Как проверить термодатчик стиральной машины
Термодатчик – внутренний элемент стиральной машины, отвечающий за нагрев воды до определенной температуры и отключение при этом нагревательного элемента. И если в один прекрасный момент, машина нагревает воду слишком сильно или вообще этого не делает, то причина поломки может быть именно в термодатчике. О том, как проверить его на работоспособность и при необходимости заменить, пойдет речь дальше.
Разновидности датчиков
В стиральной автоматической машине может быть установлен один из трех типов датчиков:
- газонаполненный;
- биметаллический или
- термистор.
Каждый из них отличается устройством, принципом работы, а значит, имеет свои особенности при замене и проверке.
Газонаполненный термостат состоит из двух частей, первая представляет собой металлическую таблетку, диаметр которой составляет от 20 до 30 мм, а высота до 30 мм. Эта металлическая таблетка располагается внутри бака машины, так что она соприкасается с водой для измерения ее температуры.
Вторая часть датчика имеет форму трубки, изготовленной из меди, она соединена с внешним регулятором температуры, расположенным на панели управления машинки. Внутрь этих деталей датчика закачан газ – фреон.
Под действием температуры воды фреон расширяется или сжимается, что приводит к замыканию и размыканию контактов, идущих на нагревательный элемент.
Биметаллический терморегулятор также имеет форму таблетки диаметром от 20 до 30 мм и высотой до 10 мм. Внутри таблетки располагается небольшая биметаллическая пластинка. При нагревании воды до выбранной температуры пластинка выгибается, что приводит к замыканию контактов, нагрев воды прекращается.
В последних моделях стиральных машинок в качестве термодатчика устанавливается термистор. Он представляет собой металлический цилиндр, диаметр которого около 10 мм и длина 30 мм. Закрепляется такой термодатчик на самом нагревательном элементе. Принцип его работы основан не на механической работе элементов, а на изменении сопротивления при нагревании воды до нужной температуры.
Проверка работоспособности датчика и его замена
Для того чтобы проверить работает ли терморегулятор стиральной машины, нужно до него добраться. А для чего первым делом отключаем машинку от электрической сети. Теперь необходимо разобрать саму машину. Проще всего «изъять» из машины термистор, ведь он находится внутри Тэна. В большинстве моделей машин нагревательный элемент расположен в нижней части стиральной машинки.
Чтобы снять термистор, необходимо:
- Открыть заднюю крышку стиральной машины.
- Отсоединить провода от датчика, идущие на внешний регулятор температуры.
- Ослабить винт, удерживающий Тэн.
- Достать термистор из Тэна.
Теперь когда, датчик извлечен, нужно взять мультиметр и измерить сопротивление. Выполняем следующие действия:
- настраиваем мультиметр на измерение сопротивления;
- подцепляем щупы мультиметра к контактам датчика. При температуре 200С сопротивление датчика равно около 6000 Ом.
- опускаем датчик в горячую воду и смотрим изменение показаний на мультиметре, при изменении температуры датчика. Если датчик исправен, то сопротивление будет падать, и при температуре около 500С оно будет равно 1350 Ом.
Если терморегулятор не исправен, то его необходимо заменить на новый. Ремонту он не подлежит. Машинку собираем в обратном порядке.
Чтобы добраться до газонаполненного датчика, помимо вскрытия задней стенки стиральной машины, придется снять еще и переднюю панель управления. Это необходимо для того, чтобы отсоединить внешнюю часть датчика, как показано на фото.
Вернувшись к задней части автоматической машины, находим на корпусе бака вывод с проводами. Осторожно чтобы не повредить медную трубку датчика стягиваем резиновую изоляцию. При помощи тонкого шила аккуратно подковыриваем уплотнительную резинку вокруг медной трубки и стягиваем ее. Слегка надавливаем на основании датчика вовнутрь, так чтобы он выскочил из паза. После этого вытаскиваем термодатчик через отверстие в баке. Отцепляем провод от датчика и проверяем его на работоспособность.
Основная неисправность в таких датчиках это поломка медной трубки, из которой выходит фреон. В результате работоспособность датчика нарушается. Чтобы его заменить, покупаем термодатчик в комплекте с переключателем и устанавливаем на место, совершая все действия по сбору в обратном порядке.
Что касается биметаллического датчика, то чтобы его достать из стиральной машины, как и в предыдущем случае нужно добраться до бака. А затем отсоединить термостат от проводов. Теперь контакты датчика подсоединяем к щупам мультиметра и смотрим показания сопротивления. Далее нагреваем датчик в горячей воде до определенной температуры и смотрим, как изменилось сопротивление, если оно значительно упало, значит, датчик исправен, в противном случае — нет.
Основная причина поломки биметаллического датчика это износ пластины. Замена датчика осуществляется достаточно легко, покупается новый аналогичный термостат и устанавливается на место прежнего.
Признаки поломки датчика: основные неисправности
От исправности термодатчика зависит нормальная работа стиральной машины. Внешними признаками поломки данной детали машинки можно назвать следующие:
- при любом режиме стирке и любой выбранной температуре машинка нагревает воду до кипячения;
- во время стирки корпус стиральной машины сильно нагревается, а из дверцы барабана выходит горячий пар.
Подобная поломка требует незамедлительного устранения, иначе это может привести к тому, что сгорит нагревательный элемент. А замена Тэна обойдется гораздо дороже замены термодатчика.
Заменить термостат своими руками вполне возможно. Самое главное извлечь старый термодатчик и купить точно такой же в магазине. Удачного ремонта!
Источник: https://mashmaster.ru/datchik-temperatury-stiralnoj-mashiny/
Как проверить датчик температуры охлаждающей жидкости и обнаружить неисправность
Датчик температуры охлаждающей жидкости (ДТОЖ) является важнейшим элементом машины, от которого зависит своевременное уведомление водителя о перегреве мотора.
Как можно догадаться из его названия, его предназначением является измерение температуры охлаждающей жидкости.
Он является частью системы управления двигателем, и от его показаний регулируются различные параметры работы мотора: угол опережения зажигания, процентное соотношение топлива в рабочей смеси, частота вращения коленчатого вала и многие другие.
Устройство датчика температуры охлаждающей жидкости довольно банальное. Он представляет собой термистор, размещенный в корпусе. Термистор является резистором, с отличительной особенностью в том, что его сопротивление понижается с повышением температуры.
Выход из строя датчика температуры охлаждающей жидкости может привести к перегреву двигателя и другим проблемам. Важно следить за его состоянием, а в случае возникновения симптомов неисправности проверить датчик температуры охлаждающей жидкости и при необходимости его заменить на новый.
Что указывает на неисправность датчика температуры охлаждающей жидкости
Проще всего диагностировать наличие проблемы с датчиком температуры охлаждающей жидкости по его внешнему виду. В большинстве случаев он выходит из строя по причине повреждения, которое может быть механическим или коррозионным. Если у датчика треснул корпус, о его стабильной работе можно забыть. При этом выйти из строя может и сам термистор, размещенный в корпусе, и на неисправность датчика температуры охлаждающей жидкости в данном случае будет указывать:
- Контрольная лампа, сигнализирующая водителю о перегреве двигателя;
- Заметное повышение расхода бензина;
- Проблемы с мотором: сложности с пуском, самопроизвольная остановка, нестабильность холостых оборотов и другие неисправности;
- Ошибки на приборной панели, определенные электронным блоком управления (их номера варьируются, в зависимости от модели и производителя машины).
Если имеются симптомы, указывающие на неисправность датчика температуры охлаждающей жидкости, можно сразу произвести его замену. Цена подобного устройства невелика, особенно для распространенных моделей автомобилей. При желании, можно провести его диагностику, чтобы удостовериться в том, что именно датчик является источник возникающих проблем.
Где находится датчик температуры охлаждающей жидкости
Собой ДТОЖ представляет небольшое пластиковое устройство с металлической резьбой. С ее помощью он крепится к выпускному патрубку головки цилиндра, вкручиваясь в него. Датчик должен быть расположен так, чтобы иметь прямой контакт с охлаждающей жидкостью, исходя из чего, можно сделать вывод о его неточных показаниях при ее низком уровне.
Важно: На некоторых моделях автомобилей может быть установлено два датчика температуры охлаждающей жидкости. В таком случае один из них фиксирует температуру на выходе из двигателя, а второй на выходе из радиатора.
Как проверить датчик температуры охлаждающей жидкости
Перед тем как приступить к проверке непосредственно датчика, требуется убедиться, что нет неисправности в проводке автомобиля. Для корректной работы ДТОЖ, на него постоянно должно подаваться напряжение в 5 Вольт.
Проверить это довольно просто, необходимо отсоединить от датчика температуры охлаждающей жидкости провода, и проверить с заведенным двигателем выводимое с них напряжение при помощи вольтметра (мультиметра).
Если проблемы не обнаружены, и на датчик подается 5 Вольт, можно приступать к диагностике самого термистора.
Чтобы проверить датчик температуры охлаждающей жидкости на правильность определения сопротивления, потребуется: мультиметр, термометр, электрический чайник (или другое устройство, способное постоянно подогревать воду), ключ для демонтажа датчика.
Когда инструменты будут подготовлены, необходимо первым делом снять датчик с автомобиля. Далее можно действовать двумя способами.
Способ 1: Проверка ДТОЖ в электрочайнике
Первый способ диагностики датчика – это проверка его с использованием электрочайника. Для этого необходимо:
- Поместить термометр (желательно электронный, поскольку потребуется замерять высокие температуры) в чайник с прохладной водой;
- Далее подсоединить к датчику мультиметр (в положении для измерения сопротивления);
- Поместить датчик в чайник;
- Замерить показание датчика и записать его;
- Включить чайник и записывать показания сопротивления датчика по достижению ключевых точек нагрева — +10, +15, +20 градусов по Цельсию и так далее;
- Сравнить полученные результаты с таблицей, приведенной ниже.
Если полученные значения сильно отличаются от идеальных, значит, датчик температуры охлаждающей жидкости неисправен, и потребуется его заменить.
Способ 2: Проверка ДТОЖ без термометра
Менее точный, но более простой способ проверки датчика, – это без использования термометра. Суть его заключается в том, что вода при нагревании достигает 100 градусов по Цельсию, и выше ее температура подниматься не может. Соответственно, данную точку можно взять за контрольное значение, и замерить сопротивление датчика при данной температуре.
Поместите датчик температуры охлаждающей жидкости в кипящую воду и замерьте его сопротивление при помощи мультиметра. При температуре в 100 градусов датчик должен показывать значение около 177 Ом. Учитывая погрешность на снижение температуры в процессе кипения (примерно до 95-97 градусов по Цельсию), в момент измерения сопротивление датчика должно находиться на уровне около 210-190 Ом.
(456 голос., 4,48 из 5)
Источник: https://okeydrive.ru/datchik-temperatury-oxlazhdayushhej-zhidkosti-neispravnosti-proverka/
Как проверить сопротивление мультиметром: измерить номинал резистора, протестировать изоляцию, прозвонить цепь — Станок
Резистор — это один из наиболее часто используемых элементов в современной электронике. Его название происходит от английского «resist», что означает сопротивление.
С помощью резистора можно ограничить действие электрического тока и измерять его, разделять напряжение, задавать обратную связь в электрической цепи. Смело можно сказать, что без этого элемента не обходится ни одна электросхема, ни один прибор.
Именно поэтому часто появляется необходимость в измерении сопротивления резистора мультиметром и проверке его работоспособности. В этом материале будет рассказано, как проверить плату на работоспособность мультиметром.
Что такое резистор
В русской научной литературе электрорезиторы часто называют просто «сопротивление». Из этого наименования сразу же становится понятно его предназначение — сопротивляться действию электрического тока. Резистор является пассивным электроэлементом, так как под его действием ток только уменьшается, в отличие от активных элементов, которые повышают его действие.
Обозначение элемента на электросхеме
Из закона Ома и второго закона Кирхгофа следует, что если ток протекает через резистор, то его напряжение падает. Величина его равна силе протекающего тока, умноженной на сопротивление резистора.
Важно! Условное обозначение резистора на схемах — это прямоугольник, так что это легко запомнить. В зависимости от вида резистора он изображается как прямоугольник с обозначением внутри.
Выводной электрорезистор
Резисторы подразделяют по методу монтажа. Они бывают:
- Выводными, то есть монтируются сквозь микросхему с радиальными или аксиальными выводами-ножками. Этот вид использовался повсеместно несколько десятков лет назад и сейчас используется для простых устройств;
- SMD, то есть электрорезисторы без выводов. Они имеют лишь незначительно выступающие ножки, поэтому они монтируются в саму плату. В современных приборах чаще всего используют именно их, так как при автоматической сборке платы конвейером это выгодно и быстро.
Микро SMD-резистор
Что такое мультиметр
Мультиметр — это прибор, который может производить замеры силы постоянного или переменного тока, напряжения и сопротивления. Он заменяет собой сразу три аналоговых или цифровых прибора: амперметр, вольтметр и омметр. Также он способен изменять основные показатели любой электрической сети, производить ее прозвон.
Существует два вида мультиметров: цифровые и аналоговые. Первые представляют собой портативные устройства с дисплеем для отображения результатов. Большинство мультиметров на современном рынке — цифровые. Второй тип уже устарел и не пользуется былой популярностью.
Он выглядит, как обычный измерительный прибор со шкалой делений и аналоговой стрелкой, показывающей значение измерений.
Современный цифровой мультиметр
Прозвон резистора
Резистор можно и нужно прозванивать. Прозвонить можно и без выпаивания элемента с платы. Прозванивание элемента на обрыв производится следующим образом:
- Включить мультиметр и выключить прибор, если прозвонка осуществляется без выпаивания;
- Мультиметром без учета полярности прикоснуться к выводам электрорезистора;
- Зафиксировать значение. Если оно равно единице, то это свидетельствует о неисправности и произошел обрыв, а сам элемент следует заменить.
При невыпаивании следует учитывать тот факт, что если схема сложная, то, возможно, придется делать прозвонку через обходные пути и цепи. О 100 % неисправности элемента сказать можно лишь тогда, когда хотя бы одна из его ножек выпаяна.
Выполнение прозвонки электрорезистора
Полярность резистора
Многие интересуются тем, как узнать полярность резистора, чтобы точно определить, каким контактом выхода и куда его вставлять. Чтобы не вводить людей в заблуждение, сразу можно сказать, что полярности у электрорезистора нет и быть не может.
Данный радиоэлемент бесполярен. Считается, что резисторы неполярны и подключаться к печатной плате могут при любом положении своих выводов, в любой их комбинации.
Как и с предохранителем, проверять работоспособность резистора можно в любой комбинации контактов мультиметра и выводов, а порядок его припайки к электрическим схемам разницы не имеет.
Важно лишь учитывать и проверять номинальную сопротивляемость элемента перед припоем, так как потом в случае появившихся неисправностей сделать это будет тяжелее за счет влияния на измерение других элементов и цепей платы.
Маркировка номиналов
Номинальное сопротивление
Основной параметр любого резистора — это номинал сопротивления. Равномерностью этого сопротивления является единица измерения Ом.
Номинальное значение любого приобретенного резистора маркируется на нем самом, то есть на его корпусе с помощью обозначений в виде полосочек различного цвета.
Это было сделано в первую очередь для удобства конвейерного монтажа, где автоматы с машинным зрением с легкостью определяют элемент, который нужно использовать.
На некоторых резисторах указано номинальное сопротивление
Важно! Узнать номинал можно несколькими способами: с помощью специальных справочников и таблиц обозначений, а также любым измерительным прибором.
Таблицы представлены в любом справочнике по электронике и электротехнике, а также идут в комплекте с купленным набором резисторов. Второй способ определения более удобный и понятный, так как все, что нужно сделать — это измерить сопротивление собственноручно. Это поможет определить, насколько сопротивление отличается от номинального, и даст характеристику элемента.
Проверка сопротивляемости и исправности с помощью цифрового мультиметра
Проверка мультиметром
Для того чтобы проверить электрорезистор, следует действовать следующим образом:
- Взять требующий проверки радиоэлемент;
- Включить мультиметр и настроить его на измерение сопротивления;
- Задать шкалу измерения и ее границы;
- Любым способом подключить один щуп мультиметра к одной из сторон резистора, а второй — к оставшейся стороне;
- Зафиксировать измерения на экране или аналоговой шкале и закончить тестирование.
Внешний вид регулируемого потенциометра
Если значение равно нулю или сильно отличается от номинального, то элемент неисправен и подлежит утилизации, так как изменение значения может вывести из строя всю схему. Если значение в норме, то электрорезистор можно использоваться для создания электронных схем. При проверке значений, не выпаивая электрорезистор, следует учитывать влияние шунтирующих цепей.
Терморезистор СТ3-19 15кОм
Таким образом, был разобран вопрос: как проверить резистор мультиметром или тестером. На самом деле сложного ничего нет, так как данный радиоэлемент является одним из самых простых и распространенных среди всех и имеет всего два выхода-контакта без учета полярности. Именно поэтому проверить его сможет каждый, у кого есть мультиметр, тестер или омметр.
Источник: https://regionvtormet.ru/metally/kak-proverit-soprotivlenie-multimetrom-izmerit-nominal-rezistora-protestirovat-izolyatsiyu-prozvonit-tsep.html
Как проверить термистор на исправность мультиметром
Резистор ® — пассивный элемент электрических схем, ограничивающий напряжение или ток на определённом участке цепи за счёт своего сопротивления. Резисторы являются самыми распространёнными деталями в электрике и электронике. Многие начинающие радиолюбители задаются вопросом о том, как проверить резистор мультиметром. Для определения величины сопротивления используются цифровые и стрелочные мультиметры, или тестеры.
Определение при помощи мультиметра
Перед измерением резистора необходимо визуально определить его целостность: осмотреть его на предмет обгоревшего внешнего покрытия — краски или лака, а также проверить надписи на корпусе, если они просматриваются. Определить номинал можно по таблицам рядов или цветовых кодов, после чего при помощи мультиметра можно замерить сопротивление.
Для прозвонки можно использовать простой измерительный прибор, например, DT-830B. В первую очередь необходимо установить переключатель измерений в режим проверки минимального сопротивления — 200 Ом, после чего соединить щупы между собой. Индикатор прибора при соединённых щупах должен показывать минимальное значение R, которое стремится к нулю, например, 0,03 Ома. После так называемой калибровки можно приступить к измерениям.
Проверка сопротивления на плате
Элементы, имеющие омическое сопротивление до 200 Ом, должны прозваниваться в этом диапазоне измерений. Если же показания прибора указывают бесконечность, необходимо увеличить переключателем измеряемый диапазон с 200 Ом до 2000 Ом (2кОм) и выше в зависимости от испытываемого номинала. Перед тем как проверить мультиметром резистор не выпаивая его, нужно:
- отключить источник питания;
- отпаять один вывод R, так как из-за смешанного соединения элементов в схеме могут иметься различия между номиналом элемента и показаниями его фактической величины в общей схеме при измерении;
- произвести замер.
Прозвонить на плате можно только низкоомные сопротивления, составляющие номинал от одного ома до десятков омов. Начиная от 100 Ом и выше возникает сложность их измерения, так как в схеме могут применяться радиоэлементы, имеющие более низкое сопротивление, чем сам резистор.
Кроме постоянных резисторов, существуют следующие виды элементов:
- переменный (реостат);
- подстроечный;
- термистор или терморезистор с отрицательным температурным коэффициентом;
- позистор с положительным температурным коэффициентом;
- варистор изменяет свои значения от приложенного к нему напряжения;
- фоторезистор меняет свои значения от направленного на него светового потока.
Читать также: Плетение из резинок без станка фигурки
Проверка резистора мультиметром для измерения работоспособности переменных и подстроечных элементов осуществляется путём присоединения к среднему выводу одного из щупов, к любому из крайних выводов второго щупа.
Необходимо произвести регулировку движка измеряемого элемента в одну сторону до упора и обратно, при этом показание прибора должно измениться от минимума до паспортного или фактического сопротивления резистора.
Аналогично нужно провести измерение со вторым крайним выводом потенциометра.
Чтобы проверить позистор мультиметром, необходимо подключить измерительный прибор к выводам и приблизить его к источнику тепла. Сопротивление должно увеличиваться в зависимости от приложенной к нему температуры.
Тех, кто работает с электроникой, знают, как проверить мультиметром термистор. Перед этим нужно учесть, что при воздействии на него температуры нагретого паяльника его термосопротивление должно уменьшаться.
Перед тем как проверить термистор и позистор на плате, необходимо выпаять один из выводов и после этого провести измерение.
Терморезисторы могут работать как при высоких температурах, так и при низких. Позисторы и термисторы применяются там, где необходимо контролировать температуру, например в электронных термометрах, температурных датчиках и других устройствах.
Терморезисторы в схеме используются как температурные стабилизаторы каскадов в усилителях мощности или блоках питания, для защиты от перегрева. Терморезистор может выглядеть как бусина с двумя проводами, а также иметь форму пластины с двумя выводами.
Как определить исправность СМД-резисторов
Источник: https://morflot.su/kak-proverit-termistor-na-ispravnost-multimetrom/
Что такое термистор его применение в электронике
Здравствуйте любители электроники, сегодня рассмотрим радиокомпонент, который защищает вашу технику, что такое термистор его применение в электронике.
Что такое термистор
Этот термин, происходит от двух слов, термический и резистор, относящийся к полупроводникам. Его фишка в изменении своего электрического сопротивления, которая напрямую зависит от температуры.
Устройство термисторов
Все термисторы изготавливаются из материалов, у которых высокий температурный коэффициент сопротивления, популярный и пресловутый (ткс). Этот коэффициент намного, в несколько раз выше, чем у остальных металлов.
Изготавливаются термисторы с положительным и отрицательным температурным коэффициентом, PTC и NTC соответственно. Вот отличная подсказка при нахождении этого прибора на плате, устанавливаются они в цепях питания электроники.
Где применяются, как работает термистор
Нашли широкое применение в электротехнике, особенно там, где весьма важен, особый контроль над температурным режимом. Очень важно их наличие в дорогостоящем оборудовании, компьютерной и промышленной технике.
Применяются для эффективного ограничения пускового тока, он и ограничивается термистором. Он изменяет своё сопротивление в зависимости от силы проходящего через него тока, по причине нагрева прибора.
Огромный плюс компонента, это способность восстанавливаться, через малое время при остывании.
Как можно проверить термистор мультиметром
Что такое термисторы и где они применяются, стало немного понятнее, продолжим изучать тему с его проверки.
Необходимо усвоить важное правило касающегося любого ремонта электроники, внешний, визуальный осмотр. Выискиваем следы перегрева, потемнение, просто изменение цвета, отколовшиеся частички корпуса, не оторвался ли, контактный вывод.
Тестер как обычно, включаем и производим замеры в режиме сопротивления. Подключаем к выводам термического резистора, при его исправном состоянии увидим сопротивление, указанное на корпусе.
Берем в руки зажигалку или паяльник, думаю, он у многих на столе живёт. Начинаем медленно нагрев, и наблюдаем на изменение сопротивления на приборе. При исправном термисторе, сопротивление должно снижаться, а поле некоторого времени, восстановиться.
Маркировка у термисторов различная, всё зависит от фирмы производителя, этому вопросу отдельную статью. В данном тексте, мы рассматриваем тему, что такое термистор и его применение в электроники.
Источник: http://energytik.net/posobie-dlya-nachinayushhix-remontnikov-elektroniki/chto-takoe-termistor-ego-primenenie-v-elektronike.html
цифровой термометр, электронный термометр, датчик температуры, измеритель температуры, регулятор температуры, pH-метр, рН-метр
Подключение, диагностика, проверка (прозвон) датчиков температуры сопротивления Pt100, Pt1000, 50М, 100М и другие
В данном разделе мы решили пояснить, как правильно подключаются датчики температуры сопротивления, чем отличаются различные схемы подключения, как проверить датчик температуры, что делать если схема подключения и датчик который есть в наличии не совпадает.
Основные схемы подключения датчиков температуры сопротивления представлены на рис.1-3
Как видно из рисунков 1-3 датчик представляет из себя некий термоэлемент, сопротивление которого изменяется в зависимости от его собственной температуры. К термоэлементу в зависимости от схемы подключения могут быть подпаяны 2 провода (рис.1), три провода (рис.2), четыре провода (рис.3).
Для чего применяются различные схемы подключения датчиков температуры сопротивления?
Дело в том, что измеряемым параметром при применении таких датчиков является сопротивление датчика, однако провода имеют собственное сопротивление и внсят тем самым определенную погрешность.
Например, если датчик температуры Pt100 при нуле градусов цельсия (сопротивление 100 Ом) подключен по двух проводной схеме медным проводом сечением 0,12 мм2, длина соединительного кабеля 3 м, то два провода в сумме дадут сопротивление около 0,5 Ом в результате набегает погрешность — датчик дает суммарное сопротивление 100,5 Ом, что соответствует температуре примерно 101,2 градуса.
Эту погрешность можно скорректировать прибором (если прибор это позволяет), введя корректировку на 1,2 градуса. Однако такая корректировка не может полностью компенсировать сопротивление проводов датчика.
Это связано с тем, что медные провода являются сами по себе термосопротивлениями, т.е. сопротивление проводов так же меняется от темепратуры.
Причем в случае например с нагреваемой камерой часть проводов, которая находится вместе с датчиком нагревается и меняет сопротивление, а часть за пределами камеры меняется с изменением температуры в комнате.
В случае рассмотреном выше при сопротивлении проводов 0,5 ома при нагреве на каждые 250 градусов сопротивление проводов может измениться практически вдвое. Дав дополнительно 1,2 градуса цельсия погрешность.
Для исключения влияния сопротивления проводов применяют трехпроводную схему подключения датчика температуры.
При такой схеме подключения прибор измеряет суммарное сопротивление датчика с проводами и сопротивление двух проводов (или одного провода и умножает его на 2) и вычитает сопротивление проводов из суммарного, выделяя тем самым чистое сопротивление датчика.
Такая схема подключения позволяет получать достаточно высокую точность при значительных влияниях сопротивлений проводов на тчоность измерения. Однако данная схема не учитывает, что провода ввиду погрешностей изготовления могут обладать разным сопротивлением (в следствии неоднородности материала, изменения сечения по длине и пр.
) такие погрешности вводят меньшие отклонения в отображаемой температуре чем при двух проводной схеме, однако при больших длинах проводов могут быть существенны. В таких случаях может потребоваться применение четырех проводной схемы подключения, в которой прибор измеряет непосредственно сопротивление датчика без учета соединительных проводов.
В каких случаях можно применять двух проводную схему подключения:
1. Диапазон измерения не большой (например 040 градусов) и требуется невысокая точность (например 1 градус)
2. Соединительные провода имеют большое сечение и длина их не велика, т.е сопротивление проводов мало по сравнению с сопротивлением датчика и не вносит существенной погрешности. Например суммарное сопротивление 2 проводов 0,1 ом, а сопротивление датчика меняется на 0,5 Ома на градус, требуемая точнось 0,5 градуса, таким образом сопротивление проводов вносит погрешность меньше, чем допустимая погрешность.
Трехпроводная схема подключения датчиков температуры сопротивления:
Наиболее распространненная схема подключения, применяемая для измерений на удалении датчика от 3 до 100 м, позволяющая в диапазоне до 300 градусов иметь погрешность порядка 0,5 %, т.е. 0,5 С на 100 С.
Четырех проводная схема подключения:
Применяется как правило для прецизионных измерений с точностью 0,1 С и выше.
Прозвонка (проверка) датчиков температуры сопротивления:
Для прозвонки датчиков температуры требуется обычный тестер показывающий сопротивление, для датчиков с сопротивлением при нуле градусов до 100 ом включительно потимальный диапазон измерения тестера до 200 Ом.
Прозвонку можно производить при комнатной температуре, либо при другой заранее известной температуре входящей в рабочую зону датчика (например поместив датчик в сосуд с водо-ледяной смесью 0 градусов или кипящий чайник примерно, с поправкой на давление, 100 градусов).
При прозвонке определяется, какие провода соединены между собой накоротко возле датчика, сопротивление между такими проводами как правило существенно меньше чем сопротивление датчика (это сопротивление между выводами 1,3 и 2,4). Сопротивление между такими выводами для стандартных датчиков составляет от 0 до 5 Ом, в зависимости от сечения и длинны соединительных проводов.
Найдя провода с таким значением сопротивления мы однозначно можем определить какие выводы куда подключать. При трехпроводной схеме выводы 1 и 3 равнозначны т.е. если их подключить наоборот на измерение это никак не повлияет. При четырехпроводной схеме пары проводов 1,3 и 2,4 между собой равнозначны, и внутри пары между собой провода тоже равнозначны, т.е.
первый с третим можно переставлять между собой, и второй с четвертым можно переставлять, и целиком пару 1,3 можно переставить с парой 2,4 на результаты измерений это не повлияет.
Кроме этого проверяется, что датчик рабочий, т.е. выдает то сопротивление которое должен при данной температуре (измерение между выводами 1 и 2).
Таблицу значений сопротивлений для основных типов датчиков при разных температурах можно посмотреть тут.
Кроме этого нужно убедиться, что датчик не замыкает на корпус термопреобразователя, прозвонив на мегаомном диапазоне (20200 МОм) сопротивление между проводами и корпусом датчика, при этом руками касаться контактов корпуса, проводов и щупов нельзя. Если на мегаомах тестер показывает не бесконечное сопротивление, то скорее всего в корпус датчика попал жир или влага, такой датчик может работать некоторое время, но точность показаний будет снижаться, показания могут плавать.
Каким образом можно подключить датчик температуры сопротивления если его схема подключения не совпадает со схемой на приборе?
Рассмотрим различные варианты:
1. в наличии есть двухпроводный датчик температуры
Соответственно если подключить требуется к прибору с трехпроводной или четырехпроводной схемой, то можно установить соответственно одну или две перемычки на контактах прибора, в местах, где подключаются короткозамкнутые провода. На рисунках 4 и 5 это обозначено перемычками на контактах 1,3 и 2,4.
Несомненно такое подключение приведет к погрешности измерения, и если прибор не позволяет её скомпенсировать, то можно в требуемом диапазоне измерения определить погрешность показаний используя образцовый термометр и рассчитать корректировку, которую нужно прибавлять к показаниям. Это позволит временно решить проблему и не останавливать технологический процесс.
2. в наличии есть трехпроводный датчик температуры
Если подключать такой датчик по двухпроводной схеме рекомендуется соединить два короткозамкнутых у датчика провода вместе, для уменьшения споротивления соединительных проводов (так же можно один из короткозамкнутых проводов заизолировать и не подключать или откусить кусачками). Датчик будет работать в двухпроводной схеме не внося никакой дополнительной погрешности.
Источник: http://www.zamer.ru/info/proverka
как проверить радиодетали?
анод — это положительный электрод.катод — это отрицательный электрод.
Мультиметр – режим прозвонки (или диодной прозвонки).
Если нету можно мерить сопротивление на минимальном режиме. Если ток должен течь – сопротивление будет нулевым (условно, т.к. Прибор может не показывать настолько малых сопротивлений) или близким к этому.
У диода катод отмечен полоской.
на анод плюс, на катод минус – ток должен протекать (диод звонится, цепь замкнута).
На анод минус, на катод плюс – ток не течет (цепь должна быть разомкнута) другими словами цепь не звонится.
как проверить Варистор?
Чтобы проверить варистор нужно измерять сопротивление. У исправного варистора очень большое сопротивление. У неисправного маленькое. На вид должен также выглядеть целым.
Как проверить Термистор?
термисторы бывают:
NTC – отрицательный температурный коэффициент – это значит, что с ростом температуры уменьшается сопротивление термистора.
PTC – положительный температурный коэффициент – это значит, что с ростом температуры увеличивается сопротивление термистора.
проверка:
мультиметр в режим измерения сопротивления.Щупы мультиметра подключать без учета цвета, полярности Греть паяльником термистор.
При нагреве должно происходить плавное изменение сопротивления. В какую сторону – зависит от типа термистора. NTC – падает сопротивление, PTC – сопротивление растет.
Варианты неисправностей:
- Если обрыв на термисторе – сопротивление бесконечное.
- Если коротко замкнутый термистор – сопротивление равно нулю. Всегда.
также Термистор не исправен, если:
- нет никаких изменений при нагреве или остывании
- показания сопротивления изменяются не плавно
Как проверить трансформатор?
Трансформаторы проверяют на целостность обмоток – прозванивают.
Как проверить конденсатор?
на вид – вспухший верх цилиндрика или раскрытый – это сдохший конденсатор.
У меня было множество случаев, когда конденсатор выглядевший исправным и “проверенный” мультиметром (найдете в интернете как) выводил из строя остальные конденсаторы. Кроме того вы не знаете при проверке мультиметром конденсатора на сколько конденсатор не исправен:
- Сколько он запасает емкости?
- Каково реактивное сопротивление?
- Как быстро он разряжается?
чтобы реально проверять конденсаторы вам нужен LCR измеритель.
подробности в моей статье
конденсаторы нужно проверять мостовым измерителем.
Похожее
Источник: http://www.tvs-sm.ru/kak-proverit-radiodetali/
Поиск данных по Вашему запросу:
Термистор терморезистор — это резистор, который меняет свое сопротивление с изменением температуры. Технически все резисторы являются термисторами, так как их сопротивление меняется в зависимости от температуры. Но эти изменения очень незначительны и измерить их очень сложно. Термисторы изготавливаются таким образом, чтобы сопротивление изменялось на значительную величину в зависимости от температуры.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Из all-audio.proтор,он же терморезистор.
Термосопротивление
Терморезистор был изобретён Самюэлем Рубеном Samuel Ruben в году [2]. Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления ТКС , который обычно на порядки выше, чем ТКС металлов и металлических сплавов.
Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов , галогенидов , халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.
Условно терморезисторы классифицируют как низкотемпературные предназначенные для работы при температуpax ниже К , среднетемпературные от до К и высокотемпературные выше К. Выпускаются терморезисторы, предназначенные для работы при температурах от до К.
Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках.
Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:.
Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор с гальванически изолированным нагревательным элементом, задающего температуру терморезистора, и, соответственно, его сопротивление.
Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого терморезистора. Режим работы терморезисторов зависит от выбранной рабочей точки на вольт-амперной характеристике или ВАХ такого прибора.
В свою очередь ВАХ зависит от приложенной к прибору температуры и конструктивных особенностей терморезистора.
Терморезисторы с рабочей точкой, выставленной на линейном участке ВАХ, используются для контроля за изменением температуры и компенсации параметров электрическое напряжение или электрический ток электрических цепей, возникших вследствие изменения температуры.
Такие терморезисторы находят применение в системах охлаждения и температурной стабилизации режимов работы транзисторов в различных радиоэлектронных системах. Материал из Википедии — свободной энциклопедии. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 26 июня ; проверки требуют 3 правки.
Герасимов, О. Князьков, А. Краснопольский, В. Основы промышленной электроники. Electrical pyrometer resistance. Описание патента на сайте Ведомства по патентам и товарным знакам США. Дата обращения 26 октября Электронные компоненты.
Резистор Переменный резистор Подстроечный резистор Варистор Фоторезистор Конденсатор Переменный конденсатор Подстроечный конденсатор Катушка индуктивности Кварцевый резонатор Предохранитель Самовосстанавливающийся предохранитель Трансформатор Мемристор Бареттер.
Электронно-лучевая трубка ЖК-дисплей Светодиод Газоразрядный индикатор Вакуумно-люминесцентный индикатор Блинкерное табло Семисегментный индикатор Матричный индикатор Кинескоп. Терморезистор Термопара Элемент Пельтье. Категории : Полупроводниковые приборы Электронные компоненты Термометры. Скрытая категория: Википедия:Статьи с некорректным использованием шаблонов:Cite web не указан язык.
Пространства имён Статья Обсуждение. В других проектах Викисклад. Эта страница в последний раз была отредактирована 14 июля в Текст доступен по лицензии Creative Commons Attribution-ShareA ; в отдельных случаях могут действовать дополнительные условия.
Подробнее см. Условия использования. Политика конфиденциальности Описание Википедии Отказ от ответственности Свяжитесь с нами Разработчики Заявление о куки Мобильная версия.
Как проверить термистор?
Термосопротивление, термистор или терморезистор — это три названия одного и того же прибора, сопротивление которого меняется в зависимости от его нагрева или охлаждения.
Основой датчика является резистивный элемент, для изготовления которого используют полупроводники, металлы или сплавы, то есть элементы, у которых наблюдается выраженная зависимость сопротивления от температуры.
Все материалы, которые используются при их создании, должны иметь высокий удельный температурный коэффициент сопротивления. Если используется металлический резистивный элемент, то он изготавливается в виде проволоки.
Как проверить термистор, термистор dsc 20d, терморезистор форд фокус 2, термистор sck характеристики. Датчик температуры на основе .
Замена терморезистора на Тоyota!!!
Термистор представляет собой резистивный термометр или резистор, сопротивление которого зависит от температуры. Термин представляет собой комбинацию термо и резистор. Он изготовлен из оксидов металлов, спрессован в шарики, диски или цилиндрическую форму, а затем герметизирован непроницаемым материалом, таким как эпоксидная смола или стекло.
Существует два типа термисторов: отрицательный температурный коэффициент NTC и положительный температурный коэффициент PTC. С термистором NTC, когда температура увеличивается, сопротивление уменьшается. И наоборот, когда температура снижается, сопротивление увеличивается. Этот тип термистора используется чаще всего.
Термистор PTC работает немного по-другому.
Термистор и Arduino
Проверка работоспособности. Дело в том, что показания температуры растут, но очень медленно и совершенно не соответствуют действительности. Так значит они растут и термистор рабочий? Значит в прошивке указан не тот термистор.
Датчики температуры — это датчики,которые значение температуры переводят в другие физические параметры, например, сопротивление или напряжение.
Принцип действия, характеристики и основные параметры термистора
Неисправность температурных сенсоров. В современных электронных холодильниках Вы обнаружите, что вместо привычного механического термостата, сейчас там стоят электронные модули и маленькие температурные сенсоры, известные как термисторы.
Эти электронные сенсоры также широко применяются в других электронных устройствах, например они замечены в стиральных машинах, также мы можем всё чаще видеть их в сушилках и духовых шкафах. Если сопротивление термистора растет с увеличением температуры, значит перед нами сенсор с положительным температурным коэффициентом — PTC термистор.
Если сопротивление падает с увеличением температуры, то это сенсор с отрицательным температурным коэффициентом — NTC термистор.
Про терморезисторы (NTC 10D-9 Thermal Resistor)
Терморезисторы делятся на два вида: позисторы и термисторы. Все они изменяют свое сопротивление в зависимости от их температуры. У позисторов сопротивление увеличивается в зависимости от температуры, а у термисторов, наоборот — уменьшается.
Терморезисторы находят свое применение во многих узлах различной техники и аппаратуры, начиная от датчиков температуры, заканчивая ограничителями пусковых токов в энергосберегающих лампах, блоках питания или двигателях.
Если есть подозрение, что термистор неисправен, а его визуальный осмотр не выявил различных почернений, сколов и т. Перед началом проверки, мультиметр переводим в режим измерения сопротивления.
Подскажите, плз, в чем дело? необходимо ли калибровать термистор после замены? Как проверить работоспособность устаноленного.
Неверные показания термистора
Источник: https://all-audio.pro/c31/shemi/kak-proverit-termorezistor.php
Как проверить термосопротивление мультиметром
Проблемы с контролем температуры на вашем устройстве могут указывать на проблемы с термостатом, сопротивление которого можно проверить с помощью мультиметра.
Я подключил и настроил этот мультиметр в соответствии с инструкциями и повернул ручку на самый низкий предел измерения в Омах. Рабочий термостат показывает сопротивление ноль или близкое к нулю. Данный термостат имеет показания прибора 1.4, значит он рабочий. Если нет никаких показаний на приборе, то термостат неисправен и нуждается в замене.
Резистор ® — пассивный элемент электрических схем, ограничивающий напряжение или ток на определённом участке цепи за счёт своего сопротивления. Резисторы являются самыми распространёнными деталями в электрике и электронике. Многие начинающие радиолюбители задаются вопросом о том, как проверить резистор мультиметром. Для определения величины сопротивления используются цифровые и стрелочные мультиметры, или тестеры.
Что такое терморезисторы где их используют, проверка термистора мультиметром
Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен. С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.
Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.
При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества. В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.
Термистор, это резистор с большим значением температурного коэффициента сопротивления (ТКС). При изменении температуры токопроводящего материала термистора его электрическое сопротивление значительно изменяется.
Термисторы могут быть как с положительным, так и с отрицательным ТКС. Термисторы с положительным ТКС называются PTC-термисторы или позисторы, с отрицательным – NTC-термисторы. При нагреве PTC-термистора (позистора) его сопротивление увеличивается.
При нагреве NTC-термистора его сопротивление уменьшается.
Основные параметры и характеристики терморезисторов с отрицательным ТКС.
Сопротивление позистора соответствует номинальному Rн, указанному в справочной документации обычно при температуре 25 гр. Цельсия, реже при 20. В начале нагрева PTC-термистора его сопротивление будет незначительно уменьшаться до некоторого минимального значения Rмин. При дальнейшем нагреве до некоторой температуры Tref сопротивление позистора станет незначительно увеличиваться.
Дальнейший нагрев на участке температур от Tref до максимально допустимого значения влечёт стремительное увеличение сопротивления. При этом разница сопротивлений может достигать нескольких порядков.
Материал в тему: устройство подстроечного резистора.
Как проверить резистор не выпаивая: визуальная проверка
Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.
О неисправностях свидетельствуют:
- Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
- Появление характерного запаха.
- Стирание маркировки.
- Наличие на плате сгоревших дорожек
Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.
Внимание!
Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.
Зависимость сопротивления и температуры
Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой
R(T) = A exp(b/T)
где A, b – постоянные, зависящие от свойств материала и геометрических размеров.
Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта
Будет интересно➡ Как прочитать обозначение (маркировку) резисторов
1/T = a+b(lnR)+c(lnR)3
Источник: https://seventools.ru/uncategorized/ntc-termistor-kak-proverit.html
Как проверить резистор мультиметром не выпаивая: маркировка деталей, этапы тестирования, прозвонка позистора
Любая электрическая цепь имеет в себе сопротивление. Поэтому в радиотехнике самым часто встречающимся элементом является резистор. При ремонте электрических приборов важно уметь тестировать такие детали. Необходимо знать, как проверить резистор мультиметром, не выпаивая элемент. Деталь чаще всего выходит из строя, если токопроводящий слой выгорает или нарушается его связь с хомутиком.
Резисторы могут иметь различный вид, но у стандартных моделей присутствует линейная ВАХ. Проверка устройства состоит из трех этапов:
- Осмотр внешнего состояния прибора.
- Тестирование детали на обрыв.
- Сравнение показателей с номиналом.
Два первых пункта не составляют труда при выполнении, а с последним этапом проверки резистора мультиметром могут возникнуть трудности. Проблема заключается в определении номинального значения сопротивления. С принципиальной схемой узнать показатель несложно. Но многие современные приборы не снабжены сопутствующей документацией с техническими характеристиками. В этом случае можно определить значение номинала при помощи маркировки.
Мультиметры могут быть цифровыми и стрелочными. Последние работают без дополнительного питания, наподобие микроамперметра. Делители напряжения переключаются вместе с шунтами в определенные режимы для измерения.
Цифровые модели отображают на дисплее различие между полученной величиной и эталоном. Этот тип приборов нуждается в источнике питания, который обеспечивает точность замеров, снижающуюся при разрядке батареи.
Эти устройства применяются для определения состояния радиодеталей.
Типы маркировок
На советских компонентах значение номинала указывалось прямо на корпусе. В этом случае расшифровка была не нужна. Но при нарушении целостности детали, обгорании краски прочитать текст было проблематично или вовсе невозможно. Уточнить номинал можно было по принципиальной схеме, входящей в комплектацию любого бытового прибора.
Современные компоненты имеют цветовое обозначение, включающее 3−6 колец различных оттенков. Такое решение позволяет определить номинальный показатель, даже если элемент значительно поврежден. Этот момент особенно актуален при частом отсутствии принципиальной схемы у прибора.
ГОСТ 175–72 устанавливает четкие нормативы по цифровому и цветовому обозначению компонентов. Полосы располагаются рядом с одним из выводов и читаются слева направо. Цвета могут быть следующими:
- серебристый;
- золотой;
- черный;
- коричневый;
- красный;
- оранжевый;
- желтый;
- зеленый;
- синий;
- фиолетовый;
- серый;
- белый.
Допуск определяет отклонение значения серии от номинала, при котором компонент может работать. Если расчет схемы был произведен правильно, то эта величина должна учитываться, в другом случае наладка осуществляется после сборки детали.
Многие китайские производители, стараясь существенно снизить цену продукции, не устанавливают значение допуска. В результате элемент продолжает работу, пока его запас прочности не превысит предел. Если разница между номиналом и полученным показателем превышает допуск, то элемент требует обязательной замены.
Резисторы с наименьшим допустимым значением до 10% имеют 5 колец. Первые три обозначают коэффициент сопротивления, измеряемый в Ом. Четвертое соответствует множителю, а пятое — величине допуска. Приборы с отклонением больше 10% маркированы 4 полосами. Разметка аналогична предыдущему варианту, но отсутствует показатель допуска.
При максимальном отклонении в 20% резисторы отмечаются 3 кольцами. На первые два отводится значение сопротивления, а третье выступает множителем. Редко встречаются элементы с 6 полосами. Последним кольцом в них отмечается коэффициент изменения при температурных колебаниях. Он определяет сопротивление при нагреве корпуса резистора. Расшифровку цветовой маркировки удобно проводить при помощи онлайн-калькуляторов, которые подсчитывают номинал после введения необходимых данных.
Элементы для навесной установки, такие как диод, smd резистор или конденсатор, имеют малый размер, и нанести на них всю нужную информацию просто невозможно. Поэтому для их маркировки применяются зашифрованные цифровые обозначения. Обычно на корпусе указываются три цифры, две из них определяют значение, а множителем выступает последняя.
Наружная диагностика
Прежде чем проверить позистор мультиметром, его нужно осмотреть и проверить визуально на исправность. Корпус должен быть цельным, без трещин и сколов на поверхности, а выводы — иметь надежное крепление.
Если резистор неисправен, то его корпус будет обгоревшим полностью или кольцевидными очагами. Потемневшая поверхность не всегда является признаком поломки, она свидетельствует о нагреве при эпизодическом превышении допустимой мощности. Внутренний обрыв невозможно распознать по внешнему виду элемента.
Проверка на номинал и обрыв
На этом этапе тестирования проверяется соответствие полученного значения допуску и номиналу. Показатель не должен выходить за предел, заданный переключателем на приборе. Диапазон устанавливается со значением, немного превышающим номинал. Проверить сопротивление резистора мультиметром можно следующим образом:
- К гнездам с маркировкой V Ω mA и COM подключаются щупы (причем к первому подсоединяется положительный красный, а ко второму — отрицательный черный).
- Проводится проверка работоспособности проводов. Для этого они замыкаются между собой. Тестер должен выдать значение равное или близкое к нулю. Малые величины определяются путем вычета из показаний устройства. Отличное от нуля значение часто получается при недостаточном заряде батареи.
- Щупы подносятся к выводам проверяемой детали. Если на приборе — бесконечный показатель сопротивления (на дисплее отображается «1»), то присутствует обрыв в резисторе.
- Полученные данные сопоставляются с номинальным значением (допуск также нужно учитывать). Совпадение данных говорит об исправности детали. Показания также могут незначительно отличаться из-за погрешности самого устройства, особенно при замере без выпаивания.
В процессе тестирования не следует касаться щупов руками (это частая ошибка новичков). У тела человека также имеется сопротивление и при замерах показателей резистора в килоомах результаты проверки могут исказиться.
Работа с переменным резистором
Процесс тестирования переменного элемента во многом похож на работу со стандартными моделями. Он включает следующие этапы:
- Проводится замер путем подключения щупов на крайние ножки. Полученный показатель сравнивается с номиналом.
- Один щуп подсоединяется к центральной ножке, а другой — к оставшейся свободной.
- Подстроечная ручка поворачивается. Показания устройства должны находиться в пределах зоны от 0 до полученной на первом этапе величины.
Можно также проводить измерения без установки предельного значения. Режим омметра позволяет задавать любые значения диапазона. Такая настройка не повредит тестер. При отображении на дисплее «1» (бесконечности) нужно повышать порог до появления нужного результата.
Обследование детали без выпаивания
Тестирование резистора на плате возможно только для низкоомных компонентов. Если их номинал превышает 80−100 Ом, то на значение могут исказить другие элементы. Чтобы отключить деталь от остальных, необходимо освободить одну ножку. Такая проверка проводится в редких случаях. Перед работой нужно проверить присутствие на схеме шунтирующих цепей. На итоговые показатели особенно сильно воздействуют полупроводниковые элементы.
Для тестирования часто используется метод прозвонки. Обозначение переключателя этого режима — диод с сигналом. Проверяемые детали должны иметь границу срабатывания не больше 50−70 Ом, иначе получится слабый сигнал, который будет сложно различить.
При сопротивлении ниже предельной границы устройство будет издавать писк через динамик. Чтобы прозвонить резистор мультиметром, нужно выбрать точки схемы щупами и создать между ними напряжение.
Для корректной работы прибору требуется достаточное питание.
Работать с мультиметром довольно просто, если разобраться в правилах установки предельных значений и измерения сопротивления. Нужно также уметь использовать переключатели тестера и щупы. Процесс значительно облегчается, если есть в наличии принципиальная схема, входящая в комплектацию к бытовым приборам.
Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/multimetry/kak-proverit-rezistor-pozistor-multimetrom-ne-vypaivaya.html
Как проверить резистор мультиметром не выпаивая
Резистор ® — пассивный элемент электрических схем, ограничивающий напряжение или ток на определённом участке цепи за счёт своего сопротивления. Резисторы являются самыми распространёнными деталями в электрике и электронике. Многие начинающие радиолюбители задаются вопросом о том, как проверить резистор мультиметром. Для определения величины сопротивления используются цифровые и стрелочные мультиметры, или тестеры.
Как проверить резистор на работоспособность мультиметром не выпаивая
Резистор — это один из наиболее часто используемых элементов в современной электронике. Его название происходит от английского «resist», что означает сопротивление.
С помощью резистора можно ограничить действие электрического тока и измерять его, разделять напряжение, задавать обратную связь в электрической цепи. Смело можно сказать, что без этого элемента не обходится ни одна электросхема, ни один прибор.
Именно поэтому часто появляется необходимость в измерении сопротивления резистора мультиметром и проверке его работоспособности. В этом материале будет рассказано, как проверить плату на работоспособность мультиметром.
Как проверить позистор мультиметром: пошаговая инструкция
» Электрические измерения
Неприхотливость и относительная физическая устойчивость позисторов позволяет их использовать в роли датчика для автостабилизирующихся систем, а также реализовать защиту от перегрузки. Принцип работы этих элементов заключается в том, что их сопротивление увеличивается при нагреве (в отличие от термисторов, где оно уменьшается). Соответственно, при проверке тестером или мультиметром позисторов на работоспособность, необходимо учитывать температурную корреляцию.
Различные виды позисторов и их графическое изображение в принципиальных схемах
Определяем характеристики по маркировке
Широкая сфера применения РТС-термисторов подразумевает их обширный ассортимент, поскольку характеристики этих устройств должны соответствовать различным условиям эксплуатации. В связи с этим для тестирования очень важно определить серию элемента, в этом нам поможет маркировка.
Для примера возьмем радиокомпонент С831, его фотография показана ниже. Посмотрим, что можно определить по надписям на корпусе детали.
Позистор С831
Учитывая надпись «РТС», можно констатировать, что данный элемент является позистором «С831». Сформировав запрос в поисковике (например, «РТС С831 datasheet»), находим спецификацию (даташит).
Из нее мы узнаем наименование (B59831-C135-A70) и серию (B598*1) детали, а также основные параметры (см. рис. 3) и назначение.
Последнее указывает, что элемент может играть роль самовосстанавливающегося предохранителя, защищающего схему от КЗ (short-circuit protection) и перегрузки (overcurrent).
Расшифровка основных характеристик
Кратко рассмотрим, данные приведенные в таблице на рисунке 3 (для удобства строки пронумерованы).
Рисунок 3. Таблица с основными характеристиками серии B598*1
Краткое описание:
- значение, характеризующее максимальный уровень рабочего напряжения при нагреве устройства до 60°С, в данном случае он соответствует 265 В. Учитывая, что нет определения DC/AC, можно констатировать, что элемент работает как с переменным, так и постоянным напряжением.
- Номинальный уровень, то есть напряжение в штатном режиме работы – 230 вольт.
- Расчетное число гарантированных производителем циклов срабатывания элемента, в нашем случае их 100.
- Значение, описывающее величину опорной температуры, после достижения которой происходит существенное увеличение уровня сопротивления. Для наглядности приведем график (см. рис. 4) температурной корреляции.
Рис. 4. Зависимость сопротивления от температуры, красным выделена точка температурного перехода (опорная температура) для С831
Как видно на графике, R резко возрастает в диапазоне от 130°С до 170°С, соответственно, опорной температурой будет 130°C.
- Соответствие номинальному значению R (то есть допуск), указывается в процентном соотношении, а именно 25%.
- Диапазон рабочей температуры для минимального (от -40°С до 125°С) и максимального (0-60°С) напряжения.
Расшифровка спецификации конкретной модели
Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).
Спецификация модельного ряда серии B598*1
Краткая расшифровка:
- Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
- Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
- Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
- Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
- Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
- Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
- Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).
Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным
Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.
- Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.
Теперь, зная спецификацию, можно переходить к проверке на работоспособность.
Определение исправности по внешнему виду
В отличие от других радиодеталей (например, таких как транзистор или диод), вышедший из строя РТС-резистор часто можно определить по внешнему виду. Это связано с тем, что вследствие превышения допустимой мощности рассеивания нарушается целостность корпуса. Обнаружив на плате позистор с таким отклонением от нормы, можно смело выпаивать его и начинать поиск замены, не утруждая себя процедурой проверки мультиметром.
Если внешний осмотр не дал результата, приступаем к тестированию.
Пошаговая инструкция проверки позистора мультиметром
Для процесса тестирования, помимо измерительного прибора, потребуется паяльник. Подготовив все необходимое, начинаем действовать в следующем порядке:
- Подключаем тестируемую деталь к мультиметру. Желательно, чтобы прибор был оснащен «крокодилами», в противном случае припаиваем к выводам элемента проволоку и накручиваем ее на разные иглы щупов.
- Включаем режим измерения наименьшего сопротивления (200 Ом). Прибор покажет номинальную величину R, характерную для тестируемой модели (как правило, менее одного-двух десятков Ом). Если показание отличается от спецификации (с учетом погрешности), можно констатировать неисправность радиокомпонента.
- Аккуратно нагреваем корпус тестируемой детали при помощи паяльника, величина R начнет резко увеличиваться. Если она осталась неизменной, элемент необходимо менять.
- Отключаем мультиметр от тестируемой детали, даем ей остыть, после чего повторяем действия, описанные в пунктах 1 и 2. Если сопротивление вернулось к номинальному значению, то радиокомпонент с большой долей вероятности можно признать исправным.
Обсудить на форуме
Источник: https://www.asutpp.ru/kak-proverit-pozistor-multimetrom.html