Мощность электрического тока
> Теория > Мощность электрического тока
Мощность электрического тока – один из основных параметров, определяющих работу электроцепи, наряду с напряжением и силой тока. Этот показатель всегда присутствует в технических характеристиках двигателей, трансформаторов, генераторов.
Генератор на электростанции
Определение
Чтобы понять, что такое мощность тока, надо определить его работу, так как они неразрывно связаны. Работа электротока заключается в энергопреобразовании из электрического вида в тепловой, кинетический и т. д. Мерилом этой энергии является работа. А мощность электрического тока – это скорость, с которой происходят преобразования. Формулой можно выразить:
P = A/t.
В чем измеряется мощность тока, проистекает из формулы, – Дж/с. Получилась единица измерения, называемая ватт (Вт). Другая единица измерения мощности, часто применяемая в энергетике, – следствие из другой формулы:
P = U*I.
Это вольтампер (ВА) и производные от нее кВА, мВА.
Важно! Благодаря последней формуле, можно заметить, что идентичную мощность электрического тока возможно получить при повышенном напряжении и маленьком токе либо при перемене местами количественного значения этих показателей. Так как при большом токе потери выше, эту зависимость используют, передавая электроэнергию по высоковольтным ЛЭП на значительные дистанции.
В электроцепях на постоянном токе существует один вид мощности, измеряемый в ваттах. Электрическая мощность, используемая при расчетах электросетей переменного тока, может быть:
- активная;
- реактивная;
- полная;
- комплексная.
Активная
Действие электрического тока на человека
Этот вид мощности электрического тока определяет работу, целиком затраченную на энергопреобразования. Пример – энергия, выделившаяся на нагрев сопротивления.
Формула расчета:
P = U*I cos φ,
где «φ» – это угол, на который сдвинуты фазы между векторами тока и напряжения.
Показатели U и I при подстановке в формулическое выражение берутся среднеквадратичные.
Формулы для расчета мощности
Реактивная
Реактивная мощность электрического тока применяется для оценки количественного показателя емкостной и индуктивной нагрузки на сеть.
Формула расчета:
Q = U*I sin φ.
Для реактивной мощности электрического тока применяют единицу измерения вольтампер реактивный (ВАр, кВАр, мВАр).
Реактивная часть появляется при расчете мощности в электрической цепи, к которой подключена индуктивность или емкость:
- Индуктивность – это любая катушка: трансформаторная, реакторная, обмотки электродвигателя и т. д. Из-за происходящих процессов самоиндукции электрическая энергия не вся преобразовывается в другой вид, а определенное количество возвращается в сеть. Так как вектор ее смещен по фазе, сеть работает с перегрузкой;
- Конденсатор, представляющий собой емкость, работает аналогичным образом, но смещение вектора возвращаемой энергии находится в противофазе по сравнению с индуктивным.
Важно! Для повышения качества электроэнергии и более эффективной работы электросетей свойство индуктивности и емкости работать в противофазе используется для компенсации реактивной энергии (применение конденсаторных батарей).
Полная
В чем измеряется мощность
Зная активную и реактивную составляющую, можно определить, чему равна полная мощность электрического тока. Хотя она не характеризует потребление энергии по факту, расчеты необходимы для определения нагрузки на компоненты электросетей: воздушные и кабельные линии, коммутационные аппараты, трансформаторы.
Формула расчета:
Источник: https://elquanta.ru/teoriya/moshhnost-ehlektricheskogo-toka.html
Работа и мощность электрического тока. Закон Джоуля-Ленца – FIZI4KA
ОГЭ 2018 по физике ›
1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.
Как было показано, напряжение \( (U) \) на участке цепи равно отношению работы \( (F) \), совершаемой при перемещении электрического заряда \( (q) \) на этом участке, к заряду: \( U=A/q \). Отсюда \( A=qU \).
Поскольку заряд равен произведению силы тока \( (I) \) и времени \( (t) \) \( q=It \), то \( A=IUt \), т.е.
работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.
Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:
\( [A] \)= 1 Дж = 1 В · 1 А · 1 с
Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.
Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: \( A=\frac{U2}{R}t \) или \( A=I2Rt \).
2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: \( P=A/t \) или \( P=IUt/t \); \( P=IU \), т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.
Единицей мощности является ватт (1 Вт): \( [P]=[I]\cdot[U] \); \( [P] \) = 1 А · 1 В = 1 Вт.
Используя закон Ома, можно получить другие формулы для расчета мощности тока: \( P=\frac{U2}{R};P=I2R \).
Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.
3. При прохождении электрического тока по проводнику он нагревается.
Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию.
Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: \( Q=A \) или \( Q=IUt \). Учитывая, что \( U=IR \), \( Q=I2Rt \).
Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.
Этот закон называют законом Джоуля-Ленца.
- Примеры заданий
- Ответы
Часть 1
1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?
1) увеличится в 4 раза 2) уменьшится в 2 раза 3) увеличится в 2 раза
4) уменьшится в 4 раза
2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?
1) увеличится в 4 раза 2) уменьшится в 2 раза 3) увеличится в 2 раза
4) уменьшится в 4 раза
3. Сопротивления резистор \( R_1 \) в четыре раза меньше сопротивления резистора \( R_2 \). Работа тока в резисторе 2
1) в 4 раза больше, чем в резисторе 1 2) в 16 раз больше, чем в резисторе 1 3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1
4. Сопротивление резистора \( R_1 \) в 3 раза больше сопротивления резистора \( R_2 \). Количество теплоты, которое выделится в резисторе 1
1) в 3 раза больше, чем в резисторе 2 2) в 9 раз больше, чем в резисторе 2 3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2
5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если
1) проволоку заменить на более тонкую железную 2) уменьшить длину проволоки 3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую
6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) и \( A_2 \) в этих проводниках за одно и то же время.
1) \( A_1=A_2 \)
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)
8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то
А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.
Верным(-и) является(-ются) утверждение(-я)
1) только А 2) только Б 3) и А, и Б
4) ни А, ни Б
9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?
1) 36 А 2) 6 А 3) 2,16 А
4) 1,5 А
10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?
1) 10000 с 2) 2000 с 3) 10 с
4) 2 с
11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА A) электрическое сопротивление спирали Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой
ХАРАКТЕР ИЗМЕНЕНИЯ 1) увеличилась 2) уменьшилась
3) не изменилась
12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ A) работа тока Б) сила тока
B) мощность тока
ФОРМУЛЫ
1) \( \frac{q}{t} \)
2) \( qU \)
3) \( \frac{RS}{L} \)
4) \( UI \)
5) \( \frac{U}{I} \)
Часть 2
13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?
Ответы
Источник: https://fizi4ka.ru/ogje-2018-po-fizike/rabota-i-moshhnost-jelektricheskogo-toka-zakon-dzhoulja-lenca.html
Работа и мощность электрического тока
Урок разработан с целью организации исследовательской деятельности учащихся, направленной на формирование понятия «работа тока», «мощность», причин от которых зависит работа тока и мощность. Ознакомление учащихся с расчетными формулами, единицами измерения.
Цель урока:
- Деятельностная: формирование способности учащихся к новому способу действия, расширение понятийной базы за счет введения нового понятия.
- Образовательная: организация исследовательской деятельности учащихся, направленной на формирование понятия «работа тока», «мощность», причин от которых зависит работа тока и мощность. Ознакомление учащихся с расчетными формулами, единицами измерения.
Планируемые результаты:
- умеет объяснять понятия «работа тока», «мощность»;
- умеет находить «работа тока», «мощность»;
- умеет объяснять проделанные эксперименты.
Оборудование:
- Приборы для определения мощности в электрической цепи и для определения параметров, от которых зависит работа тока в электрической цепи: аккумулятор, ключ, амперметр, реостат, вольтметр, соединительные провода; лампочка, калькулятор.
- Компьютер с мультимедийным проектором, экран;
- Мультимедийное приложение к уроку.
Учебник: Перышкин А.В. «Физика – 8»
1. Организационный момент
Учитель: Здравствуйте. Посмотрите друг на друга, улыбнитесь. Сегодня на уроке я предлагаю вам побывать в роли сотрудников научной лаборатории. Работать вы будете в своих лабораториях по 2 человека и группами.
Результаты вашей работы необходимо будет отмечать в индивидуальных оценочных листах, которые лежат у вас на столе (приложение 1). В конце урока мы подведем итог вашей работы по накопленным баллам.
2. Постановка цели и задач урока
Как настоящие мастера своего дела засучили рукава, хлопнули в ладоши, потерли их друг о друга.
Учитель: Что мы с вами сделали? (Совершили работу). Значит в названии темы нашего урока мы используем слово «работа».
У вас на столе лежит лампочка. Внимательно рассмотрите её.
Когда вы покупаете лампочку, то обязательно смотритеЧто?
Так как звучит тема нашего урока?
Ученик: работа тока и мощность.
Учитель: Запишите тему. Работа и мощность электрического тока. (слайд 1)
Учитель: Определите цели нашей работы, используя слова узнать ., учиться, узнать:
– как вычислить работу электрического тока и мощность тока;
учиться:
– объяснять проделанные эксперименты;
– объяснять понятия «работа тока», «мощность тока»;
Учитель: Скажите, зачем нам нужно знать о работе электрического тока, мощности? (слайд 2)(бытовая техника) (Оцените свою работу на этом этапе)
3. Актуализация знаний (слад 3)
Но прежде, чем приступить к работе, вам необходимо убедиться в том, что сотрудник лаборатории обладает достаточной базой знаний, чтобы участвовать в проведении экспериментальной и исследовательской работы.
Учащимся предлагается самостоятельная работа «Установите соответствие»
Слайд 4 Проверка
А | Б | В | Г | Д | Е | Ж | З |
4 | 7 | 1 | 3 | 2 | 8 | 5 | 6 |
Взаимопроверка в парах, выставление баллов в оценочный лист. За каждый правильный ответ 1 б.
4. Открытие нового знания
Вспомним: Как обозначается работа? (А)
Давайте подумаем: от чего же зависит работа электрического тока? (на доске написать: Работа электрического тока зависит от )
Слайд 5. Сравните два рисунка. На рисунке 2 лампа светит ярче, чем на рисунке 2.
Значит, работа тока зависит от напряжения.
Вывод: (записываем вывод на доску и в тетрадь)
Слайд 6. При увеличении силы тока лампа светит ярче.
Значит, работа тока зависит от силы тока.
Вывод:
Слайд 7. Если лампа будет работать 1 час, большую работу совершит ток? (Да)
Значит, работа тока зависит от времени работы цепи..
Вывод:
Выведем формулу для расчета работы электрического тока.
Слайд 8
Вывод: работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.
Нарисуйте «волшебный треугольник»
Проверьте, правильно ли это сделали? (1 б)
Слайд 9. Для того чтобы измерить работу тока в цепи, нужны следующие приборы:
а) Вольтметр
б) Амперметр
в) Часы (прибор для измерения времени) (в любой квартире – счётчик)
Вспомним, в чем измеряется работа? [А ] = [ Дж ] = [ А .В .c]
Какой величиной характеризуется быстрота выполнения работы?
(мощностью: N=A/t )
Слайд 10
Мощность электрического тока обозначается P.
Выведем формулу мощности электрического тока
Нарисуйте «волшебный треугольник»
1 б
Вывод: мощность электрического тока равна произведению напряжения на силу тока.
Слайд 11, 12. Для измерения мощности нужны: амперметр и вольтметр – это сочетается в ваттметре.
Работа с учебником. Таблица «Мощности различных электрических устройств, кВт». Стр.120
Рассмотрите таблицу и сравните мощности устройств, применяемых в быту, технике, на производстве.
Практически на всех электроприборах, используемых в быту и технике, в техническом паспорте указывается мощность тока, на которую они рассчитаны. Зная мощность, легко можно определить работу тока за заданный промежуток времени: Как по другому можно записать формулу работы?
A =P∙t.(1 б)
Слайд 13
Тогда
1Дж = 1Вт ∙ с.
Однако эту единицу работы неудобно использовать на практике, так как в потребителях электроэнергии ток производит работу в течение длительного времени, например в бытовых приборах – в течение нескольких часов, в электропоездах – даже в течение нескольких суток. Поэтому на практике, вычисляя работу тока, удобнее время выражать в часах, а работу не в джоулях, а в других единицах: ватт ∙ час (Вт ∙ ч) и кратных им единицах.
1 Вт · ч = 3 600Дж
1 к Вт · ч = 1 000 Вт · ч = 3 600 000 Дж
А знаете ли вы, чтозначение экономии электроэнергии велико для народного хозяйства страны? Например, 1 кВт ∙ ч энергии позволяет выплавить около 20 кг чугуна.
Оцените свою работу
5. Самостоятельная работа, закрепление материала
Необходимо восстанавливать свои силы. Давайте проведём физминутку, а поможет нам в этом ЭЛЕКТРОНИК.
Работаем в группах. Практические задания:
Слайд 14 1) Определение работы тока и мощности тока в лампе.
Слайд 15 2) Какой телевизор затратит больше электроэнергии
Решение: А=Рt
A1=24 Вт•3ч=72 Вт•ч=0,072•2.49=0,18 руб
А2=50•3=150Вт•ч=0,15•2.49=0,37руб.
На каждом из электроприборов вы можете найти информацию о потребляемой энергии и выбрать себе наиболее экономный в этом плане прибор.
Слайд 16. 3) Знакомство со счетчиком.
Вывод. Знание физических величин нужно не только на уроках физики, но и при покупке и использовании электрических приборов.
6. Итог урока
Подсчитайте количество баллов и оцените свою работу на уроке.
Если вы набрали за урок:
Более 20 баллов, вы сегодня были в роли ученика-исследователя
14-19 баллов, вы сегодня были в роли ученика-теоретика
11-13 баллов, вы сегодня были просто учеником
7. Домашнее задание
Слайд 17
§ 50,51.
Узнайте мощности имеющихся у вас в квартире электроприборов (телевизора и холодильника). Посчитайте, сколько часов они работают в течение 1 дня. Вычислите стоимость электроэнергии, израсходованной ими за это время.
8. Рефлексия
Слайд 18
Заполнить лист рефлексии.
Похлопаем в ладоши.
Источник: https://rosuchebnik.ru/material/rabota-i-moshchnost-elektricheskogo-toka-20548/
Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В
Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.
Расчет тока
Величина тока рассчитывается по мощности и необходима на этапе проектирования (планирования) жилища – квартиры, дома.
- От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.
- Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.
Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.
Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).
Однофазная сеть напряжением 220 В
Сила тока I (в амперах, А) подсчитывается по формуле:
I = P / U,
где P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт);
U – напряжение электрической сети, В (вольт).
Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).
Электроприбор | Потребляемая мощность, Вт | Сила тока, А |
Стиральная машина | 2000 – 2500 | 9,0 – 11,4 |
Джакузи | 2000 – 2500 | 9,0 – 11,4 |
Электроподогрев пола | 800 – 1400 | 3,6 – 6,4 |
Стационарная электрическая плита | 4500 – 8500 | 20,5 – 38,6 |
СВЧ печь | 900 – 1300 | 4,1 – 5,9 |
Посудомоечная машина | 2000 — 2500 | 9,0 – 11,4 |
Морозильники, холодильники | 140 — 300 | 0,6 – 1,4 |
Мясорубка с электроприводом | 1100 — 1200 | 5,0 — 5,5 |
Электрочайник | 1850 – 2000 | 8,4 – 9,0 |
Электрическая кофеварка | 6з0 — 1200 | 3,0 – 5,5 |
Соковыжималка | 240 — 360 | 1,1 – 1,6 |
Тостер | 640 — 1100 | 2,9 — 5,0 |
Миксер | 250 — 400 | 1,1 – 1,8 |
Фен | 400 — 1600 | 1,8 – 7,3 |
Утюг | 900 — 1700 | 4,1 – 7,7 |
Пылесос | 680 — 1400 | 3,1 – 6,4 |
Вентилятор | 250 — 400 | 1,0 – 1,8 |
Телевизор | 125 — 180 | 0,6 – 0,8 |
Радиоаппаратура | 70 — 100 | 0,3 – 0,5 |
Приборы освещения | 20 — 100 | 0,1 – 0,4 |
На рисунке представлена схема устройства электроснабжения квартиры при однофазном подключении к сети напряжением 220 В.
Как видно из рисунка, различные потребители электроэнергии подключены через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.
Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В
Сечение жилы провода, мм2 | Диаметр жилы проводника, мм | Медные жилы | Алюминиевые жилы | ||
Ток, А | Мощность, Вт | Ток, А | Мощность, кВт | ||
0,50 | 0,80 | 6 | 1300 | ||
0,75 | 0,98 | 10 | 2200 | ||
1,00 | 1,13 | 14 | 3100 | ||
1,50 | 1,38 | 15 | 3300 | 10 | 2200 |
2,00 | 1,60 | 19 | 4200 | 14 | 3100 |
2,50 | 1,78 | 21 | 4600 | 16 | 3500 |
4,00 | 2,26 | 27 | 5900 | 21 | 4600 |
6,00 | 2,76 | 34 | 7500 | 26 | 5700 |
10,00 | 3,57 | 50 | 11000 | 38 | 8400 |
16,00 | 4,51 | 80 | 17600 | 55 | 12100 |
25,00 | 5,64 | 100 | 22000 | 65 | 14300 |
Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.
Трёхфазная сеть напряжением 380 В
При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:
I = P /1,73 U,
где P -потребляемая мощность, Вт;
U — напряжение в сети, В,
так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:
I = P /657, 4.
В случае подведения к дому трёхфазного электроснабжения напряжением 380 В схема подключения будет выглядеть следующим образом.
Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.
Сечение жилы провода, мм2 | Диаметр жилы проводника, мм | Медные жилы | Алюминиевые жилы | ||
Ток, А | Мощность, Вт | Ток, А | Мощность, кВт | ||
0,50 | 0,80 | 6 | 2250 | ||
0,75 | 0,98 | 10 | 3800 | ||
1,00 | 1,13 | 14 | 5300 | ||
1,50 | 1,38 | 15 | 5700 | 10 | 3800 |
2,00 | 1,60 | 19 | 7200 | 14 | 5300 |
2,50 | 1,78 | 21 | 7900 | 16 | 6000 |
4,00 | 2,26 | 27 | 10000 | 21 | 7900 |
6,00 | 2,76 | 34 | 12000 | 26 | 9800 |
10,00 | 3,57 | 50 | 19000 | 38 | 14000 |
16,00 | 4,51 | 80 | 30000 | 55 | 20000 |
25,00 | 5,64 | 100 | 38000 | 65 | 24000 |
Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:
- электрические двигатели;
- дроссели приборов освещения;
- сварочные трансформаторы,;
- индукционные печи.
При расчётах необходимо учитывать это явление. В мощных приборах и оборудовании доля реактивной нагрузки выше и поэтому для таких приборов в расчетах коэффициент мощности принимают равным 0,8.
На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.
Источник: https://elektro.guru/osnovy-elektrotehniki/raschet-velichiny-toka-po-moschnosti-i-napryazheniyu.html
Мощность электрического тока. Виды и работа. Особенности
Мощность электрического тока —это количество работы, которая выполняется за определенный период. Так как работа представляет параметр изменения энергии, то мощность можно назвать характеристикой скорости передачи либо преобразования электроэнергии.
С мощностью электротока человеку приходится сталкиваться и в быту и на производстве, где применяются электрические приборы.
Каждый из них потребляет электроток, поэтому при их использовании всегда необходимо учитывать возможности этих приборов, в том числе заложенные в них технические характеристики.
Мощность электрического прибора имеет важнейшее значение, ведь данный показатель используется не только для расчета электрической проводки, автоматов и предохранителей, но и для решения других задач.
Чем мощность электрического прибора будет больше, тем за более короткое время он сможет осуществить необходимую работу. Если сравнить между собой электрическую плитку, тепловую электропушку или электрокамин, то у них у всех разные показатели мощности.
То есть они будут обогревать площадь помещения за совершенно разное время.
Мощность электрического тока также может быть вычислена по формуле:
P=A/t, которая характеризует интенсивность передачи электроэнергии, то есть работа, совершаемая током по перемещению зарядов за определенный период времени.
Здесь A – это работа, t — время, за которое работа была выполнена.
Мощность может быть двух видов: реактивной и активной
При активной мощности осуществляется преобразование мощности электротока в энергию движения, тепла, света и иные виды. Данный перевод тока в указанные виды невозможно выполнить обратно. Активная мощность измеряется в ваттах. Один ватт равняется один Вольт умноженный на один ампер. Для бытового и производственного применения задействуются показатели на порядок больших значений: это мегаватты в киловатты.
В случае переменного тока, указанный параметр характеризуется формулой:
Q=UIsinφ
Здесь синус φ выражается сдвигом фаз, который образуется между снижением напряжения и действующим электротоком. Значение угла может находиться в пределах от 0 до 90 градусов или от 0 до -90 градусов.
Параметр Q характеризует реактивную мощность, ее можно измерить в вольт-амперах. При помощи указанной формулы можно быстро определить мощность электротока.
Реактивные и активные показатели мощности можно продемонстрировать на обычном примере: Прибор может одновременно иметь нагревающие элементы: электрический двигатель и ТЭН.
На изготовление ТЭНов применяется материал, который обладает большим сопротивлением, вследствие чего при прохождении по нему тока, электроэнергия становится тепловой. В данном случае довольно-таки точно характеризуется активная мощность электротока.
Если брать за основу электродвигатель то внутри него располагается обмотка из меди, которая обладает индуктивностью, что, как правило, также вызывает эффект самоиндукции.
Эффект самоиндукции обеспечивает некоторое возвращение электроэнергии непосредственно в электросеть. Данную энергию можно охарактеризовать определенным смещением в показателях по электротоку и напряжению, что приводит к нежелательным последствиям на сеть в качестве определенных перегрузок. Подобными показателями выделяются и конденсаторы вследствие собственной емкости в момент, когда весь собранный заряд направляется обратно.
В данном случае происходит смещение тока и напряжения, но в обратном перемещении. Энергия индуктивности и емкости, которые смещаются по фазе относительно параметров электрической сети и называется реактивной электромощностью. Именно обратный эффект к сдвигу фазы позволяет осуществить компенсирование мощности реактивного параметра. В результате повышается качество и эффективность электрического снабжения.
Полная мощность электрического тока характеризуется величиной, которая соответствует произведению тока и напряжения и связана с активной и реактивной мощностью следующим уравнением:
S=˅P2+Q2
Где S – полная мощность, вычисляемая корнем из произведений квадратов активной и реактивной мощностей.
Для простоты восприятия активная мощность есть там, где присутствует активная нагрузка, к примеру, спиральные нагреватели, сопротивление проводов и тому подобное. Реактивная мощность наблюдается там, где имеется реактивная нагрузка, то есть элементы индуктивности и емкости, к примеру, конденсаторы.
Принцип действия
Когда заряд движется по проводнику, то электромагнитное поле выполняет над ним работу. Данная величина характеризуется напряжением.
Заряды направляются в сторону снижения потенциалов, однако для поддержания указанного процесса необходим некоторый источник энергии.
Напряжение по своему показателю соответствует работе поля, которое необходимо для перемещения единичного заряда Кулона на рассматриваемом участке. При перемещении заряда возникают явления, при которых электроэнергия может приходить в другие виды энергии.
Для доставки электроэнергии от электростанции до конечного потребителя необходимо выполнить определенную работу. Для создания требуемого напряжения, то есть возможности выполнения работы электротока по перемещению заряда, применяется трансформатор.
Данное устройство производит увеличение показателя напряжения. Полученный ток под высоким напряжением, иногда достигающим 10 тысяч Вольт, движется по высоковольтным проводам. При достижении места назначения, он попадает на трансформатор, который уменьшает напряжение до промышленных или бытовых показателей.
Далее ток направляется на производства, в квартиры и дома.
Одним из основных элементов электроцепи является приемник электроэнергии. Именно электрические приемники служат для преобразования электроэнергии в другие виды энергии:
Указанные преобразования возможны лишь в том случае, если ток проходит через сопротивление необходимого уровня. То есть при перемещении зарядов по проводнику наблюдается потеря энергии, что как раз и вызвано наличием сопротивления. Если рассматривать это дело на атомарном уровне, то электроны сталкиваются с ионами кристаллической решетки. Это приводит к возбуждению и тепловому движению, вследствие чего происходит потеря энергии.
Особенности
Мощность электрического токавлияет на то, как быстро прибор сможет выполнить работу, то есть за определенное время. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.
Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического токавсех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.
Поэтому так важно знать мощности электрических приборов, чтобы правильно подобрать сечение и материал проводов или не допускать одновременного включения в сеть приборов, имеющих большую мощность.
В качества примера можно привести следующие показатели:
- Сетевой роутер требует 10-20 Вт.
- Бытовой сварочный аппарат имеет мощность 1500-5500 Вт.
- Стиральная машина потребляет мощность 350-2000 Вт.
- Электрическая плитка имеет мощность 1000-2000 Вт.
- Холодильник бытовой потребляет мощность 15-700 Вт.
- Монитор жидкокристаллический имеет мощность 2-40 Вт.
- Монитор с электролучевой трубкой потребляет 15-200 Вт.
- Системный блок ПК потребляет 100-1200 Вт.
- Электрический пылесос имеет мощность 100-3000 Вт.
- Лампа накаливания бытовая – 25-200 Вт.
- Электрический утюг – 300-2000 Вт.
Интересные особенности
Мощность электрического токараньше благодаря Джеймсу Уатту измерялась в лошадиных силах. Однако в конце девятнадцатого века было решено присвоить мощности название Ватт, чтобы увековечить имя известного ученого и изобретателя. На тот период это случилось впервые, когда единице измерения присвоили имя ученого. Именно с этого времени пошла традиция присвоения имен ученых единицам измерения.
Мощность электрического тока молнии составляет порядка один ТераВатт, при этом происходит ее преобразование в световую и тепловую энергию. Температура внутри молнии при этом составляет 25 тысяч градусов. Молния способна ударять в одно и то же место. А согласно статистике молния попадает в мужчин примерно в 5 раз больше, чем в представителей женского пола.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrotehnika/moshchnost-elektricheskogo-toka/
Все формулы мощности тока – Мощность электрического тока | Формулы и расчеты онлайн
При создании новой проводки часто возникает необходимость рассчитать мощность электроприборов, находящихся в одной комнате или на одной линии. У многих людей с этим возникают проблемы. В этой статье мы разберем, какая формула мощности электрического тока используется для подсчета и как правильно ей пользоваться.
Введение
Подсчет мощности силы тока потребления необходим для того, чтобы правильно рассчитать сечение проводов, купить автоматы и защитить систему от перегрузок и возгорания. Расчет общей суммы также поможет владельцу правильно выбрать стабилизатор на вход в квартиру. Неверные расчеты могут привести к серьезным последствиям, поэтому внимательно отнеситесь к информации, описанной в нашей статье.
Основные правила и понятия
Рассчитываем силу тока
В работающей сети силу тока можно легко узнать при помощи мультиметра, переключив его в режим амперметра. Но этот вариант подходит только в том случае, если все уже работает. Мы же пытаемся сделать расчет согласно проекту, поэтому хитрость с амперметром нам не подходит.
Для чего нужно знать силу тока? Для правильного выбора сечения кабеля и автомата. Считается она по формуле I=P/(U×cosφ), где I — это сила тока, P — мощность прибора, U — напряжение в сети. Представленная выше формула справедлива для однофазной сети. Для трехфазной используется I=P/(1,73×U×cosφ). Косинус Фи в нашем случае показывает коэффициент мощности.
Пример: на одной линии висит холодильник мощностью 150 Вт, микроволновка (800 Вт), электрочайник (1300 Вт) и блендер (1500 Вт). Все это включено одновременно. Находим действующую силу тока: I=(150+800+1300+1500)/220*0.95=17.94 Ампера. Для подобной нагрузки необходим кабель на 2.5 мм2 и автомат на 25 Ампер.
Как найти мощность устройств, работающих на одной линии? Нужно сложить все паспортные данные на этих потребителей. Косинус Фи принят за 0,95, что является наиболее приближенным к реальности, хотя в некоторых случаях его принимают за 1.
Если в сеть подключаются “жирные” потребители, такие как бойлер, духовой шкаф, электрокотел или электрический твердый пол, то разумнее использовать коэффициент фи на уровне 0,8. Соответственно, для одной фазы считается напряжение на 220 вольт, для трех фаз — 380 вольт.
Немного теории
Теперь давайте рассмотрим действующую формулу электрической мощности. Прежде всего разберем, что это вообще такое. Мощностью называют скорость, с которой энергия перетекает из одного вида в другой, преобразуется или потребляется. Она измеряется в ваттах. Ток силой в один ампер обладает мощностью в один ватт при имеющейся разности потенциалов в один ватт.
Силу тока можно замерить амперметром или мультиметром
Для подсчета используется формула P = I*U. Этот показатель показывает, сколько “кушает” прибор при работе.
Внимание: существуют различные виды мощности. Их необходимо отличать, чтобы правильно собрать проводку и рассчитать нормативы для закупки кабелей и автоматов.
Виды
Существует два основных типа показателей:
- Номинальная. Та, которую устройство потребялет за единицу времени. Для холодильника это 150 ватт, для микроволновки, в зависимости от настроек — 600-800 ватт, для лампочки 65 или 99 ватт и пр.
- Стартовая. Формула расчета мощности этого типа не отличается от классической, несмотря на то, что стартовая может превышать на порядок номинальную. К примеру, тот же холодильник в момент старта потребляет до 2 кВт энергии, необходимой на запуск двигателя и всех систем.
Главное, что нужно знать о стартовой мощности — она временная и краткосрочная, но ее нужно обязательно учитывать при создании проводки. Обычно для этого делается запас. К примеру, кабель на 2,5 квадрата выдерживает до 4,5 кВт и на него ставится автомат на 25А. Поэтому, если у вас суммарный коэффициент по линии доходит до 4 или 4.3, то лучше не рисковать и поставить дополнительную линию, чем в один прекрасный момент ваша проводка просто сгорит.
Зная, чему равна мощность электрического тока для каждого устройства, находящегося на линии, выделите те, которые вполне могут работать одновременно. Почитайте о технических характеристиках своих устройств, после чего сложите мощность всех подключенных. Затем добавьте к получившемуся числу 30% на всякие тяги и помехи — вот это и станет запасом для стартовых неприятностей.
Источник: https://yato-tools.ru/raznoe/vse-formuly-moshhnosti-toka-moshhnost-elektricheskogo-toka-formuly-i-raschety-onlajn.html
2. Единицы измерения
Работа измеряется в Джоулях (Дж);
Время – в секундах (с);
Мощность (электрическая и механическая) измеряется в Ваттах (Вт).
3. Измерение мощности
Прибор для измерения мощности – ваттметр (рис. 1).
Рис. 1. Ваттметр
Работа определяется как произведение силы тока на напряжение и на время протекания тока по электрической цепи.
В формулу для вычисления работы подставим в формулу для вычисления мощности, время t сократится. Это значит, что мощность не зависит от времени протекания электрического тока в цепи, а определяется как произведение напряжения на силу тока.
Из закона Ома для участка цепи
Мощность электрического тока – это величина, которая характеризует производительность данного прибора. В быту все приборы рассчитаны на одно и то же напряжение – 220 В. Из первого уравнения следует, что если мощность возрастает, напряжение постоянно, то сила тока тоже увеличится.
К примеру, во время нагревания воды в электрочайнике нагревается провод, соединяющий чайник с электрической цепью. Это значит, что мощность чайника достаточно велика, напряжение – 220 В, и ток, который протекает в цепи включенного электрочайника, тоже достаточно велик.
4. Расчет за электроэнергию
Оплачивая электрическую энергию, мы оплачиваем работу электрического тока. Эта оплата производится по киловатт-часам.
1 кВт=1000 Вт;
1 час = 3600 с;
(работа определяется, как мощность, умноженная на время);
1 кВт∙ч =3 600 000 Дж.
Получили единицу для расчета работы электрического тока – 1 кВт/ч=3 600 000 Дж.
5. Заключение
Исходя из вышесказанного, можно сделать вывод, что нельзя в одну и ту же розетку включать сразу несколько приборов. Напряжение – величина постоянная (220 В), а сила тока в цепи меняется. Чем больше включено приборов, тем больше электрический ток в цепи.
Вопросы к конспектам
Найдите мощность тока в электрической лампе, если сила тока в ней – 0,4 А, а напряжение в цепи – 220 В.
С помощью каких приборов можно измерить мощность электрического поля?
Источник: https://100ballov.kz/mod/page/view.php?id=1136
Формула мощности тока
Электрический ток, на каком угодно участке цепи совершает некоторую работу (А). Допустим, что у нас есть произвольный участокцепи (рис.1) между концами которого имеется напряжение U.
Работа, которая выполняется при перемещении заряда равного 1 Кл между точками A и B (рис.1) будет равнаU. В том случае, если через проводник протекает ток силой I за время равное по указанному выше участку пройдет заряд (q) равный:
Следовательно, работа, которую совершает электрический ток на данном участке, равна:
Надо отметить, что выражение (2) является справедливым при I=const для любого участка цепи(в таком участке могут содержаться проводники 1–го и 2–го рода).
Определение и формула мощности тока
Определение
Мощность тока – есть работа тока в единицу времени:
Формулой для вычисления мощности можно считать выражение:
В том случае, если участок цепи содержит источник тока, то формулу мощности можно представить в виде:
где – разность потенциалов, – ЭДС источника, который включен в цепь.
Выражение (5) является интегральной записью. Это выражение можно представить в дифференциальной форме, если использовать понятиеудельной мощности ( – мощность, развиваемая током вединице объема проводника):
где j – плотность тока, – удельное сопротивление.
Единицы измерения мощности тока
Основной единицей измерения мощности тока (как и мощности вообще) в системе СИ является: [P]=Вт=Дж/с.
В СГС: [P]=эрг/с.
1 Вт=107 эрг/( с).
Выражение (4) применяют в системе СИ для того, чтобы дать определение единицы напряжения.Так, единицей напряжения (U) является вольт (В), который равен: 1 В= (1 Вт)/(1 А).
Вольтом называют электрическое напряжение, которое порождает в электроцепи постоянный ток силы 1 А при мощности 1 Вт.
Примеры решения задач
Пример
Задание. Какой должна быть сила тока, которая течет через обмотку электрического мотора для того, чтобы полезная мощность двигателя (PA) стала максимальной?Какова максимальная полезная мощность? Если двигатель постоянного тока подключен к напряжению U, сопротивление обмотки якоря – R.
Решение. Мощность, которую потребляет электроприбор, идет на нагревание (PQ) и совершение работы (PA):
Мощность, идущую на нагревание можно рассчитать как:
Потребляемую мощность найдем как:
Выразим P_A из (1.1) и используем (1.2) и (1.3):
Для нахождения экстремума функции, которая представлена в выражении (1.4) найдем производную и приравняем ее к нулю:
Найдем максимальную полезную мощность,используя выражение (1.4) и Imax:
Ответ.
Пример
Задание. Электрические лампочкис мощностями P1 и P2 номинальным напряжением U1=U2 соединяют последовательно (рис.2) и включают в сеть с постоянным напряжением U. Какова мощность, потребляемая первой лампочкой P1*).
Решение. Лампочки по условию задачи соединены последовательно, значит сила тока, текущая через лампочки одинакова, а падение напряжения на каждой из лампочек зависит от их сопротивлений. Искомую мощность можно найти как:
Сопротивления лампочек можно найти из данных в условиях номинальных мощностей:
Силу тока можно найти по закону Ома, учитывая, что лампочки соединены последовательно:
Решая уравнения (2.1) – (2.3) совместно получим:
Читать дальше: Формула напряжения электрического поля.
Вы поняли, как решать? Нет?
Источник: https://www.webmath.ru/poleznoe/formules_21_13_moshhnost_toka.php
Электрическая мощность, как рассчитать по формуле
По школьным учебникам многим знакомы задачи, где требуется найти мощность электрического тока. В них редко раскрывается практический смысл этой физической величины, хотя она критически важна как в промышленной эксплуатации электроприборов, так и в быту. Это напрямую связано с техникой безопасности. Ошибка в измерениях и неподходящее сечение кабеля способны привести к короткому замыканию. При этом проводка может загореться и стать причиной пожара.
Что такое мощность электрического тока
При описании электрической мощности в широком смысле чаще всего речь идет об энергии или силе, которой наделен некоторый объект либо действие. Например, ее можно определить для взрыва или же механизма, например двигателя. Этот параметр связан с силой и зависит от нее, потому эти явления нередко путают.
Отличие в том, что сила влияет на физические действия, то есть выполняется работа. Если она проделана за указанное время, то через эти два параметра можно вычислить значение мощности.
В случае с электричеством она бывает двух видов:
- Активная – превращается в энергию тепла, света, механических действий и т. д. Она измеряется в ваттах и вычисляется по формуле 1 Вт = 1 В х 1А. Но на практике этот показатель чаще всего выражен в киловаттах и мегаваттах.
- Реактивная – нагрузка, возникающая из-за колебаний внутри электромагнитного поля. Единица измерения – вольт-амперы (ВА), они вычисляются как Q=U x I x sin угла. Последнее означает изменение фазы между током и снижением напряжения.
На практике отличия обоих видов лучше всего рассмотреть на примере элементов для нагревания и электродвигателей. ТЭНы собраны из материала с высоким сопротивлением, поэтому всю полученную электроэнергию они превращают в тепловую. Электродвигатель же имеет детали, обладающие индуктивностью, то есть часть тока возвращается в сеть и может отрицательно влиять на нее, создавая перегрузки.
По какой формуле вычисляется мощность электрического тока
Данная величина привязана одновременно к нескольким физическим параметрам. Напряжение – это работа, необходимая для перемещения 1 кулона. Сила означает число кулонов, которые проходят за 1 секунду. Если умножить ток на напряжение, он будет равен количеству работы в секунду. Для вычисления мощности электрического тока формулу вывести нетрудно.
Она выглядит как P = A / t = I x U, обозначения следующие:
- P – мощность тока в ваттах (Вт);
- A – его работа на данном участке цепи в джоулях (Дж);
- t – время, за которое совершена работа (в секундах);
- U – напряжение электричества для участка цепи в вольтах (В);
- I – сила в амперах (А).
Указанная формула показывает, что зависимость мощности от напряжения и силы тока одинакова в этой связке. Один показатель может быть выше и тем самым скомпенсировать другой для обеспечения мощного электротока. Эта особенность обеспечивает передачу электроэнергии на дальние расстояния. Ее преобразование происходит через регулирующие трансформаторы на подстанциях.
Верное определение мощности критически важно для соблюдения правил техники безопасности при эксплуатации электросети и исключения возгораний. Это может произойти, если проводка выбрана неправильно. Для измерения необходимо использовать специальные приборы, но это возможно не всегда.
Определение мощности для переменного тока:
- с помощью амперметра;
- по формуле P= U х I с использованием значений в указанный момент времени;
- по формуле P= U х I x сos φ, если есть сдвиг фаз.
Символ φ обозначает коэффициент мощности. Когда к сети подключен только свет или приборы для нагревания, он равен 1, для более сложного и мощного оборудования промышленного типа цифра составляет 0,8. Формула для расчета мощности через сопротивление в сети постоянного тока – P = IU.
От чего зависит мощность тока
Сила электротока и напряжение – две главные составляющие, из которых складывается этот показатель. Практически это легко можно объяснить на примере маленькой лампочки, получающей ток в 1 А при напряжении 1 В. Ее мощность будет составлять 1 Вт.
Более жизненный пример – учет затраченной электроэнергии по формуле W=IUt, где t – время работы. Чем оно выше, тем больше объем электроэнергии и выше счет за ее оплату в квитанции коммунальных служб.
Источник: https://vodatyt.ru/elektrika/moschnost-toka.html
Мощность тока?. Формула мощности ? электрического тока. Как найти мощность?
Благосостояние и комфорт современного общества зависит всецело от высокотехнологичных гаджетов. Люди уже не представляют жизни без «умных» устройств. Микроэлектроника поглотила наш быт дома и на работе. Функционирует оборудование исключительно от электричества. Такие устройства обладают рядом преимуществ, как и недостатков — чувствительность к перепадам эл. напряжения.
Если в офисе компании эту проблему способен устранить штат квалифицированных сотрудников, то дома часто приходится рассчитывать исключительно на собственные силы. Покупая новое оборудование в дом, необходимо учитывать технические характеристики устройства. Производитель указывает такую информацию для покупателей на шильдике, расположенном на задней стенке гаджета.
Формула мощности представляет собой произведение силы тока на напряжение. Если знать этот параметр, то для пользователя складывается четкое представление, сколько электричество девайс будет потреблять и не вызовет ли проблем с электроснабжением.
Что такое мощность в электричестве: просто о сложном
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.
Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Мощность электрического тока
Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.
Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.
Наука подразделяет электрическую мощность на:
- активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
- реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.
Как рассчитать электрическую мощность в быту
Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.
Отсюда получим формулы для расчета мощности (P):
В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат. Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.
Как измерить электрическую мощность дома
Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрофикации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.
Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.
Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах.
Ваттметр
Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное. В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.
Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.
Формулы расчета мощности для однофазной и трехфазной схемы питания
Выше уже была представлена формула для одной фазы: P=U*I*cos(фи).
Отсюда следует, что в трехфазной сети показатель равен тройной мощности однофазной, соединенной в треугольник: P=3*U*I*cos(фи). На практике же инженеры пользуются формулой P=1,73*U*I*cos(фи).
Как работает схема трехфазного электроснабжения
Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.
Как узнать ток, зная мощность и напряжение
Для вычисления тока электросети по мощности и напряжению используют формулы:
- I=P/U – постоянный ток;
- I=P/(U*cos(фи)) — однофазная сеть;
- I=P/(1,73*U*cos(фи)) — трехфазная сеть.
Для простоты расчетов значение фи принимают равной 0,95.
Как узнать напряжение, зная силу тока
Для расчета напряжения используют формулы:
U=P/I – постоянный ток;
U=P/(I*cos(фи)) — однофазная сеть;
U=P/(1,73*I*cos(фи)) — трехфазная сеть.
Из выражения видно, что напряжение прямо пропорционально напряжению и обратно пропорционально силе тока.
Как рассчитать мощность, зная силу тока и напряжение
Силовую характеристику электроустановок рассчитывают по формуле:
P=U*I – постоянный ток;
P=U*I*cos(фи) – переменный ток однофазной сети.
P=1,73*U*I*cos(фи) — трехфазная сеть.
В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.
Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.
Интересная инфа по теме
Трехфазную схему электроснабжения используют в производстве. Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам.
Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке.
Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.
Заключение
Мощность электрического тока — один из важных параметров, который обязан знать каждый человек. Такая необходимость обусловлена безопасностью электросети (лимит на одновременное подключение нескольких приборов). Во время работы оборудования происходит нагрев не только внутренней схемы, но и проводки. Зная предельные возможности сети, всегда можно избежать неприятных ситуаций, связанных с ее перегревом и возможным коротким замыканием.
Источник: https://remont220.ru/osnovy-elektrotehniki/1090-formula-moshchnosti/
Работа и мощность тока: как мы платим за электроэнергию?
У каждого из нас дома есть счетчик, по показаниям которого мы ежемесячно платим за электричество. Мы оплачиваем какое-то количество киловатт-часов. Что же такое эти киловатт-часы? За что конкретно мы платим? Разберемся
Мы используем электричество с определенными целями. Электрический ток выполняет какую-то работу, вследствие этого и функционируют наши электроприборы. Что же такое – работа электрического тока? Известно, что работа тока по перемещению электрического заряда на некотором отрезке цепи равна численно напряжению на этом участке. Если же заряд будет отличаться, например, в большую сторону, то и работа, соответственно, будет совершена большая.
Работа тока на участке цепи: формула
Итак, мы приходим к тому, что работа тока равна произведению напряжения на участке электрической цепи на величину заряда. Заряд же, как известно, можно найти произведением силы тока на время прохождения тока. Итак, получаем формулу для определения работы тока:
A=Uq , q=It , получаем A=UIt ;
где A — работа, U- напряжение, I — сила тока, q — заряд, t — время.
Измеряется работа тока в джоулях (1 Дж). 1 Дж = 1 В * 1 А * 1 с. То есть, чтобы измерить работу, которую совершил ток, нам нужны три прибора: амперметр, вольтметр и часы.
Счетчики электроэнергии, которые стоят в квартирах, как бы сочетают в себе все эти вышеперечисленные приборы в одном. Они измеряют работу, совершенную током. Работа тока в нашей квартире – это энергия, которую он израсходовал на всех включенных в сеть квартиры приборах.
Это и есть то, за что мы платим. Однако, мы платим не за джоули, а за киловатт-часы. Откуда возникают эти единицы?
Мощность электрического тока
Чтобы разобраться с этим вопросом, надо рассмотреть еще одно понятие — мощность электрического тока. Мощность тока – это работа тока, совершенная в единицу времени. То есть, мощность можно найти, разделив работу на время. А работа, как мы уже знаем – это произведение силы тока на напряжение и на время. Таким образом, время сократится, и мы получим произведение силы тока на напряжение. Для мощности тока формула будет иметь следующий вид:
P=A/t , A=UIt , получаем P=UIt/t , то есть P=UI ;
где P — мощность тока. Мощность измеряется в ваттах (1 Вт). Применяют кратные величины – киловатты, мегаватты.
Работа и мощность электрического тока связаны теснейшим образом. Фактически, работа – это мощность тока в каждый момент времени, взятая за определенный промежуток времени. Именно поэтому счетчики в квартирах измеряют работу тока не в джоулях, а в киловатт-часах. Просто величина мощности в 1 ватт – это очень небольшая мощность, и если бы мы платили за ватты-в-секунду, мы бы оплачивали десятки и сотни тысяч таких единиц. Для упрощения расчетов и приняли единицу «киловатт-час».
Нужна помощь в учебе?
Предыдущая тема: Последовательное и параллельное соединение проводников
Следующая тема: Закон Джоуля-Ленца: работа тока равна количеству теплоты
Источник: http://www.nado5.ru/e-book/rabota-i-mozchnost-toka
Как найти мощность: формула
При создании новой проводки часто возникает необходимость рассчитать мощность электроприборов, находящихся в одной комнате или на одной линии. У многих людей с этим возникают проблемы. В этой статье мы разберем, какая формула мощности электрического тока используется для подсчета и как правильно ей пользоваться.
:
- 1 Введение
- 2 Рассчитываем силу тока
- 3 Немного теории
- 4 Виды
Мощность электрической сети
Чтобы определить сущность понятия мощности электрической сети, необходимо дать обозначения мощности электрического тока как такового.
Под мощностью электрического тока считают ту количественную меру, которой он непосредственно и характеризуется. Определить ее можно сложив основные параметры — силу тока и его напряжение. Обозначается данное выражение мощности в Ваттах и измеряется специальным прибором – Ваттметром.
Как определить мощность электрической сети
Мощность электрической сети, внешней или внутренней, определяется этими соотношениями — величиной тока и временем произведенной работы за определенную единицу времени. Работы современных энергосистем разрешают не только генерировать, но и передавать на расстояние практически любые мощности, вопрос лишь в непосредственной нуждаемости в них и в необходимых ресурсах для производства электрической энергии.
Так рядовой потребитель обычно использует мощность, которую ему передает поставщик электроэнергии, в размере от 5 до 10Кв. Как правило, данной мощности потребителю с лихвой хватает для своего жизнеобеспечения и для работы всех необходимых электроприборов бытовой техники. Понятно, что энергонасыщенному производству для эффективной работы нужны будут совсем иные значения мощностей, на сотни порядков выше.
От чего зависит мощность электрической сети?
Смена мощностей электрической сети зависит и от внешних условий их поступления, и от установки ограничительных устройств (автоматов, полуавтоматов), которые регулируют поступление емкостных мощностей к источнику потребления. Делаться это может на разных уровнях, от бытового щитка в доме до центральных устройств электрораспределения.
Мощность электрической сети можно определить специальным прибором или рассчитать посредством математических вычислений (если знать параметры силы тока и напряжения).
Для измерения мощности прибором, нужно подключить тестер к источнику тока, настроить его именно на получение нужных данных, ведь тестер работает как в режиме ваттметра, так в режиме и амперметра. Поэтому можно узнать мощность сети и иным способом. Измерив силу тока и зная рабочее напряжение сети 220В, можно умножить данные значения и получить нужную сумму в Ватах.
Пропуск определенного объема мощностей через электрическую сеть требуют применения в обустройстве электроснабжения, комплектации энергосети материалами, которые будут соответствовать требованиям необходимых номинальных значений.
Источник: https://pue8.ru/elektricheskie-seti/340-moshchnost-elektricheskoj-seti.html