Как рассчитать падение напряжения в цепи

Как рассчитать падение напряжения по длине кабеля в электрических сетях

Как рассчитать падение напряжения в цепи

Производя расчет потерь электроэнергии в кабеле, важно учитывать его длину, сечения жил, удельное индуктивное сопротивление, подключение проводов. Благодаря этой справочной информации вы сможете самостоятельно произвести расчет падения напряжения.

Виды и структура потерь

Даже самые эффективные системы электроснабжения имеют те или иные фактические потери электроэнергии. Под потерями понимается разница между данной пользователям электрической энергией и по факту пришедшей к ним. Это связано с несовершенством систем и с физическими свойствами материалов, из которых они изготовлены.

Самый распространенный вид потерь электроэнергии в электрических сетях связан с потерями напряжения от длины кабеля. Для нормирования финансовых трат и подсчета их действительной величины была разработана такая классификация:

  1. Технический фактор. Он связан с особенностями физических процессов и может изменяться под влиянием нагрузок, условных постоянных затрат и климатических обстоятельств.
  2. Затраты на использование дополнительного снабжения и обеспечение нужных условий для деятельности технического персонала.
  3. Коммерческий фактор. В эту группу входят отклонения из-за несовершенства контрольно-измерительных приборов и прочие моменты, провоцирующие недоучет электрической энергии.

Основные причины появления потери напряжения

Основная причина потери мощности в кабеле — это потери в линиях электропередач. На расстоянии от электростанции до потребителей не только рассеивается мощность электроэнергии, но и падает напряжение (что при достижении значения меньше минимально допустимого может спровоцировать не только неэффективную работу приборов, но и полную их неработоспособность.

Также потери в электрических сетях могут быть вызваны реактивной составляющей участка электрической цепи, то есть наличием на этих участках любых индуктивных элементов (это могут быть катушки связи и контуров, трансформаторы, дроссели низкой и высокой частот, электродвигатели).

Способы уменьшения потерь в электрических сетях

Пользователь сети не может повлиять на потери в ЛЭП, но может снизить падение напряжения на участке цепи, грамотно подключив ее элементы.

Медный кабель лучше соединять с медным, а алюминиевый — с алюминиевым. Количество соединений проводов, где материал жилы изменяется, лучше свести к минимуму, так как в таких местах не только рассеивается энергия, но и увеличивается тепловыделение, что при недостаточном уровне теплозоляции может быть пожароопасным. Учитывая показатели удельной проводимости и удельного сопротивления меди и алюминия, более эффективно в плане энергозатрат использовать медь.

Если это возможно, при планировании электрической цепи любые индуктивные элементы, такие как катушки (L), трансформаторы и электродвигатели, лучше подключать параллельно, так как согласно законам физики, общая индуктивность такой схемы снижается, а при последовательном подключении, наоборот, увеличивается.

Еще для сглаживания реактивной составляющей используют конденсаторные установки (или RC-фильтры в совокупности с резисторами).

В зависимости от принципа подключения конденсаторов и потребителя имеется несколько типов компенсации: личная, групповая и общая.

  1. При личной компенсации емкости присоединяют непосредственно к месту появления реактивной мощности, то есть собственный конденсатор — к асинхронному мотору, еще один — к газоразрядной лампе, еще один — к сварочному, еще один — для трансформатора и т.д. В этой точке приходящие кабели разгружаются от реактивных токов к отдельному пользователю.
  2. Групповая компенсация включает в себя присоединение одного или нескольких конденсаторов к нескольким элементам с большими индуктивными характеристиками. В данной ситуации регулярная одновременная деятельность нескольких потребителей связана с передачей суммарной реактивной энергии между нагрузками и конденсаторами. Линия, которая подводит электрическую энергию к группе нагрузок, разгрузится.
  3. Общая компенсация предусматривает вставку конденсаторов с регулятором в основном щите, или ГРЩ. Он производит оценку по факту текущего потребления реактивной мощности и быстро подсоединяет и отсоединяет нужное число конденсаторов. В результате берущаяся от сети общая мощность приводится к минимуму в согласии с моментальной величиной необходимой реактивной мощности.
  4. Все установки компенсации реактивной мощности включают в себя пару ветвей конденсаторов, пару ступеней, которые образуются специально для электрической сети в зависимости от потенциальных нагрузок. Типичные габариты ступеней: 5; 10; 20; 30; 50; 7,5; 12,5; 25 квар.

Для приобретения больших ступеней (100 и больше квар) соединяют параллельно небольшие. Нагрузки на сети уменьшаются, токи включения и их помехи снижаются. В сетях с множеством высоких гармоник сетевого напряжения конденсаторы защищают дросселями.

Автоматические компенсаторы обеспечивают сети, снабженной ими, такие преимущества:

  • уменьшают загрузку трансформаторов;
  • делают более простыми требования к сечению кабелей;
  • дают возможность загрузить электросети больше, чем можно без компенсации;
  • ликвидируют причины уменьшения напряжения сети, даже когда нагрузка подсоединена протяженными кабелями;
  • увеличивают КПД мобильных генераторов на топливе;
  • упрощают запуск электрических двигателей;
  • увеличивают косинус фи;
  • ликвидируют реактивную мощность из контуров;
  • защищают от перенапряжений;
  • совершенствуют регулировку характеристик сетей.

Калькулятор расчета потерь напряжения в кабеле

Для любого кабеля расчет потерь напряжения можно произвести онлайн. Ниже приведен онлайн-калькулятор потерь в кабеле напряжения.

Калькулятор находится в разработке, в ближайшее время он станет доступным.

Расчет с применением формулы

Если вы желаете самостоятельно посчитать, каково падение напряжение в проводе, учитывая его длину и прочие факторы, влияющие на потери, можно использовать формулу расчета падения напряжения в кабеле:

ΔU, % = (Uн — U) * 100/ Uн,

где Uн — номинальное напряжение на входе в сеть;

U — напряжение на отдельном элементе сети (считают потери в процентах от номинала, имеющегося на входе напряжения).

Из этого можно вывести формулу расчета потерь электроэнергии:

ΔP, % = (Uн — U) * I * 100/ Uн,

где Uн — номинальное напряжение на входе в сеть;

I — фактический ток сети;

U — напряжение на отдельном элементе сети (считают потери в процентах от номинала, имеющегося на входе напряжения).

Таблица потерь напряжения по длине кабеля

Ниже приведены приблизительные падения напряжения по длине кабеля (таблица Кнорринга). Определяем необходимое сечение и смотрим значение в соответствующем столбце.

Жилы проводов при течении тока излучают тепло. Размер тока вместе с сопротивлением жил определяет степень потерь. Если иметь данные о сопротивлении кабеля и величине проходящего через них тока, получится узнать сумму потерь в контуре.

Таблицы не принимают во внимание индуктивное сопротивление, т.к. при использовании проводов оно чрезмерно мало и не может равняться активному.

Кто платит за потери электричества

Потери электроэнергии при передаче (если передавать ее на большие расстояния) могут быть существенными. Это влияет на финансовую сторону вопроса. Реактивную составляющую учитывают при определении общего тарифа использования номинального тока для населения.

Для однофазных линий она уже включена в стоимость, учитывая параметры сети. Для юридических лиц эта составляющая рассчитывается независимо от активных нагрузок и в предоставляемом счете указывается отдельно, по особому тарифу (дешевле, чем активная). Делается это ввиду наличия на предприятиях большого количество индукционных механизмов (например, электродвигателей).

Органы энергонадзора устанавливают допустимое падение напряжения, или норматив потерь в электрических сетях. За потери при передаче электроэнергии платит пользователь. Поэтому, с точки зрения потребителя, экономически выгодно подумать о том, чтобы снизить их, изменив характеристики электрической цепи.

Источник: https://odinelectric.ru/elektrosnabzhenie/kak-rasschitat-padenie-napryazheniya-po-dline-kabelya

Расчет падения напряжения в кабеле

Как рассчитать падение напряжения в цепи

> Электропроводка > Расчет падения напряжения в кабеле

Провода и кабели предназначены для передачи электроэнергии потребителям. При этом в протяженном проводнике падает напряжение пропорционально его сопротивлению и величине проходящего тока. В итоге к потребителю напряжение подается несколько меньше, чем оно было у источника (в начале линии). По всей длине провода потенциал будет изменяться из-за потерь в нем.

Потери напряжения в домашнем освещении

Выбор сечения кабеля производится с целью обеспечения его работоспособности при заданном максимальном токе. При этом следует учитывать его длину, от которой зависит еще один важный параметр – падение напряжения.

Линии электропередач выбирают по нормированному значению экономической плотности тока и рассчитывают на падение напряжения. Его отклонение от исходного не должно превышать заданных значений.

Величина проходящего через проводник тока зависит от подключаемой нагрузки. При ее увеличении возрастают также потери на нагрев.

На рисунке выше изображена схема подачи напряжения на освещение, где на каждом ее участке обозначены потери напряжения. Наиболее важной является самая удаленная нагрузка, и потери напряжения большей частью производятся для нее.

Потеря напряжения

Расчет потери напряжения ∆U на участке цепи длиной L делают по формуле:

∆U = (P∙r0+Q∙x0)∙L/ Uном, где

  • P и Q – мощности, Вт и вар (активная и реактивная);
  • r0 и x0 – активное и реактивное сопротивления линии, Ом/м;
  • Uном – номинальное напряжение, В.
  • Uном указывается в характеристиках электроприборов.

Согласно ПУЭ, допустимые отклонения напряжения от нормы следующие:

  • силовые цепи – не выше ±5 %;
  • схемы освещения жилых помещений и снаружи зданий – до ±5 %;
  • освещение предприятий и общественных зданий – от +5 % до -2,5 %.

Общие потери напряжения от трансформаторных подстанций до самой удаленной нагрузки в общественных и жилых зданиях не должны превышать 9%. Из них 5% относится к участку до главного ввода и 4% от ввода до потребителя. В соответствии с ГОСТ 29322-2014 номинал напряжения в трехфазных сетях – 400 В. При этом допускается отклонение от него на ±10% при нормальных условиях эксплуатации.

Нужно обеспечить равномерную нагрузку в трехфазных линиях на 0,4 кВ. Здесь важно, чтобы каждая фаза была нагружена равномерно. Для этого электродвигатели подключаются к линейным проводам, а освещение – между фазами и нейтралью, уравнивая таким образом нагрузки по фазам.

В качестве исходных данных используют значения токов или мощностей. Для протяженных линий учитывается индуктивное сопротивление, когда рассчитывают ∆U в линии.

Сопротивление x0 проводов принимают в диапазоне от 0,32 до 0,44 Ом/км.

Расчет потерь в проводниках производят по ранее приведенной формуле, где удобно разделить правую часть на активную и реактивную составляющие:

∆U = P∙r0∙L / Uном + Q∙x0∙L/ Uном,

Подключение нагрузки

Нагрузка подключается разными способами. Наиболее распространены следующие:

  • подключение нагрузки в конце линии (рис. а ниже);
  • равномерное распределение нагрузок по длине линии (рис. б);
  • линия L1, к которой подключена другая линия L2 с равномерно распределенными нагрузками (рис. в).

Схема, на которой показаны способы подключения нагрузок от электрощита

Расчет ЛЭП на потерю напряжения

  1. Выбор средней величины реактивного сопротивления для жил из алюминия или сталеалюминия, например, в 0,35 Ом/км.
  2. Расчет нагрузок P, Q.
  3. Расчет реактивной потери:

∆Up = Q∙x0∙L/Uном.

Определение допустимой активной потери из разности между потерей напряжения, которая задана, и вычисленной реактивной:

∆Ua = ∆U — ∆Up.

Сечение провода находится из отношения:

Источник: https://elquanta.ru/elektroprovodka/raschet-padeniya-napryazheniya.html

Падение напряжения

Как рассчитать падение напряжения в цепи

Для того чтобы понять, что такое падение напряжения, нужно вспомнить, какие бывают напряжения в электрической цепи. Всего их существует два вида. Напряжение источника питания относится к первому виду, источник должен быть подключен к контуру. Вторым видом является само снижение напряжения, оно может быть рассмотрено как отдельный элемент или в отношении всего контура.

Если взять лампу накаливания, установит в патрон и подключить провода от него в сетевую розетку, то напряжение, приложенное к цепи, составит 220В. Но если замерить вольтметром его значение на лампе, то станет понятно, что оно менее 220В. Это происходит потому, что появляется на электрическом сопротивлении снижение напряжения, которое имеет лампа. Это постепенное уменьшение напряжения в проводнике, по которому протекает ток, оно обусловлено тем, что проводник имеет активное сопротивление.

Также под уменьшением напряжения подразумевают величину при переходе из одной точки в другую (в цепи). Расчет падения напряжения можно просчитать по формуле: U=IR, где R – это сопротивление, I – это сила тока.

Роль электрической энергии

Электрическая энергия – это движение отрицательно заряженных электронов по проводнику. В выше приведенном примере спираль лампы имеет высокое сопротивление, значительно замедляет движущиеся электроны. Благодаря чему появляется свечение, но при этом энергия потока электронов снижается.

С уменьшением тока снижается и напряжение, поэтому замеры на лампе и розетки отличаются. Такая разница и будет являться снижением напряжения. Такая величина постоянно учитывается для того, чтобы предотвратить большое уменьшение напряжения.

Напряжение на резисторе

Снижение напряжения на резисторе напрямую зависит от силы тока и от его внутреннего сопротивления. Также свое влияние оказывают характеристики тока и температура. Если в цепь подключить амперметр, то падение определяют умножением сопротивления лампы на значения тока.

Стоит помнить о том, что не всегда удается с помощью простой формулы и измерительного устройства произвести расчет снижения напряжения. Если сопротивления параллельно подключены, то выявление величины усложнится. Приходится учитывать дополнительно на переменном токе реактивную составляющую.

Общие сведения о падении напряжения в цепи

Снижение напряжения осуществляется при переносе нагрузки, оно происходит на всем участке электроцепи (от начала кабеля до самой нагрузки). Работа нагрузки напрямую зависит от напряжения в его узлах. При определении сечения проводника необходимо учитывать, что оно должно быть такое, чтобы во время нагрузки напряжение поддерживалось в соответствующих границах, которых нужно придерживаться для правильного выполнения работы.

Также не следует пренебрегать сопротивлением проводов в цепи, конечно, оно низкое, но его влияние ощутимо. Во время передачи тока наблюдается уменьшение напряжения. Чтобы цепь освещения или двигатель правильно работали, необходимо постоянное поддержание напряжения на определенном уровне. Поэтому нужно рассчитать провода цепи таким образом, чтобы напряжение на зажимах нагрузки было в необходимых пределах.

Допустимые пределы напряжения в разных странах различны, что также не стоит забывать. Если снижение напряжения превышает значения, которые характерны для определенной страны, нужно применять провода с большим сечением для того, чтобы исправить сложившуюся ситуацию.

Но если напряжение уменьшить на 8%, то это приведет к нестабильной работе двигателя. К примеру, для нормальной работы двигателя нужно, чтобы напряжение от номинального значения было в пределах +5% в установившемся режиме работы. Также пусковой ток двигателя может превышать значение тока при полной нагрузке в 5- 8 раз, а иногда даже больше.

Источник: http://solo-project.com/articles/10/padenie-napryazheniya.html

Падение напряжения: расчет, формула, как найти

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

ЭТО ИНТЕРЕСНО:  Как читается квт

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение  происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Вам это будет интересно  Как рассчитать сопротивление цепиЗакон Ома для участка цепи

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок.

Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %.

Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Падение напряжения на резисторе

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Вам это будет интересно  Реактивное и активное сопротивление

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Вам это будет интересно  Определение плюса и минуса в электротехникеОднолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Источник: https://rusenergetics.ru/polezno-znat/padenie-napryazheniya

Как рассчитать сопротивление для понижения напряжения: формула падения на резисторе, онлайн-калькулятор

Резистор является одним из самых распространённых элементов в электрической цепи. С его помощью ограничивается ток и изменяется напряжение. Конструируя схемы, часто может понадобится рассчитать сопротивление для понижения напряжения. Это актуально при построении делителей цифровых устройств или блоков питания, поэтому уметь выполнять такие вычисления должен каждый радиолюбитель.

Резистор — это элемент, использующийся в электрической цепи и не требующий для своей работы источника питания. Предназначен он для трансформирования силы тока в напряжение и обратно. Кроме этого, он может преобразовывать электрическую энергию в тепловую и ограничивать величину тока. Но перед расчётом падения напряжения на резисторе желательно разобраться в сути этого процесса.

Резистор — весьма распространённый элемент, характеризующийся рядом параметров. Основными из них являются:

  • сопротивление;
  • величина рассеиваемой энергии;
  • рабочее напряжение;
  • мощность;
  • устойчивость к влиянию окружающей среды;
  • паразитная составляющая.

Пассивный электрический элемент обозначается на схеме в виде прямоугольника с двумя выводами из середины его боковых сторон. В центре фигуры может указываться мощность римскими цифрами или чёрточками. Например, вертикальная полоска обозначает выдерживаемую мощность элемента, равную 1 Вт. Перечёркнутый прямоугольник в обозначениях на схеме указывает, что такой резистор является переменным.

Резисторы могут выпускаться с постоянным и переменным сопротивлением. Разновидностью вторых являются подстроечные элементы. Отличие их от переменных заключается лишь в способе установки нужного значения.

На схемах и в технической литературе устройство обозначается латинской буквой R, рядом с которой указывается порядковый номер и его номинал в соответствии с Международной системой единиц (СИ). Например, R12 5 кОм — резистор на пять килоом, расположенный в схеме под 12 номером.

При изготовлении элемента используется резистивный слой, который может быть плёночным или объёмным. Он наносится на диэлектрическое основание, а сверху покрывается защитной плёнкой.

Значение сопротивления

Сопротивление является фундаментальной величиной в электрических процессах. Его значение неизменно связано с током и напряжением. Их общая зависимость описывается с помощью закона Ома: сила тока, возникшая на участке цепи, прямо пропорциональна разности потенциалов между крайними точками этого участка и обратно пропорциональна его сопротивлению. Из этого закона находится сопротивление по следующей формуле:

R = U / I, где:

  • R — сопротивление на участке цепи, Ом.
  • I — сила тока, проходящая через этот участок, А.
  • U — разность потенциалов на узлах части схемы, В.

Фактически же сопротивление элемента определяется его физической структурой и обусловлено колебаниями атомов в кристаллической решётке. Поэтому все материалы различаются на проводники, полупроводники и диэлектрики в зависимости от способности проводить электричество.

Ток — это направленное движение носителей заряда. Для его возникновения необходимо, чтобы вещество имело свободные электроны. Если к такому физическому телу приложить электрическое поле, то перемещаемые им заряды начнутся сталкиваться с неоднородностями структуры.

Эти дефекты образуются из-за различных примесей, нарушения периодичности решётки, тепловых флуктуаций. Ударяясь о них, электрон расходует энергию, которая преобразовывается в тепловую. В результате заряд теряет импульс, а величина разности потенциалов уменьшается.

Но закон Ома можно применить не для всех веществ. В электролитах, диэлектриках и полупроводниках линейная зависимость между тремя величинами наблюдается не всегда. Сопротивление таких веществ зависит от физических параметров проводника, а именно — его длины и площади поперечного сечения, при этом оно чувствительно к изменению температуры.

Эта зависимость описывается с помощью формулы R = p * l / S. То есть сопротивление прямо пропорционально длине и обратно пропорционально площади проводника. Величина p называется удельным сопротивлением и определяется типом материала. Его значение берётся из справочника.

Импеданс резистора

Закон Ома применим для идеального резистора, не обладающего паразитными сопротивлениями. Полное сопротивление (импеданс) определяется исходя из эквивалентной схемы. Точный расчёт сопротивления для понижения напряжения необходимо проводить по другим формулам. Эквивалентная схема резистора, кроме активного импеданса, содержит также ёмкостное и индуктивное сопротивление.

Первое приводит к медленному накоплению заряда, который рассеивается при изменении направления тока. Чем больше паразитная ёмкость, тем дольше она заряжается. Соответственно, чем быстрее ток изменяет своё направление, тем меньше его ёмкостное сопротивление. Второе же характеризуется магнитным полем, чье появление мешает току изменять направление, поэтому, чем быстрее ток изменяет своё движение, тем больше становится индуктивное сопротивление.

Импеданс вычисляется по формуле: I = U/Z, где Z = (R2+(Xc-Xl)2)½. Где:

  • R — активное значение, R = p*l/s.
  • Xc — ёмкостная величина, Хс = 1/w*C.
  • Xl — индуктивная величина, Хl = w*C.
  • w- циклическая частота, w = 2πƒ.

Зная полное сопротивление резистора, можно точнее рассчитать падение напряжения в нём. Но для измерения паразитных составляющих понадобится использовать узкоспециализированные приборы. В обычных расчётах сопротивление вычисляют, учитывая только его активное значение, а паразитные величины принимают за ничтожно малые.

Параллельное соединение

В электрических схемах на участках цепи используется как параллельное, так и последовательное соединение. Первое представляет собой цепь, в которой каждый её элемент подключён к другому обоими контактами, но при этом между собственными его выводами нет прямой электрической связи. Т. е. существует две точки (электрические узлы), к которым присоединено несколько резисторов.

При таком включении ток, проходя через узел, начинает разделяться, и через каждый элемент потечёт разное его значение. Величина тока на каждом элементе будет прямо пропорциональна сопротивлению резистора, поэтому общая проводимость на этом участке увеличится, а её импеданс уменьшится.

Формула, с помощью которой можно рассчитать общую проводимость, выглядит так: G = 1/ Rобщ = 1/ R1 + 1/ R2 ++ 1/ Rn, где n — обозначает порядковый номер резистора в цепи.

Преобразовав эту формулу, получится выражение вида: R общ = 1/G = (R1*R2** Rn) / (R1*R2 + R2*Rn ++ R1*Rn. Проанализировав его, можно сделать вывод, что при параллельном соединении импеданс всегда будет меньше самого маленького значения отдельного резистора.

При таком соединении напряжение между узлами одновременно является общей разностью потенциалов для всего участка и на каждом отдельно взятом резисторе. Поэтому если рассчитать падение напряжения на одном приборе, то оно будет таким же на любом параллельно подключённом элементе: U общ = U 1 = U 2 == U n.

А вот электрический ток, проходящий через отдельный элемент, исходя из закона Ома будет равен: I Rn = U Rn / R n.

Последовательное включение

Так называется объединение в один участок цепи двух или более резисторов, в котором их соединение между собой происходит только в одной точке. Импеданс при последовательном включении определяется как сумма сопротивлений каждого отдельного элемента: Rобщ = R1+R2++Rn.

Следовательно, ток, протекающий через такую цепочку, будет становиться всё меньше после прохождения через последовательно включённый резистор. Чем будет больше элементов в цепи, тем труднее ему будет пройти их всех. Таким образом, его общее значение определяется как Iобщ = U / (R1+R2++Rn).

Поэтому можно утверждать, что в последовательном соединении существует только один путь для протекания тока. Чем будет больше количество резисторов в линии, тем меньше будет ток на этом участке.

Падение разности потенциалов при таком типе соединения на каждом элементе будет иметь своё значение. Оно определяется формулой URn = IRn*Rn, и чем больше будет импеданс элемента, тем больше энергии в нём начнёт выделяться.

ЭТО ИНТЕРЕСНО:  Как называется столб с электричеством

Расчёт делителя напряжения

Резистивный делитель напряжения представляет элементарную схему для понижения напряжения. Состоять он может из двух или более элементов. Простейший делитель можно представить в виде двух участков цепи, которые называют плечами. Одно из них, которое располагается между положительной точкой потенциала и нулевой, — верхнее, а другое, между отрицательной и минусовой, — нижнее.

Такая схема используется для снижения напряжения как в постоянных, так и переменных цепях. Суть процесса заключается в следующем.

  • На резистивную схему от источника питания подаётся напряжение U.
  • Через резисторы последовательного участка цепи, образованного резисторами R1 и R2, начинает протекать ток.
  • В результате на каждом из них выделяется какое-то количество энергии, т. е. возникает падение напряжения.

Сумма напряжений на всём размахе линии равняется значению разности потенциалов источника питания. В соответствии с формулой: U = I*R падение напряжения прямо пропорционально силе тока и величине сопротивления. Учитывая, что ток, протекающий через резисторы, одинаковый, справедливыми будут формулы U1 = I*R1 и U2= I*R2.

Тогда общее падение напряжение на участке будет равно U = I *(R1+ R2). Исходя из этого можно найти силу тока: I = U /(R1+ R2). Используя эти два выражения, можно получить окончательные формулы для расчёта падения напряжения на каждом элементе:

  • U1 = R1*U/(R1+R2);
  • U2 = R2*U/(R1+R2).

Практическое применение такого делителя очень распространено из-за несложности реализации понижения напряжения. Например, пусть источник питания выдаёт 12 В, а на нагрузку необходимо подать 6 В, при этом её сопротивление составляет 10 кОм.

Для решения такой задачи рекомендуется использовать резисторы, сопротивление которых в десять раз меньше нагрузочного значения, поэтому, приняв R 1 = 1 кОм и подставив все известные значения в формулу напряжения на резисторе, получится, что 6 = R 2*12 (1000+ R 2) отсюда R 2 = 1 кОм.

Теперь, зная все величины, можно проверить верность расчёта. Падение разности потенциалов на первом элементе высчитывается как U 1 = 1000*12/(1000+1000) = 6 В, а общее напряжение — Uобщ = U 1+ U 2 = 12 В, что соответствует значению источника питания.

Следует отметить, что использование резисторов для понижения используется только при маломощных нагрузках, так как часть энергии превращается в тепло, а коэффициент полезного действия (КПД) очень низкий.

Вычисления онлайн

С помощью языков программирования (Java, Python, PHP) создаются приложения, позволяющие проводить онлайн-расчёт необходимых параметров резистора для снятия с него нужной величины напряжения. Написанные ими скрипты содержат все необходимые формулы и алгоритмы вычислений. Поэтому, введя исходные данные, буквально через секунду можно будет получить результат.

Обычно предлагаемы онлайн-калькуляторы содержат для наглядности графическое изображение схемы. Предлагаемыми для ввода характеристиками обычно являются:

  • входное напряжение, В;
  • пониженное напряжение, В;
  • сопротивление Rn, Ом.

Необходимо обратить внимание, что все величины вводятся в соответствии с СИ.

После внесения данных и нажатия кнопки «Рассчитать», кроме непосредственного определения нужного сопротивления, программы чаще всего выдают и минимальное значение необходимой мощности элементов.

Таким образом, рассчитать падение напряжения на резистивном элементе не так уж и сложно. Для этого необходимо знать особенности параллельного и последовательного подключения, а также закон Ома. А если в цепи много элементов, то можно воспользоваться онлайн-калькуляторами.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/formuly-pozvolyayuschie-rasschitat-soprotivlenie-dlya-ponizheniya-napryazheniya.html

Как найти напряжение на участке цепи

Основным законом электротехники, при помощи которого можно изучать и рассчитывать электрические цепи, является закон Ома, устанавливающий соотношение между током, напряжением и сопротивлением. Необходимо отчетливо понимать его сущность и уметь правильно пользоваться им при решении практических задач. Часто в электротехнике допускаются ошибки из-за неумения правильно применить закон Ома.

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.

В популярной форме этот закон можно сформулировать следующим образом: чем выше напряжение при одном и том же сопротивлении, тем выше сила тока и в то же время чем выше сопротивление при одном и том же напряжении, тем ниже сила тока.

Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:

Любой участок или элемент электрической цепи можно охарактеризовать при помощи трёх характеристик: тока, напряжения и сопротивления.

Как использовать треугольник Ома: закрываем искомую величину – два других символа дадут формулу для её вычисления. Кстати, законом Ома называется только одна формула из треугольника – та, которая отражает зависимость тока от напряжения и сопротивления. Две другие формулы, хотя и являются её следствием, физического смысла не имеют.

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно.

Другие статьи про электричество в простом и доступном изложении:

Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.

Рис 1. Применение закона Ома для участка цепи

Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.

Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения

Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.

Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны. Потери и падение напряжения – в чем различие?

Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.

Умножив I = 0,005 А на R —10 000 Ом, получим напряжение,равное 5 0 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В

В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление — в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.

По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.

Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.

Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница.

Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.

Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление.

А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.

Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.

Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .

На рис. 2 показан в качестве примера график закона Ома для участка цепи с сопротивлением 100 Ом. По горизонтальной оси отложено напряжение в вольтах, а по вертикальной оси — ток в амперах. Масштаб тока и напряжения может быть выбран каким угодно. Прямая линия проведена так, что для любой ее точки отношение напряжения к току равно 100 Ом. Например, если U = 50 В, то I = 0,5 А и R = 50 : 0,5 = 100 Ом.

Рис. 2 . Закон Ома (вольт-амперная характеристика)

График закона Ома для отрицательных значений тока и напряжения имеет такой же вид. Это говорит о том, что ток в цепи проходит одинаково в обоих направлениях. Чем больше сопротивление, тем меньше получается ток при данном напряжении и тем более полого идет прямая.

Приборы, у которых вольт-амперная характеристика является прямой линией, проходящей через начало координат, т. е. сопротивление остается постоянным при изменении напряжения или тока, называются линейными приборами . Применяют также термины линейные цепи, линейные сопротивления.

Существуют также приборы, у которых сопротивление изменяется при изменении напряжения или тока. Тогда зависимость между током и напряжением выражается не по закону Ома, а более сложно. Для таких приборов вольт-амперная характеристика не будет прямой линией, проходящей через начало координат, а является либо кривой, либо ломаной линией. Эти приборы называются нелинейными .

Немецкий физик Георг Симон Ом (1787—1854) открыл основной закон электрической цепи.

Закон Ома для участка цепи:

Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

  1. I — сила тока (в системе СИ измеряется — Ампер)
  2. Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
  3. Формула: I=frac
  4. U — напряжение (в системе СИ измеряется — Вольт)

Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.

Формула: U=IR

  • R— электрическое сопротивление (в системе СИ измеряется — Ом).
  • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
  • Формула R=frac
  • Определение единицы сопротивления — Ом

    1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1(Вольт) протекает ток 1 (Ампер).

    Закон Ома для полной цепи

    Определение: Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

    Формула I=frac

    Источник: https://hd01.ru/info/kak-najti-naprjazhenie-na-uchastke-cepi/

    Расчёт потерь напряжения в кабеле

    • Online расчёт заземления
    • Online расчёт сечения кабеля по мощности и току

    Потеря напряжения в кабеле — величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (по ГОСТ 23875-88). Этот параметр необходимо знать при производстве любых электромонтажных работ — начиная от видеонаблюдения и ОПС и заканчивая системами электроснабжения промышленных объектов.

    Рис.1 Рис.2

    При равенстве сопротивлений Zп1=Zп2=Zп3 и Zн1=Zн2=Zн3 ток в нулевом проводе отсутствует (Рис.1), поэтому для трёхфазных линий потери напряжения рассчитываются для одного проводника.

    В двух- и однофазных линиях, а также в цепи постоянного тока, ток идёт по двум проводникам (Рис.2), поэтому вводится коэффициент 2 (при условии равенства Zп1=Zп2).

    Пояснения к расчёту

    Расчёт потерь линейного (между фазами) напряжения в кабеле при трёхфазном переменном токе производится по формулам:

    или (если известен ток)
    где

    Расчёт потерь фазного (между фазой и нулевым проводом) напряжения в кабеле производится по формулам:

    ЭТО ИНТЕРЕСНО:  На каком расстоянии ставят опоры лэп
    или (если известен ток)
    где

    Для расчёта потерь линейного напряжения U=380 В; 3 фазы.

    Для расчёта потерь фазного напряжения U=220 В; 1 фаза.

    P — активная мощность передаваемая по линии, Вт;
    Q — реактивная мощность передаваемая по линии, ВАр;
    R — удельное активное сопротивление кабельной линии, Ом/м;
    X — удельное индуктивное сопротивление кабельной линии, Ом/м;
    L — длина кабельной линии, м;
    — линейное напряжение сети, В;
    — фазное напряжение сети, В.

    Пожелания, замечания, рекомендации по улучшению раздела расчётов на нашем сайте просьба присылать по электронной почте [email protected]Разрешается копирование java-скриптов при условии ссылки на источник.

    ВСЕ РАСЧЁТЫ

    Источник: https://www.ivtechno.ru/raschet_4

    Способы расчета падения напряжения с подробными примерами — Новости — 2020

    Первое соображение падения напряжения заключается в том, что в установившемся режиме нормальной нагрузки напряжение на оборудовании для утилизации должно быть достаточным.

    Способы расчета падения напряжения с подробными примерами

    Точные отпечатки в NEC рекомендуют калибровку питателей и ответвлений, чтобы максимальное падение напряжения не превышало 3%, при этом общее падение напряжения для фидеров и ответвлений не превышало 5% для эффективности работы .

    В дополнение к установившимся условиям необходимо учитывать падение напряжения в переходных режимах с внезапными сильноточными кратковременными нагрузками.

    Наиболее распространенными нагрузками этого типа являются пусковые токи двигателя во время запуска. Эти нагрузки вызывают падение напряжения в системе в результате падения напряжения в проводниках, трансформаторах и генераторах под высоким током. Это падение напряжения может иметь многочисленные неблагоприятные последствия для оборудования в системе, а оборудование и проводники должны быть спроектированы и рассчитаны таким образом, чтобы минимизировать эти проблемы.

    Во многих случаях потребуется снижение напряжения двигателей, чтобы уменьшить пусковой ток.

    • Формулы падения напряжения
      • Приблизительный метод
      • Точный метод # 1
      • Точный метод №2
    • Таблицы падения напряжения
    • вычисления

    Формулы падения напряжения

    Рассмотрим два наиболее распространенных метода расчета падения напряжения — приближенные и точные методы:

    1. Приближенный метод

    Падение напряжения E VD = IR cosθ + IX sinθ, где аббревиатуры такие же, как ниже «Точный метод».

    2. Точный метод # 1

    При отправке конечного напряжения и нагрузки PF известны.

    где:

    • E VD — падение напряжения, линия-нейтраль, вольт
    • E s — напряжение источника, линия-нейтраль, вольт
    • I — Линейный ток (ток нагрузки), ампер
    • R — сопротивление цепи (ветви, фидера), омы
    • X — Реактивное сопротивление цепи (ветви, фидера), Ом
    • cosθ — Коэффициент мощности нагрузки, десятичный
    • sinθ — реактивный коэффициент нагрузки, десятичный

    Если известно, что принимающее конечное напряжение, ток нагрузки и коэффициент мощности (PF) известны.

    E R — принимающее конечное напряжение.

    Вернуться к началу

    2. Точный метод №2

    Если прием или передача mVA и его коэффициент мощности известны при известном передающем или принимающем напряжении.

    или

    где:

    • E R — приемное линейное напряжение в кВ
    • E S — Отправка линейного напряжения в кВ
    • MVA R — прием трехфазного mVA
    • MVA S — отправка трехфазного mVA
    • Z — импеданс между и приемными концами
    • γ — угол импеданса Z
    • R — принимающий конец PF
    • S — Отправляющий конец PF, положительный при запаздывании

    Вернуться к началу

    Таблицы падения напряжения

    Ниже приведены таблицы для расчета падения напряжения для медных и алюминиевых проводников в магнитном (стальном) или немагнитном (алюминиевом или неметаллическом) кабелепроводе. Эти таблицы дают падение напряжения на ампер на 100 футов (30 м) длины цепи.

    Длина цепи от начальной точки до конечной точки цепи независимо от количества проводников.

    Таблицы основаны на следующих условиях:

    Состояние №1

    Три или четыре одиночных проводника в кабелепроводе, случайные. Для трехпроводного кабеля фактическое падение напряжения будет примерно одинаковым для небольших размеров проводников и высоких коэффициентов мощности. Фактическое падение напряжения будет на 10-15% ниже для больших размеров проводников и более низких коэффициентов мощности .

    Состояние № 2

    Падение напряжения происходит между фазами, для трехфазных, трехпроводных или трехфазных четырехпроводных цепей 60 Гц. Для других схем умножьте падение напряжения, указанное в таблицах, на следующие поправочные коэффициенты:

    Таблица коэффициентов коррекции:

    Трехфазная, четырехпроводная, фаза-нейтраль × 0, 577
    Однофазный двухпроводный × 1, 155
    Однофазный, трехпроводный, межфазный × 1, 155
    Однофазный, трехпроводный, с фаз-нейтралью × 0, 577

    Условие № 3

    Падение напряжения происходит при температуре проводника 75 ° C. Они могут использоваться при температуре проводника от 60 ° C до 90 ° C с разумной точностью (в пределах ± 5%). Однако при необходимости могут быть применены коэффициенты коррекции в таблице 1. Значения в таблице находятся в процентах от общего падения напряжения .

    • Для температуры проводника 60 ° C — SUBTRACT процент от Таблицы 1.
    • Для температуры проводника 90 ° C — ADD процент от Таблицы 1.

    Таблица 1 — Факторы коррекции температуры для падения напряжения

    Вернуться к началу

    вычисления

    Для расчета падения напряжения:

    1. Умножить ток в амперах на длину цепи в футах, чтобы получить ампер-ноги. Длина цепи — это расстояние от точки начала до конца нагрузки схемы.
    2. Разделите на 100.
    3. Умножьте правильное значение падения напряжения в таблицах. Результат — падение напряжения.

    Пример №1

    Двигатель 460 В, 100 л.с., работающий на 80% PF, потребляет 124 ток полной нагрузки. Он питается тремя медными проводниками 2/0 в стальном канале. Длина фидера составляет 150 футов (46 м) .

    Каково падение напряжения в податчике? Каково процентное падение напряжения?

    • 124 A × 150 футов (46 м) = 18 600 A-фут
    • Разделено на 100 = 186
    • Таблица: 2/0 медь, магнитный канал, 80% PF = 0, 0187186 x 0, 0187 = 3, 48 В капли3, 48 / 460 х 100 = 0, 76% падение

    Вывод: падение напряжения на 0, 76% очень приемлемо. (См. Статью 215 NEC, в которой говорится, что допустимое падение напряжения на подающем устройстве составляет 3% или менее).

    Чтобы выбрать минимальный размер проводника:

    1. Определите максимальное желаемое падение напряжения i, в вольтах.
    2. Разделите падение напряжения на ii (ампер x контур ноги).
    3. Умножьте на 100.
    4. Найдите ближайшую более низкую величину падения напряжения в таблицах, в правильной колонке для типа проводника, кабелепровода и коэффициента мощности. Прочитайте размер проводника для этого значения.
    5. Если это приводит к негативному кабелю, проверьте размеры кабельных наконечников для автоматических выключателей с литыми корпусами и плавких 4-х переключателей. В случае превышения размера выступов перейдите к следующему более высокому рейтингу.

    Вернуться к началу

    Пример №2

    Трехфазный четырехпроводный источник питания на цепи 208 В длиной 250 футов (76, 2 м) . Нагрузка составляет 175 А при 90% PF . Желательно использовать алюминиевые 7-проводники в алюминиевом кабелепроводе.

    Какой размер проводника требуется для ограничения падения напряжения до 2% между фазами?

    • VD = 2/100 × 208 = 4, 16 В
    • 4, 16 / (175 × 250) = 0, 0000951
    • 0, 0000951 × 100 = 0, 00951
    • В таблице, в алюминиевых проводниках, немагнитном канале, 90% PF, ближайшее значение ниже 0, 0091. Требуемый проводник составляет 12 500 ккм. (Размер 4/0 THW будет иметь достаточную мощность, но падение напряжения будет чрезмерным ).

    Таблица 2 — Напряжение падения напряжения на ампер на 100 футов (30 м); Трехфазная, фаза-фаза

    Таблица 2 — Падение напряжения — Вольт на ампер на 100 футов (30 м); Трехфазный, межфазный

    Вернуться к началу

    Ссылки // Системы распределения энергии EATON

    ПОИСК: Статьи, программное обеспечение и руководства

    Источник: https://ru.electronics-council.com/voltage-drop-calculation-methods-with-examples-explained-details-83985

    Как рассчитать падение напряжения по длине кабеля по формуле и таблице

    При передаче электрического тока возможна неравномерная работа потребителей на различных участках цепи. Причин такого явления может быть несколько, и основной из них является падение напряжения.

    Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

    Через силу тока и сопротивление

    Значение Формула
    Базовый расчёт напряжения на участке цепи U=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах
    Определение напряжения в цепи переменного тока U=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи

    Закон Ома имеет исключения для применения:

    1. При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
    2. При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
    3. Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
    4. При нахождении под воздействием высокого напряжения проводников или диэлектриков.
    5. Во время процессов, проходящих в устройствах на основе полупроводников.
    6. При работе светодиодов.

    Через мощность и силу тока

    При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.

    При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.

    При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.

    Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.

    Через работу и заряд

    Методика расчёта используется в лабораторных задачах и на практике не применяется.

    Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

    Расчёт сопротивления

    При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.

    Значение Формула
    Расчет сопротивления одного элемента R=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах
    Расчет для однородного проводника R=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2)

    Последовательное подключение

    При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2++Rn, где R=R1+R2++Rn — значения сопротивления элементов в Омах.

    Параллельное подключение

    Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.

    Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2++1/Rn.

    В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.

    Потери напряжения

    Потеря напряжения представляет собой расход электрической энергии на преодоление сопротивления и нагревание проводов.

    Падение напряжения происходит при работе различных электронных компонентов, например, диодов. Складывается оно из суммы порогового напряжения p-n перехода и проходящего через диод тока, умноженного на сопротивление.

    При прохождении тока через резистор также наблюдается падение напряжения. Этот эффект используется для снижения напряжения на отдельных участках цепей. Например, для использования приборов рассчитанных на низкое напряжение в цепях с высоким значением напряжения.

    Последовательное включение сопротивления

    На схеме приведен пример последовательного включения резистора, который вызывает падение напряжения на лампе с 12 до 7 Вольт. На этом принципе построены регуляторы интенсивности освещения (диммеры).

    При эксплуатации проводки с длиной до 10 метров потерями напряжения можно пренебречь.

    Потеря напряжения на резисторе и способы замера показаны в видео от канала «Радиолюбитель TV».

    К чему приводит потеря напряжения

    Потери напряжения в кабельной системе являются причинами ряда негативных явлений:

    • неполноценная и некорректная работа потребителей;
    • повреждение и выход из строя оборудования;
    • понижение мощности и крутящего момента электродвигателей (особенно заметное в момент пуска);
    • неравномерное распределение тока между потребителями на начальном участке и в конце цепи;
    • из-за работы ламп на неполном накале происходит неполное использование мощности тока, что ведет к потерям электроэнергии.

    От чего зависит потеря

    Потеря напряжения в цепях переменного и постоянного напряжения имеет зависимость от силы тока и сопротивления проводника. При увеличении указанных параметров потери напряжения возрастают. Кроме того, на потерю оказывает влияние конструкция кабелей. Плотность прижатия и степень изоляции проводников в кабеле превращают его в конденсатор, который формирует заряд с ёмкостным сопротивлением.

    Потеря напряжения на диодах зависит от типа материала. При использовании германия значение лежит в пределах 0,5-0,7 вольта, на более дешевых кремниевых значение увеличивается и достигает 0,7-1,2 вольта. При этом падение не зависит от напряжения в цепи, а зависит только от силы тока.

    К основным причинам потерь тока в магистралях относят:

    1. При прохождении тока происходит нагрев проводника и дополнительное формирование ёмкостного сопротивления, являющегося частью реактивного. При возникновении реактивной нагрузки возникает эффект неполной реализации энергии, частичного отражения от нагрузки и возникновения циркулирующих паразитных токов.
    2. При больших реактивных сопротивлениях возникают скачки напряжения и силы тока, а также дополнительный разогрев проводки.
    3. Индуктивная мощность, возникающая при работе обмоток трансформаторов.

    Ещё одной причиной падения напряжения на линиях является воровство электроэнергии.

    В бытовых условиях потери напряжения зависят от ряда факторов:

    • затраты энергии на нагрев проводки из-за повышенного потребления;
    • плохой контакт на соединениях;
    • емкостный и индуктивный характер нагрузки;
    • применение устаревших потребителей.

    Причины снижения напряжения изложены в видео от канала ElectronicsClub.

    Допустимые значения

    Значение потери напряжения относится к регламентированным значениям и нормируется несколькими правилами и инструкциями ПУЭ (Правила устройства электроустановок).

    Источник: https://razvodka.net/wiring/napryazhenie-formula-7232/

    Как рассчитать падение напряжения на резисторе?

    При передаче электрического тока возможна неравномерная работа потребителей на различных участках цепи. Причин такого явления может быть несколько, и основной из них является падение напряжения.

    Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

    Понравилась статья? Поделиться с друзьями:
    Электро Дело
    Для любых предложений по сайту: [email protected]