Как часто проверяют заземление

Проверка молниезащиты

Как часто проверяют заземление

Система молниезащиты здания нуждается в периодической проверке.

Необходимость таких мероприятий обусловлена, во-первых, важностью данных устройств для безопасности как самих объектов недвижимости, так и находящихся поблизости людей, а во-вторых, нахождением громоотводов под постоянным воздействием неблагоприятных факторов окружающей среды.  Первая проверка системы молниезащиты осуществляется непосредственно после монтажа. В дальнейшем она проводится через определенные, установленные нормативами, промежутки времени.

Периодичность проверок

Периодичность проверки молниезащиты определяется в соответствии с п. 1.14 РД 34.21.122-87 «Инструкции по устройству молниезащиты зданий и сооружений». Согласно документу для всех категорий зданий она проводится не реже 1 раза в год.

В соответствии с «Правилами технической эксплуатации электроустановок потребителей» проверка заземляющих контуров проводится:

1 раз в полгода – визуальный осмотр видимых элементов заземляющего устройства;

1 раз в 12 лет – осмотр, сопровождающийся выборочным вскрытием грунта.

Измерение сопротивления заземляющих контуров:

1 раз в 6 лет – на ЛЭП с напряжением до 1000 В;

1 раз в 12 лет – на ЛЭП с напряжением свыше 1000 В.

Система мероприятий проверки молниезащиты

Проверка молниезащиты включает в себя следующие мероприятия:

  • проверка связи между заземлением и молниеприемником
  • измерение переходного сопротивления болтовых соединений системы грозозащиты
  • проверка заземления
  • проверка изоляции
  • визуальный осмотр целостности элементов системы (токоотводов, молниеприемника, мест контакта между ними), отсутствия на них коррозии
  • проверка соответствия реально смонтированной системы грозозащиты проектной документации, обоснованности установки данного типа громоотвода на данном объекте
  • испытание механической прочности и целостности сварных соединений системы грозозащиты (все соединения простукиваются молотком)
  • определение сопротивления заземлителя каждого отдельно стоящего молниеотвода. При последующих проверках величина сопротивления не должна превышать уровень, определенный при приемо-сдаточных испытаниях, больше чем в 5 раз.

Проверка сопротивления системы грозозащиты проводится с помощью прибора MRU-101. При этом методика проверки молниезащиты может быть разной. К наиболее распространенным относятся:

  • Измерение сопротивления в системе молниезащиты по трёхполюсной схеме
  • Измерение сопротивления в системе молниезащиты по четырехполюсной схеме

Четырехполюсная система проверки является более точной и сводит до минимума возможность ошибки.

Проверку заземления лучше всего проводить в условиях максимального сопротивления грунта – при сухой погоде или в условиях наибольшего промерзания. В остальных случаях для получения точных данных используются поправочные коэффициенты.

По итогам осмотра системы оформляется протокол проверки молниезащиты, который свидетельствует об исправности оборудования.

На что обратить внимание при проверке молниезащиты

Испытать в действии систему молниезащиты в момент принятия работ вряд ли удастся, так как вероятность того, что в этот момент разразится гроза, очень мала. Поэтому следует обратить внимание на ход проверки:

  • рабочие должны осмотреть все видимые части системы молниезащиты, проверить узлы и соединения;
  • измерение сопротивления должно проводиться с помощью специального измерительного прибора (MRU-101);
  • работы необходимо проводить либо в сухую погоду, либо при достаточно сильном промерзании грунта во избежание возможных ошибок;
  • по окончании проверки специалисты должны оформить протокол проверки молниезащиты установленного образца.

Для того чтобы исключить недобросовестные проверки, которые могут повлечь за собой и проблемы с вводом объекта в эксплуатацию, и недостаточную защиту от грозовых разрядов, лучше всего обращаться в надежную, проверенную компанию, специализирующуюся на установке систем молниезащиты.

Стоимость проверки системы молниезащиты в компании МЗК-Электро

Тип зданияСтоимость, руб.
Частные дома От 5 000,00
Административные здания От 10 000,00
Промышленные здания От 15 000,00

Обычно проверка системы молниезащиты включает:

  • визуальный осмотр целостности молниеприемников и токоотводов, надежность их соединения и крепления к мачтам;
  • выявление элементов устройств молниезащиты, требующих замены или ремонта вследствие нарушения их механической прочности;
  • определение степени разрушения коррозией отдельных элементов устройств молниезащиты;
  • проверка надежности электрических соединений между токоведущими частями всех элементов устройств молниезащиты;
  • проверка соответствие устройств молниезащиты назначению объектов;
  • измерение значение сопротивления растеканию импульсного тока методом «амперметра-вольтметра» с помощью специализированного измерительного комплекса.

Результаты проверок оформляются актами, заносятся в паспорта и журнал учета состояния устройств молниезащиты. На основании полученных данных составляется план ремонта и устранения дефектов устройств молниезащиты, обнаруженных во время осмотров и проверок.

Источник: https://www.mzke.ru/proverka_molniezashhity.html

Осмотр, проверка и испытание заземляющих устройств

Как часто проверяют заземление

Заземляющие устройства представляют собой токоотводящие конструкции, которые обеспечивают через металлический проводник соединение с землей. Заземление работает следующим образом: через проводник, имеющий слабое сопротивление, проходит электрический ток, создавая потенциалы. С удалением от заземлителя потенциал стремится к нулю.

Сопротивление, которое оказывает току грунт, называется «сопротивлением растеканию». В практике сопротивление растеканию относят не к грунту, а к заземлителю и применяют сокращенный условный термин «сопротивление заземлителя».

Зимой, когда земля промерзает, и летом, когда грунт пересушен, индуктивное сопротивление максимально при неизменном активном сопротивлении (сопротивление заземлителя). Если заземляющее устройство потеряло контакт с землей, оно будет находиться под напряжением и представлять опасность.

Точно так же опасно, если значение сопротивления заземлителя не соответствует нормируемым величинам, если имеются коррозия и обрывы в заземлителе, наблюдается изменение кривой разницы потенциалов. Чтобы заземляющее устройство работало качественно, требуется регулярно проводить его осмотр, проверку и испытания, измерения.

Заземляющие устройства: осмотр состояния

Заземляющие устройства ( далее-ЗУ) проверяются, в первую очередь, визуально. Точками внимания являются:

  • контакты с оборудованием;
  • контактное соединение с землей;
  • крепления проводников;
  • оценка воздействия на проводники внешней среды;
  • степень коррозии;
  • наличие или отсутствие нагрева.

Вместе с внешним осмотром заземлителей проводится, как правило, и визуальная проверка всего электрооборудования.

При осмотре состояния важно обращать внимание на то, в каких условиях и как долго работают ЗУ.

Так, например, постоянное нахождение на открытом воздухе, в условиях повышенной влажности и осадков (в том числе – снега, который создает при налипании сильное давление, растягивающее тросы, что в свою очередь изменяет потенциалы), приводит к тому, что при внешней стабильности заземляющее устройство находится в практически нерабочем состоянии.

Иногда этот факт маскирует декоративно-защитное покрытие, а также скрывают – при неудобстве доступа для осмотра – детали оборудования, зданий и сооружений. Заземляющие устройства с повреждениями являются нерабочими и подлежат ремонту (восстановлению)  или замене.  

Заземляющие устройства: проверка

Проверка заземляющих устройств происходит после осмотра – сначала проверяются те узлы, которые вызывают сомнение. Так, на прочность проверяются стяжки и крепления, затягиваются ослабленные соединения болтов, производится окраска частей, пострадавших от воздействий внешней среды. Это так называемый косметический ремонт. Его нужно проводить регулярно, и вполне возможно осуществлять силами работников электрохозяйства самого предприятия.

Существует и капитальный ремонт.

Во время капитального ремонта изготавливаются новые электроды заземляющих устройств, а также заземляющие проводники, проводится замена проржавевших и пришедших в негодность креплений, а также проводится ряд других мероприятий, касающихся обслуживания заземляющих устройств. К этому относится составление и корректировка графика осмотра и проверки ЗУ, планирование и обучение согласно плану специалистов, отвечающих за электрооборудование, проверка знаний техники безопасности и методик у персонала.

В силу того, что сопротивление самих проводников, а главное – грунта, меняется в зависимости от времени года, температуры и влажности, проверку заземляющих устройств проводят в несколько этапов. Первый – при нормальной влажности, среднегодовой температуре. Второй – при экстремальной влажности.

Третий – при максимальном сопротивлении грунта (зимой или в разгар летней засухи). Как правило, выясняется, что при промерзании или высыхании земли сопротивление грунта оказывается высоким, что приводит, фактически, к неработоспособности в нормальном режиме системы заземления.

Если требуется снизить сопротивление заземления до нормальных показателей, можно использовать дополнительные электроды или установить новый заземляющий контур. Чтобы оценить состояние ЗУ, также требуется производить вскрытие грунта в местах заземления и измерение параметров самого ЗУ.

Нормативный документ, определяющий последовательность операций и нормируемые величины ЗУ в эксплуатации : «Методические указания по контролю состояния заземляющих устройств электроустановок» — РД 153-34.0-20.525-00

Монтаж нового заземляющего устройства

В осмотр, проверку и испытание заземляющих устройств входит также исследование документации в том числе и скрытых работ: актов монтажа, протоколов измерений, исполнительных чертежей и иной технической документации. В них должны быть указаны расположение, конфигурация и потенциалы всех заземляющих устройств и элементов молниезащиты.

В случае необходимости переделки или изменения заземляющего устройства, либо установки нового, необходимо произвести перерасчет совместной работы сети ЗУ во избежание конфликтов между устройствами.

Новое заземляющее устройство требуется устанавливать не только для снижения регулярного высокого сопротивления: по расчетам экспертов, за каждые 10 лет стальные конструкции теряют в грунте до 2,5 мм толщины, следовательно, если заземлитель изготовлен из полосовой стали толщиной в 5 мм, то очевидно, что коррозия будет составлять более 50%, и электрод потребует замены.

Однако не требуется ждать все 10 лет – при потере половины полезной массы, электрод уже считается нерабочим. В целом, расчет сроков замены заземляющих устройств довольно легко сделать – по толщине элемента и коэффициенту коррозии. Так, для стали срок замены будет составлять число лет, тождественное толщине полосы. При толщине в 8 мм, замена должна произойти через 8 лет, 4 мм – 4 года, 5 мм – 5 лет.

Это – рекомендуемые сроки, хотя заземлители могут работать и дольше, теряя каждый год определенный процент эффективности, что повышает опасность отсутствия эффективности заземления при аварийной ситуации  . В приведенном примере мы использовали полосовую сталь, но аналогично можно рассчитать старение угловой стали, стали круглого сечения или труб.

Чтобы точно выяснить, надо ли менять заземлители, достаточно измерить объем коррозии элементов заземляющего устройства и воспользоваться рекомендациями Нормативнного документа. Если от составляет 50% и больше – замену рекомендуется произвести незамедлительно.

Согласно рекомендациям специалистов, «осмотры с выборочным вскрытием грунта в местах, наиболее подверженных коррозии, а также вблизи мест заземления нейтралей силовых трансформаторов, присоединений разрядников и ограничителей перенапряжений должны производиться в соответствии с графиком планово-профилактических работ (далее— ППР), но не реже одного раза в 12 лет.

Величина участка заземляющего устройства, подвергающегося выборочному вскрытию грунта (кроме ВЛ в населенной местности), определяется решением технического руководителя потребителя на основе требований НД».

Заземляющие устройства: испытания

Важным моментом завершения работ по замене и мониторингу заземляющих устройств является его испытание. Проводить его можно только после завершения капитального или текущего ремонта.

Отметим, что алгоритмы в обеих случаях различны: после текущего ремонта с помощью приборов или средств измерений для измерения сопротивления или параметров заземления типа МС-08, Ф4103 или их аналогов производится измерение непрерывности цепи.

После капитального ремонта, помимо указанного выше, замеряется:

  • успешность расплавления плавкой вставки предохранителя (методом создания искусственного замыкания);
  • измерение сопротивления петли «фаза-нуль» с глухим заземлением нейтрали;
  • проверка пробивных предохранителей;
  • замер искровых промежутков.

При испытании заземляющих устройств требуется плавное поднятие напряжения, для чего используются реостаты, установленные в цепи трансформатора. При этом подавать напряжение нужно, предварительно проведя проверку состояния и сопротивления изоляции линии, и если она оказывается в ненадлежащем состоянии, то до испытания заземляющих устройств требуется эти дефекты устранить.

Осуществить весь комплекс указанных мер самостоятельно без привлечения специалистов электроизмерительной лаборатории практически невозможно, поскольку требуется работа и с документацией, и непосредственно с оборудованием: с учетом множества условий и ограничений по работе оборудования, проведением многократных замеров. Поэтому необходимо привлекать для работ по оценке состояния заземляющих устройств и параметров молниезащиты квалифицированных специалистов электролаборатории, имеющих опыт данных работ и разрешительные документы для их выплолнения.

Источник: http://www.gorod812.com/blog/osmotr-proverka-i-ispytanie-zazemlyayushchikh-ustrojstv

Как часто надо осматривать заземление

Как часто проверяют заземление

Основной задачей, решаемой при визуальном обследовании систем заземления, является выяснение их текущего состояния и соответствия техническим и эксплуатационным нормам. При этом согласно действующим нормативам открыто проложенные заземляющие проводники могут подвергаться и более тщательной проверке, включающей в себя частичное вскрытие грунта вблизи шины.

Цели осмотра и нормируемые показатели

В отдельных случаях (в соответствии с утверждённым графиком или к сроку, определяемому особым распоряжением руководителя подразделения) организуется замер параметров контура с целью выяснения степени соответствия их нормируемым значениям.

Порядок и периодичность осмотра открытых участков заземления регламентируются требованиями ПТЭЭП, а также рядом строительных нормативов, имеющих отношение к их обустройству.

На основании перечисленных выше нормативных документов устанавливаются те интервалы, с учётом которых открытые части системы и заземлитель обследуются на предмет наличия на них каких-либо визуально различимых повреждений.

Помимо этого, в действующих нормативах оговаривается ряд технических моментов, на которые в ходе осмотра проверки заземления необходимо обратить внимание.

К ним, в частности, относятся оценка текущего состояния защитного покрытия шин, а также осмотр и проверка качества сварных и болтовых соединений.

ЭТО ИНТЕРЕСНО:  Что такое заземления и зануления

Сроки и порядок проведения обследований

Конкретные сроки проверки состояния ЗС (шинной разводки и контура заземления) включаются в график проведения ППР, утверждаемый техническим руководителем данного объекта.

Согласно пункту 2.7.9. ПТЭЭП визуальный осмотр открытых участков системы должен проводиться не реже одного раза в полугодие.

Аналогичные осмотры, предполагающие частичную выборку грунта в районе открытых мест, организуются не реже чем один раз в 12 лет.

В ходе визуальных осмотров участков контура заземления обязательной проверке подлежат:

  • состояние контактных и сварных сочленений между отдельными составляющими системы заземления (самим заземлителем, соединительными полосами и эксплуатируемым оборудованием);
  • целостность слоя антикоррозионного защитного покрытия заземления;
  • отсутствие каких-либо обрывов в шинной цепи.

По результатам проведённого обследования составляется акт о текущем состоянии объекта и его заземляющего контура. А все полученные при этом данные обязательно заносятся в паспорт тестируемого устройства.

Периодические осмотры с частичным вскрытием почвы вблизи заземлений нейтральных проводников силовых устройств, присоединений разрядников и ограничителей перенапряжений также производятся в соответствии с графиком ППР. По аналогии с обычными открытыми участками трассы проверку этих мест также следует проводить не реже одного раза в двенадцать лет.

Требования к открытому монтажу заземляющих проводников

Согласно действующим техническим нормативам, в которых требования к обустройству заземляющего контура оговариваются особо, защитные проводники внутри помещений и в пределах наружных пространств могут прокладываться открыто.

Такой способ их монтажа позволяет периодически контролировать состояние отдельных шин и обеспечивает частичный доступ к прилегающим к ним скрытым в грунте участкам.

Указанное требование не распространяется на так называемые «нулевые» жилы заземления, а также на кабели в бронированной или стальной оболочке. Не относится оно и к заземляющим PE проводам, намеренно прокладываемым в коробах или металлических трубах, или в скрытых в стенах нишах.

Прокладка

Заземляющие шины прокладываются только горизонтально или только вертикально, а при наличии наклонных конструктивных элементов – параллельно им.

В помещениях с низким уровнем влажности такие шины могут монтироваться прямо по основанию из кирпича или бетона. В этом случае жёсткая фиксация стальных полос осуществляется посредством специальных креплений (дюбель-гвоздей).

В помещениях, относящихся к категории «сырых» или «очень сырых», а также содержащих едкие испарения, монтируемым проводникам заземления потребуется специальная подкладка в виде опор, отстоящих от основания не менее чем на 10 миллиметров.

Шаг крепления стальных полос должен быть порядка 0,6-1,0 метра на прямых участках прокладки и примерно 0,1 метра при изгибе трассы в местах её ответвлений.

Высота относительно пола выбирается равной 0,4-0,6 метра, а удаление от съёмных перекрытий кабельных каналов не должно быть менее 50-ти миллиметров.

Через потолочные перекрытия и стенные перегородки проводники заземления прокладываются в специально оформленных проёмах с защитными гильзами.

Окрашивание

Открыто размещённые защитные проводники заземления окрашивают таким образом, чтобы их при желании можно было легко отличить от других проводящих элементов. При осмотре заземления окраска помогает быстро определить объект проверки.

Окраске не подлежат те места заземляющих шин, которые предназначаются для присоединения к другим элементам системы и временного подключения специальных переносных заземлений.

Согласно требованиям ПУЭ остальные места таких шин должны окрашиваться в комбинированный зелёно-жёлтый цвет (зелёный фон с желтой полосой, наносимой вдоль проводника).

Сочленение

При осмотре заземления проверяются соединения элементов. Сочленение заземляющих шин и крепление их к металлоконструкциям должно выполняться на сварку, за исключением отдельных разъёмных мест, используемых для подключения измерительных приборов.

Размеры зоны наложения пластин в местах сочленения делаются равными ширине проводников (в случае их прямоугольной формы) и шести диаметрам при шине цилиндрической формы.

К корпусам электрооборудования шины заземления подключаются под имеющийся на их основании специальный болт. Корпуса стационарных электротехнических устройств, монтируемых на специальных салазках, заземляются путем присоединения защитной шины на их подвижных частях.

При работе в условиях сильных вибраций, ослабляющих место крепления электрооборудования, необходимы специальные меры предупреждения этого процесса (применение контргаек, контрящих шайб и так далее).

Контактные зоны проводников и участков обслуживаемых агрегатов в точках их болтовых сочленений тщательно зачищаются вплоть до образования металлического блеска. По достижении требуемой гладкости контактных площадок последние покрываются слоем специальной технической смазки.

Источник: https://evosnab.ru/ustanovka/zemlja/chastota-osmotra-zazemlenija

Проверка качества заземления

Заземляющие устройства представляют собой токоотводящие конструкции, которые обеспечивают через металлический проводник соединение с землей. Заземление работает следующим образом: через проводник, имеющий слабое сопротивление, проходит электрический ток, создавая потенциалы.

С удалением от заземлителя потенциал стремится к нулю. Сопротивление, которое оказывает току грунт, называется «сопротивлением растеканию». В практике сопротивление растеканию относят не к грунту, а к заземлителю и применяют сокращенный условный термин «сопротивление заземлителя».

Зимой, когда земля промерзает, и летом, когда грунт пересушен, индуктивное сопротивление максимально при неизменном активном сопротивлении (сопротивление заземлителя). Если заземляющее устройство потеряло контакт с землей, оно будет находиться под напряжением и представлять опасность. Точно так же опасно, если значение сопротивления заземлителя не соответствует нормируемым величинам, если имеются коррозия и обрывы в заземлителе, наблюдается изменение кривой разницы потенциалов.

Чтобы заземляющее устройство работало качественно, требуется регулярно проводить его осмотр, проверку и испытания, измерения.

Контур заземления ПУЭ нормы для цеха

Расчет заземления производится для того чтобы определить сопротивление сооружаемого контура заземления при эксплуатации, его размеры и форму.

Как известно, контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника.

Вертикальные заземлители вбиваются в почву на определенную глубину.

Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.

Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление заземления.

К чему сводится расчет заземления?

Заземление служит для снижения напряжения прикосновения до безопасной величины. Благодаря заземлению опасный потенциал уходит в землю тем самым, защищая человека от поражения электрическим током.

Величина тока стекания в землю зависит от сопротивления заземляющего контура. Чем сопротивление будет меньше, тем величина опасного потенциала на корпусе поврежденной электроустановки будет меньше.

Заземляющие устройства должны удовлетворять возложенным на них определенным требованиям, а именно величины сопротивление растекания токов и распределения опасного потенциала.

Поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Пример расчета заземления

Сопротивление растекания тока одного вертикального заземлителя (стержня):

где – ρэкв — эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.

В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:

где – Ψ — сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t — заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Удельное сопротивление грунта Таблица 1
Грунт Удельное сопротивление грунта, Ом·м
Торф 20
Почва (чернозем и др.) 50
Глина 60
Супесь 150
Песок при грунтовых водах до 5 м 500
Песок при грунтовых водах глубже 5 м 1000

Заглубление горизонтального заземлителя можно найти по формуле:

Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.

Значение сезонного климатического коэффициента сопротивления грунта Таблица 2
Тип заземляющих электродов Климатическая зона
I II III IV
Стержневой (вертикальный) 1.8 ÷ 2 1.5 ÷ 1.8 1.4 ÷ 1.6 1.2 ÷ 1.4
Полосовой (горизонтальный) 4.5 ÷ 7 3.5 ÷ 4.5 2 ÷ 2.5 1.5
Климатические признаки зон
Средняя многолетняя низшая температура (январь) от -20+15 от -14+10 от -10 до 0 от 0 до +5
Средняя многолетняя высшая температура (июль) от +16 до +18 от +18 до +22 от +22 до +24 от +24 до +26

Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:

Rн — нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).

Наибольшее допустимое значение сопротивления заземляющих устройств (ПТЭЭП) Таблица 3
Характеристика электроустановки Удельное сопротивление грунта ρ, Ом·м Сопротивление Заземляющего устройства, Ом
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
660/380 до 100 15
свыше 100 0.5·ρ
380/220 до 100 30
свыше 100 0.3·ρ
220/127 до 100 60
свыше 100 0.6·ρ

Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.

Сопротивление растекания тока для горизонтального заземлителя:

Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

 — в ряд; — по контуру.

а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Полное количество вертикальных заземлителей определяется по формуле:

ηв – коэффициент спроса вертикальных заземлителей (таблица 4).

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних.

При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего.

Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.

Источник: https://center-avtomatiki.com/kontur-zazemleniya-pue-normy-dlya-tseha/

Измерение металлосвязи: методика, нормы, периодичность проверки

Наличие защитного заземления – одно из основных требований электробезопасности. Надежность заземляющих элементов контролируют специалисты электролаборатории, проводя измерение металлосвязи. Согласно действующим нормам и правилам, такая проверка обязательна, если на объекте производился ремонт электрического оборудования, переоснащение или монтажные работы. Что скрывается под термином «металосвязь» и зачем проводятся ее измерения, мы подробно расскажем в этой публикации.

Под данным термином принято понимать связь (электрическую цепь), образованную электроустановкой и заземлителем. Основное требование к металлосвязи – непрерывность цепи заземления. Нарушение этого условия грозит образованием высокой разности потенциалов в цепях электроустановки, что представляет угрозу для жизни и может повлечь за собой выход из строя оборудования.

Надежный  контакт заземлителя и объекта заземления обеспечивает низкую величину переходного сопротивления

Со временем может наблюдаться рост переходных сопротивлений в цепи заземления, что приводит к образованию дефектов металлосвязи, давайте разберемся с природой этого явления.

Чем вызван рост переходного сопротивления?

Под переходными контактами подразумеваются соприкасающиеся металлические элементы. Добиться их идеальной полировки невозможно, все равно на поверхности будут присутствовать бугорки и вмятины микроскопического размера.

Площадь контактируемых поверхностей изменяется от воздействия различных внешних факторов (температура, сила прижатия, загрязнение поверхности и т.д.), что ведет к увеличению переходного сопротивления.

На представленных ниже фотографиях медного контакта, сделанных при помощи электронного микроскопа, видно образование на поверхности пленки из оксида меди.

ЭТО ИНТЕРЕСНО:  Что такое сила электрического тока

Поверхность медного контакта, увеличенная микроскопом

Такая оксидная пленка обладает диэлектрическими свойствами, они хоть и не велики, но этого может оказаться достаточно, чтобы нарушить металлосвязь. В результате соединение будет нагреваться и рано или поздно приведет к отгоранию контакта, что незамедлительно отразится на качестве металлосвязи. Не менее распространенная причина – человеческий фактор, именно поэтому после монтажных работ требуется проводить измерение металлосвязи.

Принимая во внимание вышеизложенную информацию, можно указать следующие причины для проверки металлосвязи:

  1. Контроль непрерывности цепи заземления. Он включает в себя как электроизмерения, так и осмотр защитных проводников и других элементов заземления, на предмет их целостности.
  2. Измерение сопротивления переходных контактов (производится между электроустановкой и заземлителем), а также общих параметров цепи.
  3. Проверяется разность потенциалов между корпусом заземленной электроустановки и заземлителем. Проверка осуществляется в рабочем режиме и выключенном состоянии.

Как видим, основная цель проверки – осуществление измерений параметров заземляющих цепей, поскольку именно они характеризуют качество металлосвязи, а соответственно, и электробезопасность установки.

В соответствии с требованиями ПУЭ металлические элементы электроустановок подлежат заземлению. Замеры металлосвязи производятся между главной заземляющей шиной и элементом, подлежащим проверке. По нормам сопротивление контактов в одном переходе должно быть 0,01 Ом ± 20%.

Если измерительный прибор подтверждает наличие качественного соединения, выполняется проверка следующего узла. Когда между заземлителем и заземленной электроустановкой несколько переходов, то их суммарное сопротивление не должно выходить за пределы 0,05 Ом.

Измерение сопротивления переходных контактов

Если сопротивление превышает допустимые нормы, следует проверить состояние контактов, зачистить их, соединить и произвести повторные измерения.

Большинством электролабораторий замеры металлосвязи проводятся по следующему алгоритму:

  1. Осуществляется визуальный осмотр контактов заземляющих проводников. Эффективны при поисках «плохого» контакта специальные приборы – тепловизоры, они быстро позволяют обнаружить проблемное соединение.
  2. Сварочные соединения проверяются на прочность путем применения механической нагрузки.
  3. Все заземленные элементы конструкции тестируются на наличие металлосвязи.
  4. Проверка наличия электрического тока на заземленных элементах.
  5. Полученные результаты фиксируются в специальном протоколе.

Приведенная методика измерений доказала свою эффективность.

Нормы и правила

Согласно нормам ПУЭ заземляющие проводники, а также используемые для выравнивания потенциалов, необходимо надежно соединять, чтобы обеспечить наличие непрерывности цепи заземления.

При этом для стальных проводников предписывается сварочное соединение, другие способы контакта допускаются только в том случае, если имеется защита от разрушающего воздействия воздушной среды.

При использовании болтовых соединений, должны быть приняты соответствующие меры, не позволяющие ослабевать контактному соединению.

Все соединения цепи заземлителя и заземленного устройства должны быть расположены таким образом, чтобы к ним имелся свободный доступ, поскольку должен производиться осмотр, с целью проверки непрерывности электрического соединения. Исключение их этого правила – герметизированные контакты.

В Правилах также указано, что для контакта с заземляющими устройствами могут выполняться болтовыми или сварочными соединениями. Если устройства электроустановок подвержены сильной вибрации или их часто перемещают на другое место, то применяются гибкий защитный провод.

Более детальную информацию о нормах и правилах, можно получить в ПУЭ (р. 1.7.).

Периодичность

Согласно норм ПТЭЭП и ПУЭ, испытания металлосвязи проводится по графику, определенному техническим отделом объекта. Как правило, в этом случае руководствуются табл. 37 п. 3.1 ПТЭЭП, где установлена следующая периодичность измерения металлосвязи:

  • В помещениях и объектах, относящихся к повышенной категории опасности, замеры переходных сопротивлений в заземляющих цепях должны проводиться ежегодно, при других обстоятельствах — не реже одного раза на протяжении трех лет.
  • Для лифтового и подъемного оборудования – 1 год.
  • Стационарным электроплитам – 1 год.

Как правило, проверка металлосвязи производится совместно с другими видами электроизмерений (сопротивления изоляции, проверка целостности электропроводки и т.д.).

Помимо этого, обязательные измерения металлосвязи проводятся в следующих случаях:

  1. Если производился ремонт или переоснащение электрооборудования.
  2. При испытаниях новых электроустановок.
  3. После проведения монтажных работ.

Приборы для измерения

Учитывая, что измерения металлосвязи проводятся на уровне сотых Ома, то обычные измерительные приборы, например, мультиметры, для этой цели не подходят. Когда проводят замеры сопротивления заземления, используют более точные приборы, достаточно чувствительные, чтобы измерять сопротивления малого уровня.

Прибор для измерения заземления Metrel MI3123

Большинство таких устройств оснащены дополнительными функциями, например, представленный на рисунке прибор Metrel MI3123 может также измерять электропроводимость грунта и тока утечки.

Фиксация результатов в протоколе измерения

Все результаты измерений заносятся в специальный протокол испытаний. Данные фиксируются в таблице, с указанием наименования каждого осмотренного соединения. В отчете также приводится информация о количестве осмотренных узлов, их местоположении и отображается максимальное значение общего сопротивления контактов защитной цепи.

Если в процессе испытаний обнаружено отсутствие металлосвязи, информация об этом обязательно фиксируется в документе и одновременно в приложении к протоколу (дефектной ведомости).

Кратко о профилактике.

Регулярно проводить замеры металлозаземления, не значит отказаться от профилактики. Чтобы обеспечить непрерывность защитных цепей необходимо регулярно проверять, в каком состоянии находятся контактные соединения, и при необходимости подтягивать их. Не менее важно очищать контакты пыли, окисной пленки и грязи.

При обнаружении наличия электрического напряжения на одном из элементов конструкции, необходимо позаботится о ее качественном заземлении. В противном случае возрастает риск возникновения нештатной ситуации.

Не стоит экономить на проверке качества устройства защитного заземления, поскольку потери могут стать более затратными, чем оплата вызова электролаборатории.

Важно ознакомиться и прочитать:

Источник: https://www.asutpp.ru/kak-vypolnjaetsja-proverka-metallosvjazi.html

Измерение сопротивления контура заземления

Электролаборатория ВОЛЬТ ЭНЕРГО предоставляет услугу по измерению сопротивления контура защитного заземления на объектах заказчика по всей Украине.

Данный вид электроизмерений позволяет определить качество соединений узлов устройств, правильность выбора материала и варианта конструкции.

Измерение сопротивления контура защитного заземления — одно из испытаний, проведение которого является обязательным.

Увеличение количества и мощности электропотребителей приводит к повышению рисков поражения электрическим током людей. Поэтому, меры электробезопасности, применяемые на объекте, должны служить безотказно. Контур заземления —
непосредственная часть этих мер.

Данное электроизмерение состоит из нескольких этапов :

  • проверка на целостность и надежность заземляющего устройства путем визуального осмотра
  • проверка наличия цепи и качества контактных соединений заземляющих устройств и защитных проводников
  • непосредственное измерение сопротивления контура защитного заземления

Все результаты проведенных испытаний оформляются протоколами электроизмерений, которые в свою очередь объединяются в Техническом отчете, содержащем всю информацию о реальном положении дел на объекте заказчика.

Измерение заземления

Замер контура заземления позволит определить качество соединений узлов того или иного устройства, а также правильность варианта конструкции и выбора материала. В начале проверки необходимо осуществить поверхностный осмотр заземляющего контура.

Как правило, осмотр осуществляется методом постукивания молотком в местах сварки. Это необходимое мероприятие для того, чтобы проверить прочность затяжки болтов и отсутствие трещин на сварочных соединениях.

Только после этого можно начинать измерение сопротивления заземления.

Особенности проведения замеров

Согласно ПУЭ для обеспечения безопасности, замер контура заземления должен проводиться минимум раз в год. Сопротивление заземляющего устройства с напряжением до 1000 В не должно составлять больше 4-х Ом, при напряжении в сети менее 500-т В – 3 Ом.

https://www.youtube.com/watch?v=Uw5eRGM34v4

После замера сопротивления заземления, электроподключение проводится через пяти- или трехпроводное подсоединение. То есть, если необходима 1 фаза, то используется фазный проводник, нейтраль и защитное зануление (проводник, не имеющий заряда).

Наша электротехническая лаборатория осуществляет замер сопротивления заземления в удобное для заказчика время. Перед началом проведения замеров необходимо согласовать с Подрядчиком предполагаемое время проведения работ. В результате оказанной услуги заказчику выдаются: акты выполненных работ, протоколы измерений, дефектный акт, технический отчет, карта нагрузок.

Измерения сопротивления контура заземления проводятся согласно нормативным документам – ПУЕ, ПТЕЕС, и должно осуществляться не реже 1 раза в год для электроустановок особо опасных условий эксплуатации – лифты, прачечные, бани, кухни/столовые, грузоподъемные машины и механизмы и т.д., согласно ПТЕЕС, Приложение 1, табл. 25, п.3 в.

Для силовых подстанций – после монтажных работ и ремонта — 1 раз в 6 лет ПТЕЕС глава 7, п.7.7, — а также после монтажных работ, переоборудования, ремонта электроустановок — ПТЕЕС Приложение 1, табл. 25, не реже чем 1 раз в 12 лет., и в соответствии, с установленной на предприятии системою ТОР (технического обслуживания и ремонта) см. Примечания К, М. к данной таблице.

Как правило, проводится вместе с остальными основными электроизмерениями (сопротивление изоляции, фаза-ноль, металлосвязи)

Источник: https://voltenergo.com.ua/services/electro/measurement_ground/

Проверка заземления

Наша электроизмерительная лаборатория производит проверку заземления в Москве и Московской области.

У нас вы можете заказать :

  • Измерение сопротивления растеканию тока контура заземления (заземляющего устройства);
  • Проверку наличия цепи между заземлёнными установками и элементами заземлённой установки(металлосвязь)
  • Паспорт заземляющего устройства

Стоимость работ по проверке заземления

от 8000 рублей

  • Стоимость выезда, измерение сопротивления заземляющего устройства, тех-отчёт

от 60 рублей за точку

  • Проверка наличия цепи между заземлителями и заземленными элементами

Защитным заземлением называют соединение проводящих частей электрооборудования, по которым не должен течь ток, с землёй. Функция контура заземления – защита людей от поражения током и электрооборудования от выхода из строя в случае появления электрического потенциала на его проводящей нетоковедущей части. Это может случиться, например, из-за повреждения изоляции кабеля или из-за неисправности оборудования.

В случае короткого замыкания через заземление идёт большой ток. Поэтому даже не очень большое сопротивление контура заземления может вызвать значительное падение потенциала на нетоковедущей части оборудования, которое попало под напряжение. Данный сбой может стать причиной возникновения опасной ситуации.

Поэтому сопротивление растеканию тока заземляющего устройства должно иметь минимальные значения, чтобы обеспечивать наибольшее снижение потенциала, появившегося на проводящей части оборудования. Такие испытания проводятся, чтобы удостовериться в том, что этот параметр соответствует норме.

Ток через заземляющее устройство – аварийное явление. Поэтому при исправной системе защиты от аварийных ситуаций ток через заземлитель будет идти очень короткое время (сотые-десятые доли секунды). За это время успеет сработать либо устройство защитного отключения, либо (если УЗО нет, а через заземление идёт большой ток) сработают аварийные предохранители или автоматические выключатели.

Проверка сопротивления заземлителя

Сами номинальные значения зависят от напряжения, с которым работает оборудование и удельного сопротивления грунта. Максимальные значения сопротивления контура заземления электроустановок представлены в ПТЭЭП (приложение 3.1, таблица 36). Проводятся эти работы в период, когда сопротивление грунта обладает максимальным значением (засушливая погода либо сильное промерзание).

На этом фото можно увидеть как происходит измерение сопротивления заземляющего устройства, показатели достаточно хорошие 0,14 Ом

Периодичность проведения данных работ устанавливается также ПТЭЭП (приложение 3, п.26).  Согласно действующим правилам измерение сопротивления заземляющего устройства должно проводиться раз в 6 лет или чаще, если есть подозрения о нарушении структуры ЗУ.

Само соединение заземляемого объекта с землёй называется металлосвязью. Измерение переходного сопротивления контактов (то есть металлосвязи) также должно проводиться не менее одного раза в год. ПТЭЭП определяет максимальное значение этого параметра в 0,05 Ом.

На этом фото ГЗШ – или главная заземляющая шина.

Это напряжение, под которое попадает человек, который прикоснулся к заземлённой установке, когда по ней проходит ток. Максимальное значение этого параметра определено в ПТЭЭП (приложение 3, п.26).

Оно зависит от расчётной длительности воздействия (чем дольше действует напряжение, тем меньше его допустимое значение). Например, если напряжение будет присутствовать на заземлителе 0,1 с, то оно может достигать 500 В.

Если же время реакции защитного оборудования на аварийную ситуацию превышает 1 с, то максимальное значение такого напряжения – 65 В.

Наша лаборатория выполнит замер сопротивления контура заземления на объекте любой сложности и в кратчайшие сроки. Так же имеется возможность выполнять измерение сопротивления заземления без использования штырей (метод токовых клещей).

Помимо измерения заземления проводится визуальный осмотр видимых частей ЗУ. Такие диагностические мероприятия нужно проводить минимум два раза в год. Кроме того, не реже одного раза в 12 лет следует проводить подробный осмотр с выборочным вскрытием грунта в тех местах, где наиболее вероятна коррозия.

Если почва в местности является агрессивной, то частота выполнения осмотра может быть увеличена. В случае, когда при проверке заземлителя оказывается, что повреждено более половины сечения, его следует заменить. Помимо этого, не реже, чем 1 раз за 6 лет проверяется состояние защитных предохранителей.

Данный перечень работ, как правило, проводит электроизмерительная лаборатория, специалисты которой имеют необходимый допуск и оборудование.

Полученные результаты измерений вместе с результатами осмотра заземлителя и замечаниями заносятся в паспорт контура заземления (паспорт заземляющего устройства).

Наши приборы

Часто задаваемые вопросы :

Если при измерении контура заземления показатели заземлителя будут плохими, можете ли вы устранить это?

Да, у нас можно заказать монтаж модульного заземлителя, а также восстановление металлосвязи, с последующими измерениями и выдачей документации.

ЭТО ИНТЕРЕСНО:  Как найти напряжение через сопротивление

Возможно измерение без отключения заземлителя от ГЗШ?

Возможно, у нас есть специальные клещи METREL A 1018 и А 1019, позволяющие провести измерения без кольев и отключения заземлителя.

Официальная ли у вас форма протокола?

Протоколы которые мы выдаем соответствуют ГОСТ Р 50571, также мы прикладываем свидетельство о регистрации электролаборатории и документ о поверке прибора, которым проводились испытания.

Делаете ли вы паспорт заземляющего устройства?

Да, у нас можно заказать такую услугу.

Последние выполненные работы

Источник: https://cenerg.ru/electrolaboratorya/proverka-zazeml/

Требования к заземлению

Согласно ПУЭ, все защитные проводники (заземляющие, проводники основной и дополнительной системы уравнивания потенциалов) не должны иметь обрывов и видимых дефектов.

Все соединения и присоединения заземляющих, защитных проводников, проводников системы уравнивания потенциалов должны обеспечивать непрерывный электрический контакт. Проводники, выполненные из стали, рекомендуется соединять при помощи сварки. Ее надежность проверяется ударом молотка. Для всех соединений необходимо предусмотреть средства защиты от коррозии, а для болтовых соединений еще и средства от ослабления контактов.

Необходимым условием является доступность соединений для осмотра. Исключение составляют герметизированные соединения или соединения, заполненные компаундом. Если оборудование подвергается частому демонтажу или оно установлено на движущихся частях, то присоединение защитного проводника должно быть выполнено гибким проводом.

Присоединение каждой открытой проводящей части электроустановки к нулевому или защитному заземляющему проводнику должно быть выполнено при помощи отдельного ответвления.

Последовательное включение в защитный проводник открытых проводящих частей не допускается. Так как при пропадании контакта на одном из заземленных устройств, пропадет контакт соответственно и на всех остальных.

Так же при помощи отдельного ответвления должно быть выполнено присоединение проводящих частей к основной системе уравнивания потенциалов. Присоединение к дополнительной системе уравнивания потенциалов может быть выполнено как при помощи отдельных ответвлений, так и при помощи присоединения к одному общему неразъемному проводнику.

В качестве РЕ-проводников в электроустановках до 1000 В могут использоваться:

  • — жилы многожильных кабелей;
  • — изолированные и неизолированные провода в общей оболочке с фазными проводами;
  • — стационарно проложенные изолированные и не изолированные проводники;
  • — алюминиевые оболочки кабелей;
  • — стальные трубы электропроводок;
  • — металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления;

Металлические кабельные лотки и короба можно использовать в качестве РЕ-проводников только в том случае, если об этом указано в документации завода изготовителя. Так же в качестве РЕ-проводника допускается использовать некоторые сторонние проводящие части.

Например, металлические строительные конструкции зданий и сооружений (фермы, колонны и т. д.), или металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т. д.).

Использование сторонних проводящих частей в качестве РЕ-проводника допускается при соблюдении следующих условий: Обеспечена их непрерывность.! Непрерывность может быть обеспечена как их конструкцией, так и с помощью соединений, защищенных от механического, химического и прочих воздействий. Так же должна быть исключена возможность их демонтажа, если не предусмотрены меры по сохранению непрерывности проводника.

Для чего нужно проводить проверку системы заземления?

Очень важно проводить регулярную проверку системы заземления. В ходе проверки выявляются многие дефекты, которые могут быть незамечены невооруженным взглядом. Это могут быть разрывы в цепи защитных проводников, ослабления контактов, механические повреждения и коррозия.

Большинство дефектов в системе заземления возникают с течением времени, однако некоторые могут появиться сразу после окончания электромонтажных работ, поэтому проверка заземления входит в обязательный перечень работ при приемо-сдаточных испытаниях.

При этом производятся следующие виды измерений и проверок: проверка наличия цепи между заземленными электроустановками и элементами заземленной электроустановки, а так же измерение сопротивления растеканию тока контура заземления.

Инженеры электроизмерительной лаборатории в ходе проверки используют специальные приборы. Целостность сварных соединений проверяются ударом молотка.

Какие приборы используются для проверки заземления?

В настоящее время существует большое количество различных приборов для измерения параметров системы заземления как импортного, так и отечественного производства. В нашей компании в качестве основных используются приборы фирмы Sonel марки MIC-3, а также отечественный измеритель сопротивления заземления М 416.

Первый прибор мы используем для проверки наличия цепи между заземленной электроустановкой и элементами заземленной электроустановки, а так же для измерения сопротивления переходных контактов. Второй прибор используется для измерения сопротивления растеканию тока заземлителя.

Оба прибора зарекомендовали себя с лучшей стороны, без проблем проходят ежегодную поверку.

Кто может производить проверку заземления?

Производить проверку заземления должна специализированная организация, которая имеет свидетельство о регистрации электроизмерительной лаборатории, выданное Федеральной службой по экологическому, технологическому и атомному надзору. Сотрудники электролаборатории должны иметь удостоверение по электробезопасности с группой не ниже III.

Как часто производят проверку заземления?

Проверка заземления производится при текущем ремонте, при капитальном ремонте, а так же при проведении межремонтных испытаний электрооборудования электроустановок. Сроки проверки устанавливает технический руководитель с учетом заводских инструкций, состояния электроустановок и местных условий. Согласно ПТЭЭП 2.7.9 раз в полгода должен производиться визуальный осмотр видимой части ЗУ, результаты осмотров должны заноситься в паспорт ЗУ.

Переходное сопротивление контактов должно быть не выше 0,05 Ом.

Методика проверки сопротивления переходных контактов защитных проводников

Перед началом измерений производят визуальный осмотр целостности заземляющих проводников. Если измерения производятся без отключения испытуемого оборудования, то необходимо предварительно убедиться в отсутствии напряжения на корпусе оборудования. При измерении сопротивления прибором MIC-3 создается цепь тока корпус электрооборудования — прибор — магистраль заземления — заземляющий проводник — корпус.

После проведения измерения на дисплее высвечивается значение переходного сопротивления. Данные заносятся в протокол.

Методика измерения сопротивления растеканию тока контура заземлителя

Методику измерения сопротивления заземляющих устройств рассмотрим на примере проведения этих работ прибором М 416. Для более точного измерения, прибор необходимо расположить как можно ближе к измеряемому заземлителю. Это позволит снизить влияние на результат сопротивление проводов, соединяющих Rx с зажимами 1 и 2. К зажиму 3 подключается потенциальный электрод (зонд), к зажиму 4 — вспомогательный электрод.

Расстояния между электродами должны быть, как указано на рисунках 1-4. Глубина погружения в грунт электродов должна быть не менее 500 мм. Для повышения точности измерений грунт вокруг электродов можно увлажнить или забить дополнительные электроды. Дополнительные зонды забиваются на расстоянии не менее 2-3 метров друг от друга и соединяются электрически. Измерения проводятся по схемам, указанным на рисунках 1-4.

В случае, когда измерение проводится по схемам 1 или 3, в итоговый результат входит сопротивление провода, соединяющего зажим 1 с Rx. Такие схемы подходят для измерений, в которых не требуется большая точность. Для измерения сопротивления сложных заземлителей используют схему, указанную на рис. 3, где d — наибольшая диагональ измеряемого контура заземляющего устройства.

Предел измерения прибора М 416 от 0,1 до 1000 Ом.

Согласно ПТЭЭП 2.7.7 — Заземляющие проводники, которые проложены открыто должны иметь защиту от коррозии, а также должны иметь окраску черного цвета.

скачать протокол измерения сопротивления заземляющих устройств

скачать протокол проверки наличия цепи между заземлённой электроустановкой и заземлёнными элементами

Источник: http://www.olimp02.ru/elektroizmeritelnaya-laboratoriya/proverka-zazemleniya/

Гост 28298-89 заземление шахтного электрооборудования. технические требования и методы контроля

ГОСТ 28298-89

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЗАЗЕМЛЕНИЕ ШАХТНОГО ЭЛЕКТРООБОРУДОВАНИЯ

Технические требования и методы контроля

Mine equipment earthing. Check methods and specification

Москва

Стандартинформ

2006

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЗАЗЕМЛЕНИЕ ШАХТНОГО ЭЛЕКТРООБОРУДОВАНИЯ

Технические требования и методы контроля

Mine equipment earthing. Check methods and specification

ГОСТ
28298-89

Дата введения 01.07.90

Настоящий стандарт распространяется на защитное заземление шахтного электрооборудования переменного и постоянного тока, за исключением подземной тяги, применяемое в подземных выработках шахт всех категорий.

1.1. Общие требования

1.1.1. Защитное заземление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям электрооборудования или устройствам, которые могут оказаться под напряжением в случае повреждения изоляции.

1.1.2. Заземлению подлежат металлические части электроустановок, нормально не находящиеся под напряжением, которые могут оказаться под напряжением в случае повреждения изоляции, а также трубопроводы, сигнальные тросы и другие протяженные металлокоммуникации, расположенные в выработках, в которых имеются электроустановки.

С защитной заземляющей системой допускается не соединять нетоковедущие части оборудования, у которого применены защитное разделение, защитная изоляция или безопасное сверхнизкое напряжение.

1.1.3. Запрещается в шахтах применять сети с глухозаземленной нейтралью, за исключением трансформаторов, предназначенных для питания преобразовательных устройств контактных сетей электровозной откатки. Подсоединение других потребителей и устройств к таким трансформаторам и питаемым от них сетям запрещается.

1.1.4. Соединение с землей посредством компенсационных защитных или измерительных устройств или соединение с землей прибором для измерения сопротивления электрической изоляции заземлением сети не считается.

1.1.5. В искробезопасных цепях заземление должно выполняться согласно требованиям ГОСТ 22782.5.

1.1.6. Термины и пояснения к ним приведены в приложении 1.

1.2. Требования к защитной заземляющей системе

1.2.1. В подземных выработках шахт должна устраиваться общая сеть заземления, к которой должны присоединяться все объекты, подлежащие заземлению.

Сопротивление заземляющего устройства, используемого для электроустановок различных напряжений, должно удовлетворять требованиям к заземлению электроустановок, для которых необходимо наименьшее сопротивление заземляющего устройства.

1.2.2. Для искробезопасной аппаратуры телефонной связи и ее кабельных муфт на участке сети с кабелями без брони допускается местное заземление без присоединения к общей сети заземления. Сопротивление этого самостоятельного заземления должно быть принято таким, чтобы произведение активного сопротивления заземления и протекающего в нем тока замыкания не превышало допустимой величины безопасного напряжения прикосновения.

1.2.3. цепь заземления и заземляющий контур должны выполняться из голого стального проводника сечением не менее 100 мм2. Проводники необходимо размещать так, чтобы предупредить их механическое повреждение или коррозию (особенно в местах их присоединения) и чтобы можно было осуществлять их контроль.

1.2.4. цепь заземления должна иметь не менее двух главных искусственных заземлителей, расположенных в различных местах.

1.2.5. При расчетах сопротивление заземления должно приниматься таким, чтобы напряжение прикосновения на корпусах электроустановок при замыкании на землю не превышало допустимого значения по ГОСТ 12.1.038, но не более 2 Ом.

1.3. Требования к элементам системы заземления

1.3.1. Материалы, размеры и конструкции элементов заземляющих устройств электрооборудования до и выше 1,2 кВ должны быть устойчивы к механическим, химическим и термическим воздействиям при двухфазных замыканиях на землю с учетом времени срабатывания защиты и обеспечивать сохранение нормируемых параметров в течение всего срока службы устройств. Применение алюминия для выполнения заземляющих проводников запрещается.

1.3.2. Для главных заземлителей должны применяться стальные полосы площадью не менее 0,75 м2, толщиной не менее 5 мм и длиной не менее 2,5 м.

1.3.3. Для местных заземлителей, располагаемых в водосточных канавах выработок, должны применяться стальные полосы площадью не менее 0,6 м2, толщиной не менее 3 мм, длиной не менее 2,5 м.

1.3.4. При устройстве местных заземлителей в шпуре должны применяться трубы диаметром не менее 30 мм и длиной не менее 1,5 м. Стенки труб должны иметь на разной высоте не менее 20 отверстий диаметром 5 мм. Свободное пространство шпура должно засыпаться гигроскопичным материалом и периодически увлажняться по мере подсыхания.

1.3.5. Для устройства местных заземлителей электрооборудования номинальным напряжением выше 127 В переменного и ПО В постоянного тока допускается использовать не менее трех рам металлокрепи, соединенных между собой металлическим проводником (тросом, полосой и т. п.) из стали или меди сечением не менее соответственно 50 и 25 мм2 и имеющих связь с другими рамами крепи посредством распорных элементов.

1.3.6. Для устройства местных заземлителей электроустановок номинальным напряжением до 127 В переменного и до ПО В постоянного тока протяженных металлокоммуникаций, а также металлических элементов объектов, на которых может накапливаться статическое электричество, допускается использовать одну раму металлокрепи.

1.3.7. Для дополнительного заземления устройств защитного отключения допускается использовать в качестве заземлителя одну раму металлокрепи, не используемую в качестве защитного заземления, или отдельный искусственный заземлитель.

1.3.8. В качестве естественных местных заземлителей допускается также использовать металлические желоба самотечного гидротранспорта угля.

1.3.9. Каждый подлежащий заземлению объект должен присоединяться к сборным заземляющим шинам или заземлителю при помощи отдельного ответвления из стали или меди сечением не менее 50 и 25 мм2 соответственно. Для устройств связи допускается присоединение аппаратуры к заземлителям стальным или медным проводом сечением не менее 12 и 6 мм2 соответственно.

1.3.10. Сборные заземляющие проводники для группы заземляемых объектов изготовляют из стали сечением не менее 50 мм2 или из меди сечением не менее 25 мм2.

Источник: http://www.vashdom.ru/gost/28298-89/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как подразделяются работы в электроустановках

Закрыть