Как влияет сопротивление на напряжение

Как найти напряжение формула: чему равно напряжение, как найти сопротивление нагрузки

Как влияет сопротивление на напряжение

В наши дни электричество играет в жизни человека очень большую роль, в следствие чего базовые знания в области физики и электротехники нужны практически каждому. Напряжение является одной из главных физических величин, которая позволяет объяснить теорию возникновения электрического поля и методы подбора оптимального сечения кабеля для применения его в повседневной жизни.

Что такое напряжение в сети электричества

Напряжение – это физическая величина, которая характеризует электрическое поле. Иными словами, оно показывает, какую работу оно совершает при перемещении одного положительного заряда на определённое расстояние.

Показатель напряжения на вольтметре

За единицу напряжения в международной системе принимается такой показатель на концах проводника, при котором заряд в 1 Кл совершает работу в 1 Дж для перемещения его по этому проводнику. Общепринятой единицей измерения напряжения считается 1 В – Вольт.

Важно! Работа измеряется в Джоулях, заряды в Кулонах, а напряжение в Вольтах, следовательно, 1 Вольт равняется 1 Джоулю, деленному на 1 Кулон.

Чему равно напряжение

Напряжение напрямую связано с работой тока, зарядом и сопротивлением. Чтобы измерить напряжение непосредственно в электрической цепи, к ней нужно подключить вольтметр. Он присоединяется к цепи параллельно, в отличие от амперметра, который подключается последовательно. Зажимы измерительного прибора крепятся к тем точкам, между которыми нужно вычислить напряжение. Чтобы он правильно показал значение, нужно включить цепь. На схемах вольтметр обозначается буквой V, обведенной в кружок.

Изображение вольтметра и электрической цепи

Напряжение обозначается латинской [U], а измеряется в [В]. Оно равно работе, которое совершает поле при перемещении единичного заряда. Формула напряжения тока – это U = A/q, где A – работа тока, q – заряд, а U – само напряжение.

Электрическое поле

Формула закона Ома

Свои опыты Ом направлял на изучение такой физической величины, как сопротивление, в результате чего в 1826 году он стал автором закона, который не потерял совей актуальность вплоть до сегодняшнего дня. Из своих опытов Ом вывел, что в различных цепях сила тока может возрастать с различной скоростью, и происходит это по мере увеличения напряжения.

Также, Ом сделал вывод, что каждый проводник обладает индивидуальными свойствами проводимости.

Сопротивление обозначается заглавной латинской [R] и измеряется в Омах. Сопротивление – физическая величина, характеризующая свойства проводника оказывать влияние на идущий по нему ток. Оно прямо пропорционально напряжению  в сети и обратно пропорционально  силе тока. В виде формулы данный закон можно записать как R = U/I, где U – напряжение, а I – сила тока. 1 Ом равняется 1 Вольту, деленному на 1 Ампер.

Запомните! Реостат – прибор, обеспечивающий возможность изменять сопротивление. Прежде всего, он влияет на показатель R в цепи, а, следовательно, на 2 другие величины, описанные в законе Ома. Силу тока может помочь определить амперметр.

Ползунковый реостат

Из формулы закона Ома можно вывести практически любую зависимость, связанную с электричеством. Также, существует понятие удельного сопротивления проводника – физической величины, которая демонстрирует, каким сопротивлением будет обладать проводник из определенного вещества. Обозначается эта величина буквой ρ и через неё можно также найти сопротивление в цепи как произведению удельного сопротивления и длины проводника, деленного на площадь его поперечного сечения.

Физический смысл удельного сопротивления показывает, какое влияние будет оказывать проводник длиной в 1 м с площадью поперечного сечения в 1 квадратный мм, изготовленный из определенного вещества. Измеряется в Омах, умноженных на метр: [ρ] = [Ом*м].

Ом и формула

Как найти сопротивление нагрузки

Сопротивление нагрузки обозначается латинскими буквами Rn или Rн. По сути, это является тем же сопротивлением участка цепи и вычисляется также по формулам закона Ома. Нагрузка обозначается символами, которые на электрической схеме изображаются в виде крестиков в кружке – лампочкой; то есть двигатель, лампа, конкретный прибор и т. д.

Каждая нагрузка имеет своё собственное сопротивление. Например, если к сети подключена одна лампочка, то сопротивление нагрузки – показатель этого единственного прибора в цепи. Если к цепи подключено несколько нагрузок, то сопротивление считается суммарно для каждой из них.

Сопротивление нагрузки вычисляется в соответствии с законом Ома, то есть Rn = U/I. Если к сети подключено несколько нагрузок, то оно будет рассчитываться следующим образом: сначала находится сопротивление каждой отдельной «лампочки».

Далее Rn вычисляется в зависимости от того, какой тип подключения в цепи: последовательное или параллельное. При параллельном 1/R = 1/R1 + 1/R2 + 1/Rn, где n –количество подключенных приборов.

Если же соединение последовательное, общее R равно сумме всех R цепи.

Последовательное/параллельное соединения

Как найти с помощью формулы напряжение

Людей, интересующихся электричеством и физикой, всегда волнует вопрос, как найти напряжения, если известны другие характеристики. Его можно найти через многие формулы: в соответствии с законом Ома, через работу тока, путём сложения всех напряжений в электрической цепи и практическим способом – с помощью вольтметра. Как вычислить показатель с помощью последнего способа было описано выше.

Измерение напряжения

По каким формулам вычисляется напряжение через работу и сама сила тока, рассказывают на уроках физики, так как эти величины считаются базовыми. Работа тока равна произведению напряжения и заряда: A = U*q. Также, из этой формулы выводится A = U*I*t, так как заряд – произведение силы тока и времени. Из них следует, что U = A/q или U = A/(I*t). Кроме того, одной из основных является формула напряжения, выведенная из закона Ома: U = R/I.

Важно! Определить напряжение можно и через мощность электрического тока. Мощность [P] равна A/t, и, так как A = U*I*t, конечная формула выглядит, как P = (U*I*t)/t. Здесь t сократится, и останется P = U*I, из которой следует, что U = P/I.

Как найти силу тока через сопротивление и напряжение

Сила тока обозначается латинскими [I] или [Y], и она зависит от количества заряда, перенесенного от одного полюса к другому за определенный промежуток времени, т.е. I = q/t. Измеряется сила тока в амперах, а узнать её значение в цепи можно при помощи амперметра.

Мужчина считает силу тока

Существуют формулы определения силы тока через напряжение и сопротивление. В первом случае произведение силы тока на время равняется работе, деленной на напряжение: I*t = A/U, во втором – по закону Ома, I = U/R. Через мощность сила будет равняться P/U.

При последовательном соединении, сила тока одинакова на всех участках цепи, следовательно, равна общему значению в цепи. В противоположном случае сила электрического тока равняется сумме силы тока всех нагрузок.

Таким образом, существует огромное множество формул для нахождения силы тока, напряжения и сопротивления. Они всегда могут пригодиться для теории, а на практике всегда помогут специальные приборы – амперметр и вольтметр.

Источник: https://rusenergetics.ru/polezno-znat/kak-nayti-napryazhenie-formula

Закон Ома для полной цепи (DC)

Как влияет сопротивление на напряжение

Рассмотрим Закон Ома (Ohm's law) для полной электрической цепи постоянного тока. Здесь нас прежде всего интересует его практическое отношение к постоянному току (direct current). Различают две формулировки Закона Ома, одна для участка цепи, а другая для полной цепи. В последней учитывается источник тока, точнее его внутреннее сопротивление.

Простейшая электрическая цепь постоянного тока состоит из источника тока и одной единственной резистивной нагрузки, а попросту из — активного сопротивления.

Закон Ома — закон пропорциональности

Формулировка Закона Ома для полной цепи и для участка цепи — это утверждение пропорциональности. Устанавливается достаточна простая алгебраическая связь между величинами силы тока, суммы сопротивлений (r+R) и ЭДС источника тока.

Сила тока в электрической цепи, прямо пропорциональна ЭДС источника и обратно пропорциональна сумме внутреннего сопротивления этого источника и общего сопротивления цепи.

Наиболее понятное и простое применение Закона Ома в такой формулировке — это электрическая цепь с одним источником тока в ветви (контуре). Кроме Закона Ома, для расчёта электрических цепей, необходимо знать правила Кирхгофа, а также иметь базовые представления об элементах цепей, таких как узлы, ветви, контуры, двухполюсники и т. п. Но ограничившись только Законом Ома для полной цепи можно сделать несколько важных выводов.

Потери на внутреннем сопротивлении источника ЭДС

Самый простой пример иллюстрирующий влияние внутреннего сопротивления источника тока — это гальванические элементы (батареи) и аккумуляторы. Способность источника тока выдавать большое значение силы тока напрямую зависит от его внутреннего сопротивления. Чем оно больше, тем меньший ток способен выдать источник ЭДС.

Допустим у нас имеется аккумуляторная батарея на 12 Вольт (В), а в качестве нагрузки мы применяем лампу накаливания мощностью 24 Ватт (Вт). Как узнать сопротивление нагрузки при устоявшемся режиме работы, то есть когда лампа горит в полный накал? Это сделать достаточно просто. Мощность (24 Вт) делим на напряжение (12 В), в итоге мы получаем расчётное значение рабочего тока в 2 Ампер (А).

Чтобы вычислить сопротивление нагрузки, нужно воспользоваться Законом Ома для участка цепи. В нашем случае падение напряжения на нагрузке, то есть лампе накаливания должно быть 12 В, а рабочий ток для выхода на мощность в 24 Вт будет 2 А. Применяем закон пропорциональности и находим сопротивление нагрузки.

В итоге мы получаем расчётное рабочее сопротивление нагрузки R равное 6 Ом (12 В/2 А).

Теперь же вернёмся к нашему источнику ЭДС с его внутренним сопротивлением. Как оно будет влиять на ток в цепи? Допустим, что мы измерили напряжение на клеммах аккумулятора и оно оказалось равным 12,5 Вольт, затем подключили нашу нагрузку — лампочку накаливания 24 Ватт, на номинальное напряжение в 12 Вольт. Вроде бы всё должно работать, но оказывается, что лампа светит тускло, в половину накала.

В чём же может быть причина? Вот тут как раз таки можно и нужно применять Закон Ома для полной цепи. Необходимо учитывать внутреннее сопротивление источника. Так как визуально лампа светит тускло, значит не выходит на свою норму в потребления 24 Вт, а значит напряжение и ток на ней недостаточны. Казалось бы, подключили к аккумулятору у которого на выходе 12,5 Вольт, но что-то тут не так.

Что именно?

Нужно провести измерение падения напряжения непосредственно на лампе, тогда окажется, что оно совсем не 12 Вольт, а гораздо меньше, допустим 6 Вольт. Условно предположим, что сопротивление лампы в 6 Ом стабильно и не зависит от нагрева. Тогда мы можем вновь воспользоваться Законом Ома для участка цепи, чтобы найти значение тока. В нашем случае это достаточно просто сделать.

Необходимо падение напряжения на лампе в 6 Вольт, разделить на её сопротивление в 6 Ом. В результате мы получим значение тока в цепи равное 1 Ампер. Вот оно что! Для того, чтобы лампа горела как положено и давала все свои 24 Ватт мощности, нужен ток в 2 А, а у нас ровно половина — 1 А.

Можно сразу сказать, что на лампе выделяется мощность всего в 6 Ватт, что явно недостаточно.

Почему же при ЭДС источника — аккумулятора в 12,5 Вольт происходит такое, казалось бы несоответствие? Сумма падений напряжений в контуре, а у нас как раз таки один единственный контур цепи, всегда равно ЭДС источника. Отсюда делаем вывод, что у нас куда-то делось 6,5 Вольт (12,5-6). А делись они вот куда.

Внутреннее сопротивление источника тока можно выделить наружу только в схеме, а на практике оно как бы глубоко запрятано в конструкции источника. Разумеется, что разобрав источник на части, мы не обнаружим там никакого внутреннего сопротивления.

Оно существует умозрительно, на схемах, для удобства, а в реальности это характеристика сторонних сил, которые создают ту самую ЭДС.

В итоге, у нас выходит, по вышеприведённому примеру, что сам источник тока съедает мощность на себя, да ещё к тому же она больше, чем полезная нагрузка — лампочка.

При токе в 1 А, и при падении напряжения в 6,5 В на внутреннем сопротивлении мы имеем 6,5 Вт бесполезных потерь на источнике тока!!! Выдаёт на нагрузку 6 Вт, а сам кушает чуть больше — 6,5 Вт.

Эффективность заведомо меньше 50%. Вот вам и применение Закона Ома для полной цепи.

Давайте попробуем решить обратную задачу. Какое внутреннее сопротивление источника тока с ЭДС равной 12,5 Вольт должно быть, чтобы падение напряжения на лампе в 24 Вт было равным 12 В?

Исходя из задачи, можно сразу же вычислить падение напряжения на внутреннем сопротивлении. Оно должно быть в нашем случае равным всего 0,5 В. Но для того, чтобы пользуясь Законом Ома вычислить значение внутреннего сопротивления, нам нужно знать силу тока.

Учитывая, что мы хотим получить с нагрузки 24 Вт мощности, то для этого нам необходим ток в 2 Ампер. Для расчёта можно смело брать эту величину. Теперь узнать внутреннее сопротивление источника достаточно просто. Оно будет равно 0,5 В делённые на ток в 2 А, то есть 0,25 Ом.

Эта величина значительно меньше той, которая была в примере, когда лампа горела тускло, всего на 6 Вт мощности.

При внутреннем сопротивлении в 0,25 Ом и при нагрузке в 6 Ом мы получим достаточно эффективное использование источника тока. На нагрузке у нас будет выделятся мощность в 24 Вт, а потери источника на внутреннем сопротивлении составят всего на всего 1 Вт (0,5Х2). Соотношение меньше чем 1 к 10.

Однако, если мы с вами к источнику с таким малым внутренним сопротивлением подключим нагрузку в 0,25 Ом, то есть внутреннее сопротивление и сопротивление нагрузки равны, тогда ток в цепи подскочит до значения 25 А (12,5/0,5).

На нагрузке будет выделятся мощность равная 156,25 Вт и точно такая же будет расходоваться в самом источнике.

Выбор источника тока по мощности нагрузки

Правильное понимание Закона Ома для полной цепи позволяет правильно рассчитать и выбрать источник тока по нагрузке, а также позволяет своевременно выявить дефекты источников тока. Тот источник тока, который не пригоден для низкоомной нагрузки, потому как его внутреннее сопротивление в больше или равно сопротивлению нагрузки, будет вполне пригоден в эксплуатации для питания электрической цепи с нагрузкой в 10 раз большим сопротивлением, чем его собственное.

ЭТО ИНТЕРЕСНО:  Как вырабатывается электричество на тэц

Чем большую мощность нужно получить на нагрузке при малом значении ЭДС, тем меньше должно быть внутреннее сопротивление источника. Поэтому самыми лучшими источниками постоянного тока (DC) в настоящее время остаются химические аккумуляторы, хотя вполне возможно, что их могут превзойти в этом полупроводниковые источники тока — солнечные батареи.

Оптимальным считается, когда падение напряжения на внутреннем сопротивлении, более чем в 10 раз меньше чем падение напряжения на полезной нагрузке. Если говорить языком пропорциональности, то это означает, что зная сопротивление нагрузки или её мощность, нужно выбирать источник тока, где его внутреннее сопротивление (импеданс) будет более чем в 10 раз меньшим.

Дата: 18.05.2015

Valentin Grigoryev (Валентин Григорьев)

Возможно Вам будут интересны следующие статьи из этого раздела:

Если Вы не нашли ничего интересного в этом разделе, тогда Вам следует воспользоваться левым вертикальным меню, чтобы попасть в интересующий Вас раздел сайта.

Источник: http://electricity-automation.com/page/zakon-oma-dlya-polnoy-tsepi-dc

Активное и реактивное сопротивление. Треугольник сопротивлений

Как влияет сопротивление на напряжение

Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока

Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

Активное сопротивление

В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, равно активному сопротивлению.

При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:

R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.

На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

Реактивное сопротивление

Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением.

Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения.

При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

Активное и реактивное сопротивление, свойства и разновидности

Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

Треугольник сопротивлений

Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/aktivnoe-i-reaktivnoe-soprotivlenie/

Входное и выходное сопротивление

Входное и выходное сопротивление является очень важным в электронике.

Предисловие

Ладно, начнем издалека Как вы знаете, все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и тд. В нашей статье будем использовать понятие “блок”. Например, источник питания, собранный по этой схеме:

состоит из двух блоков. Я их пометил в красном и зеленом прямоугольниках.

В красном блоке мы получаем постоянное напряжение, а в зеленом блоке мы его стабилизируем. То есть блочная схема будет такой:

Блочная схема – это условное деление. В этом примере мы могли бы даже взять трансформатор, как отдельный блок, который понижает переменное напряжение одного номинала к другому. Как нам удобнее, так и делим на блоки нашу электронную безделушку. Метод “от простого к сложному” полностью работает в нашем мире. На низшем уровне находятся радиоэлементы, на высшем – готовое устройство, например, телевизор.

Ладно, что-то отвлеклись. Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.

– Ага! Так что же получается? Я могу просто тупо взять готовые блоки и изобрести любое электронное устройство, которое мне придет в голову?

Да! Именно на это нацелена сейчас современная электроника ;-) Микроконтроллеры  и конструкторы, типа Arduino, добавляют еще больше гибкости в творческие начинания молодых изобретателей.

На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением.

Думаю, все помнят, что такое сопротивление и что такое резистор. Резистор хоть и обладает сопротивлением, но это активное сопротивление. Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением.

Но что такое входное и выходное сопротивление? Это уже что-то новенькое. Если прислушаться к этим фразам, то входное сопротивление – это сопротивление какого-то входа, а выходное – сопротивление какого-либо выхода. Ну да, все почти так и есть.

И где же нам найти в схеме эти входные и выходные сопротивления?  А вот “прячутся” они в самих блоках радиоэлектронных устройств.

Входное сопротивление

Итак, имеем какой-либо блок. Как принято во всем мире, слева – это вход блока, справа – выход.

Как и полагается, этот блок используется в каком-нибудь радиоэлектронном устройстве и выполняет какую-либо функцию. Значит, на его вход будет подаваться какое-то входное напряжение Uвх от другого блока или от источника питания, а на его выходе появится напряжение Uвых (или не появится, если блок является конечным).

Но раз уж мы подаем напряжение на вход (входное напряжение Uвх), следовательно, у нас этот блок будет кушать какую-то силу тока Iвх.

Теперь самое интересное От чего зависит Iвх ? Вообще, от чего зависит сила тока в цепи? Вспоминаем закон Ома для участка цепи :

Значит, сила тока у нас зависит от напряжения и от сопротивления. Предположим, что напряжение у нас не меняется, следовательно, сила тока в цепи будет зависеть от СОПРОТИВЛЕНИЯ. Но где нам его найти?  А прячется оно в самом каскаде и называется входным сопротивлением.

То есть, разобрав такой блок, внутри него мы можем найти этот резистор? Конечно же нет). Он является своего рода сопротивлением радиоэлементов, соединенных по схеме этого блока. Скажем так, совокупное сопротивление.

Как измерить входное сопротивление

Как мы знаем, на каждый блок подается какой-либо сигнал от предыдущего блока или это может быть даже питание от сети или батареи. Что нам остается сделать?

1)Замерить напряжение Uвх, подаваемое на этот блок

2)Замерить силу тока Iвх, которую потребляет наш блок

3) По закону Ома найти входное сопротивление Rвх.

Если у вас входное сопротивление получается очень большое, чтобы замерить его как можно точнее, используют вот такую схему.

Мы  с вами знаем, что если входное сопротивление у нас большое, то входная сила тока в цепи у нас будет очень маленькая (из закона Ома).

Падение напряжения на резисторе R обозначим, как UR

Из всего этого получаем

Когда мы проводим эти измерения, имейте ввиду, что напряжение на выходе генератора не должно меняться!

Итак, давайте посчитаем, какой же резистор нам необходимо подобрать, чтобы как можно точнее замерять это входное сопротивление. Допустим, что у нас входное сопротивление Rвх=1 МегаОм, а резистор взяли  R=1 КилоОм. Пусть генератор выдает постоянное напряжение U=10 Вольт. В результате, у нас получается цепь с двумя сопротивлениями. Правило делителя напряжения гласит: сумма падений напряжений на всех сопротивлениях в цепи равняется ЭДС генератора.

В результате получается цепь:

 Высчитываем силу тока в цепи в Амперах

Получается, что падение напряжения на сопротивлении R в Вольтах будет:

Грубо говоря 0,01 Вольт. Вряд ли вы сможете точно замерить такое маленькое напряжение на своем китайском мультиметре.

Какой отсюда вывод? Для более точного измерения высокого входного сопротивления надо брать добавочное сопротивление также  очень большого номинала.  В этом случае работает правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, и наоборот, на меньшем сопротивлении падает меньшее напряжение.

Измерение входного сопротивления на практике

Ну все, запарка прошла ;-). Давайте теперь на практике попробуем замерить входное сопротивление какого-либо устройства. Мой взгляд сразу упал на Транзистор-метр. Итак, выставляем на блоке питания рабочее напряжение этого транзистор-метра, то есть 9 Вольт, и во включенном состоянии замеряем потребляемую силу тока. Как замерить силу тока в цепи, читаем в этой статье. По схеме все это будет выглядеть вот так:

А на деле вот так:

Итак, у нас получилось 22,5 миллиАмпер.

Теперь, зная значение потребляемого тока, можно найти по этой формуле входное сопротивление:

Получаем:

Выходное сопротивление

Яркий пример выходного сопротивления – это закон Ома для полной цепи, в котором есть так называемое “внутреннее сопротивление”. Кому лень читать про этот закон, вкратце рассмотрим его здесь.

Что мы имели? У нас был автомобильный аккумулятор, с помощью которого мы поджигали галогенную лампочку. Перед тем, как цеплять лампочку, мы замеряли напряжение на клеммах аккумулятора:

И как только  подсоединяли лампочку, у нас напряжение на аккумуляторе становилось меньше.

Разница напряжения,  то есть 0,3 Вольта (12,09-11,79) у нас падало на так называемом внутреннем сопротивлении r ;-) Оно же и есть ВЫХОДНОЕ СОПРОТИВЛЕНИЕ. Его также называют еще сопротивлением источника или эквивалентным сопротивлением.

У всех аккумуляторов есть это внутреннее сопротивление r, и “цепляется” оно последовательно с источником ЭДС (Е).

Но только ли аккумуляторы и различные батарейки обладают выходным сопротивлением? Не только. Выходным сопротивлением обладают все источники питания. Это может быть блок питания, генератор частоты, либо вообще какой-нибудь усилитель.

В теореме Тевенина (короче, умный мужик такой был)  говорилось, что любую цепь, которая имеет две клеммы и содержит в себе туеву кучу различных источников ЭДС и резисторов разного номинала можно привести тупо к источнику ЭДС с каким-то значением напряжения (Eэквивалентное) и с каким-то внутренним сопротивлением (Rэквивалентное).

Eэкв  – эквивалентный источник ЭДС

Rэкв  – эквивалентное сопротивление

То есть получается, если какой-либо источник напряжения питает нагрузку, значит, в источнике напряжения есть ЭДС и эквивалентное сопротивление, оно же выходное сопротивление.

В режиме холостого хода (то есть, когда к выходным клеммам не подцеплена нагрузка) с помощью мультиметра мы можем замерить ЭДС (E). С замером ЭДС вроде бы понятно, но вот как замерить Rвых ?

В принципе, можно устроить короткое замыкание. То есть замкнуть выходные клеммы толстым медным проводом, по которому у нас будет течь ток короткого замыкания Iкз.

ЭТО ИНТЕРЕСНО:  Что такое амперы в электричестве

В результате у нас получается замкнутая цепь с одним резистором. Из закона Ома получаем, что

Но есть небольшая загвоздка. Теоретически  – формула верна. Но на практике я бы не рекомендовал использовать этот способ. В этом случае сила тока достигает бешеного значения, да вообще, вся схема ведет себя неадекватно.

Измерение выходного сопротивления на практике

Есть другой, более безопасный способ. Не буду повторяться, просто скопирую со статьи закон Ома для полной цепи, где мы находили внутреннее сопротивление аккумулятора. В той статье, мы к акуму цепляли галогенную лампочку, которая была нагрузкой R. В результате по цепи шел электрический ток. На лампочке и на внутреннем сопротивлении у нас падало напряжение, сумма которых равнялась ЭДС.

Итак, для начала замеряем напряжение на аккумуляторе без лампочки.

Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае E=12,09 Вольт.

Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем резисторе и на нагрузке, в данном случае на лампочке:

Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем резисторе падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r:

Заключение

Входное и выходное сопротивление каскадов (блоков) в электронике играют очень важную роль. В этом мы убедимся, когда начнем рассматривать статью по согласованию узлов радиоэлектронных схем. Все качественные вольтметры и осциллографы также стараются делать с очень высоким входным сопротивлением, чтобы оно меньше сказывалось на замеряемый сигнал и не гасило его амплитуду.

С выходным сопротивлением все намного интереснее. Когда мы подключаем низкоомную нагрузку, то чем больше внутреннее сопротивление, тем больше напряжение падает на внутреннем сопротивлении. То есть в нагрузку будет отдаваться меньшее напряжение, так как разница осядет на внутреннем резисторе.

Поэтому, качественные источники питания, типа блока питания либо генератора частоты, пытаются делать как можно с меньшим выходным сопротивлением, чтобы напряжение на выходе “не проседало” при подключении низкоомной нагрузки.

Даже если сильно просядет, то мы можем вручную подкорректировать с помощью регулировки выходного напряжения, которые есть в каждом нормальном источнике питания. В некоторых источниках это делается автоматически.

Источник: https://www.ruselectronic.com/vkhodnoe-i-vykhodnoe-soprotivlenie/

Зависимость мощности от силы тока, формула мощности, физический смысл

Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами.

Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор.

Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.

Выясним, что же представляет собой понятие электричество?

Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз

И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.

А теперь, перейдем к главному

Основа-основ науки об электричестве – закон Ома.

Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R

Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.

Вся остальная электротехника «пляшет» от этого.

О мощности электрического тока

В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.

Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.

Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:

P = U*I.

Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.

Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.

Вот так – ничего сложного!

Источник: https://pue8.ru/elektrotekhnik/921-zavisimost-moshchnosti-ot-sily-toka-formula-moshchnosti-fizicheskij-smysl.html

Сопротивление конденсатора, теория и примеры

Конденсатор характеризуют при помощи ряда параметров (емкость, рабочее напряжение и т. д), одной из таких характеристик является сопротивление. Конденсатор практически не пропускает постоянный электрический ток. То есть сопротивление конденсатора является бесконечно большим для постоянного тока, но это идеальный случай. Через реальный диэлектрик очень малый ток протекать может. Этот ток называют током утечки.

Ток утечки является показателем качества диэлектрика, который применяется при изготовлении конденсатора. У современных конденсаторов ток утечки составляет некоторые доли микроампера. Сопротивление конденсатора в таком случае можно вычислить, используя закон Ома для участка цепи, зная величину напряжения, до которой заряжен конденсатор и ток утечки.

Но обычно при решении учебных задач сопротивление конденсатора постоянному току считают бесконечно большим.

Сопротивление конденсатора переменному напряжению

При включении конденсатора в цепь с переменным током, ток свободно проходит через конденсатор. Это объясняется очень просто: происходит процесс постоянной зарядки и разрядки конденсатора. При этом говорят, что в цепи присутствует емкостное сопротивление конденсатора, помимо активного сопротивления.

И так, конденсатор, который включен в цепь переменного тока, ведет себя как сопротивление, то есть оказывает влияние на силу тока, текущую в цепи. Величину емкостного сопротивления обозначим как , его величина связана с частотой тока и определена формулой:

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Если конденсатор включен в цепь переменного тока, то в нем не затрачивается мощность, потому что фаза тока сдвинута по отношению к напряжению на . Если рассмотреть один период колебания тока в цепи (T), то происходит следующее: при заряде конденсатора (это составляет ) энергия в поле конденсатора запасается; на следующем отрезке времени () конденсатор разряжается и отдает энергию в цепь. Поэтому ёмкостное сопротивление называют реактивным (безваттным).

Следует заметить, что в каждом реальном конденсаторе реальная мощность (мощность потерь) все же тратится, при течении через него переменного тока. Это вызвано тем, что происходят изменения в состоянии диэлектрика конденсатора. Помимо этого существует некоторая утечка в изоляции обкладок конденсатора, поэтому появляется небольшое активное сопротивление, которое как бы включено параллельно конденсатору.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/soprotivlenie-kondensatora/

Правда или нет? Высокоомные наушники звучат лучше

Любой меломан знает — стоит только натянуть на голову здоровенные высокоомные наушники с огромными «чашками», как окружающие начинают смотреть с нескрываемым уважением, мол, вот кто понимает в звуке! При этом совершенно неважно, откуда этот звук идёт, хоть из дешёвого смартфона. Но то мнение непрофессионалов — а как на самом деле? Чем больше сопротивление, тем лучше звук? А зазвучат ли «тугие» наушники со смартфоном? Разбираемся!

Наушники с высоким сопротивлением действительно дают лучший звук?

Да, правда. Как ни странно, высокоомные наушники — более простая нагрузка для источника звука. Это связано с тем, что на них подаётся меньший ток. (Помните закон Ома? I=U/R, где I — сила тока, U — напряжение на выходе источника звука, R — сопротивление наушников). Чем меньше сила тока, проходящего через усилитель гаджета, тем ниже уровень искажений.

Также высокое сопротивление снижает искажения от мембраны излучателя — она лучше контролируется и быстрее реагирует на изменения аудиосигнала. Такой эффект называется электрическим демпфированием. При его нехватке бас может срываться в гудение, а высокие частоты становиться грязными и сыпучими.

Так что, высокоомные наушники улучшат звук моего смартфона?

Нет, это не так. Чтобы высокоомные наушники раскрыли свои плюсы, им нужен мощный усилитель. Правда, сперва надо выяснить, какие наушники стоит считать высокоомными. Для этого понадобится сравнительная величина, относительно которой можно понять, насколько велико сопротивление наушников. Такой величиной является выходное сопротивление источника.

Любой смартфон или плеер имеет усилитель, через который звук подаётся на наушники. Все компоненты усилителя обладают собственным сопротивлением, а их совокупность образует выходное сопротивление источника.

Чтобы звучание наушников не искажалось, нужно их правильное согласование с источником. В этом нам поможет правило одной восьмой:

Выходное сопротивление источника должно быть менее 1/8 сопротивления наушников. Например, для 32-омных наушников выходное сопротивление должно быть не более 32/8 = 4 Ом. В противном случае в наушниках могут возникать заметные на слух искажения.

У современных смартфонов выходное сопротивление составляет не более 2 Ом. По правилу одной восьмой к ним можно брать наушники с сопротивлением от 16 Ом. Притом мощность их усилителей сильно ограничена, а максимальное выходное напряжение не превышает 1 В. Из-за этого они плохо справляются с нагрузкой выше 50 Ом — ухудшается проработка низких частот, может не хватать громкости. Такое сопротивление уже можно назвать высоким для большинства смартфонов.

Hi-Fi плееры тоже обладают низким выходным сопротивлением, но к ним допустимо брать и более высокоомные наушники — выходного напряжения в 2-4 В хватит, чтобы прокачать модели с сопротивлением до 100-120 Ом.

Очень высокое сопротивление (250/300/600 Ом) обычно встречается у студийных мониторов. Оно необходимо, потому что выходы студийного оборудования имеют сопротивление 20-50 Ом.

Что ещё учитывать при выборе: чувствительность

Обычно чем выше сопротивление наушников, тем ниже их чувствительность. Следовательно, требуется более высокое напряжение, чтобы вывести наушники на рабочую громкость. Маломощный усилитель тут не справится, а значит, добиться от такой связки достаточной громкости не получится. Для смартфонов лучше брать наушники с высокой чувствительностью (от 100 дБ/мВт). Если она ниже 95 дБ/мВт, скорее всего, наушникам потребуется мощный усилитель.

Однако низкое сопротивление не всегда означает, что наушники лёгкие на раскачку. Например, некоторые модели с планарно-магнитными излучателями могут быть низкоомными, но при этом чрезвычайно тугими. Так, MyST Ortophones при сопротивлении 18 Ом имеют чувствительность всего 77 дБ/мВт.

MyST Ortophones

Есть также исключения, когда высокоомные наушники обладают достаточной чувствительностью для использования со смартфоном. Пожалуй, самый «народный» пример — Koss Porta Pro. При довольно высоком сопротивлении в 60 Ом их чувствительность составляет 101 дБ/мВт, чего достаточно для современного смартфона. Но даже если громкости хватает, звучание всё ещё страдает от нехватки усиления, что в первую очередь сказывается на низких частотах — с более мощным источником их проработка будет лучше.

Koss Porta Pro

Что ещё учитывать при выборе: импеданс и конструкция наушников

На самом деле, вопрос сопротивления наушников сложнее, чем кажется на первый взгляд. Часто вообще нельзя точно сказать, низкое оно или высокое. И вот почему.

Наушники не работают на одной частоте, а воспроизводят весь слышимый человеком спектр. Поэтому у них сложное сопротивление, значение которого зависит от частоты — такая характеристика называется импедансом. Именно его указывают на коробках с наушниками, беря сопротивление для частоты 1 кГц.

В разных наушниках характеристика импеданса отличается. Например, в динамических и планарно-магнитных моделях импеданс линейный. То есть если на коробке написано, что он равен 32 Ом, то это справедливо для всего диапазона частот. Следовательно, снижается зависимость от источника, поскольку падение напряжения на всех частотах примерно одинаковое — АЧХ не будет искажаться от разного выходного сопротивления.

Источник: https://4pda.ru/2018/07/02/352154/

Статьи

За последние 3 года центр электромагнитной безопасности исследовал в Москве состояние систем электроснабжения в крупнейших зданиях, имеющих сети с сотнями и тысячами компьютеров.

Анализ собственных данных и зарубежных публикаций, привели специалистов к выводу, что Россия столкнулась с новой серьезнейшей проблемой.

Ее суть в том, что сети электроснабжения 0,4 кВ в зданиях, оснащенных компьютерной техникой, «заражены» высшими по отношению к промышленной частоте (50 Гц) гармониками.

В случаях, когда мощность нелинейных электропотребителей не превышает 10-15 %, каких-либо особенностей в эксплуатации системы электроснабжения не возникает. При превышении указанного предела появляются различные проблемы в эксплуатации. В зданиях, имеющих долю нелинейной нагрузки свыше 25%, отдельные проблемы могут проявиться сразу [3,6]. Аналогичная проблема возникает при наличии нелинейных нагрузок типа полупроводниковых [9].

Реальная часто встречающаяся форма напряжения показана на рис. 1, а идеальная, в сравнении с синусоидальной – на рис. 2

Рис. 1. Реальная форма напряжения при нелинейной нагрузке [12]

Рис.2. Искажение синусоидального напряжения и появление гармонических составляющих [15]

Эффект гармоник кратных третьей:

Высшие гармоники тока кратные трем (т.е. 3, 9, 15, 21 и т. д.), определяющие высокое значение коэффициента амплитуды и генерируемые однофазными нагрузками, имеют специфическое результирующее воздействие в трехфазных системах.

В сбалансированной (симметричной) трехфазной системе гармонические (синусоидальные) токи во всех трех фазах сдвинуты на 120 градусов по отношению друг к другу, и в результате сумма токов в нейтральном проводнике равна нулю.

ЭТО ИНТЕРЕСНО:  Для чего используется диод Шоттки

Следовательно, не возникает и падения напряжения на проводнике нейтрали в кабеле.

Это утверждение остается справедливым для большинства гармоник. Однако некоторые из них имеют направление вращения вектора тока в ту же сторону, что и основная гармоника (первая, «фундаментальная», т.е. 50 Гц), то есть они имеют прямую последовательность. Другие же вращаются в обратном направлении и, таким образом, имеют обратную последовательность. Это не относится к гармоникам, кратным третьей.

В трехфазных цепях они сдвинуты на 360 градусов друг к другу, совпадают по фазе и образуют нулевую последовательность. Нечетные гармоники, кратные третьей, суммируются в проводнике нейтрали. В результате, с учетом того, что они составляют большую долю в действующем значении фазных токов, общий ток в нейтрали может превышать фазные токи.

Гармоники, кратные третьей, приводят к падениям напряжения как в нейтрали, так и в фазных проводниках, вызывая искажения формы напряжения на других нагрузках, подключенных к этой сети [6]

Активный ток Ia совпадает по фазе а напряжением сети. Реактивный ток Ir сдвинут на 90 градусов относительно активного или же отстает при индуктивной нагрузки и опережает для емкостной нагрузки. Полный ток It – результирующий первых двух составляющих, протекающий от источника к потребителю.

Рис. 1. Векторная диаграмма токов [14]

It = √ Ia² + Ir²

Ia = I cos φ

Ir = I sin φ

Если умножить ток на общее напряжение, то получаются составляющие по мощности:

полная мощность S = UI (кВа),

активная мощность P = UI cos φ (кВт).

реактивная мощность Q = U I sin φ (квар)

Рис. 2. Векторная диаграмма мощностей

Коэффициент мощности КМ определяется так:

Источник: http://klmengineering.ru/ru/engineers/articles/vliyanie-garmonik-napryazheniya-i-toka/

Что такое короткое замыкание по-простому

КОРОТКОЕ ЗАМЫКАНИЕ – это электрическое соединение разных фаз или потенциалов электроустановки между собой или с землей, не предусмотренное в нормальном режиме работы, при котором в проводниках, в месте контакта, резко возрастает сила тока, превышая максимально допустимые величины.

Если же говорить простым языком, короткое замыкание – этолюбое незапланированное, нештатное соединение электрических проводников с разным потенциалом, например, фазы и ноля, при котором образуются разрушительные токи.

Как вы заметили, акцент на том, что короткое замыкание в электрической цепи — это именно незапланированный, не предусмотренный процесс, сделан не зря, ведь, по большому счету, контролируемое замыкание (некоторые еще назывыают его по-аналогии длинным) запускает электроприборы. Все они включаются в розетку, и, так или иначе, фазный провод, посредством электроприбора соединяется с нулевым, но короткого замыкания при этом не происходит, давайте разберемся почему.

Для того чтобы понять почему происходит короткое замыкание, нужно вспомнить закон Ома для участка цепи – «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке», формула при этом следующая:

I=U/R

 где I – сила тока, U – напряжение на участке цепи, R – сопротивление.

Любой электроприбор в квартире, включающийся в розетку, это активное сопротивление (R – в формуле), напряжение в бытовой электросети вам должно быть известно – 220В-230 В и оно практически не меняется. Соответственно, чем выше сопротивление электроприбора (или материала, проводника и т.д.) включаемого в сеть, тем меньше величина тока, так, как зависимость между этими величинами обратно пропорциональная.

Теперь представьте, что мы включаем в сеть электроприбор практически без сопротивления, допустим его величина R=0.05 Ом, считаем, что тогда будет с силой тока по закону Ома.

I=220В(U)/0,05(Ом)=4400А

В результате получается очень высокий ток, для сравнения стандартная электрическая розетка в нашей квартире, выдерживает лишь ток 10-16А, а у нас по расчетам 4,4 кА.

Современные медные провода, используемые в проводке, имеют настолько хорошие показатели электрической проводимости, что их сопротивление, при относительно небольшой длине, можно принять за ноль. Соответственно, прямое соединение фазного и нулевого провода, можно сравнить, с подключением к сети электроприбора, с очень низким сопротивлением. Чаще всего, в бытовых условиях, мы сталкиваемся именно с таким типом короткого замыкания.

Конечно, это очень грубый пример, в реальных условиях, при расчете силы тока при коротком замыкании, учитывать приходится гораздо больше показателей, таких как: сопротивление всей линии проводов, идущих к вам, соединений, дополнительного оборудования сети и даже дуги образующейся при коротком замыкании, а также некоторых других.Поэтому, чаще всего, сопротивление будет выше тех 0,05 Ом, что мы взяли в расчете, но общий принцип возникновения КЗ и его разрушительных эффектов понятен.

Почему короткое замыкание так называется

Подключая какую-то нагрузку к сети, например, утюг, телевизор или любой другой электроприбор, мы создаём сопротивление для протекания электрического тока.

Если же мы умышленно или случайно соединим, например, фазу и ноль напрямую, без нагрузки, мы, в каком-то смысле, укорачиваем путь, делаем его коротким.

Поэтому, короткое замыкание и называют коротким, подразумевая движение электронов по кротчайшему пути, без сопротивления.

Чем опасно короткое замыкание

Самая значительная опасность при коротком замыкании – это большая вероятность возникновения пожара.

При значительном увеличении силы тока, которое происходит при КЗ, выделяется большое количество теплоты в проводниках, что вызывает разрушение изоляции и возгорание.
Кроме того, в быту, чаще всего происходит дуговое короткое замыкание, при котором, между проводниками в месте КЗ, возникает мощнейший электрический разряд, который нередко воспламеняет окружающие предметы.

Так же не стоит забывать про опасность поражения электрическим током или резким выделением тепла человека, которая так же достаточно высока.

Из менее опасных последствий, происходящих при КЗ, стоит отменить значительное снижение напряжения в электрической сети особенно в месте его возникновения, что негативно влияет на различные электроприборы, в частности оснащенные двигателями. Также, не стоит забывать про сильное электромагнитное воздействие на чувствительное к этому оборудование.

Как видите, последствия от возникновения короткого замыкания могут быть очень серьезными, поэтому, при проектировании любой электроустановки и монтаже электропроводки, необходимо предусмотреть защиту от короткого замыкания.

Защита от короткого замыкания

Большинство современных способов защиты от короткого замыкания основаны на принципе разрыва электрической цепи, при обнаружении КЗ.

Самые простые устройства, которые есть во многих электроприборах, защищающие от последствий коротких замыканий – это плавкие предохранители.

Чаще всего, плавкий предохранитель представляет собой проводник, рассчитанный на определенный предельный ток, который он сможет пропускать через себя, при превышении этого значения, проводник разрушается, тем самым разрывая электрическую цепь. Плавкий предохранитель — это самый слабый участок электрической цепи, который первый выходит из строя под действием высокого тока, тем самым защищает все остальные элементы.

Для защиты от коротких замыканий в квартире или доме, используются автоматические выключатели -АВ (чаще всего их называют просто автоматы), они устанавливаются на каждую группу электрической сети.

Каждый автоматический выключатель рассчитан на определенный рабочий ток, при превышении которого он разрывает цепь. Это происходит либо с помощью теплового расцепителя, который при нагреве, вследствие протекания высокого тока, механически разъединяет контакты, либо с помощью электромагнитного.

Принцип работы автоматических выключателей — это тема отдельной статьи, о них мы поговорим в другой раз. Сейчас же, хочу еще раз напомнить, что от короткого замыкания не спасает УЗО, его предназначение совсем в другом.

Для того, чтобы правильно выбрать защитный автоматический выключатель, делаются расчеты величины возможного тока короткого замыкания для конкретной электроустановки. Чтобы в случае, если КЗ произойдёт, автоматика сработала оперативно, не пропустив резко возросший ток и не сгорев от него, не успев разорвав цепь.

Причины короткого замыкания

Чаще всего в бытовых условиях квартиры или частного дома, короткое замыкание возникает по нескольким причинам, основные из которых:

— в следствии нарушения изоляции электрических проводов или мест их соединений. Факторов приводящих к этому достаточно много, здесь и банальное старение материалов, и механическое повреждение, и даже загрязнения изоляторов.

— из-за случайного или преднамеренного соединения проводников с различным потенциалом, чаще всего фазного и нулевого. Это может быть вызвано ошибками при работе с электропроводкой под напряжением, неисправностью электроприборов, случайным попаданием проводников на контактные группы и т.д.

Поэтому, очень важно ответственно относится как к монтажу электроустановки, так и к её эксплуатации и обслуживанию.

Будьте аккуратны и осмотрительны при обращении с электрическими приборами и оборудованием, не включайте их в сеть если они повреждены или открыты. Не хватайтесь за электрические провода, если точно не знаете, что они не под напряжением.

Ну и как всегда, если у вас есть что добавить, вы нашли неточности или ошибки – обязательно пишите в комментариях к статье, кроме того задавайте свои вопросы, делитесь полезным опытом.

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/163-chto-takoe-korotkoe-zamykanie-po-prostomu

Сопротивление тока

Для начала рассмотрим вопрос, как же в своё время исследователи пришли к пониманию величины, получившей название «сопротивление тока».

При рассмотрении основ электростатики уже затрагивались вопросы электропроводимости, в том числе то, что разные вещества обладают разной проводимостью (способностью пропускать свободные заряженные частицы).

Например, металлы характеризуются хорошей проводимостью (из-за чего их и называют проводниками), а пластмасса и дерево – плохой (диэлектрики или непроводники). Такие различия связаны с особенностями молекулярного строения разных веществ.

Наиболее результативными работами по исследованию проводимости разных веществ стали опыты, которые проводил Георг Ом (1789-1854) (рис. 1).

Суть работы Ома была следующая. Ученый использовал электрическую схему, состоящую из источника тока, проводника, а так же специального прибора для отслеживания силы тока.

Изменяя в схеме проводники, Ом отследил следующую закономерность: сила тока в цепи увеличивалась при увеличении напряжения. Следующим открытием Ома стало то, что при замене проводников так же изменялась степень увеличения силы тока при увеличении напряжения.

Пример такой зависимости изображен на рисунке 2.

Ось Х демонстрирует напряжение, а ось Y – силу тока. На графике представлены две прямые, демонстрирующие различную скорость увеличения силы тока с увеличением напряжения в зависимости от проводника, входящего в состав цепи.

Результатом исследований Ома стал следующий вывод: «Разные проводники обладают разными свойствами проводимости», в результате чего появилось понятие сопротивления тока.

Электрическое сопротивление тока

Электрическое сопротивление – физическая величина, которая характеризует способность проводника влиять на электрический ток, протекающий в проводнике.

  • Обозначение величины: R
  • Единица измерения: Ом

Результатом проведения экспериментов с проводниками было определено, что взаимосвязь между силой тока и напряжением в электрической цепи зависит так же от размеров используемого проводника, а не только от вещества. Детальнее влияние размеров проводника будет рассмотрено на отдельном уроке.

За счет чего же появляется сопротивление тока? Во время движения свободных электронов происходит постоянное взаимодействие между ионами, входящими в строение кристаллической решетки, и электронами. В результате данного взаимодействия и происходит замедление движения электронов (фактически, из-за столкновения электронов с атомами – узлами кристаллической решетки), благодаря чему и создается сопротивление тока.

С электрическим сопротивлением также связана другая физическая величина – проводимость тока, обратная величина относительно сопротивления.
 

Формулы сопротивления тока

Рассмотрим зависимость между изученными на последних уроках величинами. Как было сказано, с увеличением напряжения увеличивается в цепи и сила тока, эти величины пропорциональны: I~U

Увеличение сопротивления проводника приводит к уменьшению силы тока в цепи, таким образом, данные величины обратно пропорциональны между собой: I~1/R

В результате исследований была выявлена следующая закономерность: R=U/I

Расписываем получение единицы сопротивления тока1Ом=1В/1А

Таким образом 1 Ом являет собой такое сопротивление тока, при котором сила тока в проводнике равняется 1 А, а напряжение на концах проводника 1 В.

Фактически, сопротивление тока в 1 Ом слишком маленькое и на практике используются проводники, которые характеризуются более высоким сопротивлением (1 КОм, 1 МОм и т.д.).

Сопротивление тока, сила тока и напряжение являются взаимосвязанными величинами, которые оказывают влияние друг на друга. Детальнее это будет рассмотрено уже на следующем уроке.

Источник: https://www.calc.ru/Soprotivleniye-Toka.html

Измерение удельного сопротивления диэлектриков

Фундаментальное свойство диэлектриков – это удельное сопротивление. Удельное сопротивление может быть использовано для определения пробоя диэлектрика, тангенса угла потерь, содержание влаги, механической целостности и других важных свойств материала. Для измерения таких больших величин сопротивления диэлектриков существуют специальные измерительные приборы – электрометры и используются они благодаря их способности измерять малые токи.

От чего зависит удельное сопротивление?

Удельное сопротивление диэлектрика — это измерение источника известного напряжения, приложенного к образцу, измерение полученного тока и расчета сопротивления с помощью закона Ома. После измерения сопротивления, удельное сопротивление определяется на основе физических параметров испытуемого образца.

Удельное сопротивление зависит от нескольких факторов. Во-первых, оно зависит от приложенного напряжения. Иногда напряжение может изменяться умышленно, чтобы определить зависимость напряжения диэлектрика.

Удельное сопротивление также варьируется в зависимости от продолжительности времени, электрификации. Чем больше напряжение, тем выше сопротивление, потому что материал продолжает заряжаться в геометрической прогрессии.

Экологические факторы также влияют на удельное сопротивление диэлектрика. В общем, чем выше влажность, тем ниже сопротивление.

Для получения точных сведений теста нужно, чтобы приложенное напряжение, время электрификации и условия окружающей среды должны быть постоянными.

Поверхностное сопротивление

Поверхностное сопротивление (Ом/квадрат) — способность пропускать электрический ток по поверхности диэлектрика — определяется как электрическое сопротивление поверхности диэлектрического материала. Измерение происходит от электрода к электроду вдоль поверхности образца диэлектрика. Так как длина поверхности фиксированная, то измерение не зависит от физических размеров (т.е. толщины и диаметра) образца диэлектрика. 

Объемное удельное сопротивление

Объемное удельное сопротивление (Ом*см) — способность пропускать электрический ток через его объем — измеряется путем приложения потенциала напряжения на противоположных сторонах образца диэлектрика и измерения результирующего тока через образец.

Объемное удельное сопротивление определяется как электрическое сопротивление с помощью куба из диэлектрического материала.

Если значение выражено в Ом*см, то это измерение электрического сопротивления через 1 сантиметр куба диэлектрического материала. Если выражено в Ом*Дюйм, то это электрическое сопротивление через 1 дюйм куба изоляционного материала.

Приборы для измерения удельного сопротивления диэлектриков

Измерения поверхностного и объемного удельного сопротивления производятся с помощью электрометра Keithley 6517B совместно с испытательной камерой удельного сопротивления Keithley 8009.

Ниже указана ссылка, где Вы можете прочитать подробнее об измерениях удельного сопротивления при помощи электрометра Keithley 6517B >>

и тестовой оснастки (испытательной камеры удельного сопротивления) Keithley 8009 >>>

Консультация специалиста по оборудованию и проведению измерений 

Источник: https://sernia.ru/training/izmerenie_udelnogo_soprotivleniya_dielektrikov/

Понравилась статья? Поделиться с друзьями:
Электро Дело