Какая мощность называется активной

Активная мощность электрического тока

Какая мощность называется активной

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность – физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная “полезная” мощность – это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная “вредная” мощность – это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).

Рассчитывается по формуле:

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Источник: https://vemiru.ru/info/aktivnaja-moshhnost-jelektricheskogo-toka/

Мгновенная мощность

Какая мощность называется активной

В отличие от цепей постоянного тока, где мощность в течение определенного промежутка времени остается неизменной, в цепях переменного тока дело обстоит иначе. Так как ток и напряжение постоянно меняют своё значение, то и мощность соответственно будет меняться в каждый момент времени. Такая мощность называется мгновенной.

Мгновенной мощностью p(t) называют произведение приложенного к цепи мгновенного напряжения u(t) на мгновенное значение тока i(t) в этой цепи. 

График мгновенной мощности представлен на рисунке ниже

Мощность обозначена заштрихованной областью. Знак мощности зависит от сдвига фаз между током и напряжением. В данном случае в цепи присутствуют только активные сопротивления, которые не создают сдвига фаз, поэтому мощность имеет только положительные значения.

Рассмотрим другой график

На данном графике имеются области отрицательных значений мгновенной мощности. Такой график может соответствовать цепи, в которой присутствуют конденсатор или катушка, причем положительные участки — это мощность, которая пошла в цепь и рассеялась на сопротивлении, либо запаслась в качестве энергии полей конденсаторов или катушек, а отрицательные участки это мощность, которая была возвращена обратно источнику.

Активная мощность

Чтобы понять какое количество энергии потребляет источник, целесообразнее взять среднюю мощность за период. Для этого вернемся к первому графику.

На графике мгновенной мощности выделяют прямоугольник со сторонами T и Pm/2. Часть графика, которая находится выше линии Pm/2 точно укладывается в незаштрихованную часть прямоугольника. Таким образом, с помощью линии Pm/2 мы можем определить среднюю мощность за период, которая называется активной мощностью. Активная мощность – это полезная мощность, которая идет на преобразование в другие виды энергии. 

В нашем случае сдвиг фаз равен нулю, поэтому коэффициент мощности равен единице, но в случаях с реактивными элементами нужно этот момент учитывать.

Активная мощность измеряется в ваттах – Вт.

cosφ – коэффициент мощности, который показывает отношение активной мощности к полной мощности. 

Реактивная мощность

Реактивная мощность – это энергия, которая периодически циркулирует между источником и приемником. Реактивная мощность возникает потому, что конденсатор и катушка способны накапливать энергию, а затем снова отдавать её в сеть. На практике от реактивной мощности зачастую стараются избавиться.

Реактивная мощность измеряется в вольт амперах реактивных – ВАр.

Полная мощность

Полная мощность — это максимальное значение активной мощности.

Полная мощность измеряется в вольт-амперах — ВА.

Для наглядного представления существует треугольник мощностей, в котором гипотенузой является полная мощность, а катетами – активная и реактивная составляющие.

— Последовательная RL-цепь 

1 1 1 1 1 1 1 1 1 1 3.20 (5 Голоса)

Источник: https://electroandi.ru/toe/ac/mgnovennaya-moshchnost.html

Активная мощность: формула, как определить — Asutpp

Какая мощность называется активной

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности  Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Прибор Мощность бытовых приборов, Вт/час
Зарядное устройство 2
Люминесцентная лампа ДРЛ От 50
Акустическая система 30
Электрический чайник 1500
Стиральной машины 2500
Полуавтоматический инвертор 3500
Мойка высокого давления 3500

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющей

Обозначение реактивной составляющей:

Это  номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

Источник: https://www.asutpp.ru/aktivnaya-moshhnost-cepi-peremennogo-toka.html

Коэффициент мощности, что это такое?

Коэффициент мощности (cos φ — косинус фи) — это отношение активной мощности к полной. Чем ближе это значение к единицы, тем лучше, так как при значении cos φ = 1 — реактивная мощность равна нулю следовательно меньшая потребляемая мощность в целом.

cos φ = P/S

Активная мощность (P)

Измеряется в ваттах Вт

Активная (средняя) мощность — это среднее значение мощности за период.. Активная мощность используется только на активные сопротивления, то есть на выполнения полезной работы.

P = I*U*cos φ 

Активное сопротивление

Как известно сопротивление проводника при переменном токе больше чем при постоянном, в следствии явлений поверхностного эффекта, эффекта близости, возникновение вихревых токов и излучение электромагнитной 

энергии в пространство. Именно поэтому сопротивление  проводника в постоянных цепях называют омическим, а в переменного тока называют активным сопротивлением.

Реактивная мощность (Q)

Измеряется в вар (вольт ампер реактивный)

Реактивная мощность является мерой потребления (или выработки реактивного тока). То есть это мощность которая сначала накапливается во внешней электрической цепи (в индуктивности и ёмкости), а потом отдаваемая обратно в сеть на протяжения 1/4 периода.

Реактивная мощность может быть как положительной так и отрицательной.

Появление реактивной мощности связанно с наличием в цепях индуктивной и ёмкостной нагрузки.

Q = I*U*sin φ 

Реактивная мощность в отличии от активной не расходуется на прямые нужды (преобразование электрической энергии в другие виды энергии). Она как бы не несёт полезной нагрузки, но без неё невозможно осуществление полезной работы. В  настоящий момент прилагается много усилий на уменьшение затрачиваемой реактивной мощности, так как это приводит к уменьшению потребления активной мощности.

Полная мощность (S)

Измеряется в вольт-амперах (BA)

Полная мощность (S) — это произведение действующего напряжения и тока на зажимах цепи. То есть полная мощность это вся мощность затраченная в электрической цепи. Полная мощность складывается из геометрической суммы активной и реактивной мощности.

S = I*U

Источник: https://electrikam.com/koefficient-moshhnosti-chto-eto-takoe/

Активная и реактивная мощность. За что платим и работа

Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).

Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю. Рассмотрим, возможно ли подобное, и насколько можно приблизиться к идеалу.

ЭТО ИНТЕРЕСНО:  Как проверить диодный мост в блоке питания

Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности.

В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет.

Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке.

Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения.

Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному).

Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга.

Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи.

Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники.

Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности.

Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем.

Но бес, как известно, кроется в деталях.

Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые однофазные счетчики электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку.

За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/aktivnaia-i-reaktivnaia-moshchnost/

Активная, реактивная и полная (кажущаяся) мощности

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

P = U I

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

P = U I Cosθ

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I — в цепях постоянного тока

P = U I cosθ — в однофазных цепях переменного тока

P = √3 UL IL cosθ — в трёхфазных цепях переменного тока

P = 3 UPh IPh cosθ

P = √ (S2 – Q2) или

P =√ (ВА2 – вар2) или

Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или

кВт = √ (кВА2 – квар2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

Q = U I sinθ

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Q = U I sinθ

Реактивная мощность = √ (Полная мощность2 – Активная мощность2)

вар =√ (ВА2 – P2)

квар = √ (кВА2 – кВт2)

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

ЭТО ИНТЕРЕСНО:  Что такое активная мощность в цепи переменного тока

Формула для полной мощности

Источник: https://khomovelectro.ru/articles/aktivnaya-reaktivnaya-i-polnaya-kazhushchayasya-moshchnosti.html

Формулы активной реактивной и полной мощности – , ,

В технической литературе и сопроводительной документации применяют разные обозначения электрических параметров. Реактивная мощность определяет часть процессов при подключении индуктивных (емкостных) нагрузок. Вместе с активной (рабочей) составляющей она формирует полные энергетические характеристики цепи переменного тока.

Наглядная демонстрация физических понятий

Мощность активная, реактивная и полная

Перечисленные понятия рассматривают с учетом особенностей нагрузки. Активная мощность потребляется обычным проводником. При увеличении силы тока энергия расходуется на повышение температуры (ТЭН чайника) или световое излучение (нить лампы накаливания).

Индуктивная нагрузка и конденсатор потребляют реактивную мощность. Энергия в этих вариантах преобразуется в магнитное (электрическое) поле, соответственно. Суммарная величина – полная мощность.

Смысл реактивной нагрузки

Любая реактивная нагрузка создает временной сдвиг между фазами тока и напряжения. Эту величину измеряют в градусах. Наиболее наглядным является векторное представление электрических параметров. Если подключить индуктивность, напряжение будет опережать ток. Угол между ними обозначают в формулах буквой «ϕ» («Фи» греч.).

Временные и векторные диаграммы показывают, как изменяются основные параметры при подключении индуктивных (емкостных) элементов

На картинке показано, что при подключении емкостной нагрузки вектора «меняются» местами. В идеальных условиях сдвиг между векторами равен 90°. В действительности следует учитывать влияние электрического сопротивления цепи, несовершенство конструкций. С учетом особенностей элементов следует напомнить, что в индуктивности (емкости) при сохранении параметров источника питания плавно изменяется ток (напряжение), соответственно.

Почему в сети напряжение переменное

Для объяснения настоящей ситуации надо сделать краткий экскурс в историю. Электричество известно человеку сотни (по некоторым данным, тысячи лет). Однако действительно массовое использование этой энергии началось сравнительно недавно – в конце 19 века. Именно тогда (1879 г.) Эдисон запатентовал первый функциональный прибор, который помогал решать проблемы освещения. Для питания лампочек он стал монтировать сети постоянного тока.

Через десять лет Тесла создал генераторы переменного тока. После ожесточенной конкурентной борьбы именно его способ передачи энергии на расстояния одержал победу. Этот результат был обеспечен скорее рыночными методами, чем внимательным сравнением потребительских характеристик.

К сведению. Метрополитен Нью-Йорка до сих пор функционирует с подключением к сети постоянного тока.

Выгода от переменного напряжения

Важные для потребителей преимущества этого варианта приведены в следующем перечне:

  • простая конструкция генераторов/ электродвигателей;
  • минимальные потери при передаче электроэнергии на сравнительно небольшие расстояния;
  • простота преобразования напряжения с применением трансформатора;
  • поддержание стабильности оборотов электрических приводов без лишних трудностей;
  • отсутствие полярности.

Каждый из пунктов можно рассмотреть подробно. Генератор (электромотор) переменного тока, например, нетрудно создать без токосъемных щеток и постоянных магнитов. Простота конструкции обеспечивает:

  • разумную стоимость;
  • минимальные затраты при обслуживании и ремонте;
  • долговечность;
  • надежность.

Обороты мощных электродвигателей регулируют изменением частоты. Это значит, что в обычных условиях эксплуатации обеспечивается поддержание расчетных параметров без дополнительных схем управления и контроля. В частности, отмеченные особенности идеально подходят для создания насосной станции.

Для повышения/ уменьшения напряжения в сетях переменного тока используют типовые сравнительно недорогие конструкции. Изменяя количество витков обмотки на едином сердечнике, можно получить необходимый коэффициент трансформации с высокой точностью. В процессе работы дополнительная настройка не требуется.

Постоянное напряжение снижают с применением электрического сопротивления, которое в данном случае не выполняет никаких полезных функций. Для повышения – применяют сложные схемы с промежуточным преобразованием в переменный сигнал.

Какой из способов предпочтительнее, можно определить после перечисления преимуществ сетей постоянного тока:

  • возможность подключения непосредственно к источнику питания светодиодов, гальванических ванн, иных потребителей;
  • простая зарядка аккумуляторных батарей;
  • отсутствие необходимости согласования нагрузок;
  • высокая точность измерений;
  • минимальные потери при передаче электроэнергии на большие расстояния;
  • применение «однопроводной» линии питания (метро, трамвай).

Убытки от переменного напряжения

Формулы расчетов активной и реактивной мощностей подробно рассмотрены в следующих разделах статьи. Однако для изучения потерь в сетях переменного тока необходимо привести определение поправочного коэффициента cosϕ (косинус Фи). Это значение производители указывают в технических паспортах и на бирках корпусов мощных моторов, сварочных аппаратов, другой техники.

Потери в электрической схеме а) с диаграммой полной б) и частичной в) компенсации

В этом примере рассмотрена приближенная к реальной ситуация, когда подключены активные нагрузки вместе с реактивными. Если cosϕ=0,75, то при одной и той же потребляемой мощности номинальный ток в цепи (100 А) увеличится следующим образом:

I = Ia/ cosϕ = 100/0,75 ≈ 133 А.

При этом на повышение температуры будет расходоваться мощность, пропорциональная квадрату тока. Считать ее можно по формуле:

Pнагр = I2 * Rc.

Соответствующие потери увеличатся в 1,77 раза.

Следует отметить! Изменения силы тока сопровождаются колебаниями напряжения. Иные потребители, подключенные к этой же сети, будут работать в неблагоприятных режимах. При этом счетчик будет показывать неизменное потребление энергетических ресурсов.

Понятной является ситуация, когда ИБП или другой источник питания начинает выдавать ток, превышающий расчетные параметры. Перегревается не только генератор, но и проводка. Значительно возрастает риск аварий, поломок.

Активная, реактивная и полная мощности в формулах

Чтобы рассчитать или измерить мощность: полную, активную и реактивную, служат основные формулы:

  • активная мощность = полная * cosϕ;
  • реактивная = напряжение * ток * sinϕ.

Для упрощения можно начать с примера на основе цепи постоянного тока, где действительна известная формула:

Pa = U * I.

Это активная (рабочая, полная) мощность. Единицы измерения – ватт (Вт), киловатт (кВт), другие производные. При подключении сопротивления (R) ее можно вычислить следующим образом:

Простота исчезает при рассмотрении сигналов синусоидальной формы. Именно такими параметрами отличаются стандартные сети питания (220/380V). Активная мощность в этом случае зависит от фазового сдвига между векторами тока и напряжения.

Соответствующие зависимости выражают следующим образом:

Pa = U * I * cosϕ.

Эта формула подходит для расчета обычной сети 220V, которой пользуется большинство рядовых потребителей. Мощные насосы и станки подключают к трехфазным источникам питания 380 V. Для этого варианта нужна коррекция:

Pa = √3 * U * I * cosϕ = 1,732 * U * I * cosϕ.

Реактивная мощность (Pq) не только потребляется нагрузкой, но и возвращается обратно в источник питания. Ее значение определяют следующим образом:

Pq = U * I * sinϕ.

К сведению. Измеряется эта величина в реактивных вольт-амперах (вар).

Для вычисления полной мощности формула содержит перечисленные выше компоненты:

Источник: https://yato-tools.ru/raznoe/formuly-aktivnoj-reaktivnoj-i-polnoj-moshhnosti.html

Почему мощность трансформатора измеряют в ква, а не в квт ?

Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.

Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА — киловольт-амперах.

Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.

Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.

В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы — нагрева, освещения, звучания, вращения и т.д.

Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:

Резистивная

Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.

ТЭН — это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это.

Мощность, которая тратится на резистивной нагрузке называется – активной, как раз она то и измеряется в кВт – киловаттах.

Индуктивная

Знакомым всем примером индуктивной нагрузки является электродвигатель, в нём не весь проходящий электрический ток тратится на вращения. Часть расходуется на создание электромагнитного поля в обмотке или теряется в медном проводнике, эта составляющая мощности называется реактивной.

Реактивная мощность не тратится на совершение работы напрямую, но она необходима для функционирования оборудования.

Кстати, индуктивные электрические плиты, которые так хотят заполучить многие домохозяйки, также используют реактивную мощность, в отличии от обычных электроплит, в которых нагреваются ТЭНы, те чисто резистивные. 

Ёмкостная

Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.

Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.

Смешанная

Здесь всё просто, смешенная нагрузка сочетает в себе все представленные выше, активную и реактивные составляющие, большинство бытовых приборов именно такие.

Полная мощность электрооборудования, состоит как из активной мощности, так и из реактивной, и измеряется в кВА — киловольт-амперах. Именно она чаще всего указана в характеристиках трансформатора.

Производители трансформаторов не могут знать, какого типа нагрузка к ним будет подключена и где они будут задействованы, поэтому и указывают полную мощность, для смешенной нагрузки.

Так, если нагрузка трансформатора — это ТЭН, то полная мощность будет равна активной, соответственно значение в кВт = кВА, если же нагрузка будет смешенная, включающая реактивную составляющую, то мощность нагрузки должна учитываться полная.

Будьте внимательны, нередко, на электрооборудовании, например, на электроинструменте, мощность прописана в киловаттах, но кроме того указан коэффициент мощности k. В этом случае, вы должны знать простую формулу:

S(полная мощность)=P(активная мощность)/k(коэффициент мощности)

Так, например, если мощность перфоратора P = 2,5кВт, а его коэффициент мощности k = 0,9, то полная мощность перфоратора будет равна S=2,5кВт/0,9=2,8 кВА, именно на столько он будет нагружать сеть.

Теперь, я думаю, вам понятно, почему мощность трансформатора измеряют в кВА, а не в кВт — это позволяет учитывать все виды нагрузок, которые могут подключаться к его вторичной обмотке.

Поэтому, обязательно учитывайте полную мощность указываемую в кВА или коэффициент мощности обордования, перед подключением к трансформатору.

Если же у вас еще остались какие-то вопросы – обязательно оставляйте их в комментариях к статье, кроме того, если есть что добавить, нашли неточности или есть, что возразить – также пишите!

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/197-pochemu-moshchnost-transformatora-izmeryayut-v-kva-a-ne-v-kvt

Компенсация реактивной мощности: способы и средства

Компенсация реактивной мощности: способы и средства

Реактивная мощность — часть полной мощности, затрачиваемая на электромагнитные процессы в нагрузке имеющей емкостную и индуктивную составляющие. Не выполняет полезной работы, вызывает дополнительный нагрев проводников и требует применения источника энергии повышенной мощности.

Статьи по теме компенсации реактивной мощности

Реактивная мощность относится к техническим потерям в электросетях согласно Приказу Минпромэнерго РФ № 267 от 04.10.2005.

При нормальных рабочих условиях все потребители электрической энергии, чей режим сопровождается постоянным возникновением электромагнитных полей (электродвигатели, оборудование сварки, люминесцентные лампы и многое др.

) нагружают сеть как активной, так и реактивной составляющими полной потребляемой мощности.

Эта реактивная составляющая мощности (далее реактивная мощность) необходима для работы оборудования содержащего значительные индуктивности и в то же время может быть рассмотрена как нежелательная дополнительная нагрузка на сеть.

Для наглядности и лучшего понимания происходящих процессов, рекомендуем ознакомиться с роликом о реактивной мощности:

При значительном потреблении реактивной мощности напряжение в сети понижается. В дефицитных по активной мощности энергосистемах уровень напряжения, как правило, ниже номинального. Недостаточная для выполнения баланса активная мощность передается в такие системы из соседних энергосистем, в которых имеется избыток генерируемой мощности. Обычно энергосистемы дефицитные по активной мощности, дефицитны и по реактивной мощности.

Однако недостающую реактивную мощность эффективнее не передавать из соседних энергосистем, а генерировать в компенсирующих устройствах, установленных в данной энергосистеме.

ЭТО ИНТЕРЕСНО:  Что называется электрическим напряжением

В отличие от активной мощности реактивная мощность может генерироваться не только генераторами, но и компенсирующими устройствами – конденсаторами, синхронными компенсаторами или статическими источниками реактивной мощности, которые можно установить на подстанциях электрической сети.

Компенсация реактивной мощности, в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения и снижения нагрузок на электросеть.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает значительную величину в себестоимости продукции.

Это достаточно веский аргумент, чтобы со всей серьезностью подойти к анализу и аудиту энергопотребления предприятия, выработке методики и поиску средств для компенсации реактивной мощности.

Средства компенсации реактивной мощности

Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.

Преимущества использования конденсаторных установок, как средства для компенсации реактивной мощности

  • малые удельные потери активной мощности (собственные потери современных низковольтных косинусных конденсаторов не превышают 0,5 Вт на 1000 ВАр);
  • отсутствие вращающихся частей;
  • простой монтаж и эксплуатация (не нужно фундамента);
  • относительно невысокие капиталовложения;
  • возможность подбора любой необходимой мощности компенсации;
  • возможность установки и подключения в любой точке электросети;
  • отсутствие шума во время работы;
  • небольшие эксплуатационные затраты.

В зависимости от подключения конденсаторной установки возможны следующие виды компенсации:

  1. Индивидуальная или постоянная компенсация, при которой индуктивная реактивная мощность компенсируется непосредственно в месте её возникновения, что ведет к разгрузке подводящих проводов (для отдельных, работающих в продолжительном режиме потребителей с постоянной или относительно большой мощностью — асинхронные двигатели, трансформаторы, сварочные аппараты, разрядные лампы и т.д.).
  2. Групповая компенсация, в которой аналогично индивидуальной компенсации для нескольких одновременно работающих индуктивных потребителей подключается общий постоянный конденсатор (для находящихся вблизи друг от друга электродвигателей, групп разрядных ламп). Здесь также разгружается подводящая линия, но только до распределения на отдельных потребителей.
  3. Централизованная компенсация, при которой определенное число конденсаторов подключается к главному или групповому распределительному шкафу. Такую компенсацию применяют, обычно, в больших электрических системах с переменной нагрузкой. Управление такой конденсаторной установкой выполняет электронный регулятор — контроллер, который постоянно анализирует потребление реактивной мощности от сети. Такие регуляторы включают или отключают конденсаторы, с помощью которых компенсируется мгновенная реактивная мощность общей нагрузки и, таким образом, уменьшается суммарная мощность, потребляемая от сети.

Групповая компенсация

Индивидуальная компенсация

Централизованная компенсация

Установка компенсации реактивной мощности состоит из определенного числа конденсаторных ветвей, которые в своём построении и ступенях подбираются исходя из особенностей каждой конкретной электросети и её потребителей реактивной мощности.

Больше других распространены ветви в 5 кВАр, 7,5 кВАр, 10 кВАр 12,5 кВАр, 20 кВАр, 25 кВАр, 30 кВАр, 50 кВАр. Более крупные ступени включения, например, в 100 кВАр или ещё больше, достигаются соединением нескольких малых ветвей.

Таким образом, снижается нагрузка на сеть, создаваемая токами включения и следовательно, уменьшаются образующиеся от этого помехи (например, импульсы тока).

Если в напряжении электросети содержится большая доля высших гармоник, то конденсаторы, обычно, защищают дросселями (реакторами фильтрующего контура).

Применение автоматических установок компенсации реактивной мощности позволяет решить ряд проблем:

  1. снизить загрузку силовых трансформаторов (при снижении потребления реактивной мощности снижается потребление полной мощности);
  2. обеспечить питание нагрузки по кабелю с меньшим сечением (не допуская перегрева изоляции);
  3. за счет частичной токовой разгрузки силовых трансформаторов и питающих кабелей подключить дополнительную нагрузку;
  4. позволяет избежать глубокой просадки напряжения на линиях электроснабжения удаленных потребителей (водозаборные скважины, карьерные экскаваторы с электроприводом, стройплощадки и т. д.);
  5. максимально использовать мощность автономных дизель — генераторов (судовые электроустановки, электроснабжение геологических партий, стройплощадок, установок разведочного бурения и т. д.);
  6. облегчить пуск и работу двигателя (при индивидуальной компенсации);
  7. автоматически отслеживается изменение реактивной мощности нагрузки в компенсируемой сети и, в соответствии с заданным, корректируется значение коэффициента мощности — cosφ;
  8. исключается генерация реактивной мощности в сеть;
  9. исключается появление в сети перенапряжения, т. к. нет перекомпенсации, возможной при использовании нерегулируемых конденсаторных установок;
  10. визуально отслеживаются все основные параметры компенсируемой сети;

Установки компенсации изготавливаются из отдельных, расположенных в металлических шкафах, силовых компенсационных модулей, конструкция которых обеспечивает взаимозаменяемость идентичных элементов установки. Сборка и комплектация установок компенсации реактивной мощности производится на предприятии-изготовителе, а на месте их размещения — только монтаж и подключение к компенсируемой сети электроснабжения.

Установки компенсации реактивной мощности до100 кВАр, обычно, выпускаются в настенном исполнении.

Размещать установки компенсации лучше всего вблизи распределительного щита, т.к. в этом случае упрощается их присоединение к электросети. При соблюдении требований ПУЭ комплектные установки компенсации реактивной мощности можно устанавливать непосредственно в производственных помещениях.

Источник: https://www.nucon.ru/reactive-power/reactive-power-and-types-of-compensation.php

Мощность цепи переменного тока

Понятие потенциала или разности потенциалов u позволяет определить работу, совершаемую электрическим полем при перемещении элементарного электрического заряда dq, как dA = udq. В то же время, электрический ток равен i = dq/dt. Отсюда dA = ui dt, следовательно, скорость совершения работы, т.е. мощность в данный момент времени или мгновенная мощность равна

, (1)

где u и i — мгновенные значения напряжения и тока.

Величины тока и напряжения, входящие в выражение (1), являются синусоидальными функциями времени, поэтому и мгновенная мощность является переменной величиной и для ее оценки используется понятие средней мощности за период. Ее можно получить, интегрируя за период T работу, совершаемую электрическим полем, а затем соотнося ее с величиной периода, т.е.

. (2)

Пусть u=Umsinw t и Imsin(wt-φ ), тогда средняя мощность будет равна

(3)

т.к. интеграл второго слагаемого равен нулю. Величина cosφ называется коэффициентом мощности.

Коэффициент мощности, проблема cosφ

Из этого выражения следует, что средняя мощность в цепи переменного тока зависит не только от действующих значений тока I и напряжения U, но и от разности фаз φ между ними. Максимальная мощность соответствует нулевому сдвигу фаз и равна произведению UI. При сдвиге фаз между током и напряжением в ± 90° средняя мощность равна нулю.

Максимальные значения напряжения и тока любой электрической машины определяются ее конструкцией, а максимальная мощность, которую они могут развивать — произведением этих величин. Если электрическая цепь построена нерационально, т.е. сдвиг фаз φ имеет значительную величину, то источник электрической энергии и нагрузка не могут работать на полную мощность. Поэтому в любой системе источник-нагрузка существует т.н.

«проблема cosφ» , которая заключается в требовании возможного приближения cosφ к единице.

Выражение (3) можно представить также с помощью понятий активных составляющих тока Iа и напряжения Uа в виде

P = UI cosφ = U(I cosφ) = UIа = I(U cosφ) = IUа . (4)

Учитывая, что активные составляющие тока и напряжения можно выразить через резистивную состаляющую комплексного сопротивления цепи как Iа=U/R или Uа=IR , выражение (4) можно записать также в форме

Среднюю мощность P называют также активной мощностью и измеряют в ваттах [Вт].

Выделим подинтегральную функцию выражения (3)

(6)

Отсюда следует, что мгновенная мощность изменяется с двойной частотой сети относительно постоянной составляющей UIcosφ равной средней или активной мощности.

При cosφ = 1 (φ = 0) , т.е. для цепи, обладающей чисто резистивным сопротивлением

(7)

Временные диаграммы, соответствующие этому случаю приведены на рис. 1 а).

Положительные значения мгновенной мощности соответствуют поступлению энергии от источника в электрическую цепь

. Следовательно, при резистивной нагрузке вся энергия поступающая от источника преобразуется в ней в тепло.

При cosφ = 0 (φ = ± p/2) , т.е. для чисто реактивной цепи

(8)

Временные диаграммы, соответствующие чисто индуктивной и чисто емкостной нагрузке приведены на рис. 1 б) и г). Из выражений (8) и временных диаграмм следует, что мощность колеблется относительно оси абсцисс с двойной частотой, изменяя свой знак каждые четверть периода.

Это означает, что в течение четверти периода (p > 0) энергия поступает в электрическую цепь от источника и запасается в магнитном или электрическом поле, а в течение следующей четверти (p< 0) она целиком возвращается из цепи в источник.

Так как площади, ограниченные участками с положительной мощностью и с отрицательной одинаковы, то средняя мощность отдаваемая источником нагрузке равна нулю и в цепи не происходит преобразования энергии.

В общем случае произвольной нагрузки 1 > cosφ > 0 ( 1< |φ | < p/2) и

(8)

Как следует из временных диаграмм рис. 1 в), большую часть периода мощность потребляется нагрузкой (p > 0), но существуют также интервалы времени, когда энергия запасенная в магнитных и электрических полях нагрузки возвращается в источник.

Участки с положительным значением p независимо от характера реактивной составляющей нагрузки всегда больше участков с отрицательным значением, поэтому средняя мощность P положительна.

Это означает, что в электрической цепи преобладает процесс преобразования электрической энергии в тепло или механическую работу.

Энергия в последовательном соединении

Рассмотрим энергетические процессы в последовательном соединении rLC (рис. 2). Падение напряжения на входе цепи уравновешивается суммой падений напряжения на элементах u=ur+uL+uC . Мгновенная мощность в цепи равна

Пусть напряжение и ток на входе равны u=Umsinwt и Imsin(wt-φ ). Тогда падения напряжения на элементах будут ur= rImsin(wt-φ ), uL= w LImsin(wt-φ +p /2) = xLImsin(wt-φ +p /2), uC= Imsin(wt-φ -p /2)/(w C) = xCImsin(wt-φ -p /2). Подставляя эти выражения в (9), получим

(10)

Уравнение (10) в левой и правой частях имеет постоянную и переменную составляющие. Постоянная составляющая представляет собой активную или среднюю мощность. Второе слагаемое в правой части это переменная составляющая активной мощности с амплитудой равной P = UIcosφ.

Третье слагаемое правой части также является переменной составляющей мгновенной мощности, но эта составляющая находится в квадратуре с переменной составляющей активной мощности и имеет амплитуду Q = UIsinφ . Эту величину называют реактивной мощностью. Она равна среднему за четверть периода значению энергии, которой источник обменивается с магнитным и электрическим полями нагрузки.

Реактивная мощность не преобразуется в тепло или другие виды энергии, т.к. ее среднее значение за период равно нулю.

Реактивную мощность также можно представить через реактивные составляющие тока или напряжения

Q = UI sinφ = U(I sinφ ) = UIр = I(U sinφ ) = IUр. (11)

В отличие от всегда положительной активной мощности, реактивная мощность положительна при φ > 0 и отрицательна при φ < 0 .

Из условия равенства переменных составляющих левой и правой частей уравнения (10) можно найти связь между P, Q и S = UI в виде

(12)

Величина S называется полной или кажущейся мощностью. Из выражения (12) следует, что полную мощность можно представить гипотенузой прямоугольного треугольника с углом φ , катетами которого являются активная и реактивная мощности.

Таким образом, полная мощность это максимально возможная активная мощность, т.е. мощность, выделяющаяся в чисто резистивной нагрузке (cosφ = 0). Именно эта мощность указывается в паспортных данных электрических машин и аппаратов.

Реактивные составляющие токов и напряжений можно представить через активные и реактивные составляющие комплексного сопротивления, тогда для составляющих мощности

P = UIа = I2R = UаI = U2/R = U2G ;Q= UIр = I2X = UрI = U2/X = U2B

Источник: http://bourabai.kz/toe/ac_5.htm

Активная мощность

Мгновенная мощность pпроизвольногоучастка цепи, напряжение и ток которогоизменяются по законуu=Umsin(t),i = Imsin(t–),имеет вид

p = ui= Umsin(t)Imsin(t–)= UmIm[coscos(2t- )]/2=

= Uicos— UIcos(2t- )= (UIcos– UIcoscos2t)– UIsinsin2t. (1)

Активная мощность цепи переменноготока Pопределяется как среднеезначение мгновенной мощностиp(t)за период:

P = ,

так как среднее за период значениегармонической функции равно 0.

Из этого следует, что средняя за периодмощность зависит от угла сдвига фазмежду напряжением и током и не равна нулю, если участок цепи имеет активноесопротивление. Последнее объясняет ееназвание активнаямощность.

Подчеркнем еще раз, что вактивном сопротивлении происходитнеобратимое преобразование электрическойэнергии в другие виды энергии, напримерв тепловую. Активная мощность можетбыть определена как средняя за периодскорость поступления энергии в участокцепи.

Активная мощность измеряется вваттах (Вт).

Понравилась статья? Поделиться с друзьями:
Электро Дело
Закрыть