Что вы понимаете под электрическим напряжением

Снабберы, способные полностью подавлять пики напряжения

Что вы понимаете под электрическим напряжением

Схема демпфирования ограничивает скачки напряжения в преобразователях частоты. Снабберы (или импульсные конденсаторы) также используются в выходах аудиоусилителей класса D по тем же причинам (рисунок ниже).

Когда транзистор, который вы используете для переключения тока, отключается, он генерирует скачок напряжения, который может повредить устройство. Этот всплеск также будет генерировать электромагнитные помехи (EMI). Имейте в виду, что электромагнитные помехи создаются током в контуре.

Если ваша демпфирующая сеть направляет ток по большой петле, она будет увеличивать, а не уменьшать EMI.

Все дело в индуктивности

Пики напряжения в электрической цепи вызваны дискретными индукторами, которые вы коммутируете. Индуктивность рассеяния трансформаторов выглядит как индуктивность, включенная последовательно с обмоткой идеального трансформатора, которая генерирует скачки напряжения.

Дискретные индуктивности очевидны, если смотреть на вашу схему. Еще одной проблемой является вся паразитная индуктивность в проводах и дорожках печатных плат (PCB). Любой провод в пространстве имеет индуктивность.

Разработка силовой электроники похожа на разработку радиочастотной схемы, где ваша печатная плата является компонентом.

Тот факт, что компоновка и конструкция печатной платы изменяет паразитную индуктивность, означает, что вам нужно будет построить и протестировать свои схемы питания для их оптимизации. Это, как правило, быстрее и дешевле, чем использование только систем моделирования для определения паразитной индуктивности на этапе проектирования. Глядя на аналогичные конструкции, вы можете получить представление о размерах компонентов демпфера.

Как избавиться от пиковых скачков напряжения

Простейшая демпфирующая цепь представляет собой последовательную RC-цепь на узле коммутатора (рисунок ниже). Конденсатор предотвращает протекание постоянного тока.

Когда транзистор переключается, конденсатор переходит в состояние близкое к короткому замыканию и берет весь ток цепи на себя, а резистор ограничивает ток короткого замыкания.

Одним из недостатков демпфирующей цепочки RC является то, что она увеличивает потери в силовой цепи добавляя потери в RC контуре к потерям в самом транзисторе.

При больших мощностях в RC цепочку последовательно включается диод, с помощью которого создается демпфирующая цепочка RCD (рисунок ниже). Диод блокирует любой ток в цепи при включенном транзисторе. Когда транзистор отключается, диод открывается, и ток протекает через резистор и конденсатор.

Конструкция снабберов

Корнелл Дубильер (Cornell Dubilier) имеет хорошее руководство по проектированию демпфирующих сетей. В руководстве есть раздел с кратким описанием проектирования и предложением, похожим на аналог: «Планируйте использование 2-ваттного резистора из углеродного состава».

В руководстве отмечается, что проволочные резисторы вызовут проблемы, поскольку они имеют более высокую индуктивность. Даже у металлического пленочного резистора могут возникнуть проблемы, если заусенцы выполняется в форме спирали, имеющей индуктивность.

Поскольку он является аналоговым компонентом, вы можете быть уверены, что резистор мощностью 2 Вт не подходит для преобразователя мощностью 1 Вт или инвертора мощностью 10 кВт.

В руководстве описан метод быстрого проектирования, а затем оптимизированный проект, который снижает номинальную мощность резистора в 5 раз и значение демпфирующего конденсатора в 3,5 раза. Эти выгоды предназначены для конкретной конструкции с определенной компоновкойпечатной платы. Ваши изделия, несомненно, будут иметь отличия.

Одно из ценных замечаний в этом руководстве заключается в том, что узел коммутатора, который вы пытаетесь отключить, будет иметь характеристическое сопротивление, как и линия передачи. Вы хотите, чтобы размер демпфирующего резистора не превышал это характеристическое сопротивление, чтобы не возникало переходного напряжения при размыкании коммутатора.

Корнелл Дубильер также имеет гораздо более подробное руководство по проектированию демпферов. В этом руководстве намного больше математики, теории и диаграмм. Помните, однако, что вся теория бесполезна, если вы не создаете, не проводите испытаний и не оцениваете схемы демпфирования, которые разрабатываете.

Хорошая особенность резистора в RC-цепи состоит в том, что вы можете с его помощью вести замеры в реальном времени мгновенных значений токов (применение в качестве шунта) и напряжений, которые также находятся и на конденсаторе. В цепи RCD вы должны добавить шунт последовательно конденсатору.

Это будет непросто для устройств поверхностного монтажа, но обычно вы можете разорвать дорожку печатной платы, чтобы подключить датчик тока в цепь.

Все это высокочастотные сигналы, поэтому убедитесь, что у вас есть осциллограф и щупы с достаточной шириной полосы пропускания для измерения пиковых значений токов и напряжений.

Проблема с электролитикой

Опытные инженеры аналоговых систем знают, что есть много различных типов конденсаторов. Никакой физический конденсатор не является идеальным представлением «символа» вашей схемы или модели в моделировании.

Электролитические конденсаторы имеют большие значения емкости и более дешевы.

Используя диод в демпфирующей сети RCD, вы сможете обойти проблему, связанную с полярностью электролитических конденсаторов, и стоит помнить, что они взорвутся, если вы подключите их в обратной полярности.

Несмотря на это, электролитические конденсаторы не подходят для демпфирующих цепей, так как демпферы имеют очень большие пиковые токи, которые могут вызывать перегрев и повредить электролитический конденсатор. Что еще хуже, электролитические конденсаторы обладают ужасной надежностью, хуже, чем большинство пассивных или дискретных компонентов, за исключением, возможно, потенциометра. Это делает электролитические или танталовые конденсаторы плохим выбором для демпфирующих цепей.

Слюдяные и пленочные конденсаторы

Приятной особенностью справочника Корнелла Дубильера является то, что компания почти не зависит от типа используемого конденсатора. Руководство изначально рекомендует вам обратить внимание на слюдяные конденсаторы. Слюда подходит к идеальному конденсатору по многим параметрам. К сожалению, они имеют плохие свойства включения и, как правило, дорогие.

Вместо слюдяных конденсаторов ваша снабберная цепочка может использовать пленочные конденсаторы. Данный тип устройств может состоять из слоев фольги, и металлизированной пленки (рисунок выше). Слойфольги принимают более высокие пиковые токи.

Фольга будет «заживать» после перенапряжения, когда пластиковый слой просто плавиться от короткого замыкания. Некоторые типы фольги имеют различную толщину, что дополнительно увеличивает емкость тока при одновременном уменьшении физических размеров (рисунок ниже).

Полипропиленовая пленка является предпочтительной, поскольку полиэстер имеет более высокие потери, что делает его непригодным для использования с демпфирующими сетями.

Диэлектрики: друзья и враги

При небольших размерах и прочности вы можете рассмотреть керамические конденсаторы в демпфирующих цепях. Будьте осторожны с максимальным номинальным током конденсатора, который вы никогда не сможете превысить его без последствий для конденсатора, даже на мгновение.

Керамика и металлизированная пленка также будут иметь ограничения переходногонапряжения, возможно, до 50 В / нс.

Благодаря гораздо более быстрому времени переключения силовых транзисторов на основе карбида кремния (SiC) и нитрида галлия (GaN) вы должны быть уверены, что работаете на переходной характеристике демпфирующего конденсатора.

Другая проблема с керамическими конденсаторами заключается в том, что они могут терять емкость в зависимости от температуры и приложенного напряжения. Это функция диэлектриков, используемых компаниями. Диэлектрик C0G имеет очень хорошую температурную стабильность, но он работает только в небольших диапазонах температур и стоит значительно дороже, чем другие диэлектрики.

Керамические конденсаторы работают

Несмотря на особенности керамических конденсаторов, их можно использовать в демпфирующих цепочках, если вы хорошо понимаете их преимущества и недостатки. Мурата описывает, как разные диэлектрики подходят для разных снабберных (демпфирующих) конденсаторов. Простопомните, что диэлектрики большой емкости имеют худшие температурныехарактеристики, поэтому их небольшой размер и низкая индуктивность приводят к необходимости более высоких значений для работы при повышенных температурах.

Производители транзисторов хотят, чтобы вы улучшали свои снабберные цепи. Соответственно, ROHM сравнивает использование пленочных и керамических конденсаторов (рисунок ниже). Здесь они базируются вокруг ограничений по напряжению и стоимости керамических конденсаторов, соединяя последовательно два блока из пяти керамических конденсаторов. Эти 10 устройств дают номинальное напряжение и значение, соизмеримые с одним пленочным конденсатором.

Результаты, полученные ROHM, показывают, насколько лучше керамические конденсаторы с демпфированием (рисунок ниже).

Обратите внимание, что эти результаты относятся к SiC-транзисторам ROHM, которые переключаются очень быстро и нуждаются в оптимальной демпфирующей цепочке.

Также обратите внимание, что компания не проводила испытания при повышенныхтемпературах, при которых силовые цепи всегда работают. Вы несетеответственность за то, чтобы снаббер хорошо работал при высоких температурах, когда значение емкости падает.

Вы также должны проверить свою систему на «акустические проблемы» от керамических конденсаторов. Они работают как динамики и микрофоны. Если ваш преобразователь работает с частотой ниже 20 кГц, керамические снабберные конденсаторы могут создавать нежелательный шум. Обязательно найдите молодого человека, который будет слушать шум, так как кто-либо старше 35 лет не может слышать в диапазоне выше 15 кГц.

Сделано для снабберов

На APEC 2019 TDK представила свои конденсаторы для преобразователей частоты компания CeraLink. В ее керамических конденсаторах используется диэлектрик свинец-лантан-цирконий-титан (PLZT). Этот диэлектрик работает в нише с более высоким напряжением и большим значением емкости по сравнению с другими типами керамики (рисунок ниже).

Конденсаторы CeraLink будут увеличивать емкость с приложенным напряжением. Они имеют те же проблемы с температурой, что и обычная керамика.

TDK отмечает, что это может быть преимуществом, поскольку они не будут «поглотителями тока»; то есть, самый горячий параллельный конденсатор не будет увеличиваться в стоимости и потреблять больше тока — пока он не сгорит.

Такое разделение тока является критическим, поскольку конденсаторы CeraLink состоят из еще более плотной конфигурации, чем обычные стек конденсаторы MLCC (рисунок ниже). Предназначенный для звена постоянного тока в частотных преобразователях, высокая частота пульсаций тока CeraLink может также использоваться в демпфирующих цепях.

В документации TDK CeraLink также упоминается физическое напряжение, которое импульс напряжения оказывает на керамический конденсатор. Если импульсы имеют большую частоту и большое значение пикового напряжения, это может вывести конденсатор из строя.

Это еще одна причина, по которой вам нужно хорошо протестировать и измерить все параметры электрической цепи, что касается вашей конструкции снаббера, чтобы убедиться, что она будет работать в нужном диапазоне температур и с допустимыми значениями напряжений и пульсаций.

Выберите свой подход к разработке

Вы можете использовать проверенные снабберы на основе пленочных конденсаторов, зная, что вы можете повысить производительность и стоимость с керамическими конденсаторами.

Это сложное решение. Применение конденсаторов меньшего размера означает, что у вас будет меньше паразитной индуктивности — то, что требует больших снабберов. Если вы можете уменьшить всю конструкцию, особенно с SiC и GaN, возможно, имеет смысл начать с керамики.

Опять же, если вам нужно некоторое пространство, чтобы отводить тепло от силовых транзисторов, и это пространство дает возможность для установки пленочного конденсатора, ну, возможно, это ваш лучший выбор. «Может быть» и «аналог» идут рука об руку. Каждая разработка и каждая схема уникальны, так же как и ситуация, в которой они используются.

Вот что делает аналоговую систему такой сложной и одновременно полезной, когда вы правильно ее понимаете.

Источник: https://elenergi.ru/snabbery-polnostyu-podavlyayushhie-piki-napryazheniya-v-cepi.html

Тёплый, ламповый и очень опасный

Что вы понимаете под электрическим напряжением

Меня не может не радовать возрождение интереса к ламповой электронике. Однако, есть над чем задуматься!

В одном из комментариев я как-то написал, что «растет уже третье поколение электронщиков, не битых анодным напряжением». Несколько недавних публикаций с конструкциями на электронных лампах меня в этой уверенности только укрепили.

Я начинал ещё в те времена, когда конструкции на лампах не были экзотикой, и первое чему учили юных радиолюбителей старшие товарищи — приёмам безопасного проведения работ под напряжением. Этими «лайфхаками для гиков» я и хочу поделиться в публикации.

Электрический ток опасен!

О том, что электрический ток опасен, знают все. Заботливые родители вставляют в розетки специальные заглушки и говорят своим ещё неразумным детям, что в розетку ничего совать нельзя. Заботливые работодатели проводят работникам инструктажи по технике безопасности.

При этом люди продолжают гибнуть от поражения электрическим током!

Как правило, люди безбоязненно касаются проводящих цепей, которые считают обесточенными. При этом у человека нет органов чувств для определения наличия электрического напряжения на расстоянии. Касание же к цепям под напряжением может привести к смерти!

Кратко, но по существу, основные правила электробезопасности в радиолюбительской практике изложены в статье «Осторожно! Электрический ток» — Радио №8, 1983, с.55. В 1983 году конструирование на электронных лампах было для юных радиолюбителей уже не столь актуально, поэтому некоторые нюансы безопасной работы с ламповыми конструкциями разберу подробней.

Обязательно извлекаем вилку из розетки

Любые монтажные работы должны проводиться только на обесточенном оборудовании! Для этого конструкция должна содержать выключатель питания с жестко фиксированными положениями и индикатор включения. Лучшей практикой же всегда было не надеяться на выключатель, а вынимать вилку сетевого шнура из розетки, т.е.

обеспечивать «видимый разрыв цепей электропитания» конструкции. Также, необходимо обязательно вынимать вилку из розетки при замене сетевых предохранителей.

Конечно, существуют конструкции предохранительных колодок, позволяющих менять предохранители «на ходу», но если запасной предохранитель «полыхнёт» прямо при замене, положительного влияния на организм это не окажет.

Конденсаторы должны быть разряжены

После того, как конструкцию обесточили, необходимо дождаться разряда конденсаторов! Лучшей практикой считалось разряжать конденсаторы сглаживающего фильтра источника анодного напряжения через параллельно подключенный к выходу фильтра резистор. Номинал резистора подбирали так, чтобы через него протекал ток порядка 1 мА. Чтобы убедиться, что заряда на конденсаторах фильтра не осталось, на этом резисторе измеряли напряжение.

Конденсаторы также опасны тем, что могут взорваться.

Чтобы снизить риск, придерживайтесь правил:

  • номинальное напряжение конденсатора (особенно в цепях питания) должно в 1,5 — 2,0 раза превышать действующее напряжение цепи;
  • полярные конденсаторы категорически запрещается включать в другой полярности, а следовательно, и использовать их в цепях переменного тока;
  • корпус конденсатора не должен иметь повреждений, вздутий и потёков.

Глаза должны быть защищены

Работы с конструкциями на лампах нужно проводить в защитных очках! Защитные очки поменять проще, чем купить себе запасные глаза. Я уже упомянул про взрывающиеся предохранители и конденсаторы. Дополню проплавленными баллонами ламп и разлетающимися в разные стороны осколками резисторов и расплавленными каплями металла от проводников при лавинообразных процессах в лампе. Можно, конечно, думать, что защита не понадобится, но закон Мёрфи суров, а жареный петух не дремлет!

Изоляция должна быть целостной

Не каждая конструкция начинает работать прямо после сборки. При отладке в неё приходится лезть щупами и отвёртками, т.е. всегда есть риск попасть под напряжение или устроить замыкание. Борются с этим изоляцией токонесущих цепей. Монтажные провода должны иметь надёжную цельную изоляцию.

Контакты должны быть защищены от прикосновения изолирующими трубками. Точки, где при отладке нужно измерять напряжение или смотреть форму сигнала, желательно изолировать трубкой ПВХ, чтобы на время отладки трубку с контакта аккуратно сдвинуть, а затем вернуть её назад.

С термоусадкой это так просто не получится.

Работа под напряжением производится одной рукой

Есть шутка, что настоящий электрик никогда не ест вилкой с ножом, чтоб не прикасаться второй рукой к проводящей поверхности. Лучшей практикой при измерениях всегда было закрепить один щуп прибора зажимом типа «крокодил» в одной точке измерения, разместить прибор на ровной поверхности в удобном безопасном месте, взять в руку второй щуп прибора и проводить измерения, заложив другую руку за спину. На глазах — защитные очки, разумеется.

ЭТО ИНТЕРЕСНО:  Какое напряжение в статическом электричестве

О самовозбуждении в ламповой аппаратуре

Схемы на электронных лампах склонны к самовозбуждению. Самовозбуждение может привести к пробою лампы, иногда со «спецэффектами», приводящими к замене защитных очков. Борются с самовозбуждением, укорачивая до минимума сигнальные цепи и соединяя выводы элементов, подключенных к общему проводу, в одну точку «звездой».

Лучшей практикой является монтаж элементов схем непосредственно на контакты ламповых панелек. Цепи между каскадами стараются сделать максимально короткими и расположить их так, чтобы не возникало паразитных обратных связей.

Соединение к общему проводу «звездой» тоже вызвано предотвращением паразитных обратных связей перетоками по металлическому шасси.

О бестрансформаторном электропитании

Никакая попытка сэкономить на гальванической развязке от сети себя не оправдывает! Хотите сэкономить — найдите блок питания от лампово-полупроводникового телевизора и поменяйте в нём конденсаторы. Получите и накальное напряжение ~6,3 В, и анодное +360 В, и отрицательное напряжение для цепей смещения, и питание для транзисторов +30 В. Короче, будет Вам счастье, а проблем с наведённой на шасси «фазой» не будет.

О рабочем заземлении

Рабочее заземление имеет принципиальное отличие от защитного в том, что служит для обеспечения штатного режима работы электроустановки. В качестве примера схемы, требующей рабочего заземления, можно привести радиопередатчик. Частным случаем радиопередатчика можно считать трансформатор Тесла.

Рабочее заземление в подобных схемах используется в качестве второго плеча передающей антенны, т.е.

в цепь рабочего заземления отдаётся мощность! В связи с этим однозначно не стоит использовать в качестве рабочего заземления трубы отопления, водоснабжения и газовые трубы:

  • результатом передачи мощности по газовой трубе может быть взрыв бытового газа;
  • на трубы отопления и водоснабжения и циркулирующую по ним воду будет наведено напряжение, а, как я уже говорил, люди безбоязненно касаются проводящих цепей, которые считают обесточенными В случаях же, когда из-за отсутствия качественной гальванической развязки при «бестрансформаторном питании» на такое вот «рабочее заземление» попадёт «фаза», шансы жильцов на выживание стремительно падают.

Вместо заключения

Меня не может не радовать возрождение интереса к ламповой электронике. Я очень надеюсь, что мой опыт, изложенный в статье, поможет неофитам испытать радость от технического творчества. И ещё я очень надеюсь, что следуя изложенным в статье несложным рекомендациям, никто не пострадает от своего увлечения ламповой техникой.

73! de RD9F

Источник: https://habr.com/ru/post/489786/

Стабилизаторы напряжения для дома

Что вы понимаете под электрическим напряжением

Стабилизаторы напряжения для дома — это электроприборы для качественного выравнивания и преобразования

электрической энергии.

Он помогает получить на его выходных клеммах защищенную встроенными автоматическими выключателями,

нужную стабилизированную электрическую энергию, которая будет находиться в заранее заданных пределах.

При этом входной электроток, который на стабилизатор будет подаваться по проводам, уложенными в системы

кабельной прокладки и на выходе будет значительно отличаться по амплитуде колебаний и по силе электротока.

Электроэнергия на выходе, делит электростабилизаторы напряжения для дома на два типа:

  • Регуляторы максимального и минимального постоянного электротока;
  • Регуляторы максимального и минимального переменного электротока.

Это разделение на типы питания, говорит о том, что эти регуляторы электроэнергии, получая на входе, тот или другой

вид электроэнергии, всего лишь стабилизируют ее до соответствующих норм и значений.

Если стабилизатор электронапряжения  для дома на входе получает постоянную не стабилизированную

электроэнергию, но и на выходе, он выдаст, тоже постоянную, но уже хорошо стабилизированную электроэнергию

с заранее заданными параметрами, которая по кабелям и проводам может быть передана приборам потребления.

То же самое, произойдет и с регулятором переменного электротока. Получая на входе повышенное или пониженное

переменное напряжение, он его стабилизирует до нужных пределов на выходе.

Монтируют эти приборы непосредственно среди электрощитового оборудования дома и оттуда по отдельным проводам

разводят к нужным потребителям первой необходимости.

Сам прибор стабилизации напряжения размещают в удобном для обслуживания месте.

Это может быть, как напольное, так и настенное крепление на мощные дюбеля, анкера и шурупы.

Как Вы понимаете, в целях улучшения качества электропитания для дома, офиса или квартиры, необходимо

купить стабилизатор напряжения для дома, именно того номинала, который по суммарной мощности

всех подсоединенных в розетки электроприборов и включенных светильников, вытянет с 20% запасом все включенное

потребление стабилизированной электроэнергии, то есть подходит именно Вам.

Продажа стабилизатора напряжения возможна по хорошей оптовой цене и с бесплатной доставкой

по Украине любым национальным перевозчиком.

При выборе стабилизаторы напряжения для дома нужно руководствоваться тремя основными параметрами:

  • Диапазоном входного электрического тока;
  • Точностью выходного электротока;
  • Выходной мощностью самого прибора;

Входные границы по автоматической стабилизации электронапряжения в среднем лежат в пределах от 130 до 270 вольт.

Конкретные значения выходного напряжения будут видны на встроенном в стабилизатор напряжения табло или

его можно померить измерительными приборами, типа вольтметров, амперметров или мультиметров.

И чем шире диапазон этих границ, тем выше класс выбираемого прибора.

Входной электрический ток может изменяться скачкообразно, но чтобы погасить эти колебания и стабилизировать

электроток на выходе, многие стабилизаторы электронапряжения для дома, ступенчато изменяют выходной

электрический ток.

Это заметно по обыкновенному осветительному оборудованию в виде лампочек в светильниках, которые могут

немного помигивать, при сильных бросках входного электротока.

Но для бытовых приборов, это практически не ощутимо, так как, стабилизация происходит за 20 миллисекунд.

Бытовые регуляторы электронапряжения имеют определенную свою заданную производителем мощность,

которую они могут выдать на выходе. Чем ближе входной ток к норме, тем качественней и стабилизированней

будет электроэнергия, которую выдаст прибор на выходе по мощности и по электронапряжению.

Чем ниже электрическая энергии на входе в стабилизатор напряжения, тем меньше мощности от заявленной, 

выдаст прибор на выходе. 

Ведь ему приходится, почти вдвое поднимать электрический ток, но при этом прибор теряет всего 10% мощности.

Без хорошо стабилизированной, без резких скачков, электрической энергии, на сегодняшний день, просто нельзя

представить себе современное жилище.

Это может быть не только квартира, загородный дом, дача, фермерское хозяйство или современный завод,

но и офис делового человека или целой организации, напичканной под завязку различной бытовой,

компьютерной и оргтехникой.

Наивно думать, что у энергетиков трансформаторные подстанции, всегда справляются с пиковыми нагрузками

потребителей электроэнергии?

Что на соседнем участке, постоянно работающий самопальный сварочный аппарат, не будет создавать

свистопляску в вашей электросети?

Или от ветхости не перегорит в самый неподходящий момент, нулевой провод в щитовой дома и вместо

220 вольт, все включенные в сеть приборы получат 440 вольт?

Почему покупатели хотят купить стабилизатор напряжения для дома в магазине Струмок?

Решение придумано уже давно!

Все потому, что у нас эксклюзивное предложение и мы можем предложить стабилизатор напряжения

для дома, купить который можно у нас в магазине «Струмок» по весьма интересной цене с

бесплатной доставкой по Украине.

Симисторный прибор, не только обеспечит вашу электрическую сеть качественной электроэнергией,

но и при резком понижении или повышении тока во входящей

электрической сети, значительно выше нормы – мгновенно отключит подачу электроэнергии.

Согласно существующим нормам, отклонение по качественным параметрам, которые допустимы

при подаче электроэнергии, не должно превышать 10%.

Всегда ли это возможно, при сильной изношенности и ветхости электрических проводников и

трансформаторных подстанций?

Резко возросшем потребление электроэнергии со стороны населения?

Это ли не причины, из-за которых, необходимо купить стабилизатор напряжения, который сможет

вам помочь в трудный момент?

Изношенные электрические сети, в свое время, рассчитывались, на не очень большое потребление

электроэнергии со стороны населения.

Расчет производился по схеме потребления, не более 2-3 кВт на одну квартиру.

А это, всего лишь, несколько люстр и светодиодных светильников на пять — шесть, 60 ваттных

лампочек, маломощный холодильник, простая стиральная машина, да настольная 40 ваттная лампа.

Тем более, что в ту пору о стабилизаторах напряжения, думали лишь немногие.

Сегодняшние потребители электрической энергии, хотят, по тем же проводам, рассчитанным на нагрузку

прошлых лет, получить качественную электроэнергию в гораздо больших объемах.

Но как вы понимаете, без стабилизатора напряжения, получить качественную электрическую энергию

в больших объемах — невозможно!

Современный человек не мыслит себя без электрочайника, микроволновки, нескольких телевизоров,

компьютера, принтера, фена, мощного утюга, масляного электрического обогревателя или электрического

настенного конвектора. Сюда же можно отнести стиралку с функцией вываривания, нескольких

кондиционеров, и конечно же, большую люстру в каждой комнате с кучей светодиодных лампочек.

Естественно предположить, что, если, хотя бы часть, этой техники начинает работать, да еще и в

нескольких квартирах одновременно, приводит к тому, что сила тока в электрической сети дома,

оказывается намного ниже нормы. 

Нормой является электрическая энергия, которая составляет 220Вольт±1%.

А если предположить, что во время монтажа электросети, нагрузка на разные входящие фазы была,

распределена неправильно и произошел перекос фаз, то только стабилизатор напряжения способен

исправить положение и привести в норму входную электроэнергию.

Редкие скачки электричества, которые поднимают электроэнергию в электросети выше нормы,

обусловлены постоянными авариями на линиях электропередач.

 

 Сегодня в век интернета нет ничего проще, чем прямо по телефону заказать и купить для дома

стабилизатор напряжения, именно того номинала, который подходит для вашего потребления.

В Киеве такую покупку можно совершить в нашем магазине «СтрумОк» на левом берегу Днепра или

через сайт интернет магазина.

Низкие цены и отличные консультанты сделают покупку у нас самой приятной, а бесплатная

доставка по Киеву и Украине — будет для Вас приятным сюрпризом.

Мы сделаем бесплатную доставку по Киеву и всей Украине любым понравившимся вам перевозчиком и

сделаем это бесплатно, если сумма покупки будет соответствовать условиям нашей доставки,

а это значит, что под эту градацию подпадает любой современный регулятор электронапряжения для дома.

С нами вы можете связаться и сделать заказ не только через корзину сайта, но и через почту,

а так же несколькими способами, которые для вас не будут стоить ни копейки.

Это услуга «Обратный звонок» при которой в шапке сайта вы кликаете на эту услугу и оставляете в специальной

форме, свой контактный номер телефона и ваше имя. 

Вы сможете понять, что с нами удобно, выгодно и безопасно работать, когда наш менеджер сам перезвонит

вам и вы расскажете ему о своем заказе, кроме этого в рабочее время на сайте работает Чат и вы можете задать

любой интересующий вас вопрос по нашей тематике в письменном виде.

Кроме того у нас есть странички в социальных сетях, их адреса вы можете найти через вкладку «Контакты» в

шапке сайта, где более подробно рассказывается о нас.

Гарантированная безотказная работа симисторного стабилизатора напряжения для дома Volter — 10 лет!

5 лет – полная гарантия + 5 лет гарантийного бесплатного обслуживания, кроме комплектующих,

которые оплачиваются по себестоимости.

Специалисты сервисного центра бесплатно отремонтируют любую неисправность, в течение 5-ти летнего

гарантийного срока эксплуатации стабилизатора Вольтер.

В следующие 5 гарантийных лет эксплуатации – произведут бесплатную замену, вышедших из строя

комплектующих в Ваших стабилизаторах напряжения Volter (комплектующие оплачиваются Вами по себестоимости).

Подробные координаты ближайшего к Вам сервисного центра, Вы можете узнать у наших менеджеров по

многоканальному телефону:   (044) (093) (096) (099) 501-43-01. 

Источник: https://strumok.kiev.ua/stabilizatory-napriazheniia-dlya-doma.html

Преобразование энергии в электрической цепи Мгновенная, активная, реактивная и полная мощности синусоидального тока

Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени. Интенсивность передачи или преобразования энергии называется мощностью р. Сказанному соответствует математическое определение:

Приняв начальную фазу напряжения за нуль, а сдвиг фаз между напряжением и током за , получим:

Итак, мгновенная мощность имеет постоянную составляющую и гармоническую составляющую, угловая частота которой в 2 раза больше угловой частоты напряжения и тока.

Когда мгновенная мощность отрицательна, а это имеет место (см. рис. 1), когда u и i разных знаков, т.е. когда направления напряжения и тока в двухполюснике противоположны, энергия возвращается из двухполюсника источнику питания.

Такой возврат энергии источнику происходит за счет того, что энергия периодически запасается в магнитных и электрических полях соответственно индуктивных и емкостных элементов, входящих в состав двухполюсника. Энергия, отдаваемая источником двухполюснику в течение времени t равна .

Активная мощность

Среднее за период значение мгновенной мощности называется активной мощностью .

Принимая во внимание, что , из (3) получим:

(4)

Активная мощность, потребляемая пассивным двухполюсником, не может быть отрицательной (иначе двухполюсник будет генерировать энергию), поэтому , т.е. на входе пассивного двухполюсника . Случай Р=0, теоретически возможен для двухполюсника, не имеющего активных сопротивлений, а содержащего только идеальные индуктивные и емкостные элементы.

Резистор (идеальное активное сопротивление)

Здесь напряжение и ток (см. рис. 2) совпадают по фазе , поэтому мощность всегда положительна, т.е. резистор потребляет активную мощность

Катушка индуктивности (идеальная индуктивность)

При идеальной индуктивности ток отстает от напряжения по фазе на . Поэтому в соответствии с (3) можно записать .

Участок 1-2: энергия , запасаемая в магнитном поле катушки, нарастает.

Участок 2-3: энергия магнитного поля убывает, возвращаясь в источник.

Конденсатор (идеальная емкость)

Аналогичный характер имеют процессы и для идеальной емкости. Здесь . Поэтому из (3) вытекает, что . Таким образом, в катушке индуктивности и конденсаторе активная мощность не потребляется (Р=0), так как в них не происходит необратимого преобразования энергии в другие виды энергии.

Здесь происходит только циркуляция энергии: электрическая энергия запасается в магнитном поле катушки или электрическом поле конденсатора на протяжении четверти периода, а на протяжении следующей четверти периода энергия вновь возвращается в сеть.

В силу этого катушку индуктивности и конденсатор называют реактивными элементами, а их сопротивления ХL и ХС , в отличие от активного сопротивления R резистора, – реактивными.

Интенсивность обмена энергии принято характеризовать наибольшим значением скорости поступления энергии в магнитное поле катушки или электрическое поле конденсатора, которое называется реактивной мощностью.

В общем случае выражение для реактивной мощности имеет вид:

(5)

Она положительна при отстающем токе (индуктивная нагрузка- ) и отрицательна при опережающем токе (емкостная нагрузка- ). Единицу мощности в применении к измерению реактивной мощности называют вольт-ампер реактивный (ВАр).

В частности для катушки индуктивности имеем:

, так как .

.

Из последнего видно, что реактивная мощность для идеальной катушки индуктивности пропорциональна частоте и максимальному запасу энергии в катушке. Аналогично можно получить для идеального конденсатора:

.

Полная мощность

Помимо понятий активной и реактивной мощностей в электротехнике широко используется понятие полной мощности:

(6)

Активная, реактивная и полная мощности связаны следующим соотношением:

(7)

Отношение активной мощности к полной называют коэффициентом мощности

. Из приведенных выше соотношений видно, что коэффициент мощности равен косинусу угла сдвига между током и напряжением. Итак,

(8)

Комплексная мощность

Активную, реактивную и полную мощности можно определить, пользуясь комплексными изображениями напряжения и тока. Пусть , а . Тогда комплекс полной мощности:

(9)

где — комплекс, сопряженный с комплексом .

.

Комплексной мощности можно поставить в соответствие треугольник мощностей (см. рис. 4). Рис. 4 соответствует  (активно-индуктивная нагрузка), для которого имеем:

ЭТО ИНТЕРЕСНО:  Как называется столб с электричеством

.

Применение статических конденсаторов для повышения cosφ

Как уже указывалось, реактивная мощность циркулирует между источником и потребителем. Реактивный ток, не совершая полезной работы, приводит к дополнительным потерям в силовом оборудовании и, следовательно, к завышению его установленной мощности. В этой связи понятно стремление к увеличению в силовых электрических цепях.

Следует указать, что подавляющее большинство потребителей (электродвигатели, электрические печи, другие различные устройства и приборы) как нагрузка носит активно-индуктивный характер.

Если параллельно такой нагрузке (см. рис. 5), включить конденсатор С, то общий ток , как видно из векторной диаграммы (рис. 6), приближается по фазе к напряжению, т.е. увеличивается, а общая величина тока (а следовательно, потери) уменьшается при постоянстве активной мощности . На этом основано применение конденсаторов для повышения .

Какую емкость С нужно взять, чтобы повысить коэффициент мощности от значения до значения ?

Разложим на активную и реактивную составляющие. Ток через конденсатор компенсирует часть реактивной составляющей тока нагрузки :

(10)
(11)
. (12)

Из (11) и (12) с учетом (10) имеем

,

но , откуда необходимая для повышения емкость:

(13)

Баланс мощностей

Баланс мощностей является следствием закона сохранения энергии и может служить критерием правильности расчета электрической цепи.

а) Постоянный ток

Для любой цепи постоянного тока выполняется соотношение:

(14)

Это уравнение представляет собой математическую форму записи баланса мощностей: суммарная мощность, генерируемая источниками электрической энергии, равна суммарной мощности, потребляемой в цепи.

Следует указать, что в левой части (14) слагаемые имеют знак “+”, поскольку активная мощность рассеивается на резисторах. В правой части (14) сумма слагаемых больше нуля, но отдельные члены здесь могут иметь знак “-”, что говорит о том, что соответствующие источники работают в режиме потребителей энергии (например, заряд аккумулятора).

б) Переменный ток.

Из закона сохранения энергии следует, что сумма всех отдаваемых активных мощностей равна сумме всех потребляемых активных мощностей, т.е.

(15)

В ТОЭ доказывается (вследствие достаточной громоздкости вывода это доказательство опустим), что баланс соблюдается и для реактивных мощностей:

 , (16)

где знак “+” относится к индуктивным элементам , “-” – к емкостным .

Умножив (16) на “j” и сложив полученный результат с (15), придем к аналитическому выражению баланса мощностей в цепях синусоидального тока (без учета взаимной индуктивности):

или

.

Контрольные вопросы и задачи

  1. Что такое активная мощность?
  2. Что такое реактивная мощность, с какими элементами она связана?
  3.  Что такое полная мощность?
  4. Почему необходимо стремиться к повышению коэффициента мощности ?
  5. Критерием чего служит баланс мощностей?
  6. К источнику с напряжением подключена активно-индуктивная нагрузка, ток в которой . Определить активную, реактивную и полную мощности.
  7. Ответ: Р=250 Вт; Q=433 ВАр; S=500 ВА.

  8. В ветви, содержащей последовательно соединенные резистор R и катушку индуктивности L, ток I=2 A. Напряжение на зажимах ветви U=100 B, а потребляемая мощность Р=120 Вт. Определить сопротивления R и XL элементов ветви.
  9. Ответ: R=30 Ом; XL=40 Ом.

  10. Мощность, потребляемая цепью, состоящей из параллельно соединенных конденсатора и резистора, Р=90 Вт. Ток в неразветвленной части цепи I1=5 A, а в ветви с резистором I2=4 A. Определить сопротивления R и XL элементов цепи.
  11. Ответ: R=10 Ом; XС=7,5 Ом.

Литература по преобразованию энергии в электрической цепи

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Знаете ли Вы, что релятивизм (СТО и ОТО) не является истинной наукой? — Истинная наука обязательно опирается на причинность и законы природы, данные нам в физических явлениях (фактах). В отличие от этого СТО и ОТО построены на аксиоматических постулатах, то есть принципиально недоказуемых догматах, в которые обязаны верить последователи этих учений. То есть релятивизм есть форма религии, культа, раздуваемого политической машиной мифического авторитета Эйнштейна и верных его последователей, возводимых в ранг святых от релятивистской физики. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАРыцари теории эфира

Источник: http://bourabai.ru/toe/energy.htm

Низкое напряжение в сети (меньше 220): что делать, как поднять, почему падает? — Постройка

220 вольт – норму напряжения в сети знает каждый школьник. Однако далеко не во все дома эта норма подается. Скачки напряжения характерны для частных, загородных домов. Это губит бытовую технику, может привести к пожару. Почему возникает низкое напряжение в сети, что делать с этой проблемой? Как вернуть показатели в норму?

От износа проводки до сбоев в подстанции: причины низких показателей

Мигающие лампочки, медленно кипящий электрочайник, плохо показывающий телевизор не говорят – кричат о сбоях с электричеством. С такими сбоями не шутят. А потому нужно сразу выяснить, почему падает напряжение. Сделать это можно опытным путем, поэтапно исключив возможные варианты сбоя.

Мигающие лампочки – первый признак падения напряжения в сети

  1. Износ электропроводки. Такое часто случается в старых строениях, когда дом был сооружен десятки лет назад. У всего есть срок годности. Электрические кабели исключением не являются.
  2. Сокрушительный удар по нагрузке, когда к одному автомату подключены сразу несколько электрических приборов, обладающих высокой мощностью.
  3. Проблемы с сечением вводного кабеля, питающего строение электричеством.
  4. Некорректное подключение или работа автоматического выключателя.
  5. Низкое напряжение в сети является следствием сбоя работы трансформаторной подстанции.
  6. Некорректное соединение линий электропередач с домом.
  7. Неправильно выбранное, слишком маленькое сечение у магистральной линии.
  8. Неравномерная нагрузка фаз, когда к одной ветке подключено большое количество электроприборов, а другая, по сути, простаивает.

Опытный путь: исключение вариантов, остановка падения

Если не хватает напряжения в сети, то первое, что делают, замеряют показатели. Эти цифры нужно сопоставить с цифрами соседей.

Одинаковые показатели свидетельствуют об общей проблеме. Соответственно, следует обращаться к поставщику услуги. Разные – о головной боли исключительно хозяина конкретного домовладения.

Замер показателей напряжения на входе в дом особенно важен

По возможности, нужно осмотреть провода на входе в дом. Они могут нагреваться, теряя  единицы электричества. Причина кроется в плохом контакте. Разбираться с ним должен профессионал.

Стабилизатор напряжения сети

Установив и устранив причину, нужно решить, как поднять напряжение в сети до 220 Вольт. Самый распространенный способ – бытовой стабилизатор, который регулирует мощность тока, увеличивая и уменьшая показатели.

Бытовой стабилизатор напряжения регулирует мощность тока

Прибор становится связующим звеном между поставщиком и потребителем энергии. Соответственно, подключается посередине. Ток попадает в стабилизатор. Если напряжение в сети меньше 220 Вольт, то устройство поднимает его. Показатели меняются на нужные, бытовая техника, другие электроприборы работают без сбоев.

Выбирая стабилизатор, нужно позаботиться о запасе мощности. Он должен составлять порядка 20%.

Такое устройство должно быть подключено постоянно. Хотя некоторые специалисты считают установку стабилизаторов не самой оптимальной мерой. Большое количество данных приспособлений может привести к падению сети линий электропередач. В этом случае придется восстанавливать всю систему.

как правильно выбрать стабилизатор напряжения, на что обратить внимание?

При выборе стабилизатора, нужно прикинуть общую нагрузку электроприборов. Математиком быть не обязательно. Достаточно изучить технические паспорта основных приборов, где как раз и прописана потребляемая мощность. Важно избегать перегрузки стабилизатора, подключая все новые и новые приборы.

Он не начнет работать, пока нагрузка не нормализуется. А значит, лишние приборы придется отключить. Соответственно, с неработающим стабилизатором вопрос, как повысить напряжение в сети, не решится.

Выбор стабилизатора зависит от суммарной потребляемой мощности электроприборов

Выбирая стабилизатор, нужно позаботиться о запасе мощности. Он должен составлять порядка 20%. Тогда можно будет и новый бра подключить к этой сети, и микроволновку поставить. Лучше заранее рассчитать мощность стабилизатора.

Можно воспользоваться он-лайн калькулятором, который представлен на всех сайтах, продающих данную аппаратуру.

Можно провести расчеты и самостоятельно, сложив номинальную потребляемую мощность различных бытовых приборов и инструментов, которые будут подключены одновременно.

Вместе с  тем, многая техника в момент начала работы потребляет мощность, значительно превышающую номинальную. Обычно показатели увеличиваются в 4-7 раз. Ни в коем случае нельзя забывать данный фактор при проведении расчетов.

Показатели пусковой мощности также прописываются в техническом паспорте каждого предмета. Вот почему важно сохранять все документы на бытовую технику и различные электроприборы.

При расчетах данный фактор тоже нужно учитывать.

Стабилизатор напряжения российской компании “Штиль”

Как повысить напряжение, знает российский производитель защитного оборудования «Штиль». Главное преимущество приборов для частных и загородных домов, их приемлемая стоимость.

Например, цена модели R 110 составляет около 3 тысяч рублей. При этом диапазон работы колеблется в границах 165-265 Вольт. Для сравнения, другой продукт этой фирмы – R 16000 – стоит порядка 70 тысяч рублей. Он выступает надежной защитой для самой чувствительной аппаратуры, оправдывая вложения хозяина.

Продукция компании “Энергия” востребована на российском рынке

Похожие по цене и параметрам стабилизаторы выпускает другой российский производитель – компания «Энергия». Все-таки что делать с пониженным напряжением в сети  местные компании знают не понаслышке. Да и запчасти к таким приборам на отечественном рынке проще найти.

Трансформатор 

Еще один вариант, как повысить напряжение в сети до 220 Вольт, – на вводе дома необходимо установить специальный трансформатор. Прибор следует настроить должным образом. Для этого нужно замерить интенсивность тока, высчитав коэффициент трансформации.

Он должен будет увеличивать поток, к примеру, со 180 Вольт до оптимального уровня. В этом случае расчет простой. Нужно оптимальный показатель (220 Вольт) разделить на исходное сетевое напряжение (180 Вольт).

Получается, что в этом случае необходимо искать трансформатор с коэффициентом трансформации 1.22 (220/180).

виды и принцип действия трансформаторов

Следует помнить, что использование подобного прибора может также обернуться проблемой. Низкое напряжение, его скачки может провоцировать перегрузка на обслуживающей подстанции. Когда ее работа будет налажена, трансформатор на норму не среагирует. Напротив, скорректирует и нормальные показатели.

Они автоматически будут увеличены на тот коэффициент трансформации, что настроен на приборе. Скажем, теперь в дом поступает напряжение 220 Вольт. Оно автоматически умножается на коэффициент трансформации 1.22. И по факту получается 270 Вольт (220*1.22).

Это вновь приведет к выведению из строя электробытовой техники.

Нормализовать напряжение помогут трансформаторы компании LIDER

Трансформаторную аппаратуру выпускает российская компания LIDER. У данного производителя масса моделей автотрансформаторов. Их стоимость колеблется от 17 до 35 тысяч рублей.

Так, можно выбрать бюджетную модель Lider ATR-2000 (150-190). Активная мощность нагрузки составляет 1600 Вт, полная – 2000 ВА. Рабочий диапазон входного напряжения составляет 150-190 Вольт. На выходе – 174-220 Вольт.

Вес прибора – 12 кг. Можно разместить на стене или на полу помещения.

Заземляющее устройство

Повысить напряжение в сети частного дома поможет заземляющее устройство. Его устанавливают на вводе в дом. Прописку прибор получает на нулевом рабочем проводнике. Здесь все просто.

Линия электропередач представляет собой сочетание прямого проводника (фаза) и обратного (ноль). функция устройства заключается в уменьшении сопротивления.

Этого можно добиться, заземлив нулевой проводник.

Однако в погоне за решением проблемы, как увеличить напряжение, следует помнить о безопасности. Установку заземляющего оборудования должны проводить специалисты. Кроме того, по окончании работ необходимо получить протокол, свидетельствующий о том, что показатели электрического сопротивления заземляющего устройства оптимальны.

Модульные штырьевые системы – лучший вариант заземляющего устройства

В качестве заземляющего устройства можно использовать специальные модульные штыревые системы. Их стоимость колеблется от 5,5 до 55 тысяч рублей. Можно выбрать изделия польского производителя  Zandz или более экономный вариант – российской компании Ezetek.

Например, комплект ZandZ ZZ-6. Основная деталь такого набора – это штырь длиной 1,5 метра с толстым медным покрытием. Зауженный с одной стороны, с глухим отверстием – с другой.

Штыри легко соединяются между собой, увеличивая суммарную длину электрода. Во время монтажа соединение автоматически запрессовывается, образуя надежный электрический и механический контакт.

В наборе представлены все необходимые комплектующие, руководство по монтажу, наклейки для дверцы электрощита.

В качестве заземляющего устройства можно использовать специальные модульные штыревые системы

У российского производителя похожий комплект Ezetek EZ-6. Его стоимость вдовое ниже польского аналога и составляет около 6,5 тысячи рублей. Производитель рекомендует использовать данное заземление во влажных (средневлажных) глинистых и суглинистых грунтах.  Оснащен омедненными полутораметровыми штырями.

Так или иначе, но со слабым напряжением в сети нужно что-то делать. Оставлять ситуацию без решения опасно. И речь идет не только о выходе из строя бытовой техники, цены на которую сегодня кусаются. Прежде всего, на кону стоит безопасность всех, кто проживает в доме, бывает в его стенах. Ведь в любой момент в жилище может произойти короткое замыкание, вспыхнуть пожар.

Источник: https://xn--80anhrcladek5a8h.xn--p1ai/remontnye-raboty/nizkoe-napryazhenie-v-seti-menshe-220-chto-delat-kak-podnyat-pochemu-padaet.html

Напряжение электрического тока и вольтметр

Электрический ток – это проходящие через проводник электроны, несущие отрицательный заряд. Объем этого заряда или, иными словами, количество электричества характеризует силу тока. Мы знаем, что сила тока одинакова во всех местах цепи.

Электроны не могут исчезать или «спрыгивать» с проводов и нагрузки. Поэтому, силу тока мы можем измерить в любом месте электрической цепи. Однако, будет ли одинаковым действие тока на разные участки этой цепи? Давайте разберемся.

Проходя по проводам, ток лишь слегка их нагревает, однако не совершает при этом большой работы. Проходя же через спираль электрической лампочки, ток не просто сильно нагревает ее, он нагревает ее до такой степени, что она, раскаляясь, начинает светиться. То есть в данном случае ток совершает механическую работу, и довольно приличную работу. Ток тратит свою энергию. Электроны в том же количестве продолжают бежать дальше, но энергии у них уже поменьше.

Определение электрического напряжения

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением.

Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии.

То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным.

Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В).

Для определения напряжения существует формула: 

U=A/q,

где U — напряжение,
A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

ЭТО ИНТЕРЕСНО:  Что такое 1 группа по электробезопасности

Вольтметр

Для измерения напряжения существует прибор, называемый вольтметром. В отличие от амперметра, он подключается не произвольно в любом месте цепи, а параллельно нагрузке, до нее и после. В таком случае вольтметр показывает величину напряжения, приложенного к нагрузке. Для измерения напряжения на полюсах источника тока, вольтметр подключают непосредственно к полюсам прибора.

Нужна помощь в учебе?

Предыдущая тема: Сила тока: природа, формула, измерение амперметром
Следующая тема:   Сопротивление тока: притяжение ядер, проводники и непроводники

Источник: http://www.nado5.ru/e-book/ehlnapryazhenie-voltmetr

Техника безопасности при работе с электричеством • ELECTRICOFF

Воздействие электричества на человека очень опасно и непредсказуемо. Одно и то же напряжение одного человека может оставить невредимым, а другого может и убить. Все зависит от сопротивления человека (оно у каждого свое) и от момента, когда он прикоснулся к проводнику.

Переменный ток имеет синусоидальную форму, а из этого следует, что в разные моменты значение напряжение разное, как и положение волны. В зависимости от положения волны во время прикосновения участок прикосновения либо притянет, либо оттолкнет от проводника.

И все таки в чем же опасность контакта тока с человеком? Основных причин две: первая — это механическое поражение тканей человека, вторая — влияние электричества на нервную систему.

При помощи нервных сигналов происходит движение мышц, в том числе и сердца, осуществляются координация и управление всеми внутренними органами. В случае контакта с находящимся под напряжением проводником организм человека реагирует на это как на сигнал собственной нервной системы, но неизмеримо мощнее.

Мышцы судорожно сжимаются, приходя в состояние постоянного напряжения, и расслабить их не удается — входящий сигнал перекрывает команды организма.

Золотое правило электрика

Прикасаться к оголенным проводникам тыльной стороной ладони, чтобы мышцы руки, испытав удар электричества, сжали кисть в кулак, тем самым оттолкнув конечность от контакта. В обратном случае ладонь плотно обхватит проводник и разжать ее будет невозможно, а человек окажется под непрерывным воздействием силы тока.

Кстати! Чтобы доказать наглядно напарнику или иному лицу, что в электроустановке отсутствует напряжение (которое обязательно вы сами обесточили и убедились с помощью пробника в отсутствии напряжения) следует прикоснуться оголенной тыльной стороной руки.

Безопасные для человека сила тока и напряжение:

  • Постоянное напряжение до 42 В
  • Переменное напряжение до 36 В
  • Сила тока до 50 мА

Теперь вы понимаете почему опасно напряжение даже 50 В. Поэтому, следует прибегать к основным мерам безопасности и всегда соблюдать следующие пункты, которые могут спасти вам жизнь:

  1. Отключить напряжение на участке работы;
  2. Вывесить предупреждающий плакат «Не включать! Работают люди!» (на автомат, пакетник, рубильник или щит – главное чтобы было видно);
  3. Проверить инструмент и средства защиты на исправность и предмет механических повреждений (диэлектрические перчатки, сапоги, боты и т.п.);
  4. Проверить пробник (индикатор напряжения) сначала на рабочем оборудовании, дабы убедиться в его исправности, а потом проверить отсутствие напряжения на участке работы;
  5. Убедиться прикосновением тыльной стороны руки в полном отсутствии напряжения;
  6. Оградить место работы, надев средства электрической защиты;
  7. Приступить к работе.

Работа под напряжением

Всегда следует работать при отсутствии напряжения, неважно 220 В или 32 В. Любые заявления о том, что настоящие электрики работают под напряжением не стоит воспринимать всерьёз – профессионалы никогда не будут подвергать себя риску без крайней необходимости.

Лишь в крайних случаях, если другого выхода нет, можете работать под напряжением, но помните, что в таких случаях всегда следует надевать средства защиты от электрического тока: поверенные диэлектрические перчатки и боты, именно поверенные, а не «..а у моего деда на чердаке где-то лежали, купил в своей молодости».

Не экономьте на своей безопасности и жизни! И еще не мало важный фактор: с вами всегда должен находиться наблюдатель, помощник или напарник, который в случае чего, сможет помочь. Если вы не уверены в своих силах или сомневаетесь, что эта работа не так проста – не беритесь, т.к.

электричество – это как мина: неправильное движение и можно в лучшем случае отделаться испугом. Поэтому, не уверен – не берись. Уверен – проверь всё ещё раз и вперёд!

Источник: https://electricoff.ru/information/tehnika-bezopasnosti/

Электрический ток, напряжение — поймет даже ребенок!

Всем привет, на связи с вами снова Владимир Васильев.  Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех,  только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?».  Может быть это прошаренный  спец зашел из любопытства почитать что я тут накалякал?  А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора?

Источник: http://popayaem.ru/elektricheskij-tok-napryazhenie.html

Как прозвонить розетку мультиметром

Как вы понимаете, прозвонив электророзетку, вы сможете определить лишь целостность цепей и линий. Это еще не гарантия полноценной работоспособности электроустановочного оборудования, но очень важный этап в диагностике. С учетом того, что физические повреждения составляют большую часть всех поломок и неисправностей, прозвонка наиболее эффективна.

Ниже, я опишу наиболее оптимальный алгоритм тестирования розеток, следуя которому вы наверняка сможете оперативно обнаружить причины их поломки.

Определение неисправности розетки с помощью мультиметра – замеры параметров и прозвонка питающих линий

В первую очередь я советую провести комплекс несложных замеров – наличия напряжения, фазы, нуля или заземления. Это сильно упростит процесс диагностики.

Если же по какой-то причине не имеете возможности или не хотите этого делать – сразу переходите к следующему пункту – прозвонке.

Замеры напряжения

В первую очередь мультиметром определяется наличие напряжение и его величина. По ссылке вам доступна подброная пошаговая инструкция, как измерить напряжение в розетке самому.

     — Если мультиметр показывает около 230 Вольт, значит электророзетка исправна. Стоит проверить электрооборудование, которое вы к ней подключали, возможно оно не работает и механизм здесь не при чем. Также нередко контакты разъема могут плохо прилегать к штырям электрической вилки, из-за деформации, окисления или загрязнения.

Здесь достаточно почистить контакты и поджать их. Чтобы всё снова правильно функционировало.

     — Если же напряжения нет – переходим к следующему этапу

Определение фазы, нуля и заземления в розетке

Довольно подробно о том, как определить где фаза, ноль и заземление я уже писал. Останавливаться на этом подробно в этой статье я не стану, перейдите по ссылке и проведите комплекс несложных действий, описанных там, прежде чем продолжать диагностику.

Здесь основных варианта, почему может не работать, обычно три:

1. Нет фазы

2. Нет защитного нуля

3. Нет фазы и нуля

Отсутствие защитного нуля – заземления, напрямую на работоспособность не виляет – это лишь элемент безопасности. Но так как оно очень важно, я всегда советую его также проверять. Отсутствие заземления можно заметить лишь по косвенным признакам, вы долгое время не знать, что его нет. Но вы должны помнить, что именно оно может однажды спасти жизнь Вам и вашим близким.

Если в ходе диагностики, вы точно определили какая из линий неисправна, вам будет значительно проще не следующем этапе.

Как прозвонить розетку

Теперь, имея достаточный объем информации о неисправности розетки – можно приступать к прозваниваю проводки. Обычно, на этом этапе вы уже точно знаете, что, например, отсутствует Фаза и вам необходимо локализовать место повреждение электроцепи. Но, как я уже писал ранее, диагностику можно начинать сразу с прозвонки, просто этот метод менее эффективный и, соответственно, более долгий.

Внимание!!! Прозвонка мультиметром или тестером не требует наличия электрического тока в сети для проведения замеров. Обязательно отключите защитную автоматику, обесточьте контролируемую линию до начала диагностических работ и убедитесь, что напряжения в розетке нет.

Выключайте на тестере режим прозвонки или определения сопротивления (что в принципе одно и то же) и действуем по следующему плану:

Как определить КЗ в розетке

В первую очередь, прозваниваем на наличие короткого замыкания между фазой и нулём.

Для этого действуйте по следующей пошаговой инструкции:

1. Отключается подача электрического тока в месте проверки

2. Выбирается режим Позвонки на мультиметре

3. Красный щуп помещается в левое гнездо розетки, а черный в правое. Можно и наоборот, принципиальной разницы для чистоты эксперимента здесь нет

Дальше возможны два результата:

Вы услышите звуковой сигнал мультиметра и на дисплее значение близкое к «0», любое отличное от единицы. Это означает, что розетка неисправна! Контакты механизма или электропроводка, которая к ним подходит, в каком-то месте замкнуты.

Чаще всего, в таком случае, у вас наверняка сработал и не включался защитный автомат на эту группу, сигнализирующий о коротком замыкании (ссылка на статью). В этом случае необходимо искать место, в котором замыкается нулевой и фазный проводники.

Если же Звукового сигнала не последует, а на экране высвечивается неизменно «1». Это хороший знак, значит параллельные линии проводки не пересекаются и скорее всего, где-то произошёл обрыв одной из них. Переходите к следующему этапу.

Как прозвонить электрическую линию от розетки до электрощита

Далее, проверяется отдельно каждая линия от электророзетки до электрощита. В случае, если вы уже определили, что, например, у вас нет только фазного проводника – проверяете его. Если же вы не делали этого, прозваниваете все цепи.

Обычно, я прозваниваю целиком электрическую цепь от места, где точно известно, что все показатели в норме. Обычно это электрощит квартиры или дома, поэтому здесь в качестве примера используем именно эту схему.

Зачастую, проверяемый механизм находится не рядом с электрическим щитом, чаще в другом помещении, а может и на другом этаже дома. Провода от мультиметра до щупов значительно короче, поэтому для эффективного теста необходимо сделать удлинитель.

Для этого можно использовать бухту любого провода или кабеля, достаточно одной жилы. С одной стороны, он соединяется с токопроводящей частью щупа мультиметра, например, красного, а с другой стороны устанавливается зажим, например, так называемый «крокодил» или аналогиный щуп.

Далее, начинаем прозванивать каждый контакт механизма розетки отдельно:

Фазный – до выходной клеммы автомата, УЗО или дифавтомата

Нулевой – до нулевой шины в электрощите, клеммы узо или дифавтомата

Заземление – до шины заземления в электрощите

Ниже, показана подробная пошаговая последовательность действий при тестировании розетки мультиметром, на примере определения целостности подходящего к ней фазного проводника:

Если прозвонка показала, что фазный проводник поврежден и электрический сигнал не доходит до соответствующего разъема розетки – переходим к следующей части поиска неисправности – локализации места обрыва.

В таком случае, прозванивается сеть до любых промежуточных коммутационных элементов – обычно распределительных коробок. Там находится соединение фазного проводника – цепь прозванивается сначала от него до электророзетки, затем от него до электрощита.

В нашем случае, мультиметр покажет, что от электрического щита до распределительной коробки – контакт есть, а вот от коробки до розетки – он пропадает. Если на данной ветке, между этими двумя точками больше нет коммутационных аппаратов – других розеток или распаячных коробок, значит повреждение находится где-то на пути прохождения кабеля от данной коробки до электророзетки – обычно это вертикальный участок между ними.

Зная это, вы уже можете достаточно точно найти место разрыва, например, увидев, что недавно здесь устанавливалась картина – в тот момент и была поврежденаь фазная жила подходящего к розетке кабеля.

Помните: Довольно часто, проблемный узел – это место подключения жил питающего кабеля к механизму электроустановочного устройства. Клеммы ослабляются, проводники обгорают, выпадают из зажимов и т.д. – обязательно проверьте эти контакты. При этом вы также можете воспользоваться мультиметром, прозвонив соответствующие цепи.

Как видите, прозвонить розетку достаточно просто. Необходимо иметь простейший мультиметр или тестер, с функцией прозвонки и, кусок провода, для изготовления удлинителя.

Если жк вы знаете еще способы эффективного тестирования розеток используя лишь тестер и мультиметр – обязательно напишите. Также, как обычно, с удовольствием отвечу на все ваши вопросы, конструктивную критику и приму дополнения.

Источник: https://rozetkaonline.ru/podkljuchenie-i-ustanovka/item/232-kak-prozvonit-rozetku-multimetrom

Электрическое напряжение. Определение, виды, единицы измерения

Единицей напряжения называют вольт (В). Один Вольт выражается в разности потенциалов двух точек электрического поля, силы которого совершают работу в 1 Дж для перемещения заряда в 1 Кл из первой точки во вторую. Измеряют напряжение специальным прибором — вольтметром.

Таким образом, значение 220 В подразумевает, что электрическое поле данной сети способно совершить работу (потратить энергию) в 220 Дж для «протаскивания» зарядов через цепь и нагрузку.

От чего зависит напряжение?

Напряжение участка цепи зависит от:

• Материала проводника;

• Подключенной нагрузки (сопротивления);

• Температуры;

Постоянное напряжение

Напряжение в электрической сети постоянно, когда с одной ее стороны всегда положительный потенциал, а с другой – отрицательный. Электрический ток в этом случае имеет одно направление и является постоянным.

Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах.

При подключении нагрузки в цепь постоянного тока важно не перепутать контакты, иначе устройство может выйти из строя. Классическим примером источника постоянного напряжения являются батарейки.

Применяют сети постоянного тока, когда не требуется передавать энергию на большие расстояния: во всех видах транспорта – от мотоциклов до космических аппаратов, в военной технике, электроэнергетике и телекоммуникациях, при аварийном электрообеспечении, в промышленности (электролиз, выплавка в дуговых электропечах и т.д.).

Переменное напряжение

Если периодически менять полярность потенциалов, либо перемещать их в пространстве, то и электрический ток устремится в обратном направлении. Количество таких изменений направления за определенное время показывает характеристика, называемая частотой. Например, стандартные 50 герц означают, что полярность напряжения в сети меняется за секунду 50 раз.

Напряжение в электрических сетях переменного тока является временной функцией.

Чаще всего используется закон синусоидальных колебаний.

Так получается за счет того, что переменный ток возникает в катушке асинхронных двигателей за счет вращения вокруг нее электромагнита. Если развернуть вращение по времени, то получается синусоида.

Переменный ток применяют при необходимости передавать энергию на значительные расстояния. В этих случаях эффективно использование трехфазных сетей: потери электроэнергии в проводах минимальны, простая электрогенерация (благодаря трехфазным электродвигателям без коллектора), выгодно экономически.

Трехфазный ток получают в трехфазных электродвигателях

. В них имеются сразу три катушки проводов, расположенных равномерно по кругу – через 120 градусов. Поэтому и синусоиды трехфазного тока отстают друг от друга на этот угол. Геомертическое представление трехфазного напряжения и тока выглядит в виде векторной диаграммы.

Трехфазная электросеть состоит из четырех проводов – трех фазных и одного нулевого. напряжение между проводами нулевым и фазным равно 220 В и называется фазным. Между фазными напряжение также существует, называется линейным и равно 380 В (разность потенциалов между двумя фазными проводами). В зависимости от вида подключения в трехфазной сети можно получить или фазное напряжение, или линейное.

Источник: https://pue8.ru/elektrotekhnik/816-elektricheskoe-napryazhenie-opredelenie-vidy-edinitsy-izmereniya.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как расшифровать маркировку аккумулятора

Закрыть