Как гласит закон Ома

Калькулятор закона ома онлайн – Рассчитать силу тока, напряжение и сопротивление по закону Ома — онлайн калькулятор

Как гласит закон Ома

Чтобы посчитать Закон Ома воспользуйтесь нашим очень удобным онлайн калькулятором:

Закон Ома для участка цепи

Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).

Пример

Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:

Сила тока на этом участке I = 12/2= 6 А

Закон Ома для полной цепи

Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

Калькулятор закона Ома — Arduino+

Введите любые два известных параметра схемы в приведенном ниже калькуляторе закона Ома и вычислите оставшиеся два значения в соответствии с Законом Ома.

Закон Ома — это самый фундаментальный закон, который регулирует связь между напряжением (V), током (I) и сопротивлением (R). Это определил немецкий ученый Георг Симон Ом, и, следовательно, назван в честь него. Закон гласит, что «для любой цепи электрический ток (I) прямо пропорционален напряжению (V) и обратно пропорционален сопротивлению (R)».

Это самый фундаментальный закон, из которого были получены все другие концепции; возможно, это будет первый закон, который будет представлен всем, кто интересуется электроникой. Концепция этого закона очень проста, просто означает, что напряжение на любых двух точках в цепи всегда будет равно произведению сопротивления между двумя точками и током, протекающим по цепи. Это может быть математически задано так:

V = IR

Где V = Напряжение, I = Ток и R = Сопротивление.

Эта формула также может быть переписана в следующих вариантах:

Используя эти три формулы, вы можете рассчитать значение напряжения, тока или сопротивления. Если вы знаете любой из этих двух параметров, вы также можете вычислить мощность, используя приведенные ниже формулы:

Источник: https://sjracing.ru/raznoe/kalkulyator-zakona-oma-onlajn-rasschitat-silu-toka-napryazhenie-i-soprotivlenie-po-zakonu-oma-onlajn-kalkulyator.html

Трактовка закона ома. Что такое закон ома

Как гласит закон Ома

Зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока . То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток , в свою очередь – это упорядоченное движение частиц под действием электрического поля .

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением . Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току . Сопротивление связано с силой тока обратно пропорционально.

Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз.

И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

где I – сила тока,U – напряжение,

R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики. Открытие его в свое время позволило сделать огромный скачок в науке.

В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома.

Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

U=IR и R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Нужна помощь в учебе?

Предыдущая тема: Сопротивление тока: притяжение ядер, проводники и непроводники Следующая тема:   Расчёт сопротивления проводников и реостаты: формулы

Закон Ома для участка цепи— это основной закон в электротехнике.

Он устанавливает связь между током, сопротивлением и напряжением. С его помощью можно изучить и рассчитать электрические цепи. Важно не просто выучить закон Ома, а понять его, как он применяется на самом деле.

Так как довольно часто происходят ошибки в его применении на практике, из-за не правильного его использования.

Закон Ома определение — ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Стоит поднять напряжение, проходящее по электро цепи, ток так же поднимется догнав напряжение. Подняв сопротивление в цепи, ток снизится во столько же раз, во сколько поднялось сопротивление.

Это можно увидеть на простом примере, взять простую трубу и пустить через нее поток воды, чем выше давление тем сильнее поток воды, если же встречается сопротивление то поток воды значительно теряет свою скорость.

В математике принято считать: сопротивление проводника, в котором во время напряжения 1В протекает ток 1А — равняется 1Ом.

Закон Ома формула — расшифровывается как определение тока в амперах с помощью деления напряжения на сопротивление в омах.

I=U/R

Правильные вычисления по закону Ома будут только тогда, когда напряжение отражается в вольтах, сопротивление в Омах, ток в амперах. При использовании различных версий данных величин, следует их преобразовывать в нужные для вычисления величины.

Данный закон одинаков для всего участка цепи. В случае выяснения напряжения на конкретном участке, нужно будет брать размеры всех величин именно с этого участка.


Данный закон можно рассмотреть на примерах:

1)Определим ток в лампе с сопротивлением 2,5ОМ и напряжении 5В. Разделим 5 / 2,5 получим ток = 2А

2)Вычисляем, так же ток в лампе. с напряжением 500В и сопротивлением 0,5мОм (в Омах получается 500000). Разделим 500 / 500000 получим ток = 0,001А либо 1мА.

Когда ток и сопротивление известны, напряжение так же находят с помощью закона Ома. С помощью формулы:
U = IR

Из чего мы видим, напряжение в концах участка цепи ровно пропорционально току и сопротивлению. Так как увеличение тока без изменения сопротивления, возможно только при увеличения напряжения. Следовательно, постоянное сопротивление большему току, преследует большое напряжение. Если использовать постоянно одинаковый ток с разным сопротивлением, с большим сопротивлением нужно большее напряжение.

Вычисление напряжения можно рассмотреть на примере:

Вычислить напряжение с током = 5мАм (0,005А), сопротивление 10кОм (10000 Ом). Умножаем ток * напряжение = 50В.

Связь между током и напряжением называется — сопротивление. Увеличивается напряжение так же происходит и увеличение тока, ровно тоже происходит при уменьшении. Соотношение между напряжением и током = сопротивлению, которое не меняется.

При рассмотрении двух участков с одинаковым током и разным напряжением, ясно, что в участке с большим напряжением, большее сопротивление. В случае же когда напряжение одинаково, а ток разный, то на участке где меньшее количество тока будет большее сопротивление.


Вычисление сопротивления можно рассмотреть на примере:

Найти сопротивление, имея напряжение 40В и ток 50мАм (0,05А). Поделим 40/0,05 сопротивление = 800 Ом.

Заметка: Интересуют двухуровневые натяжные потолки SATIN.BY. Перейдите по ссылке натяжной потолок (http://satin.by/natjazhnye-potolki.html) и узнайте подробнее.

Если материал был полезен, отблагорить наш сайт вы можете, сделав пожертвование.
Любую сумму на развитие проекта вы можете

Если изолированный проводник поместить в электрическое поле \(\overrightarrow{E} \), то на свободные заряды \(q\) в проводнике будет действовать сила \(\overrightarrow{F} = q\overrightarrow{E}\) В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю.

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда.

Направленное движение заряженных частиц называется электрическим током.

За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока \(I\) — скалярная физическая величина, равная отношению заряда \(\Delta q\), переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени \(\Delta t\), к этому интервалу времени:

$$I = \frac{\Delta q}{\Delta t} $$

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

В Международной системе единиц СИ сила тока измеряется в Амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током.

Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля.

Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока.

Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Источник: https://crazylike.ru/the-interpretation-of-the-ohm-law-what-is-ohms-law.html

Закон Ома для участка цепи. Определение, формула расчета, калькулятор

Как гласит закон Ома

В 1827 году  Георг Ом  опубликовал свои исследования, которые составляют основу формулы, используемую и по сей день. Ом выполнил большую серию экспериментов, которые показали связь между приложенным напряжением и током, протекающим через проводник.

Этот закон является эмпирическим, то есть основанный на опыте. Обозначение «Ом» принято в качестве официальной единицы СИ для электрического сопротивления.

Закон Ома для участка цепи гласит, что электрический ток в проводнике прямо пропорционален разности потенциалов в нем и обратно пропорционален его сопротивлению. Принимая во внимание, что сопротивление проводника (не путать с удельным сопротивлением) величина постоянная, можно оформить это следующей формулой:

где

  • I — тока в амперах (А)
  • V — напряжение в вольтах (В)
  • R — сопротивления в омах (Ом)

Для наглядности: резистор имеющий сопротивление 1 Ом, через который протекает ток силой в 1 А на своих выводах имеет разность потенциалов (напряжение) в  1 В.

Немецкий физик Кирхгоф (известен своими правилами Кирхгофа) сделал обобщение, которое больше используется в физике:

где

  • σ – проводимость материала
  • J — плотность тока
  • Е — электрическое поле.

Закон Ома и резистор

Резисторы являются пассивными элементами, которые оказывают сопротивление потоку электрического тока в цепи. Резистор, который функционирует в соответствии с законом Ома, называется омическим сопротивлением. Когда ток проходит через такой резистор, то падение напряжения на его выводах пропорционально величине сопротивления.

Формула Ома остается справедливой и для цепей с переменным напряжением и током. Для конденсаторов и катушек индуктивности закон Ома не подходит, так как их ВАХ (вольт-амперная характеристика) по сути, не является линейной.

Формула Ома действует так же для схем с несколькими резисторами, которые могут быть соединены последовательно, параллельно или иметь смешанное соединение. Группы резисторов, соединенные последовательно или параллельно могут быть упрощены в виде эквивалентного сопротивления.

В статьях о параллельном и последовательно соединении более подробно описано как это сделать.

Немецкий физик Георг Симон Ом опубликовал в 1827 свою полную теорию электричества под названием «теория гальванической цепи». Он нашел, что падение напряжения на участке цепи является результатом работы тока, протекающего через сопротивление этого участка цепи. Это легло в основу закона, который мы используем сегодня. Закон является одним из основных уравнений для резисторов.

Закон Ома — формула

Формула закона Ома может быть использована, когда известно две из трех переменных. Соотношение между сопротивлением, током и напряжением может быть записано по-разному. Для усвоения и запоминания может быть полезен «треугольник Ома».

или

или

  Ниже приведены два примера использования такого треугольного калькулятора.

Имеем резистор сопротивлением в 1 Ом в цепи с падением напряжения от 100В до 10В на своих выводах.Какой ток протекает через этот резистор?Треугольник напоминает нам, что:
Имеем резистор сопротивлением в 10 Ом через который протекает ток в 2 Ампера при напряжении 120В.Какое будет падение напряжения на этом резисторе?Использование треугольника показывает нам, что:Таким образом, напряжение на выводе будет 120-20 = 100 В.

Закон Ома — мощность

Когда через резистор протекает электрический ток, он рассеивает определенную часть мощности в виде тепла.

Мощность является функцией протекающего тока I (А) и приложенного напряжения V (В):

где

  • Р — мощность в ваттах (В)

В сочетании с законом Ома для участка цепи, формулу можно преобразовать в следующий вид:

или

Идеальный резистор рассеивает всю энергию и не сохраняет электрическую или магнитную энергию. Каждый резистор имеет предел мощности, которая может быть рассеяна, не оказывая повреждение резистору. Это мощность называется номинальной. 

Окружающие условия могут снизить или повысить это значение. Например, если окружающий воздух горячий, то способность рассеять излишнее тепло у резистора снижается, и на оборот, при низкой температуре окружающего воздух рассеиваемая способность резистора возрастает.

На практике, резисторы редко имеют обозначение номинальной мощности. Тем не менее, большинство из резисторов рассчитаны на 1/4 или 1/8 Вт.

Ниже приведена круговая диаграмма, которая поможет вам быстро определить связь между мощностью, силой тока, напряжением и сопротивлением. Для каждого из четырех параметров показано, как вычислить свое значение.

Закон Ома — калькулятор

Данный онлайн калькулятор закона Ома позволяет определить взаимосвязь между силой тока, электрическим напряжением, сопротивлением проводника и мощностью. Для расчета введите любые два параметра и нажмите кнопку расчет:

Для закрепления понимания работы закона Ома, приведем несколько задач для самостоятельного решения.

ЭТО ИНТЕРЕСНО:  Что такое амперы в электричестве
Какая должна быть минимальным мощность этого резистора? Ответ:В соответствии с круговой диаграммой  Р = I2*R = 0,12*50 = 0,5 Вт. Таким образом, минимальная мощность должна быть не менее 0,5 Вт, но рекомендуется взять более мощный для дополнительной надежности и долговечности.
Какой будет ток в цепи? Ответ:Это простой пример закона Ома. Напряжение и сопротивление известны, так что мы можем вычислить ток по формуле:I = V / R = 6 / 1,2 = 5 А.
Электронагреватель (резистор) мощностью 1 кВт подключен в цепь с током 10A. Какое будет падение напряжения на нагревателе? Ответ:Напряжение может быть выражено через ток и мощность по формуле:V = P / I = 1000/10 = 100 В

Источник: http://www.joyta.ru/8001-zakon-oma-dlya-uchastka-cepi-opredelenie-formula-rascheta/

Закон Ома для участка цепи: как сформулировать интегральный закон и чем он выражается, определения и формулы для решения задач

Вся прикладная электротехника базируется на одном догмате — это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам.

Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.

Классическая формулировка

Этот простой вариант трактовки, известный нам со школы.

Формула в интегральной форме будет иметь следующий вид:

То есть, поднимая напряжение, мы тем самым увеличиваем  ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I».  Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

Принятые единицы измерения

Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

  • напряжение – в вольтах;
  • ток в амперах
  • сопротивление в омах.

Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

Формулировка для полной цепи

Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.

Учитывая «r» ЭДС, формула предстанет в следующем виде:

Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания. Напряжение будет  меньше ЭДС, определить его можно по формуле:

Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

Неоднородный участок цепи постоянного тока

Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.

Формула для такого участка (обобщенный закон) будет иметь следующий вид:

Переменный ток

Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

Где «Z» представляет  собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

Практическое использование

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.

Находим силу тока

Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).

Вычисление напряжения

Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление.

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров.

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом

Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Вывод

Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.

Источник: https://rgiufa.ru/matematika-fizika-himiya/kakaya-formulirovka-zakona-oma-dlya-uchastka-tsepi.html

Закон Ома. Для цепей и тока. Формулы и применение

Георг Симон Ом начал свои исследования вдохновляясь знаменитым трудом Жана Батиста Фурье «Аналитическая теория тепла». В этой работе Фурье представлял тепловой поток между двумя точками как разницу температур, а изменение теплового потока связывал с его прохождением через препятствие неправильной формы из теплоизолирующего материала. Аналогично этому Ом обуславливал возникновение электрического тока разностью потенциалов.

Исходя из этого Ом стал экспериментировать с разными материалами проводника. Для того, чтобы определить их проводимость он подключал их последовательно и подгонял их длину таким образом, чтобы сила тока была одинаковой во всех случаях.

Важно при таких измерениях было подбирать проводники одного и того же диаметра. Ом, замеряя проводимость серебра и золота, получил результаты, которые по современным данным не отличаются точностью. Так, серебряный проводник у Ома проводил меньше электрического тока, чем золотой. Сам Ом объяснял это тем, что его проводник из серебра был покрыт маслом и из-за этого, по всей видимости, опыт не дал точных результатов

Однако не только с этим были проблемы у физиков, которые в то время занимались подобными экспериментами с электричеством.

Большие трудности с добычей чистых материалов без примесей для опытов, затруднения с калибровкой диаметра проводника искажали результаты тестов.

Еще большая загвоздка состояла в том, что сила тока постоянно менялась во время испытаний, поскольку источником тока служили переменные химические элементы. В таких условиях Ом вывел логарифмическую зависимость силы тока от сопротивления провода.

Немногим позже немецкий физик Поггендорф, специализировавшийся на электрохимии, предложил Ому заменить химические элементы на термопару из висмута и меди. Ом начал свои эксперименты заново. В этот раз он пользовался термоэлектрическим устройством, работающем на эффекте Зеебека в качестве батареи.

К нему он последовательно подключал 8 проводников из меди одного и того же диаметра, но различной длины. Чтобы измерить силу тока Ом подвешивал с помощью металлической нити над проводниками магнитную стрелку. Ток, шедший параллельно этой стрелке, смещал ее в сторону. Когда это происходило физик закручивал нить до тех пор, пока стрелка не возвращалась в исходное положение.

Исходя из угла, на который закручивалась нить можно было судить о значении силы тока.

Х = a / b + l

Здесь X – интенсивность магнитного поля провода, l – длина провода, a – постоянная величина напряжения источника, b – постоянная сопротивления остальных элементов цепи.

Если обратиться к современным терминам для описания данной формулы, то мы получим, что Х – сила тока, а – ЭДС источника, b + l – общее сопротивление цепи.

I = U / R

Исходя из этой формулы, мы можем решить, что сопротивление проводника зависит от разности потенциалов. С точки зрения математики, это правильно, но ложно с точки зрения физики. Эта формула применима только для расчета сопротивления на отдельном участке цепи.

Чтобы рассчитать сопротивление проводника, нужно перемножить его длину на удельное сопротивление его материала и разделить на площадь поперечного сечения.

Закон Ома для полной цепи

Отличие закона Ома для полной цепи от закона Ома для участка цепи заключается в том, что теперь мы должны учитывать два вида сопротивления. Это «R» сопротивление всех компонентов системы и «r» внутреннее сопротивление источника электродвижущей силы. Формула таким образом приобретает вид:

Закон Ома для переменного тока

Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление.

Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением.

Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).

Попробуем разобраться, в чем реальная разница между реактивным и активным сопротивлением в цепи с переменным током. Вы уже должны были понять, что значение напряжение и силы тока в такой цепи меняется со временем и имеют, грубо говоря, волновую форму.

Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида.

И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее.

Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.

Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой

На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие активного сопротивления от реактивного в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.

Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.

U = I ⋅ ωL

Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).

U = I / ω ⋅ С

С – емкость реактивного сопротивления.

Эти две формулы – частные случаи закона Ома для переменных цепей.

I = U / Z

Здесь Z – полное сопротивление переменной цепи известное как импеданс.

Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:

  • Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
  • В сверхпроводниках;
  • Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
  • В вакуумных и газовых радиолампах;
  • В диодах и транзисторах.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/zakon-oma/

Как найти напряжение на участке цепи

Основным законом электротехники, при помощи которого можно изучать и рассчитывать электрические цепи, является закон Ома, устанавливающий соотношение между током, напряжением и сопротивлением. Необходимо отчетливо понимать его сущность и уметь правильно пользоваться им при решении практических задач. Часто в электротехнике допускаются ошибки из-за неумения правильно применить закон Ома.

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.

В популярной форме этот закон можно сформулировать следующим образом: чем выше напряжение при одном и том же сопротивлении, тем выше сила тока и в то же время чем выше сопротивление при одном и том же напряжении, тем ниже сила тока.

Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:

Любой участок или элемент электрической цепи можно охарактеризовать при помощи трёх характеристик: тока, напряжения и сопротивления.

ЭТО ИНТЕРЕСНО:  Сколько ампер в переменном токе

Как использовать треугольник Ома: закрываем искомую величину – два других символа дадут формулу для её вычисления. Кстати, законом Ома называется только одна формула из треугольника – та, которая отражает зависимость тока от напряжения и сопротивления. Две другие формулы, хотя и являются её следствием, физического смысла не имеют.

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно.

Другие статьи про электричество в простом и доступном изложении:

Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.

Рис 1. Применение закона Ома для участка цепи

Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.

Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения

Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.

Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны. Потери и падение напряжения – в чем различие?

Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.

Умножив I = 0,005 А на R —10 000 Ом, получим напряжение,равное 5 0 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В

В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление — в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.

По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.

Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.

Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница.

Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.

Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление.

А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.

Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.

Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .

На рис. 2 показан в качестве примера график закона Ома для участка цепи с сопротивлением 100 Ом. По горизонтальной оси отложено напряжение в вольтах, а по вертикальной оси — ток в амперах. Масштаб тока и напряжения может быть выбран каким угодно. Прямая линия проведена так, что для любой ее точки отношение напряжения к току равно 100 Ом. Например, если U = 50 В, то I = 0,5 А и R = 50 : 0,5 = 100 Ом.

Рис. 2 . Закон Ома (вольт-амперная характеристика)

График закона Ома для отрицательных значений тока и напряжения имеет такой же вид. Это говорит о том, что ток в цепи проходит одинаково в обоих направлениях. Чем больше сопротивление, тем меньше получается ток при данном напряжении и тем более полого идет прямая.

Приборы, у которых вольт-амперная характеристика является прямой линией, проходящей через начало координат, т. е. сопротивление остается постоянным при изменении напряжения или тока, называются линейными приборами . Применяют также термины линейные цепи, линейные сопротивления.

Существуют также приборы, у которых сопротивление изменяется при изменении напряжения или тока. Тогда зависимость между током и напряжением выражается не по закону Ома, а более сложно. Для таких приборов вольт-амперная характеристика не будет прямой линией, проходящей через начало координат, а является либо кривой, либо ломаной линией. Эти приборы называются нелинейными .

Немецкий физик Георг Симон Ом (1787—1854) открыл основной закон электрической цепи.

Закон Ома для участка цепи:

Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

  1. I — сила тока (в системе СИ измеряется — Ампер)
  2. Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
  3. Формула: I=frac
  4. U — напряжение (в системе СИ измеряется — Вольт)

Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.

Формула: U=IR

  • R— электрическое сопротивление (в системе СИ измеряется — Ом).
  • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
  • Формула R=frac
  • Определение единицы сопротивления — Ом

    1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1(Вольт) протекает ток 1 (Ампер).

    Закон Ома для полной электрической цепи: разница с выражением для участка контура, определение, формула

    Среди известных широкой общественности физических формул лидирует E=mc2. По популярности с ней может соперничать только U=IR. Это простое выражение имеет фундаментальное значение для электротехники и описывает математически соотношение между параметрами участка электрической цепи. Менее известен закон Ома для полной цепи, который рассматривает нагрузку неотделимо от источника напряжения.

    Основные понятия

    Электрический ток течёт, когда замкнутый контур позволяет электронам перемещаться от высокого потенциала к более низкому в цепи. Иначе говоря, ток требует источника электронов, обладающего энергией для приведения их в движение, а также точки их возвращения отрицательных зарядов, для которой характерен их дефицит. Как физическое явление ток в цепи характеризуется тремя фундаментальными величинами:

    • напряжение;
    • сила тока;
    • сопротивление проводника, по которому движутся электроны.

    Сила и напряжение

    Сила тока (I, измеряется в Амперах) есть объём электронов (заряд), перемещающихся через место в цепи за единицу времени. Иными словами, измерение I — это определение количества электронов, находящихся в движении.

    Важно понимать, что термин относится только к движению: статические заряды, например, на клеммах неподсоединённой батареи, не имеют измеряемого значения I.

    Ток, который протекает в одном направлении, называется постоянным (DC), а периодически изменяющий направление — переменным (AC).

    Вольт — единица измерения, применяемая для электрической разницы потенциалов, самого потенциала и электродвижущей силы. Термин напряжение (U) относится к электрической разности потенциалов между точками. Любые статические заряды имеют значение в Вольтах, а величина их разности определяется как U.

    Напряжение можно проиллюстрировать таким явлением, как давление, или как разность потенциальной энергии предметов под воздействием гравитации.

    Для того чтобы создать этот дисбаланс, нужно затратить предварительно энергию, которая и будет реализована в движении при соответствующих обстоятельствах.

    Например, в падении груза с высоты реализуется работа по его подъёму, в гальванических батареях разность потенциалов на клеммах образуется за счёт преобразования химической энергии, в генераторах — в результате воздействия электромагнитного поля.

    Вам это будет интересно  Как работает вольтметр

    Сопротивление проводников

    Независимо от того, насколько хорош обычный проводник, он никогда не будет пропускать сквозь себя электроны без какого-либо сопротивления их движению. Можно рассматривать сопротивление как аналог механического трения, хотя это сравнение не будет совершенным.

    Когда ток протекает через проводник, некоторая разность потенциалов преобразуется в тепло, поэтому всегда будет падение напряжения на резисторе.

    Электрические обогреватели, фены и другие подобные устройства предназначены исключительно для рассеивания электрической энергии в виде тепла.

    Упрощённо сопротивление (обозначается как R) является мерой того, насколько поток электронов тормозится в цепи. Оно измеряется в Омах. Проводимость резистора или другого элемента определяется двумя свойствами:

    Форма имеет важнейшее значение, это очевидно на гидравлической аналогии: протолкнуть воду через длинную и узкую трубу гораздо тяжелее, чем через короткую и широкую. Материалы играют определяющую роль. Например, электроны могут свободно перемещаться в медном проводе, но не способны протекать вообще через такие изоляторы, как каучук, независимо от их формы. Кроме геометрии и материала, существуют и другие факторы, влияющие на проводимость.

    Закон для участка цепи

    Существует фундаментальная связь между напряжением, током и проводимостью. Это знаменитое уравнение называется законом Ома, и его можно отобразить тремя эквивалентными способами:

    Выраженный в словах он звучит так: ток, протекающий через проводник между двумя контактами, прямо пропорционален напряжению на этих контактах. Первые два выражения фиксируют константу пропорциональности между током и напряжением. Последнее можно рассматривать как определение для единичного резистора — элемента, позволяющего протекать единице тока под единичным напряжением.

    Приведённые математические соотношения — основа для электротехники и электроники. Закон был назван в честь немецкого физика Георга Симона Ома, который в монографии, опубликованной в 1827 г., описал измерения приложенного напряжения и тока с помощью простых электрических цепей, состоящих из проводов различной длины.

    Исследователь объяснил свои экспериментальные результаты несколько сложнее, чем отражено в приведённых уравнениях, известных в современной физике как неполный закон Ома. Для того чтобы сформулировать закон Ома для полной электрической цепи, необходимо оперировать понятиями внутреннего сопротивления источника тока и электродвижущей силы.

    Электродвижущая сила

    Источник: https://rusenergetics.ru/novichku/smysl-polnogo-zakona-oma

    Что такое закон ома определение – простое объяснение для чайников с формулой и понятиями

    • Закон Ома — Традиция
    • Закон Ома — это Что такое Закон Ома?
    • Закон Ома для участка цепи
    • Закон Ома.
    • Закон Ома
    • Второй закон ома определение
    • Закон Ома. Для цепей и тока. Формулы и применение
        • Важно при таких измерениях было подбирать проводники одного и того же диаметра. Ом, замеряя проводимость серебра и золота, получил результаты, которые по современным данным не отличаются точностью. Так, серебряный проводник у Ома проводил меньше электрического тока, чем золотой. Сам Ом объяснял это тем, что его проводник из серебра был покрыт маслом и из-за этого, по всей видимости, опыт не дал точных результатов.
        • В результате нового эксперимента Ом пришел к формуле:
          • Закон Ома для участка цепи
        • Закон Ома для отдельного участка цепи гласит: сила тока на участке цепи увеличивается при возрастании напряжения и уменьшается при возрастании сопротивления этого участка.
        • Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.
        • Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:

    Эта статья о физическом законе, относящемся к электромагнетизму. Для другого использования, см. Акустический закон Ома.V — напряжение,
    I — сила тока,
    R — сопротивление.Георг Симон Ом.

    Зако́н О́ма — закон, который открывает, что ток через проводник между двумя точками прямо пропорционален разности потенциалов между двумя точками. Вводя коэффициент пропорциональности, сопротивление,[1] приходим к обычному математическому уравнению, описывающего эту связь:[2]$$I = \frac{V}{R},$$где:

    • \(I\) — ток через проводник в амперах,
    • \(V\) — разность потенциалов, измеренная через проводник в вольтах,
    • \(R\) — сопротивление проводника в омах. Конкретнее, в данном случае закон Ома гласит, что R в этом отношении является величиной постоянной, независимой от тока.[3]

    Закон был назван в честь немецкого физика Георга Ома, который в трактате, опубликованном в 1827 году, описано измерения напряжения и тока с помощью простых электрических цепей, содержащих различные длины провода. Он представил несколько более сложные уравнения, чтобы объяснить его экспериментальные результаты. Приведенное выше уравнение является современной формой закона Ома.

    В физике термин «закон Ома» также применяется для обозначения различных обобщений закона, первоначально сформулированного Омом. Самый простой пример это:$$\mathbf{J} = \sigma \mathbf{E},$$где:

    Эта переформулировка закона Ома принадлежит Густаву Кирхгофу.[4].

    Мнемоническая диаграмма для Закона[править]

    Схема, иллюстрирующая три составляющие закона ОмаДиаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления

    В соответствии с этой диаграммой формально может быть записано выражение:

    ЭТО ИНТЕРЕСНО:  Как влияет сопротивление на напряжение

    \(R\!= {U \over I}, \qquad(7)\)

    которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.

    В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:

    \(R\!= {\varrho l \over s}, \qquad(8) \)

    где:

    • \(\varrho \!\) — удельное сопротивление материала, из которого сделан проводник,
    • \(l\!\) — его длина
    • \(s\!\) — площадь его поперечного сечения

    Закон Ома и ЛЭП[править]

    Источник: https://yato-tools.ru/raznoe/chto-takoe-zakon-oma-opredelenie-prostoe-obyasnenie-dlya-chajnikov-s-formuloj-i-ponyatiyami.html

    Закон Ома для участка цепи

    От силы тока в цепи зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока. То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток, в свою очередь – это упорядоченное движение частиц под действием электрического поля.

    Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением. Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

    И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

    Две формулировки

    Во всей учебной и популярной литературе встречаются две трактовки закона: для полной цепи и, как частный случай, для ее участка. В них нет принципиальных различий. Закон Ома для участка цепи является частным случаем при некоторых условиях.

    Итак, что такое закон Ома для полной цепи? Формула имеет вид:

    I= ε /(R+r), где:

    r, R – сопротивления: внутреннее (собственное) источника питания и, соответственно, нагрузки;

    ε – ЭДС источника напряжения.

    Иллюстрация для полной цепи

    Формула для участка имеет немного иной вид:

    I=U/R, где:

    • R – сопротивление участка,
    • U – разность потенциалов на его концах (падение напряжения).

    Из сравнения выражений становится ясно, что встречающаяся формулировка «закон Ома для участка цепи с ЭДС» не имеет смысла, поскольку электродвижущая сила является характеристикой источника питания, а не разности потенциалов на участке.

    Почему в формуле фигурирует значение ЭДС, а не напряжение, и что означает внутреннее сопротивление? Простыми словами, источники питания не идеальны и обладают собственным сопротивлением, которое тем меньше, чем лучше параметры источника.

    В том случае, когда данная величина источника на несколько порядков меньше, чем у нагрузки, им можно пренебречь, и напряжение становится численно равным ЭДС. В слаботочных цепях так обычно и происходит. Другое дело, когда сопротивление источника соизмеримо с нагрузкой.

    Тогда протекающий ток вызовет внутри источника некоторое падение напряжения, которое будет вычитаться из значения ЭДС, в результате напряжение источника станет меньше, чем его электродвижущая сила.

    С данным явлением знакомы владельцы автомобилей со старой аккумуляторной батареей. С возрастом у аккумуляторов, кроме падения емкости, наблюдается рост внутренней нагрузки. При выключенном замке зажигания напряжение, измеренное на клеммах аккумуляторной батареи, равно ее ЭДС (порядка 12В). При включении стартера сила тока на участке цепи составляет сотни ампер, напряжение на участке цепи – на клеммах аккумулятора падает до 9 и менее вольт.

    Недостающие 3В остались на внутреннем сопротивлении аккумулятора. Это объемное сопротивление пластин, электролита, соединительных клемм между отдельными банками. Применяя для расчета закон Ома для участка цепи, можно такое явление назвать просадкой. Оно характерно для старых аккумуляторов, особенно в холодное время года, когда внутренняя нагрузка аккумулятора максимальна.

    Чтобы снизить просадку, согласно закону Ома для участка цепи, содержащего ЭДС, требуется снизить потребляемую стартером мощность, а это значит нужно уменьшить потери на трение, то есть прогреть масло в картере двигателя и выжать сцепление, чтобы двигатель не прокручивал холодное масло в КПП.

    На самом деле в приведенном примере происходят гораздо более сложные процессы, но в первом приближении это верно.

    Важную роль внутреннее сопротивление играет при передаче напряжения по линиям электропередач. Для конечного потребителя его доставляют провода ЛЭП. Чтобы уменьшить падение напряжения на проводах, нужно или увеличивать их сечение, или уменьшать протекающий через них ток.

    Увеличение сечения вызывает рост массы и стоимости, поэтому применяют снижение тока. Имея одинаковую мощность нагрузки, это можно сделать только одним способом – повышением напряжения. Правильность данного решения легко проверить, применяя закон Ома для однородного участка цепи и определив, сколько вольт падает при разных значениях тока. Именно это обусловило абсолютное преимущество применения переменного тока, поскольку его преобразование легко решается при помощи трансформаторов.

    2-й закон Ома существует для тех примеров, когда источник напряжения по характеристикам приближен к идеальному, и его внутренним сопротивлением можно пренебречь, или если требуется определить разницу потенциалов (падение напряжения) на нагрузке (резисторе). Второй закон позволяет сделать расчеты проще, чем первый.

    Определение падения напряжения на нагрузке

    Ограничения в применении

    Каким бы ни был универсальным закон Ома для замкнутой цепи, в некоторых случаях он неприменим:

    • При изменении температуры проводников протекающим через них током;
    • Для материалов и веществ, являющихся сверхпроводниками;
    • При сверхвысоких частотах, при которых скорость колебаний напряженности поля соизмерима с инерционными характеристиками носителей электрического заряда;
    • При возможном скачкообразном изменении свойств проводника под действием приложенного напряжения (электрический пробой газового промежутка);
    • В электровакуумных и газонаполненных электронных лампах;
    • В полупроводниковых веществах и приборах с p-n-переходами.

    На некоторых пунктах можно остановиться подробнее.

    Нагрев

    Нагрев проводников приводит к изменению его характеристик. Это явление следует учитывать при значительных величинах зависимости сопротивления от температуры. Классический пример – лампа накаливания.

    При прохождении тока сопротивление на участке цепи (нити накаливания) изменяется в несколько раз. Получается, что измерив омметром параметры лампы, можно определить значение тока при включении лампы в сеть. Но далее нить начинает разогреваться, и сопротивление ее растет.

    Таким образом, вычисленное значение уже не будет соответствовать действительности.

    В данном примере закон Ома применим только в случае установившегося режима.

    Температурная зависимость

    Именно по причине малого сопротивления холодной вольфрамовой нити подавляющее число отказов ламп накаливания происходит в момент включения. Этот эффект используется в электронных стабилизаторах тока – бареттерах, которые были популярны до наступления эры полупроводников и еще используются в некоторых областях в настоящее время.

    Сверхпроводимость

    Некоторые вещества имеют свойство при охлаждении до некоторой критической температуры перехода – скачкообразно уменьшать сопротивление. После этого обобщенный закон Ома в классическом представлении теряет смысл, поскольку цепь входит в так называемый режим короткого замыкания, при котором сила тока ограничивается только сопротивлением источника напряжения.

    Инерционность переноса заряда

    Реальная скорость переноса отрицательных зарядов в проводящей среде достаточно невелика. Просто начало их движения возможно под действием электромагнитного поля, которое распространяется со скоростью света.

    Однако, как и все материальные частицы, электроны обладают массой, а, следовательно, некоторой инерционностью.

    Таким образом, при высоких скоростях изменения электромагнитного поля носители заряда будут не в состоянии мгновенно реагировать на его изменения, и закон Ома для замкнутой цепи становится неприменим.

    Разряд

    Воздушный промежуток, находящийся между разнополярными электродами, обладает высоким сопротивлением, но при повышении напряжения возникает момент, когда происходит искровой пробой, и сопротивление между электродами падает почти мгновенно.

    Электронные лампы

    Ток эмиссии в вакуумных лампах и тлеющий или дуговой разряд в газонаполненных имеет ярко выраженную нелинейную зависимость от приложенного напряжения, то есть, грубо говоря, сопротивление между электродами зависит от разности потенциалов.

    Полупроводники

    Подобно электронным лампам, полупроводниковые вещества также имеют зависимость внутреннего сопротивления от приложенного напряжения. При контакте полупроводников разных типов проводимости (n- и p-полупроводники) наблюдается зависимость параметров p-n-перехода от полярности питания. Данное свойство является основным в диодах и транзисторах. Зависимость силы протекающего тока от приложенного напряжения для прямой и обратной полярностей p-n перехода имеет ярко выраженную нелинейность.

    Данное свойство используется в варисторах, полупроводниковых приборах, сопротивление которого зависит от приложенного напряжения.

    Вольт-амперная характеристика диода

    Закон Ома для полной цепи

    Источник: https://elquanta.ru/teoriya/zakon-oma-dlya-uchastka-cepi.html

    Закон ома для участка цепи

    Электрика »Электрика начинающим »Ток и напряжение »Закон ома

    Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит.

    Возьмем замкнутую электрическую цепь (рисунок 1) и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

    Итак, закон Ома для рассматриваемого участка цепи имеет вид:

    φ1-φ2=I*R, где

    • I — ток, протекающий по участку цепи.
    • R — сопротивление этого участка.
    • φ1-φ2 — разность потенциалов между точками 1-2.

    Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы:U=I*R

    Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

    В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

    • U1=I*R1
    • U2=I*R2
    • Un=I*Rn
    • U=I*(R1+R2++Rn

    Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

    U=U1+U2++Un или U1/U2//Un=R1/R2//Rn

    Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

    ПРАВИЛО ЗНАКОВ ДЛЯ ЭДС

    Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:

    Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной (рис.3.1). В противном случае — ЭДС считается отрицательной (рис.3.2).

    Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2++En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3.

    При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

    ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

    Закон Ома для полной цепи — его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r).

    Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС.

    Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r — сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

    Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной.

    Закон Ома рассмотрен здесь достоточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

    2012-2020 г. Все права защищены.

    Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

    Источник: https://eltechbook.ru/zakon_oma.html

    Закон Ома

    Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

    Темы кодификатора ЕГЭ: закон Ома для участка цепи, электрическое сопротивление

    Рассмотрим некоторый элемент электрической цепи постоянного тока. Это может быть что угодно: металлический проводник, раствор электролита, лампочка накаливания, газоразрядная трубка. . .
    Будем менять напряжение , поданное на наш элемент, и измерять силу тока , протекающего через него. Получим функциональную зависимость . Эта зависимость называется вольт-амперной характеристикой элемента и является наиважнейшим показателем его электрических свойств.

    Вольт-амперные характеристики различных элементов цепи могут выглядеть по-разному.
    Очень простой вид имеет вольт-амперная характеристика металлического проводника. Эту зависимость экспериментально установил Георг Ом.

    Электрическое сопротивление

    А сейчас давайте подумаем вот о чём. Пусть к концам проводника приложено постоянное напряжение . Тогда на свободные заряды проводника действует сила со стороны стационарного электрического поля. Раз есть сила — значит, эти заряды должны двигаться с ускорением; скорость их направленного движения будет увеличиваться, а вместе с ней будет возрастать и сила тока. Но закон Ома гласит, что сила тока будет постоянной. Как же так?

    Дело в том, что сила со стороны стационарного поля — не единственная сила, действующая на свободные заряды проводника.

    Например, свободные электроны металла, совершая направленное движение, сталкиваются с ионами кристаллической решётки. Возникает своего рода сила сопротивления, действующая со стороны проводника на свободные заряды. Эта сила уравновешивает электрическую силу, с которой на свободные заряды действует стационарное поле.

    В результате скорость направленного движения заряженных частиц не меняется по модулю (точнее говоря, свободные электроны всё же двигаются равноускоренно, но только в промежутках между соударениями с ионами кристаллической решётки.

    В среднем же оказывается, что электроны перемещаются с постоянной скоростью); вместе с ней остаётся постоянной и сила тока.

    Так что величина названа сопротивлением не случайно. Она и в самом деле показывает, в какой степени проводник «сопротивляется» прохождению тока.

    Удельное сопротивление

    Возьмём два проводника из одинакового материала с равными поперечными сечениями; пусть отличаются только их длины. Ясно, что сопротивление будет больше у того проводника, у которого больше длина. В самом деле, при большей длине проводника свободным зарядам труднее пройти сквозь него: каждый свободный электрон встретит на своём пути больше ионов кристаллической решётки. Аналогия такая: чем длиннее заполненная машинами улица, тем труднее будет через неё проехать.

    Пусть теперь проводники отличаются только площадью поперечного сечения. Ясно, что чем больше площадь, тем меньше сопротивление проводника. Снова аналогия: чем шире шоссе, тем больше его пропускная способность, т. е. тем меньше его «сопротивление» движению машин.

    Опыт подтверждает эти соображения и показывает, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади поперечного сечения :

    (2)

    Коэффициент пропорциональности уже не зависит от геометрии проводника; он является характеристикой вещества проводника и называется удельным сопротивлением данного вещества. Величины удельных сопротивлений различных веществ можно найти в соответствующей таблице.

    В каких единицах измеряется удельное сопротивление? Давайте выразим его из формулы (2):

    Получим:

    Однако такая «теоретическая» единица измерения не всегда удобна. Она вынуждает при расчётах переводить площадь поперечного сечения в квадратные метры, тогда как на практике чаще всего речь идёт о квадратных миллиметрах (для проводов, например). На такой случай предусмотрена «практическая» единица:

    В таблице задачника Рымкевича удельное сопротивление даётся как в «теоретических» единицах, так и в «практических».

    Источник: https://ege-study.ru/ru/ege/materialy/fizika/zakon-oma/

    Понравилась статья? Поделиться с друзьями:
    Электро Дело
    Можно ли хранить автомобильный аккумулятор в жилом помещении

    Закрыть