратимся к стандартной схеме включения нагрузки к трехфазному источнику питания по схеме Y (звезда).

Если мы рассматриваем в качестве нагрузки трехфазный трансформатор, трехфазный асинхронный электродвигатель, трехфазную печь, то система будет функционировать, будучи подключенной с помощью трех проводов с фазами A, B, С и нулевого провода N. По сути, если мы рассматриваем электроустановки на производстве, то наличие четвертого проводника выполняет чисто защитные функции.

При пробое изоляции обмоток трехфазного электродвигателя высокий потенциал устремляется на корпус устройства, который находится в прямой гальванической связи с проводом N, то есть рабочим нолем. Следовательно, при таком подключении произойдет короткое замыкание, что вызовет отключение трехфазного автомата защиты.

Заземление в цепях трехфазного тока

В отличии от зануления, заземление используется не в качестве рабочего ноля – N, а в качестве обособленного PE-проводника. По сути, заземление выполняет лишь защитную функцию, в то время как зануление выполняет одновременного обе: рабочую и защитную.

Не мудрствуя лукаво, ученые разработали систему заземления, где функция рабочего ноля и защитного заземления объединены в виде PEN-проводника.

Данная система получила наибольшее распространение в нашей стране, так как она отличается наибольшей простотой и дешевизной.

Разновидности систем заземления, применяемых в 3-х фазных электроустановках

TN-C – устаревшая система заземления, где функция рабочего нулевого проводника N-проводника и защитного PE-совмещены в единый провод PEN. Несмотря на простоту и дешевизну, данная система имеет существенные недостатки в плане электробезопасности – при обрыве PEN существует высокая вероятность появления высокого электрического потенциала на корпусе электроустановки в случае нарушения изоляции проводов, обмоток и прочего.

TN-C-S – усовершенствованная система, где все-таки происходит разделение PEN-проводника на PE и N на середине линии. Если происходит обрыв после разделения, то на корпусе электроустановок не возникают высокие электрические потенциалы. А если обрыв произошел на PEN, то возникает вероятность поражения электротоком от корпуса, естественно, при внештатной ситуации. Основной недостаток данной системы заключается в ничтожной устойчивости системы при обрыве нулевого проводника (отгорание нуля).

TN-S является системой, где PE и N разделены на 2 обособленных провода непосредственно на электроподстанции. Главным достоинством данной системы является то, что при повреждении нулевого провода на корпус устройства не поступит опасный электрический потенциал.

Типичные ошибки людей, которые мало знакомы и с заземлением, и занулением

К сожалению, некоторые мало осведомлённые люди, подключая, к примеру, трехфазный мотор по схеме треугольник не используют защитное заземление – PE проводник. В случае нарушения изоляционного материала обмоток опасный электрический потенциал поступит на корпус, а защитное оборудование – трехфазный автомат защиты – останется включенным, так как короткого замыкания или перегруза не возникнет.

Следовательно, корпус устройства может находится по высоким электрическим потенциалом, а рука работника будет единственным проводником, позволяющим электротоку достигнуть земли. Как вы понимаете, сопротивление человеческого тела настолько высоко, что ток вызванный таким прикосновением никогда не отключит автомат защиты.

Именно поэтому мы рекомендуем и на производстве, и в домашней мастерской использовать зануление корпуса электроустановок, а также использовать дифференциальные автоматы.

Заземление и зануление

Источник: https://contur-sb.com/soedinenie-zazemleniya-s-rabochim-nulem/

Как обозначается ноль и фаза в электричестве

Цветовая маркировка изоляции проводников важна для более быстрого и правильного монтажа электрораспределительных устройств, удобства ремонта и исключения ошибок. Цвета проводов в электрике регламентированы нормативными документами (ПУЭ и ГОСТ Р 50462-2009).

Зачем нужна цветовая маркировка проводов и кабелей

Работы по монтажу и обслуживанию в электрических установках связаны не только с обеспечением надежности, но и безопасности. Требуется полное исключение ошибок. Для этих целей разработана система цветных обозначений изоляции жил, которая определяет, какого цвета провода фаза, ноль и земля.

По ПУЭ допускается такая расцветка токоведущих жил:

В приведенном перечне содержится много вариантов расцветок проводов, но нет нескольких цветов, которые используются только для обозначения нулевых и защитных проводов:

  • синий цвет и его оттенки – рабочий нулевой провод (нейтраль – N);
  • желтый цвет с зеленой полосой – защитное заземление (PE);
  • желто-зеленая изоляция с голубыми метками на концах жил – совмещенный (PEN) проводник.

Допускается использование для заземления жил с изоляцией зеленого цвета с желтой полосой, а для совмещенных проводников голубой изоляции с желто-зелеными метками на концах.

Расцветка должна быть единой в каждой цепи в пределах одного устройства. Ответвления цепей должны выполняться одинаково окрашенными проводниками. Использование изоляции без различий в оттенках говорит о высокой культуре монтажа и сильно облегчает дальнейшее обслуживание и ремонт оборудования.

Окраска фазы

В тех случаях, когда монтаж электроустановки выполнен при помощи жестких металлических шин, применяется окраска шин несмываемой краской следующих цветов:

  • желтый – фаза А (L1);
  • зеленый – фаза В(L2);
  • красный – фаза С (L3);
  • голубой – нулевая шина;
  • продольные или наклонные полосы желтого и зеленого цвета – шина заземления.

Расцветка фаз должна сохраняться в пределах всего устройства, но не обязательно на всей поверхности шины. Допускается маркировать обозначение фазы только в местах подсоединения. На окрашенной поверхности можно продублировать цвет символами “ЖЗК” для краски соответствующих цветов.

Если шины недоступны для осмотра или работы, когда на них присутствует напряжение, то допускается их не окрашивать.

Цвет фазных проводов, подключенных к жестким шинам, может не совпадать с ними по расцветке, поскольку видна разница в принятых системах обозначений гибких проводников и жестких стационарных распределительных шин.

Цвет нейтрали

Какого цвета нулевой провод, оговаривают стандарты ГОСТ, поэтому при взгляде на монтаж силовой установки не должен возникать вопрос, синий провод – это фаза или ноль, поскольку синий цвет и его оттенки (голубой) приняты для обозначения нейтрали ( рабочего заземления ).

Другие цвета окраски нейтральных жил не разрешаются.

Единственно допустимый вариант использование синей и голубой изоляции – обозначение отрицательного полюса или средней точки в цепях постоянного тока. Больше нигде такую расцветку использовать нельзя.

Цветовая маркировка провода заземления

Правила указывают, какого цвета провод заземления в электрических установках. Это желто-зеленый провод, окраска которого хорошо выделяется на фоне остальных жил. Допускается использование провода с желтой изоляцией и зеленой полосой на ней, или может быть зеленая изоляция с желтой полосой. Не разрешено использовать никакой другой цвет провода земли, как не допускается применять зелено-желтые жилы для монтажа цепей, на которых присутствует или может быть подано напряжение.

Перечисленные правила маркировки соблюдаются в странах постсоветского пространства и в странах Евросоюза. Другие государства маркируют жилы иным образом, что можно видеть на аппаратуре импортного производства.

Основные цвета для маркировки за рубежом:

  • нейтраль – белый, серый или черный;
  • защитное заземление – желтый или зеленый.

Стандарты ряда стран допускают использовать в качестве защитного заземления оголенный металл без изоляции.

Провода заземления коммутируются на сборных неизолированных клеммах и соединяют между собой все металлические части конструкции, у которых отсутствует надежный электрический контакт между собой.

Расцветка в сети 220В и 380В

Монтаж одно- и трехфазных электрических сетей облегчается, если проводка выполнена многоцветным проводом. Ранее для однофазной квартирной проводки использовали плоский двухжильный провод белого цвета. При монтаже и ремонте для исключения ошибок необходимо было прозванивать каждую жилу в отдельности.

Выпуск кабельной продукции с окраской жил разными цветами снижает трудоемкость работ. Для обозначения фазы и нуля в однофазной проводке принято использовать следующие цвета:

  • красный, коричневый или черный – фазный провод;
  • остальные цвета (предпочтительно синий) – нулевой провод.

Маркировка фаз в трехфазной сети немного отличается:

  • красный (коричневый) – 1 фаза;
  • черный – 2 фаза;
  • серый (белый) – 3 фаза;
  • синий (голубой) – рабочий ноль (нейтраль)
  • желто-зеленый – заземление.

Кабельная продукция отечественного производства соответствует стандарту окраски жил, поэтому многофазный кабель содержит разноокрашенные жилы, где фаза – белый, красный и черный, ноль – синий, а земля – желто-зеленый проводники.

Источник: https://crast.ru/instrumenty/kak-oboznachaetsja-nol-i-faza-v-jelektrichestve

Система заземления TT

Здравствуйте, уважаемые посетители сайта «Заметки электрика».

Мы сегодня продолжим изучение систем заземления. Вашему вниманию, я представляю систему заземления TT.

Чем же она отличается от других систем заземления? 

Давайте во всем разберемся по-порядку.

Система заземления TT применяется в первую очередь там, где условия по электробезопасности в системах TN-C, TN-C-S и TN-S не полностью обеспечены, т.е. систему TT рекомендуется применять при неудовлетворительном состоянии питающей воздушной линии электропередач (ВЛ). С уверенностью могу сказать, что большинство воздушных линий (ВЛ) находятся в неудовлетворительном состоянии, выполнены они неизолированными проводами и большинство из них не имеют повторного заземления на опорах.

Со всеми недостатками неизолированных проводов Вы можете познакомиться в статье про СИП провод.

Также систему заземления TT применяют для защиты людей от поражения электрическим током через токопроводящие (металлические) поверхности временных строений или зданий.

К ним относятся:

  • строительные и монтажные бытовки (вагончики)
  • металлические контейнеры, торговые павильоны и киоски
  • помещения с диэлектрической поверхностью стен, при наличии в них постоянной влажности и сырости

Принцип исполнения

Принцип системы заземления TT основан на том, что защитный проводник PE заземляется независимо от нулевого рабочего проводника N и запрещена какая-либо связь между ними.

Даже если рядом расположен контур заземления рабочего проводника N, то все равно защитный проводник PE должен заземляться через свой контур заземления, и эти два контура НЕ ДОЛЖНЫ сообщаться между собой.

Таким образом, мы полностью изолируем токопроводящие (металлические) поверхности временных строений и зданий от электрических сетей.

Это осуществляется простым способом — по всему периметру временного здания (строения) проводится защитный проводник PE в виде пластины или прутка, которые соединяется со своим отдельным контуром заземления.

Запрещено соединять заземленные части конструкций здания (строения) и корпуса электрооборудования с рабочим нулевым проводником N. 

Основные требования и особенности системы ТТ

Ниже я перечислю Вам основные требования и особенности при монтаже системы заземления TT.

1. УЗО

Абсолютно на все групповые линии электропроводки должны быть установлены УЗО с уставкой не более 30 (мА). Это необходимо для защиты от случайного прямого или косвенного прикосновения к токоведущим частям электрооборудования, или при появлении неисправностей в электропроводке дома (появление токов утечки).

Также не стоит пренебрегать установкой УЗО на вводе с уставкой от 100-300 (мА), тем самым обеспечивая двухступенчатую селективную защиту своего дома.

Переходите по ссылочке, чтобы познакомиться со всеми разновидностями и типами УЗО.

2. Нулевой рабочий проводник N

Нулевой рабочий проводник N не должен соединяться с местным контуром заземления и шиной РЕ.

3. Перенапряжение

Для защиты электрических приборов от атмосферных перенапряжений необходимо устанавливать ограничители перенапряжения (ОПН) или ограничители импульсных перенапряжений (ОПС или УЗИП). Более подробно об этих устройствах мы поговорим в ближайших статьях.

4. Сопротивление контура заземления

Сопротивление контура заземления Rc должно удовлетворять условию ПУЭ (Глава 1.7., пункт 1.7.59) Rc*Iузо (ток срабатывания УЗО) < 50 (В).

Например, при УЗО с уставкой в 30 (мА) сопротивление контура заземления (заземлителя) должно быть не более 1666 (Ом). Или, если УЗО имеет уставку 100 (мА), то сопротивление не должно превышать 500 (Ом). Это минимальные требования к сопротивлению контура заземления при системе заземления ТТ.

Как произвести измерение сопротивления контура — читайте в статье измерение сопротивления заземления.

Для выполнения вышесказанного условия достаточно будет использовать один вертикальный заземлитель в виде уголка или прутка длиной около 2-2,5 метра. Но я Вам рекомендую выполнить контур более тщательно, забив несколько заземлителей. Хуже не будет.

Недостаток системы заземления ТТ

Пожалуй, единственным недостатком системы ТТ является факт одновременного отказа устройства защитного отключения (УЗО) и пробое фазы на заземленный корпус электрического прибора.

В таком случае защитные проводники РЕ и открытые токопроводящие поверхности окажутся под потенциалом (напряжением) сети по причине того, что автоматический выключатель поврежденной линии может не сработать при замыкании фазы на РЕ, т.к. ток короткого замыкания будет не достаточный. Поэтому единственной защитой в такой ситуации остается система уравнивания потенциала и установка двухступенчатой дифференциальной защиты, про которую я упоминал чуть выше.

Источник: http://zametkielectrika.ru/sistema-zazemleniya-tt/

Заземление посудомоечной машины

Чтобы обезопасить свое здоровье и имущество, следует заземлить посудомоечную машину еще до первого ее использования. Такой шаг позволит избежать утечки тока на корпус и свести к минимуму риск поражения электричеством.

Необходимо лишь определить присутствие «земли» в электропроводке, проверить ее работоспособность и подключить автомат через заземляющий провод. Для этого можно обратиться к услугам профессиональных электриков или выполнить все электромонтажные работы своими силами.

Если решено действовать без помощи специалистов, то помогут наши инструкции.

А есть ли «земля»?

Сразу обозначим, что при отсутствии уверенности в своих силах и должных знаний и опыта, к электрощитку подходить не стоит. Технику безопасности никто не отменяет, и самодеятельность и тяга к экспериментам может обернуться серьезными проблемами. Если есть сомнения – обращаемся в сервисную службу.

Теперь проверяем, есть ли заземление в доме или квартире. Подключиться к уже налаженной защите в разы проще, чем проложить новую линию. Бывалым электрикам заметить наличие третьего провода не составит труда, достаточно:

  • открыть общеквартирный щиток;
  • отключить подачу электричества в квартиру;
  • снять защитную крышку на выделенной под посудомойку розетке;
  • оценить подведенные провода. Если нет заземления, то к винтовым клеммам будут присоединены только два провода, синий и коричневый. «Земля» маркируется желто-зеленым цветом и подсоединяется к болту, расположенному между двух основных фаз. Значит, в данной розетке такого не предусмотрено вообще.
ЭТО ИНТЕРЕСНО:  Чем отличаются переменный и постоянный ток

Хуже, когда между «нулем» и пустой «землей» имеется перемычка – это зануление, которое таит для жильцов дома немало опасностей.

Если в розетке все провода одного цвета и отсутствуют даже буквенные маркировки, то без посторонней помощи не обойтись. Придется вызвать электрика, который специальным оборудованием и инструментами заново промаркирует все проводники.

Работает ли «земля»?

Допустим, предусмотрены все три провода, включая заземление. Тогда необходимо проверить, полноценно ли работает «земля» в конкретной розетке. Сделать это можно своими руками с помощью мультиметра, «контрольной лампы» или индикаторной отвертки. В первом случае действуем так.

  1. Включаем подачу электричества через щиток.
  2. Переводим тестер в режим измерения напряжения.
  3. Вставляем один щуп мультиметра в предполагаемую фазу, а второй – в ноль. Записываем полученный результат.
  4. Переставляем второй щуп с ноля на «землю» и проводим аналогичное измерение.

Если последний замер покажет цифру, практически идентичную первой, то заземление в квартире присутствует и полностью исправно. Пустой дисплей говорит о противоположном – заземляющий провод или отсутствует, или поврежден.

При отсутствии мультиметра под рукой, можно «прозвонить» заземление и с помощью так называемой контрольной лампы. Собирается она из подручных материалов: берется обычная «лампочка Ильича», а к ее патрону присоединяются два провода с реагирующими на ток концевиками. Ориентироваться только на цвет изоляции не стоит – высока вероятность, что электромонтажник пренебрег маркировкой или перепутал оттенки. Дальше действуем так:

  • касаемся одним концом фазы, а второй направляем на ноль;
  • запоминаем, как сильно горит лампа;
  • перемещаем наконечник от нуля к «земле».

Сравниваем получаемый свет от лампы с первым случаем. Если горит также – заземление работает в положенном режиме, если нет зажигания или оно в разы слабее – есть проблемы с заземляющим проводом.

Если при данной проверке срабатывает УЗО, то с заземлением все в порядке.

Аналогичным с лампой образом проверяется «земля» и через индикаторную отвертку. Не забываем и о косвенных доказательствах того, что дома «барахлит» или отсутствует заземление. Например, водонагреватель или стиральная машинка будут периодически бить током, а при прослушивании музыки в колонках – возникать посторонние шумы.

Заземление машинки в многоквартирном доме

Нередко заземление в многоквартирных домах старой планировки, именуемых «хрущевками», не предусматривается. Но мириться с отсутствием полноценной защиты не стоит – заземлить посудомойку можно и в уже готовой розетке. Главное, придерживаться следующих действий.

  1. Найти подходящий провод. Подойдет медный трехжильный проводник достаточной длины и сечением не менее 3*1,5 кв. мм. или алюминиевый отрез с площадью одной жилы более 3*4,5 кв. мм.
  2. Подвести новую проводку к общеквартирному электрическому щитку.
  3. Зафиксировать провод на соответствующих стенах в доме по всей длине.
  4. Зачистить концы каждой жилы на 2-3 см.
  5. С помощью болтов и саморезов присоединить проводник к каркасу электрощитка. Точнее, к заземлению – месту, куда подключена большая часть проводов.
  6. Отодвинуть посудомойку и найти на задней панели место для присоединения заземления.

Чтобы правильно подключить «землю» к машинке, необходимо найти на ее корпусе специальный знак. Речь идет о черно-желтом треугольнике или круге с изображением трех горизонтальных полос снизу и одной вертикальной перпендикулярно им. Именно рядом с ним разрешено цеплять второй конец заземляющего провода.

Заземляем машинку в частном доме

Заземлить посудомойку своими руками в частном доме немного сложнее. Трудность в том, что здесь нет общедомового заземления, поэтому необходимо смастерить заземляющий контур и грамотно закопать его в землю. Но и это можно сделать, если придерживаться следующих инструкций:

  1. От внешней стены дома отступаем не менее 1 метра и определяем место для будущего контура.
  2. Лопатой копаем канаву глубиной в 0,5-1 м. в виде треугольника с равными сторонами по 2 м.
  3. В каждую вершину получившегося треугольника вставляем по металлическому штырю – заземлителю. Подойдет любой металлический отрезок длиной не менее 3 м.
  4. Надеваем защитные печатки и очки и при помощи сварочного аппарата металлической полоской соединяем все «вершины».
  5. Фиксируем на одной из вершин клемму и цепляем медный провод сечением 3*1,5 кв. мм или алюминиевый 3*4,5 кв. мм.
  6. Протягиваем провод до общедомового щитка.
  7. Закапываем сооружение землей и утаптываем.

Можно разместить части контура прямоугольником или одной линией – особой роли их расположение не играет.

Далее действуем аналогично с квартирным заземлением. Берем еще один отрез подходящей проводки и соединяем между собой заземленный щиток и посудомоечную машинку. Ориентируемся также по специальному знаку, расположенному на задней крышке автомата.

Несколько полезных советов

Помимо основной инструкции лучше знать еще несколько секретов и правил по организации заземления и эксплуатации самой посудомойки. Если иметь их в виду, то автомат прослужит долго и безаварийно. Так, следует помнить:

  • Нельзя использовать для посудомоечной машины удлиняющий провод.
  • Не стоит соединять вместе медь и алюминий.
  • Не следует вырезать заземляющий штырь из трехжильного провода.
  • Машинка подключается только к подходящему по мощности источнику питания.
  • Если вилка шнура от посудомойки не подходит к пазам розетки, то последнюю необходимо сменить на новую.
  • Использование промежуточных проводников и всевозможных «тройников», переходников запрещено.
  • Раз в полгода необходимо затягивать клемму на заземлении в щитке, а раз в год – непосредственно на контуре.

Посудомойка питается от электросети и взаимодействует с водой, поэтому заземлить посудомоечную машину необходимо каждому владельцу автомата. Сделать это самостоятельно или обратиться к профессионалам – решает каждый сам, но пренебрегать безопасностью и защитой от тока определенно не стоит. Главное, не оставляйте это дело незаконченным.

Источник: https://mashmaster.ru/zazemlit-posudomoechnuyu/

Заземление. Что это такое и как его сделать (часть 1)

Мой рассказ будет состоять из трёх частей.

3 часть. Современные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования. Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений. Третья часть (практика) в некотором смысле продолжит вторую.

В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий. Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

1 часть. Заземление

В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения

Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта. Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).И попытаюсь “перевести” эти определения на “простой” язык.
Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.
Заземляющее устройство

Источник: https://habr.com/ru/post/144464/

Зачем нужно заземление?

03 июля 2018.

Заземление – устройство, предохраняющее человека от поражения электрическим током. Благодаря использованию различных заземляющих приспособлений удается избежать жертв на производстве и в быту. Собственно в этом его основное предназначение. Но чтобы правильно воспользоваться заземлением необходимо для начала понять, что это такое и как оно работает. 

Что такое заземление?

Итак, что из себя представляет заземление? Конструктивно это чаще всего обычный кусок провода, который одним концом соединён с корпусом электрического аппарата, а другим концом с землей, откуда собственно и название. Заземление также может присутствовать в вилке современного электроинструмента,  там его роль такая же – при повреждении инструмента заземление предохраняет человека от удара электрическим током.

Существует множество различных систем заземления таких как TN-C, TN-S, TN-C-S и другие, собственно, обычному человеку, не имеющего электротехнического образования вовсе не обязательно вникать в данные вещи настолько глубоко, поэтому мы движемся дальше.

Как работает заземление

Суть заземления проста – служить проводником. Допустим, случилась аварийная ситуация – сломалась стиральная машина. При этом замкнуло обмотку электродвигателя (или что-нибудь еще) и корпус машинки оказался под напряжением. Человек ничего не подозревая может коснуться корпуса, после чего его ударит током. Для того чтобы этого не произошло, стиральную машину заземляют.

Тогда если человек коснётся корпуса, то ток пройдет не через него, а через заземление. А произойдёт так потому, что кожа человека имеет сопротивление порядка нескольких кило Ом, а сопротивление заземляющего проводника не более 5-10 Ом, что в тысячу раз меньше чем сопротивление кожи человека.

Выходит, что току в тысячу раз проще пройти по проводу и уйти землю, чем пройти через человека.  

Заземление и нулевой провод: как отличить

Зачем нужно заземление и нейтральный провод?

В процессе монтажа электрической сети в квартире или в доме вы неизбежно столкнётесь с вопросом что такое нулевой провод и заземление и в чем их отличие? Ведь без четкого понимания данного вопроса смонтировать электрическую сеть, полностью отвечающую нормам ПУЭ (Правила устройства электроустановок) достаточно сложно. Поэтому в нашей статье мы постараемся разобраться с данным вопросом и приведем основные правила монтажа этих цепей.

Что такое заземление и нейтральный провод

Прежде всего давайте разберемся, что такое нулевой и что такое защитный провод, в чем их отличия и в чем предназначение? Исходя из этого нам проще будет понимать правила их подключения и те требования которые к ним предъявляет ПУЭ.

Что такое нулевой провод

Прежде всего остановимся на нулевом или как его еще называют нейтральном проводе. Согласно п. 1.7.35 ПУЭ он предназначен для питания электроприемников и соединен с глухозаземленной нейтралью трансформатора.

Что такое нулевой провод?

  • Если же говорить простым языком и отбросить некоторые не столь важные для нас нюансы, то нулевой провод — это проводник, соединенный с заземленной частью трансформатора или генератора от которого вы получаете питание.
  • В однофазной сети, которая используется у нас практически во всех частных домовладениях и квартирах, для работы электроустановок обязательно необходим фазный и нулевой провод. Нулевой провод по сути непосредственно соединен с землей и в идеале имеет нулевой потенциал. То есть напряжения на нем нет.

Обратите внимание! Напряжения на нулевом проводе нет если он соединен с землей.

Если эта связь по какой-либо причине нарушена, то во время работы электроустановки он оказывается под напряжением равном фазному. То есть для однофазной сети равном 220В.

  • На схемах нулевой провод обозначается символом «N». Старая советская инструкция рекомендовала применять обозначение «0» и его еще можно встретить на некоторых схемах. А сам провод согласно п.1.1.30 ПУЭ должен быть выполнен проводом синего цвета.

Схемы подключения нейтрального провода и заземления

Теперь вы знаете как отличить нулевой провод от заземления и понимаете, что и то, и другое является соединением с землей. Теперь можно рассмотреть возможные схемы подключения нейтрального провода и заземления. Все они четко оговорены в п.1.7.3 ПУЭ. Мы рассмотрим только схемы с глухозаземленной нейтралью которые применяются в наших электрических сетях.

На фото представлена система ТТ

Итак:

  • Прежде всего рассмотрим систему ТТ в которой нейтральный провод подключен к заземлению трансформатора, а заземление к независимому источнику. Этот метод применяется очень редко, да и цена монтажа такой системы является наиболее высокой.
  • Значительно чаще используются системы типа ТN в которых используются PEN проводники. То есть на всем протяжении или на отдельных участках нулевой и защитный проводники проложены одним проводом, либо подключаются к одной точке заземления.
  • Наиболее оптимальной в данном случае в вопросах электробезопасности является система TN-S. В ней нулевой и защитный проводники подключены к единой точке заземления, но на всей протяженности выполнены отдельными проводниками.
  • Значительно чаще можно встретить систему TN-C, которую достаточно просто реализовать своими руками. В ней нейтральный провод и заземление выполнены одним проводом по всей длине. Но это наименее безопасный вариант с точки зрения электробезопасности.
  • И последним возможным вариантом является система TN-C-S. Как понятно из названия она совмещает в себе две предыдущие системы. То есть на одном участке выполнена совместная прокладка нейтрали и заземления, а на втором участке они разделены.

Правила подключения нейтрального провода и заземления

Зная возможные схемы подключения заземления и нулевого провода можно говорить о правилах и требованиях к их подключению. Ведь они хоть и не значительно, но разняться. Кроме того, мы надеемся, что объясним часто встречающийся вопрос зачем заземлять нулевой провод.

  • Прежде всего поговорим о системе ТТ. Согласно п.1.7.59 ПУЭ данная система может применяться только в исключительных случаях, когда не одна из систем TN не может обеспечить должный уровень защиты.

Обратите внимание! При использовании системы ТТ обязательно применение автоматов УЗО. Причём нормы ПУЭ предъявляют к ним отдельные требования по току срабатывания.

  • Но и для системы TN все не так просто. Согласно п.1.7.61 ПУЭ на вводе в здание или в электроустановку они должны иметь повторное заземление. Давайте разберемся зачем это необходимо.
  • В системе TN как мы уже знаем, нулевой и защитный проводники монтируются одним проводом. В случае обрыва этого совместного провода получается, что нулевой и защитный провод образуют единое целое. Ведь они не соединены с землей.
  • Если у нас нет соединения с землей, то как мы уже знаем при включении любого электроприбора или даже лампочки нулевой провод оказывается под фазным напряжением.
  • Но для системы TN нулевой и фазный провод частично или полностью объединены. То есть провод заземления тоже оказывается под фазным напряжением. А фазный провод у нас подключен к корпусу нашей стиральной машины, фена, холодильника и другого электрооборудования. Выходит, и на их корпусе появится фазное напряжение. И при прикосновении к ним вы получите удар электрическим током.

Зачем выполнять повторное заземление?

  • Именно исходя из этих соображений повторное заземление нулевого провода по ПУЭ для систем TN обязательно. Ведь такое повторное заземление снижает риск подобных случаев. А если оно выполнено у всех электропотребителей, то вероятность подобных случаев становится еще ниже.
  • Кроме того, нормы ПУЭ в многоэтажных зданиях требуют присоединения PEN шины к шине уравнивания потенциалов, которая согласно п.1.7.82 ПУЭ должна соединяться со всеми заземленными проводниками в доме.
  • Отдельные требования ПУЭ предъявляет к потребителям, которые подключены к электрической сети при помощи воздушной линии. Контур повторного заземления нулевого провода и заземления для таких потребителей должен быть оборудован согласно п.17.101 и 1.7.102 ПУЭ.
  • Для таких потребителей нормируется не только сопротивление искусственного заземлителя, но и предъявляются требования к его материалу, а также сечению и толщине. Ведь на воздушных линиях обрыв одного провода значительно более вероятно.

Вывод

Как видите вопрос правильного выполнения заземления и монтажа нулевого провода достаточно многогранен. Мы уделили внимание лишь основным аспектам и попытались разъяснить назначение данных проводников. Более детальную информацию по поводу монтажу заземления, зануления и контуров заземления вы можете получить в следующих статьях на нашем сайте, а также на видео.

Источник: https://elektrik-a.su/kabeli-i-provoda/zazemleniya/zazemlenie-i-nulevoj-provod-482

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]