Закон сохранения заряда формула – Закон сохранения электрического заряда
Приэлектризации тел выполняется законсохранения электрического заряда.Этот закон справедлив для замкнутойсистемы. Взамкнутой системе алгебраическая суммазарядов всех частиц остается неизменной.Если заряды частиц обозначить черезq1,q2и т.д., то
q1+ q2+ q3+ + qn= const.
Основной закон электростатики – закон кулона
Если расстояниемежду телами во много раз больше ихразмеров, то ни форма, ни размерызаряженных тел существенно не влияютна взаимодействия между ними. В такомслучае эти тела можно рассматриватькак точечные.
Силавзаимодействия заряженных тел зависитот свойств среды между заряженнымителами.
Силавзаимодействия двух точечных неподвижныхзаряженных тел в вакууме прямопропорциональна произведению модулейзаряда и обратно пропорциональнаквадрату расстояния между ними. Этусилу называют кулоновской.
,где
|q1|и |q2|- модули зарядов тел,
r– расстояние между ними,
k– коэффициент пропорциональности.
F—силавзаимодействия
Силывзаимодействия двух неподвижных точечныхзаряженных тел направлены вдоль прямой,соединяющей эти тела.
Единица электрического заряда
Единицасилы тока – ампер.
Одинкулон (1Кл)– это заряд, проходящий за 1 с черезпоперечное сечение проводника при силетока 1 А
g[Кулон=Кл]
е=1,610-19Кл
-электрическаяпостоянная
БЛИЗКОДЕЙСТВИЕ ИДЕЙСТВИЕ НА РАССТОЯНИИ
Предположениео том, что взаимодействие между удаленнымидруг от друга телами всегда осуществляетсяс помощью промежуточных звеньев (илисреды), передающих взаимодействие отточки к точке, составляет сущностьтеории близкодействия.Распр.с конечной скоростью.
Теорияпрямого действияна расстоянии непосредственно черезпустоту. Согласно этой теории действиепередается мгновенно на сколь угоднобольшие расстояния.
Обетеории являются взаимно противоположнымидруг другу. Согласно теориидействия на расстоянии однотело действует на другое непосредственночерез пустоту и это действие передаетсямгновенно.
Теорияблизкодействия утверждает,что любое взаимодействие осуществляетсяс помощью промежуточных агентов ираспространяется с конечной скоростью.
Существованияопределенного процесса в пространствемежду взаимодействующими телами, которыйдлится конечное время, — вот главное,что отличает теорию близкодействияот теории действия на расстоянии.
Согласноидее Фарадея электрическиезаряды не действуют друг на друганепосредственно. Каждыйиз них создает в окружающем пространствеэлектрическое поле. Поле одного зарядадействует на другой заряд, и наоборот.По мере удаления от заряда поле ослабевает.
Электромагнитныевзаимодействия должны распространятсяв пространстве с конечной скоростью.
Электрическоеполе существует реально, его свойстваможно исследовать опытным путем, но мыне можем сказать из чего это поле состоит.
Оприроде электрического поля можносказать, что поле материально; оно сущ.независимо от нас, от наших знаний онем;
Полеобладает определенными свойствами,которые не позволяют спутать его счем-либо другим в окружающем мире;
Главноесвойство электрического поля – действиеего на электрические заряды с некоторойсилой;
Электрическоеполе неподвижных зарядов называютэлектростатическим.Оно не меняется со временем.Электростатическое поле создаетсятолько электрическими зарядами. Оносуществует в пространстве, окружающемэти заряды, и неразрывно с ним связано.
Напряженностьэлектрического поля.
Отношение силы, действующейна помещенный в данную точку поля заряд,к этому заряду для каждой точки поля независит от заряда и может рассматриватьсякак характеристика поля.
Напряженностьполя равна отношению силы, с которойполе действует на точечный заряд, кэтому заряду.
Напряженность поляточечного заряда.
.
Модульнапряженности поля точечного зарядаqoна расстоянииrот него равен:
.
Еслив данной точке пространства различныезаряженные частицы создают электрическиеполя, напряженности которыхит. д., то результирующая напряженностьполя в этой точке равна:
СИЛОВЫЕ ЛИНИИЭЛЕКТРИЧЕСКОГО ПОЛ.
НАПРЯЖЕННОСТЬПОЛЯ ЗАРЯЖЕННОГО ШАРА
Электрическоеполе, напряженность которого одинаковаво всех точках пространства, называетсяоднородным.
Густотасиловых линий больше вблизи заряженныхтел, где напряженность поля также больше.
-напряженностьполя точечного заряда.
Внутрипроводящего шара (r> R)напряженность поля равна нулю.
ПРОВОДНИКИ ВЭЛЕКТРИЧЕСКОМ ПОЛЕ.
Впроводниках имеются заряженные частицы,способные перемещаться внутри проводникапод влиянием электрического поля. Зарядыэтих частиц называют свободнымизарядами.
Электростатическогополя внутри проводника нет. Весьстатический заряд проводника сосредоточенна его поверхности. Заряды в проводникемогут располагаться только на егоповерхности.
Источник: https://yato-tools.ru/raznoe-2/zakon-soxraneniya-zaryada-formula-zakon-soxraneniya-elektricheskogo-zaryada.html
Электрический заряд
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: электризация тел, взаимодействие зарядов, два вида заряда, закон сохранения электрического заряда
Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий.
Столь же фундаментальным типом взаимодействия является тяготение — гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.
1. Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд).
2. Гравитационное взаимодействие — это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.
3. Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в раз превышает силу их гравитационного притяжения друг к другу.
Каждое заряженное тело обладает некоторой величиной электрического заряда . Электрический заряд — это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы. Единицей измерения заряда является кулон (Кл).
Два вида заряда
Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия — притяжение и отталкивание — удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные.
Заряды разных знаков притягиваются друг к другу, а заряды разных знаков друг от друга отталкиваются. Это проиллюстрировано на рис. 1; подвешенным на нитях шарикам сообщены заряды того или иного знака.
Рис. 1. Взаимодействие двух видов зарядов
Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны.
Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален.
Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела.
Но при нарушении электронейтральности (например, в результате электризации) тело немедленно начинает действовать на окружающие заряженные частицы.
Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.
Заряд протона равен Кл. Заряд электрона противоположен ему по знаку и равен Кл. Величина
Кл
называется элементарным зарядом. Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.
Заряд любого тела всегда складывается из целого количества элементарных зарядов:
Если , то тело имеет избыточное количество электронов (по сравнению с количеством протонов). Если же , то наоборот, у тела электронов недостаёт: протонов на больше.
Электризация тел
Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация — это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.
Один из способов электризовать тело — сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.
Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк — отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть — положительно.
Данный способ электризации тел называется электризацией трением. С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову
Другой тип электризации называется электростатической индукцией, или электризацией через влияние. В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других — отрицательные.
Рис. 2. Электростатическая индукция
Давайте посмотрим на рис. 2. На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.
Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая — положительно.
Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3 (изображение с сайта en.wikipedia.org).
Рис. 3. Электроскоп
Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.
Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.
Рис. 4. Электризация земли грозовой тучей
Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней — положительный.
Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд — хорошо известная вам молния.
Закон сохранения заряда
Вернёмся к примеру электризации трением — натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.
Мы видим здесь закон сохранения заряда, который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами:
Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.
При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки — столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется!
Например, на рис. 5 показан процесс , при котором порция электромагнитного излучения (так называемый фотон) превращается в две заряженные частицы — электрон и позитрон . Такой процесс оказывается возможным при некоторых условиях — например, в электрическом поле атомного ядра.
Рис. 5. Рождение пары электрон–позитрон
Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.
Закон сохранения заряда (наряду с существованием наименьшего элементарного заряда) является на сегодняшний день первичным научным фактом. Объяснить, почему природа ведёт себя именно так, а не иначе, физикам пока не удаётся. Мы можем лишь констатировать, что эти факты подтверждаются многочисленными физическими экспериментами.
Источник: https://ege-study.ru/ru/ege/materialy/fizika/elektricheskij-zaryad/
III. Основы электродинамики
Нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи, или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы. А кто не пробовал подвесить воздушный шарик к потолку, после трения его о голову? Подобное притяжение и отталкивание является проявлением статического электричества. Подобные действия называются электризацией.
Статическое электричество объясняется существованием в природе электрического заряда. Заряд является неотъемлемым свойством элементарных частиц. Заряд, который возникает на стекле при трении его о шелк, условно называют положительным, а заряд, возникающий на эбоните при трении о шерсть, — отрицательным.
Рассмотрим атом. Атом состоит из ядра и, летающих вокруг него, электронов (на рисунке синие частицы). Ядро состоит из протонов (красные) и нейтронов (черные).
.
Носителем отрицательного заряда является электрон, положительного — протон. Нейтрон — нейтральная частица, не имеет заряда.
Величина элементарного заряда — электрона или протона, имеет постоянное значение и равна
Весь атом нейтрально заряжен, если количество протонов соответствует электронам. Что произойдет, если один электрон оторвется и улетит? У атома станет на один протон больше, то есть положительных частиц больше, чем отрицательных. Такой атом называют положительным ионом.
А если присоединится один электрон лишний — получим отрицательный ион. Электроны, оторвавшись, могут не присоединятся, а некоторое время свободно перемещаться, создавая отрицательный заряд.
Таким образом, в веществе свободными носителями заряда являются электроны, положительные ионы и отрицательные ионы.
Для того, чтобы имелся свободный протон, необходимо, чтобы разрушилось ядро, а это означает разрушение атома целиком. Такие способы получения электрического заряды мы рассматривать не будем.
Тело становится заряженным, когда оно содержит избыток одних или иных заряженных частиц (электронов, положительных или отрицательных ионов).
Величина заряда тела кратна элементарному заряду. Например, если в теле 25 свободных электронов, а остальные атомы являются нейтральными, то тело заряжено отрицательно и его заряд составляет . Элементарный заряд не делим — это свойство называется дискретностью
Одноименные заряды (два положительных или два отрицательных) отталкиваются, разноименные (положительный и отрицательный) — притягиваются
Точечный заряд — это материальная точка, которая имеет электрический заряд.
Закон сохранения электрического заряда
Замкнутая система тел в электричестве — это такая система тел, когда между внешними телами нет обмена электрическими зарядами.
Алгебраическая сумма электрических зарядов тел или частиц остается постоянной при любых процессах, происходящих в электрически замкнутой системе.
На рисунке пример закона сохранения электрического заряда. На первой картинке два тела разноименного заряда. На втором рисунке те же тела после соприкосновения. На третьем рисунке в электрически замкнутую систему внесли третье нейтральное тело и тела привели во взаимодействие друг с другом.
В каждой ситуации алгебраическая сумма заряда (с учетом знака заряда) остается постоянной.
Главное запомнить
1) Элементарный электрический заряд — электрон и протон2) Величина элементарного заряда постоянна 3) Положительный и отрицательный заряды и их взаимодействие 4) Носителями свободных зарядов являются электроны, положительные ионы и отрицательные ионы 5) Электрический заряд дискретен
6) Закон сохранения электрического заряда
Дополнительные источники*
1) Лекция Pичарда Фейнмана «ВЕЛИКИЕ ЗАКОНЫ СОХРАНЕНИЯ»
Источник: http://fizmat.by/kursy/jelektrichestvo/zarjad
§ 30. Объяснение электрических явлении
Вам уже известно, что все тела состоят из атомов. В каждом атоме число протонов и число электронов одинаково, поэтому в обычных условиях общее число электронов в любом теле равно общему числу протонов в нём. Все электроны одинаковы, и каждый из них имеет наименьший отрицательный заряд. Все протоны также одинаковы, и каждый имеет положительный заряд, равный заряду электрона.
Итак, сумма всех отрицательных зарядов в теле равна по абсолютному значению сумме всех положительных зарядов, и тело в целом не имеет заряда. Оно электрически нейтрально.
Если же нейтральное тело приобретёт электроны от какого-нибудь другого тела, то оно получит отрицательный заряд. Таким образом, тело заряжено отрицательно в том случае, если оно обладает избыточным, по сравнению с нормальным, числом электронов.
А если нейтральное тело теряет электроны, то оно получает положительный заряд. Следовательно, тело обладает положительным зарядом, если у него недостаточно электронов.
Таким образом, тело электризуется, т. е. получает электрический заряд, когда оно приобретает или теряет электроны.
Когда эбонитовую палочку трут о шерсть, то она заряжается отрицательно, а шерсть при этом — положительно. Это объясняется тем, что при трении электроны переходят с шерсти на эбонит, т. е. с того вещества, в котором силы притяжения электронов к ядру атома меньше, на то вещество, в котором эти силы больше. Теперь в эбонитовой палочке будет избыток электронов, а в куске шерсти — недостаток.
Электризация:
а — стеклянной палочки трением о шёлк; б — эбонитовой палочки трением о мех
Как показывает опыт, заряды шерсти и эбонитовой палочки равны по абсолютному значению. Ведь сколько электронов ушло с шерсти, столько же их прибавилось на эбоните. Значит, при электризации тел заряды не создаются, а только разделяются. Часть отрицательных зарядов переходит с одного тела на другое.
Экспериментально установлено, что при электризации тел выполняется закон сохранения электрического заряда.
- Алгебраическая сумма электрических зарядов остаётся постоянной при любых взаимодействиях в замкнутой системе q1 + q2 + q3 + + qn = const, где q — электрический заряд.
Замкнутой считают систему, в которую извне не входят и не выходят наружу электрические заряды.
Зная строение атома, можно объяснить существование проводников и диэлектриков. В атомах электроны находятся на разных расстояниях от ядра (см. рис. 40, в, ядро лития), удалённые электроны слабее притягиваются к ядру, чем ближние.
Особенно слабо удерживаются удалённые электроны ядрами металлов. Поэтому в металлах электроны, наиболее удалённые от ядра, покидают своё место и свободно движутся между атомами. Эти электроны называют свободными электронами.
Те вещества, в которых есть свободные электроны, являются проводниками.
При помощи проводника — металлического стержня — соединим незаряженный электроскоп с отрицательно заряженным. Свободные электроны стержня окажутся в электрическом поле заряженного электроскопа и придут в движение по направлению к незаряженному электроскопу.
В результате и этот электроскоп зарядится отрицательно (рис. 41). В эбоните, резине, пластмассах и многих других неметаллах электроны прочно удерживаются в своих атомах и не могут двигаться в электрическом поле.
Поэтому такие вещества являются непроводниками, или диэлектриками.
Рис. 41. Зарядка электроскопа с помощью металлического стержня
Знания об электроне и строении атома позволяют объяснить явление притяжения ненаэлектризованных тел к наэлектризованным. Почему, например, притягивается к заряженной палочке гильза, которую мы предварительно не наэлектризовали? Ведь мы знаем, что электрическое поле действует только на заряженные тела.
Дело в том, что в гильзе есть свободные электроны. Как только гильза будет внесена в электрическое поле, электроны придут в движение под действием сил поля. Если палочка заряжена положительно, то электроны перейдут на тот конец гильзы, который расположен ближе к палочке. Этот конец зарядится отрицательно.
На противоположном конце гильзы будет недостаток электронов, и этот конец окажется заряженным положительно (рис. 42, а). Отрицательно заряженный край гильзы ближе к палочке, поэтому гильза притянется к ней (рис. 42, б). Когда гильза коснётся палочки, то часть электронов с неё перейдёт на положительно заряженную палочку.
На гильзе останется нескомпенсированный положительный заряд (рис. 42, в).
Рис. 42. Передача заряда от заряженной палочки незаряженной гильзе
Если заряд передают от заряженного шара к незаряженному и размеры шаров одинаковы, то заряд разделится пополам (см. рис. 39). Но если второй, незаряженный шар больше, чем первый, то на него перейдёт больше половины заряда.
Чем больше тело, которому передают заряд, тем большая часть заряда на него перейдёт. На этом основано заземление — передача заряда земле. Земной шар велик по сравнению с телами, находящимися на нём.
Поэтому при соприкосновении с землёй заряженное тело отдаёт ей почти весь свой заряд и практически становится электрически нейтральным.
Вопросы
- Объясните электризацию тел при соприкосновении.
- Почему при электризации трением на телах появляются равные по абсолютному значению, но противоположные по знаку заряды?
- Как передаётся гильзе заряд с тела, наэлектризованного отрицательно; положительно?
- От чего зависит заряд, переходящий на ненаэлектризованное тело при соприкосновении его с наэлектризованным телом?
- Почему при заземлении почти весь заряд тела уходит в землю?
Упражнение 21
- Почему можно наэлектризовать трением эбонитовую палочку, держа её в руке, а металлический стержень нельзя?
- При наливании бензина корпус бензовоза при помощи металлического проводника обязательно соединяют с землёй. Зачем это делают?
- Пластмассовая линейка, потёртая шерстяной тканью, получила отрицательный заряд. Избыток или недостаток электронов образовался на ткани?
Источник: https://www.tepka.ru/fizika_8/30.html
IT News
Дата Категория: Физика
Иногда обычные предметы демонстрируют на первый взгляд сверхъестественные способности: пластмассовая палочка может притягивать бумагу, подобно тому как магнит притягивает железо или пенополистирол прилипает к одежде. За эти небольшие чудеса ответственно статическое электричество.
Статическое электричество образуется в результате взаимодействия электрически заряженных частиц — отрицательных электронов и положительных протонов атомов. Обычно тела находятся в электрически нейтральном состоянии, поскольку они состоят из равного количества равномерно распределенных отрицательных и положительных частиц. Однако, приобретая или теряя электроны, нейтральные тела могут становиться заряженными.
Тела заряжаются в результате трения (натирания), которое лишает некоторые вещества части их электронов, делая эти вещества положительно заряженными. Например, натирание пластмассовой палочки мехом передает электроны от меха к пластмассе.
В итоге пластмасса приобретает отрицательный заряд, а мех — положительный. Если отрицательно заряженную пластмассу затем близко поднести к электрически нейтральным кусочкам бумаги, они начнут прилипать к пластмассе.
«Волшебное» притягивание вызывается образованием отрицательного заряда в пластмассе.
Основное правило электричества
Фундаментальный закон электричества гласит, что противоположные по знаку заряды (+ -) притягивают, а одноименные (++ или —) — отталкивают друг друга. Величина сил притяжения и отталкивания зависит от расстояния: чем ближе заряженные тела друг к другу, тем больше соответствующая сила.
Бесконтактная электризация
Если отрицательно заряженный стержень держать рядом с нейтральным телом, заряд стержня переместит поверхностные электроны тела (голубые кубики со знаком «-») на его дальнюю сторону. Ближняя к стержню сторона те ла станет положительно заряженной (розовые кубики со знаком «+»).
Волшебство трения
Трение при натирании пластмассовой палочки мехом заставляет палочку приобретать электроны (-), создавая на ней отрицательный заряд. После этого палочка начнет притягивать к себе бумагу.
Определение знака заряда
Некоторые материалы содержат повышенное количество «свободных» электронов, которые могут свободно перемещаться между атомами (-). Другие материалы прочно привязывают свои электроны к положительно заряженным яд- рам (+). Когда два материала, такие, как пенополистирол и перья, трутся друг об друга, тот из них, который содержит больше свободных электронов (в данном случае перья), будет их терять и получит положительный заряд.
Источник: http://information-technology.ru/sci-pop-articles/23-physics/227-pochemu-plastmassa-mozhet-prityagivat-bumagu
Закон сохранения электрического заряда
Закон сохранения заряда – это фундаментальный закон природы. Он был установлен на основании обобщения экспериментальных данных. Подтвержден в 1843 г. английским физиком М. Фарадеем.
Формулировка закона сохранения электрического заряда
В любой замкнутой системе алгебраическая сумма зарядов – величина неизменная, не зависимо от того, какие процессы происходят в данной системе.
где N – количество зарядов.
Электрический заряд — это релятивистски инвариантная величина, что означает независимость заряда от системы отсчета, то есть величина заряда не зависит от движения или покоя заряда.
Эмпирическим путем (опыты Р. Милликена) было доказано, что электрический заряд – это дискретная величина. Заряд любого тела является кратным целым от заряда электрона, который носит название элементарного заряда. Заряд электрона равен
Примеры решения задач
Понравился сайт? Расскажи друзьям! |
Источник: http://ru.solverbook.com/spravochnik/fizika/zakon-soxraneniya-elektricheskogo-zaryada/