Как проверить диод пробит или нет

Проверка диодов мультиметром

Как проверить диод пробит или нет

И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность (где катод, а где анод) и работоспособность диода.

Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току (питающегося от батареи), как показано на рисунке ниже.

При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке (a). При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке (b) (некоторые модели цифровых мультиметров в этом случае показывают «OL»).

Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный щуп подключен к катоду, а красный – к аноду. (b) Перемена щупов местами показывает высокое сопротивление, указывающее на обратное смещение.

Конечно, чтобы определить, какое вывод диода является катодом, а какой – анодом, вы должны точно знать, какой вывод мультиметра является положительным (+), а какой – отрицательным (-), когда на нем выбран режим «сопротивление» или «Ω».

В большинстве цифровых мультиметров, которые я видел, красный вывод используется, как положительный, а черный, как отрицательный, в соответствии с соглашением о цветовой маркировке электроники.

Одна из проблем использования омметра для проверки диода заключается в том, что мы имеем только качественное значение, а не количественное. Другими словами, омметр говорит вам, только в каком направлении диод проводит ток; полученное при измерении низкое значение сопротивления бесполезно.

Если омметр показывает значение «1,73 ома» при прямом смещении диода, то число 1,7 Ом не представляет для нас, как для техников или разработчиков схем, никакой реально полезной количественной оценки.

Оно не представляет собой ни прямое падение напряжения, ни величину сопротивления материала полупроводника самого диода; это число скорее зависит от обеих величин и будет изменяться в зависимости от конкретного омметра, используемого для измерения.

По этой причини, некоторые производители цифровых мультиметров оснащают свои измерительные приборы специальной функцией «проверка диода», которая показывает реальное прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах. Эти измерительные приборы работают, пропуская через диод небольшой ток и измеряя падение напряжения между двумя измерительными щупами (рисунок ниже).

Мультиметр с функцией «Проверка диода», вместо низкого сопротивления, показывает прямое падение напряжения 0,548 вольт.

Показание прямого напряжения, полученное таким образом с помощью мультиметра обычно меньше, чем «нормальное» падение в 0,7 вольта для кремниевых диодов и 0,3 вольта для германиевых диодов, так как ток, обеспечиваемый измерительным прибором, довольно мал.

Если у вас нет мультиметра с функцией проверки диодов, или вы хотели бы измерить прямое падение напряжения на диоде при другом токе, то можно собрать схему из батареи, резистора и вольтметра.

Измерение прямого напряжения диода с помощью мультиметра без функции «проверка диода»: (a) Принципиальная схема. (b) Схема соединений

Подключение диода в этой тестовой схеме в обратном направлении просто приведет к тому, что вольтметр покажет полное напряжение батареи.

Если эта схема была разработана для обеспечения протекания через диод тока постоянной (или почти) величины, несмотря на изменения прямого падения напряжения, то она может быть использована в качестве основы для инструмента, измеряющего температуру: измеренное на диоде напряжение будет обратно пропорционально температуре перехода диода. Конечно, ток через диод должен быть минимален, чтобы самонагревания (значительного количества рассеиваемой диодом мощности), которое могло бы помешать измерению температуры.

Помните, что некоторые цифровые мультиметры, оснащенные функцией «проверка диода», при работе в обычном режиме «сопротивление» (Ω) могут выдавать очень низкое тестовое напряжение (менее 0,3 вольт), слишком низкое для полного схлопывания (сжатия) обедненной области PN перехода.

Суть в том, что тестирования полупроводниковых приборов здесь должна использоваться функция «проверка диода», а функция «сопротивления» – для всего остального.

Использование очень низкого тестового напряжения для измерения сопротивления облегчает процесс измерения сопротивления неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, так как переходы полупроводникового компонента не будут смещены такими низкими напряжениями в прямом направлении.

Рассмотрим пример резистора и диода, соединенных параллельно и припаянных к печатной плате. Как правило, перед измерением сопротивления резистора необходимо было бы выпаять его из схемы (отсоединить резистор от остальных компонентов), в противном случае любые параллельно подключенные компоненты будут влиять на полученные показания.

При использовании мультиметра, который выдает на щупы очень низкое тестовое напряжение в режиме «сопротивление», на PN переход диода не будет подано напряжение, достаточное для того, чтобы он был смещен в прямом направлении, и, следовательно, диод будет пропускать незначительный ток.

Следовательно, измерительный прибор «видит» диод, как разрыв, и показывает сопротивление только резистора (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением (< 0,7 В), не видит диодов, что позволяет ему измерять параллельно подключенные к диоду резисторы.

Если использовать такой омметр для проверки диода, он покажет очень высокое сопротивление (много мегаом), даже если подключить диод в «правильном» (для прямого смещения) направлении (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением, слишком низким для прямого смещения диодов, не видит диодов.

Величина обратного напряжения диода измеряется не так легко, так как превышение обратного напряжения на обычном диоде приводит к его разрушению.

Хотя существуют специальные типы диодов, разработанные для «пробоя» в режиме обратного смещения без повреждения диода (так называемые стабилитроны), которые тестируются в той же схеме источник/резистор/вольтметр при условии, что источник напряжения обеспечивает величину напряжения, достаточную для перехода диода в область пробоя.

Более подробную информацию об этом читайте в одной из следующих статей этой главы.

Подведем итоги

  • Омметр может быть использован для качественной оценки работоспособности диода. При подключении диода в одном направлении должно получено низкое сопротивление, а подключении в другом направлении – очень высокое сопротивление. При использовании для этой цели омметра, убедитесь, что знаете, какой из тестовых щупов положительный, а какой отрицательный!
  • Некоторые мультиметры имеют функцию «проверка диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерительные приборы обычно показывают слегка заниженное значение прямого напряжения, по сравнению с «номинальным» значением, из-за очень маленькой величины тока, используемой для проверки.

Оригинал статьи:

Теги

ДиодМультиметрОбучениеЭлектроника

Источник: https://radioprog.ru/post/164

Как проверить диод?

Как проверить диод пробит или нет

Радиоэлектроника для начинающих

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (), а к катоду положительное (+), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе.

Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV).

Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой (+), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

  • Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.
  • Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Марка диода Измеренное пороговое напряжение, мВ (mV) Тип диода, материал полупроводника
1N5822 167 выпрямительный диод Шоттки
1N5819 200 выпрямительный диод Шоттки
RU4 419 быстрый выпрямительный диод
Д20 358 точечный германиевый диод
Д9 400 точечный германиевый диод
2Д106А 559 диффузионный кремниевый диод
Д104 717 точечный кремниевый диод

Как видим, наименьшее падение напряжения на переходе (Vf) у диодов Шоттки 1N5822 и 1N5819. Это отличительная черта всех диодов на основе перехода металл-полупроводник (барьера Шоттки).

При прямом протекании тока через их переход (барьер Шоттки), на нём падает очень малое напряжение. Сказать проще – диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста.

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

  • Диоды Шоттки имеют Vf в районе 100 – 250 mV;
  • У германиевых диодов Vf, как правило, равно 300 – 400 mV;
  • Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине Vf.

Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал здесь.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/kak-proverit-diod.html

как проверить диод. диагностика различных типов диодов

Как проверить диод пробит или нет

На сегодняшний день электроника прочно вошла в жизнь и имеется в составе любого прибора или гаджета. Но, как не прискорбно, это было и приборы, и гаджеты ломаются и приходят в негодность. Самой часто встречающейся причиной, по которой многие приборы ломаются — это поломка одного из элемента электрической сети, к примеру диод.

ЭТО ИНТЕРЕСНО:  Сколько ампер нужно для электрода 3

Выполнить проверку поломки или неисправности этого элемента возможно самостоятельно. В статье разберем подробно как проверить диод мультиметром, а также что представляет из себя этот прибор и как им пользоваться.

Диоды бывают разные

Простой диод является элементом электрической сети и несет в себе роль полупроводника, то есть р-n переход. Он устроен так, что вполне может осуществить пропуск тока по цепи, но только в одну сторону. И осуществляется это от анода к катоду. Для этого обязательно к аноду присоединяется «плюс», а к катоду — «минус».

Обязательно стоит учесть и запомнить! Двигаться в обратном направлении ток в диоде не может. Из-за такого отличительного момента изделие возможно проверить на неисправность с помощью тестера или мультметра. Рассмотрим какие же бывают диоды и чем отличаются друг от друга.

Типы диодов:

  1. Простой диод.
  2. Стабилитрон, как понятно из названия он препятствует повышению напряжения, то есть стабилизирует его.
  3. Варикап, диод обладающий емкостью, часто встречается в УКВ приемниках.
  4. Тиристор, диод с управляющим электродом, при  подачи сигнала на управляющий электрод можно управлять состоянием тиристора, то есть открывать его или закрывать.

    Такой элемент часто встречается в силовой электронике.

  5. Симистор, примерно тоже самое, что и тиристор только для переменного напряжения. Диагностика данного диода будет рассмотрена в другой статье.
  6. Светодиод, диод излучающий свет при прохождении через него тока.
  7. Диод Шотки, диод обладающий повышенным быстродействием и малым падением напряжения.

Также есть фотодиоды, инфракрасные диоды и др.

Несмотря на то, что диоды отличаются по назначению и переходу, их проверка выполняется аналогично. Принцип работы диодов аналогичен.

Что называется мультиметром?

Мультиметр — это прибор, который имеет ряд функций:

  • Измерение напряжения, тока;
  • Измерение сопротивления;
  • Прозвонка, в этом режиме мультиметр показывает напряжение падения в мВ.
  • Также могут буть функции измерения емкости, температуры, частоты и др.

Как проверить диод мультиметром?

После того как определились с типом диодов, их различиями и особенностями, а также с назначением этого прибора, можно рассмотреть порядок работы с ним. Проверка заключается в том, что проверяют пропускную способность тока через них. Если это правило соблюдается, то смело можно заявить, что элемент схемы работает исправно и не имеет недостатков.

Обычные диоды проверяются этим прибором без особых усилий. Чтобы выполнить диагностику этих элементов достаточно выполнить следующие действия:

Проверка работоспособности диода, светодиода, стабилитрона.

  • Устанавливаем прибор в режим прозвонки, если такого режима нет, то в режим измерения сопротивления 1кОм;
  • Убеждаемся, что щупы прибора подключены в нужные нам гнезда мультиметра;
  • Провод красного цвета подсоединяется к аноду, а провод черного цвета — к катоду;
  • Производим измерение. В режиме прозвонки, при подключении диода прибор показывает падение напряжения от 200 до 400 мВ для германиевых диодов, от 500 до 700 мВ для кремниевых. При измерении сопротивления прибор будет показывать сопротивление диода. К примеру, для германиевых элементов сопротивление составляет от 100 килоом до 1 магаома, для элементов выполненных из кремния этот показатель равен 1000 мегаом. Если проверяется выпрямительный полупроводник, то значение еще более высокое. Это обязательно нужно учитывать, чтобы не допустить ошибку при определении результатов;
  • Меняем местами красный и черный щуп прибора;
  • Производим измерение. Если диод подключить в обратном направлении, то прибор будет показывать единицу «1», то есть величина сопротивления или напряжения утечки бесконечно большая;
  • Нужно помнить, что может быть вовсе не поломка, а утечка. Этот вариант возможен в двух случаях, если прибор долго находился в эксплуатации или же сборка его была выполнена не качественно. Если имеется короткое замыкание или утечка, то прибор покажет низкое сопротивление. Причем при определении результата нужно учитывать вид полупроводника.
  • Делаем выводы о работоспособности элемента.

Если все показатели соблюдены, то можно смело сказать, что он работает правильно и исправен. А вот если хотя бы один параметр не верный, то это свидетельствует о том, что элемент нужно заменить.

Признаки неисправного диода

  • Если диод неисправен, то в режиме прозвонки прибор запищит, а в режиме измерения сопротивления покажет значение близкое к 0, что говорит о том что диод коротко замкнут, то есть пробит.
  • Если при обоих измерениях прибор показывает 1, тоесть бесконечно большую величину, это означает, что диод в обрывае.

Диодный мост

Бывает, что возникает необходимость в диагностике диодного моста. Он представляет собой сборку, которая состоит из 4 полупроводников. Причем они соединены так, что переменное напряжение преобразуется в постоянное. Принцип проверки практически такой же. Важной отличительной особенностью является то, что нужно определить как подключены диоды в диодном мосту и проверить каждый диод в прямом и обратном направлении.

Заключение

Провести диагностику работоспособности полупроводников в приборе самостоятельно не сложно. Важно соблюдать порядок действий с мультиметром и четко выполнять все по инструкции. Но при этом обязательно начиная проверку нужно обратить внимание на тип элемента, иметь понятие о том, какое должно быть рабочее сопротивление и напряжение у исправного диода этой разновидности и только потом проводить диагностику и делать выводы.

Используя прибор для проверки исправности диода или любых других целей нужно придерживаться техники безопасности при пользовании им. Все щупы должны быть в исправном состоянии, изоляция проводов должна быть целостной.

Если имеются какие — ни будь дефекты, то их желательно сразу устранить, чтобы не нанести себе травмы при измерении. Также важно помнить, что у каждого прибора есть своя погрешность, в дешевых моделях она очень большая. И это важно учитывать при проведении проверки.

От того насколько правильно будут выполнены все действия по диагностике, будет зависеть и результат проверки, и ее точность. Поэтому нужно уделить этому должное внимание.

Источник: https://electrongrad.ru/2018/03/26/multimetr-diod/

Как проверить диод не выпаивая из схемы. Как проверить диод и светодиод мультиметром. Как найти диодный мост на плате

Во многих устройствах, работающих от сети 220 В, установлен диодный мост. Это устройство, состоящее из четырех (для однофазной сети) или шести (для трехфазной) полупроводниковых кремниевых диодов. Оно нужно для преобразования переменного тока в постоянный.

На его вход подается переменный ток, на выходе получается пульсирующее напряжение постоянное по знаку. Данные элементы схемы часто выходят из строя, утягивая за собой предохранитель.

Давайте разберемся, как выполняется проверка диодного моста на исправность разными способами.

Что нужно знать о диодных мостах

Для начала мы рассмотрим, какими бывают и что внутри диодного моста. Встречаются данные элементы схемы в двух исполнениях:

В любом случае выпрямительный однофазный диодный мост состоит из четырех полупроводниковых диодов, соединенных между собой последовательно-параллельным образом. Переменное напряжение подается на две точки, в которых соединены анод с катодом (разноименные полюса диодов). Постоянное напряжение снимается с точек соединения одноименных полюсов: плюс с катодов, минус с анодов.

На схеме место подключения переменного напряжения обозначено символами AC или «~», а выходы с постоянным напряжением «+» и «-«. Зарисуйте себе эту схему, она нам пригодится при проверке.

Если представить реальный диодный мост и совместить его с этой схемой получится что-то вроде:

Расположение диодного моста на плате и меры предосторожности

Диодные мосты устанавливаются в блоках питания как импульсных так и трансформаторных. Стоит отметить, что в импульсных блоках, которые сейчас используются во всей бытовой технике, мост установлен на входе 220В. На его выходе напряжение достигает 310В — это амплитудное напряжение сети. В трансформаторных блоках питания устанавливаются они в цепи вторичной обмотки обычно с пониженным напряжением.

Если устройство не работает и вы обнаружили сгоревший предохранитель, не спешите включать прибор после его замены. Во-первых, при наличии проблем на плате предохранитель сгорит повторно. Такой блок питания нужно включать через лампочку.

Для этого возьмите патрон и вкрутите в него лампу накаливания на 40-100 Вт и подключите её в разрыв фазного провода для подключения к сети. Если вы собираетесь часто ремонтировать блоки питания, можно сделать удлинитель с патроном, установленным в разрыв питающего провода для подключения лампы, это поможет сохранить ваше время.

Если на плате есть — при включении в сеть через неё потечет высокий ток, перегорит предохранитель или дорожка на плате, или провод, или выбьет автомат. Но если мы вставили в разрыв лампочку, сопротивление спирали которой ограничит ток, она загорится во весь накал, сохранив целостность всего вышеперечисленного.

Если короткого замыкания нет или блок исправен допустимо либо легкое свечение лампы, либо полное его отсутствие.

Простейшая и грубая проверка

Нам понадобится индикаторная отвертка. Она стоит копейки и должна быть в наборе инструментов в каждом доме.

Нужно просто прикоснуться сначала ко входу 220В выпрямителя, если на фазном проводе загорится индикатор, значит напряжение присутствует, если нет, проблема явно не в диодном мосте и нужно проверить кабель.

При наличии напряжения на входе проверяем напряжение на плюсовом выходе выпрямителя, оно в этой точке может доходить до 310 В, индикатор вам его покажет. Если индикатор не светится — диодный мост в обрыве.

К сожалению, больше ничего мы узнать с помощью индикаторной отверткой не сможем. О том, можете узнать из нашей статьи.

Прозвонка диодного моста мультиметром

Любую деталь на плате можно выпаять для проверки или прозвонить не выпаивая. Однако точность проверки в таком случае снижается, т.к. возможно, отсутствие контакта с дорожками платы, при видимой «нормальной» пайке, влияние других элементов схемы. К диодному мосту это тоже относится, можно его не выпаивать, но лучше и удобнее для проверки его выпаять. Мост, собранный из отдельных диодов, довольно удобно проверять и на плате.

Почти в каждом современном мультиметре есть режим проверки диодов, обычно он совмещен со звуковой прозвонкой цепи.

В этом режиме выводится падение напряжение в милливольтах между щупами. Если красный щуп подсоединен к аноду диода, а черный к катоду, такое подключение называется в прямом или проводящем направлении.

В этом случае падение напряжения на PN-переходе кремниевого диода лежит в диапазоне 500-750 мВ, что вы можете наблюдать на картинке.

Кстати на ней изображена проверка в режиме измерения сопротивлений, так тоже можно, но есть и специальный режим проверки диодов, результаты будут, в принципе, аналогичны.

Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.

Важно! Диоды Шоттки имеют меньшее падение напряжения, порядка 300 мВ.

Есть еще экспресс проверка диодного моста мультиметром. Порядок действий следующий:

  1. Ставим щупы на вход диодного моста (~ или AC), если сработала прозвонка – он пробит.
  2. Ставим красный щуп на «–», а красный на «+» — на экране высветилось значение около 1000, меняем щупы местами – на экране 1 или 0L, или другое высокое значение — диодный мост исправен. Логика такой проверки в том, что диоды соединены последовательно в две ветви, обратите внимание на схему, и они проводят ток. Если плюс питания подан на – (точка соединения анодов), а минус питания на «+» (точка соединения катодов), это и происходит при прозвонке. Если один из диодов в обрыве, ток может потечь по другой ветке и вы можете сделать ошибочные измерения. А вот если один из диодов пробит – на экране высветится падение напряжения на одном диоде.

Источник: https://montazhtv.ru/kak-proverit-diod-ne-vypaivaya-iz-shemy-kak-proverit-diod-i-svetodiod/

Как проверить диод мультиметром: полная инструкция

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

https://www.youtube.com/watch?v=EGhdDoYi39Q

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Классификация

Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Анод отмечен «+», катод – «-» (приведено для наглядности, в схемах для определения полярности достаточно графического обозначения).

Принятые обозначения

Типы диодов, указанные на рисунке:

  • А – выпрямительный;
  • B – стабилитрон;
  • С – варикап;
  • D – СВЧ-диод (высоковольтный);
  • E – обращенный диод;
  • F – туннельный;
  • G – светодиод;
  • H – фотодиод.

Теперь рассмотрим способы проверки для каждого из перечисленных видов.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии.

Режим мультиметра, при котором тестируются полупроводниковые выпрямительные диоды

Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене.

Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля.

Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему.

Тестирование с использованием регулируемого источника питания

Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;

Выбор необходимого режима для тестирования

  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Тестирование варикапов

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция.

Демонстрация проверки варикапа

Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов.

Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно. Поэтому, если возникла проблема с идентификацией по внешнему виду, потребуется собрать простую приставку для мультиметра (повторюсь для критиков, именно  цифрового мульти метра с функцией измерения емкости верки конденсаторов, например UT151B).

Приставка к мультиметру для измерения емкости варикапа

Обозначения:

  • Резисторы: R1, R2 -120 кОм (да, два резистора, да последовательно, нет одним заменить нельзя, паразитную емкость, далее без комментариев); R3 – 47 кОм; R4 – 100 Ом.
  • Конденсаторы: С1 – 0,15 мкФ; С2 – 75 пФ; С3 – 630 пФ; С4 – 47 мкФ га 50 вольт.

Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору (мультиметр с функцией измерения емкости). Питание должно подаваться со стабилизированного источника питания (важно) с напряжением 9 вольт (например, батарея Крона). Меняя емкость подстрочного конденсатора (С2) добиваемся показания на индикаторе 100 пФ. Это значение мы будем вычитать от показания прибора.

Данный вариант неидеален, необходимость его практического применения вызывает сомнения, но схема наглядно  демонстрирует зависимости емкости варикапа  от номинального напряжения .

Проверка супрессора (TVS-диода)

Защитный диод, он же  ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:

Увеличение  входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя.  Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.

Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера).

  Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя.

Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.

Тестирование высоковольтных диодов

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.

Схема для проверки используемого в микроволновке диода

Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования — как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

Тестирование диодов туннельного типа

Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре ,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

Пример проверки диода мультиметром

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до Imax диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до Imin, после чего снова начнет расти.

Тестирование светодиодов

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике.

К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

Измерение номинального тока на светодиоде

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.

Проверяем фотодиод

При простой проверке измеряется обратное и прямое сопротивление помещенного под источник света радиоэлемента, после чего его затемняют и повторяют процедуру. Для более точного тестирования потребуется снять вольтамперную характеристику, сделать это можно при помощи несложной схемы.

Пример схемы для снятия вольтамперных характеристик

Для засветки фотодиода в процессе тестирования можно использовать в качестве источника освещения лампу накаливания мощностью от 60Вт или поднести радиодеталь к люстре.

https://www.youtube.com/watch?v=UYoyI1CkaKU

У фотодиодов иногда встречается характерный дефект, который проявляется в виде хаотического изменения тока. Для обнаружения такой неисправности необходимо подключить тестируемый элемент так, как это показано на рисунке, и измерять величину обратного тока  в течение пары минут.

Проверка на «ползучесть»

Если в процессе тестирования уровень тока будет оставаться неизменным, значит, фотодиод можно считать рабочим.

Тестирование без выпайки.

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять.

Источник: https://www.asutpp.ru/kak-proverit-diod.html

Как проверить диод мультиметром не выпаивая

Обычно выходят из строя силовые, выпрямительные диоды, т. к. через них проходит значительный прямой ток. Причиной неисправностей диодов может быть их перегрев, нарушение теплового контакта с радиатором или увеличение температуры окружающей среды, выход из строя других элементов схемы которые вызвали увеличение допустимого напряжение на диоде, низкое качество их исполнения.

Неисправность выпрямительных диодов может быть причиной повышения напряжения питания на компонентах схемы и возникновения дополнительных неисправностей. Отказ диода может выражаться в коротком замыкании между разными полупроводниками p-n слоя, отсутствию контакта между ними (обрыв) и появлению тока утечки.

Диод является полупроводником, работа которого основана на свойствах p-n перехода. Работа элемента заключается в том, что при прямом направлении анод (+) — катод (-) ток проходит через полупроводниковый переход, так как его сопротивление составляет всего несколько десятков Ом, а в противоположном направлении катод — анод (перевернутый диод) ток отсутствует, т. к. сопротивление перехода достаточно велико.

Используя это свойство p-n полупроводников не трудно проверить работоспособность диода мультиметром. На некоторых мультиметрах есть режим проверки диодов, отмечается он символом диода. При касании красным щупом прибора анода полупроводника, а отрицательного катода другим щупом, то на экране измерительного прибора, при исправном элементе, отобразится напряжение на переходе, в случае германиевых диодов от 0,3 до 0,7 В, и от 0,7 до 1 В для кремниевых полупроводников.

Режим проверки диодов на мультиметре

Различие величины прямого падения напряжения этих полупроводников зависят от различных сопротивлений переходов. Если перевернуть щупы, к положительному аноду прикоснуться чёрным щупом, а к отрицательному катоду красным, то дисплей отобразит падение напряжения близкое к нулю, (в случае рабочего элемента). Если у мультиметра отсутствует такой режим проверки, тогда работоспособность элемента проверяется в режиме сопротивления.

Ставят переключатель мультиметра в положении измерения сопротивлений 1 Ком, и далее красный щуп прикладывают к аноду элемента, а чёрный к катоду. Экран прибора должен отобразить значение сопротивления прямого перехода для исправного диода от десятков до сотен Ом, что зависит от типа полупроводника. Если материал полупроводника германий, то сопротивление прямого перехода меньше, чем у кремниевых элементов.

Если щупы перевернуть, то сопротивление p-n перехода будет велико (при исправном полупроводнике) от нескольких сотен Ком до Мом. Когда сопротивление обратного перехода заметно ниже, тогда можно говорить о недопустимом токе утечки и неисправном элементе.

Как проверить светодиод, стабилитрон, диод  Шоттки мультиметром

Светодиоды проверяются таким же образом, как и силовые диоды — на сопротивление. При прямом подключении щупов прибора к светодиоду дисплей покажет небольшое сопротивление. При этом светодиод может иметь тусклое свечение. Если поменять щупы, то сопротивление перехода будет велико.

Диод Шоттки проверяется способом проверки обычного диода. Стабилитрон тоже проверяется в разных положениях электродов. Но этого для проверки стабилитронов недостаточно. Мультиметр может показать допустимые значения сопротивлений в обоих направлениях перехода, а напряжение стабилизации будет отличаться от необходимого значения.

Простая схема проверки стабилитрона

Для проверки напряжения стабилизации нужно собрать простейшую схему с токогасящим сопротивлением. Напряжение источника питания обычно берется на 2 — 3 В выше напряжения стабилизации стабилитрона. В качестве примера возьмем стабилитрон Д814Б с напряжением стабилизации 9 В и током стабилизации 5 ма. Ограничительный резистор можно приблизительно рассчитать по формуле:

R = U1-U2/I = 12 -9/0,005 = 600 Ом.

Где,

U1 – напряжение источника питания,

U2 – напряжение стабилизации стабилитрона,

I – номинальный ток стабилитрона.

Поставив такое сопротивление в схему проверки стабилитрона, меряют напряжение стабилизации на стабилитроне, оно должно быть 9 В с учетом отклонения + 0,5 — 1 В, то есть напряжение стабилизации должно иметь значение 8 — 9,5 Вольт.

Как проверить диодный мост мультиметром

Простой диодный мост состоит из четырех диодов, собранных по мостовой схеме и предназначен для первичного выпрямления переменного напряжения. В случае грубой проверке диодного моста можно измерить сопротивление переходов отдельных диодов как обычно. Но тогда ток утечки нельзя будет проверить.

Для проверки этого важного параметра нужно отсоединить любой электрод полупроводника от электрической схемы. Проверить наличие тока утечки отдельных силовых диодов, не отключая их от схемы, возможно по разнице температуры корпусов полупроводников. У неисправного полупроводника температура корпуса будет выше, чем у исправных элементов.

Для такого метода проверки диодов на ток утечки важно чтобы они были отдельно стоящими и без радиаторов. Руками (при выключенном источнике питания) проверить разницу температуры не всегда получается. Поэтому температуру лучше измерять датчиком мультиметра, который имеет такой режим. Грубо проверить диод мультиметром, не выпаивая из платы можно обычным способом, и в большинстве случаев этого вполне достаточно.

Источник: https://electricavdome.ru/kak-proverit-diod-multimetrom-ne-vypaivaya.html

Как проверить светодиод мультиметром — все возможные способы

В современной осветительной технике достаточно часто применяются светодиоды (led). Как известно, они гораздо надежнее обычных лампочек, но все же иногда могут выходить из строя. Для того, чтобы проверить светодиод на работоспособность применяется несколько методов. Рассмотрим подробнее каждый из них.

Способы проверки

Светодиод, имеет свои электрические параметры, это максимальный рабочий ток, а так же  прямое падение напряжения. Значение первого параметра производители указывают для каждого изделия индивидуально, а второго составляет 1.8 – 2.2 вольта для оранжевых, желтых и красных диодов. Для белых, зеленых и синих 3 – 3.6 вольта.  Проверить эти значения параметров при наличии мультиметра, не составит труда.

Еще один способ проверить led диод на работоспособность, это подать на него питание от нескольких параллельно подключенных пальчиковых батареек или одной батарейки крона. На основе этого способа можно самостоятельно изготовить универсальный тестер для светодиодов, при помощи подручных элементов. Подробный процесс определения работоспособности показан в видео.

Определить неисправный светодиод, можно используя в качестве источника тока для проверки, старые зарядные устройства от мобильных телефонов. Для этого необходимо отрезать штекер подключения к телефону, и зачистить провода. Красный провод, это плюс, его нужно прижать к аноду, черный — минус, его подключают на катод. Если напряжения источника питания достаточно, то он должен загореться.

Для проверки некоторых диодов, напряжения от зарядки телефона может быть недостаточно, тогда можно попробовать проверить с помощью более мощного устройства, например зарядки от фонарика. Таким способом вполне можно проверить на работоспособность диоды в led лампе. Как это сделать, смотрите видео.

Проверка мультиметром

Мультиметр — это универсальный измерительный прибор. С его помощью можно измерить основные параметры практически любого электронного изделия и не только. Для проверки светодиода, потребуется мультиметр в котором есть режим «прозвонки», или его еще называют режимом проверки диодов. Обозначение режима проверки диодов на мультиметре показано на изображении ниже.

Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера.

В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному. В случаях, когда нет информации какой электрод анод, а какой катод, можно перепутать полярность – это ничего страшного, со светодиодом ничего не произойдет. При неправильном подключении, мультиметр не изменит своих изначальных показаний. При правильном подключении, светодиод должен загореться.

Есть один нюанс, ток «прозвонки» достаточно низкий для нормальной работы светодиода, и стоит приглушить освещение, для того чтобы увидеть как он светится. Если нет возможности этого сделать, можно ориентироваться на показания измерительного прибора. Как правило, если светодиод рабочий, то мультиметр покажет значение отличное от единицы.

Второй вариант — проверить светодиод тестером, это воспользоваться блоком PNP. Данный разъем предназначенный для проверки диодов, позволяет включить светодиод на мощность, достаточную для визуального определения его работоспособности. Анод подключается в разъем, обозначенный буквой Е (эмиттер), а катод диода в разъем колодки, обозначенный буквой С (коллектор).

Светодиод должен гореть при включении мультиметра в не зависимости от режима выбранного регулятором.

Данный способ позволяет проверить даже достаточно мощные светодиоды. Его неудобство в том, что, диоды обязательно нужно выпаивать. Для проверки мультиметром не выпаивая, необходимо изготовить переходники для щупов.

Существует вариант проверки светодиода методом измерения сопротивления, но для этого необходимо знать его характеристики, что достаточно не практично.

Как проверить не выпаивая

Для того чтобы подключить щупы мультиметра к разъемам в колодке PNP, нужно припаять на них небольшие фрагменты, обычной канцелярской скрепки. Между проводами, на которые припаяны скрепки, для изоляции можно установить небольшую текстолитовую прокладку и замотать изолентой. Таким образом, получим простой по конструкции и надежный переходник, для подключения щупов.

Далее необходимо подключить щупы к ножкам светодиода, не выпаивая его из схемы изделия. Вместо тестера, для проверки led диода можно использовать одну батарейку крона, или несколько пальчиковых батареек. Подключение проводится аналогично, просто вместо переходника, для подключения к выходам батарейки щупов, можно использовать небольшие зажимы «крокодильчики».

Рассмотрим на конкретном примере, как проверить led, не выпаивая из схемы.

Как проверить светодиоды в фонарике

Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.

Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.

Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.

Источник: http://ledno.ru/svetodiody/proverka-svetodioda.html

Инструкция — как проверить диод мультиметром (прозвонить тестером)

Как и большинство измерительных приборов, мультиметры (тестеры) делятся на аналоговые и цифровые. Основное их отличие состоит в том, что информация о результатах измерений первой разновидности передаются с помощью определенной шкалы и стрелок на ней, во втором же случае эти данные отображаются в цифровом виде, на жидкокристаллическом экране.

Аналоговые устройства появились ранее, их главным достоинством является невысокая цена, а недостатком — неточности измерений. Следовательно, если отметка должна быть максимально верна, рекомендуется приобрести цифровой мультиметр.

Все варианты тестеров обладают как минимум двумя выводами — красным и черным.

  1. Первый используется непосредственно для измерений, также иногда называется потенциальным,
  2. Второй является общим. В современных моделях обычно также есть переключатель, благодаря которому возможно установить максимальные предельные значения.

Как проверять диод мультиметром?

Диод является элементом, проводящим электричество в одном направлении. Если же развернуть это направление, диод будет закрыт. Только в случае выполнения этого условия элемент считается работоспособным. В большинстве моделей тестеров уже есть такая функция, как проверить диод тестером.

Перед началом проверки рекомендуется соединить между собой два щупа мультиметра, чтобы убедиться в его работоспособности, а затем выбрать “режим проверки диодов”. Если тестер аналоговый, данная операция производится с помощью режима омметра.

Проверка диодов мультиметром не требует дополнительных навыков. Чтобы убедиться в функционировании элемента, необходимо произвести прямое включение, следовательно, подключить анод к плюсовому значению (красный щуп), а катод — к минусовому (черный).

На экране или шкале прибора должно появиться значение пробивного напряжения диода, эта цифра в среднем составляет от 100 до 800 мВ. Если же произвести обратное включение (поменять местами электроды), значение будет не больше единицы. Из этого можно сделать вывод, что сопротивление прибора огромно и электричество он не проводит.

Если все происходит именно так, как описано выше, электронный элемент исправен и дееспособен.

Бывают ситуации, когда при подключении щупов диод пропускает ток в обоих направлениях, либо же не пропускает вообще (значения при прямом и обратном включениях равны единице). В первом случае это означает, что диод пробит, а во втором — он перегорел либо же находится в обрыве. Такие электронные элементы являются неисправными и это легко проверить тестером.

Как проверять светодиод?

Если речь идет о светодиоде, алгоритм проверок аналогичен, но дополнительно облегчит задачу тот факт, что при прямом включении этотвид диода будет светиться. Разумеется, это позволит окончательно убедиться в том, что он в порядке.

Но случается такое, что необходима проверка стабилитронов. Стабилитрон является одной из разновидностей диодов, его главное предназначение — сохранение стабильного выходного напряжения вне зависимости от изменений уровня тока.

К сожалению, выделенной функции для проверки данного вида электронных элементов пока не внедрили в мультиметры. Тем не менее часто прозвонить их можно с помощью такого же принципа, как с диодами.

Но многие опытные радиолюбители заявляют, что произвести проверку стабилитрона с помощью цифрового тестера весьма проблематично. Причиной этого является тот факт, что напряжение стабилитрона должно быть ниже, чем напряжение на выходах мультиметра.

Это связано с тем, что из-за низкого напряжения возможно посчитать рабочей неисправную модель, точность показаний падает.

Если при проверке диода необходимо обратить внимание на значение пробивного напряжения, в случае со стабилитронами показательным станет сопротивление. Эта цифра должна составлять от 300 до 500 Ом. И аналогично алгоритму действий с диодами:

  • Если ток пропускается в обе стороны это называется пробивом,
  • Если сопротивление слишком велико это обрыв.

Также немаловажно помнить, что цифровое значение при прозвоне стабилитрона будет выше значения обычных диодов. Если нужно отличить один элемент от другого, такая проверка окажет помощь.

Как проверить стабилитрон

Стабилитроны, проверка которых не принесла желаемых результатов, изобретатели часто тестируют с помощью дополнительных приборов, иногда конструируя их самостоятельно. Одним из наиболее простых способов является использование для проверки блока питания с возможностью переключения напряжения.

Необходимо сначала подсоединить к аноду резистор, имеющий значение сопротивления, оптимальное для стабилитрона, а затем подключить блок питания. Затем замеряется напряжение на диоде, параллельно поднимается на блоке. По достижении уровня напряжения стабилизации, эта цифра должна перестать расти.

В этом случае стабилитрон в норме, при любых отличиях от вышеприведенной схемы он неисправен.

Источник: https://elektro.guru/osveschenie/instrukciya-kak-proverit-diod-multimetrom-tester.html

Жив или мёртв? Проверяем радиодетали

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт.

Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В.

По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление.

Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным.

В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Диоды

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитроны

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Шлейф/разъём

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

Источник: https://cxem.net/beginner/beginner91.php

Как проверить диод и светодиод мультиметром

Как проверить диод и светодиод мультиметром? Оказывается, все очень просто. Как раз об этом мы и поговорим в нашей статье.

Как проверить светодиод мультиметром

А как же проверить светодиод? Да точно также, как и диод! Вся соль в том, что если мы встанем красным щупом на анод, а черным на катод светодиода, то он будет светиться!

Смотрите, он чуть-чуть светится! Значит, вывод светодиода, на котором красный щуп – это анод, а вывод на котором черный щуп – это катод. Мультиметр показал падение напряжения 1130 милливольт. Для светодиодов это считается нормально. Оно также может изменяться, в зависимости от “модели” светодиода.

Меняем щупы местами. Светодиод не загорелся.

Выносим вердикт – вполне работоспособный светодиод!

А как же проверить диодные сборки и диодные мосты? Диодные сборки и диодные мосты  – это соединение нескольких диодов, в основном 4 или 6. Находим схему диодной сборки или моста и проверяем каждый диод по отдельности. Как проверить стабилитрон, читайте в этой статье.

Источник: https://www.ruselectronic.com/kak-provjerit-diod-multimjetrom/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как узнать направление тока

Закрыть