Катушка Тесла: принцип работы, как собрать в домашних условиях, схема
О том, что физик Никола Тесла был гениальным изобретателем и значительно опередил свое время, слышали многие. К сожалению, по ряду причин большинство его изобретений так и не увидели свет. Но одно из самых неоднозначных – катушка Тесла, сохранилось до наших времен и нашло применение в медицине, военной отрасли и световых шоу.
Описание прибора
Если очень коротко, то катушка Тесла (КТ) – это резонансный трансформатор, создающий высокочастотный ток. Есть информация, что в своих экспериментах военные довели катушку до мощности в 1 Тгц.
Огромная катушка Тесла
Тут стоит затронуть такой вопрос – зачем Тесла ее изобрел? Согласно записям ученый работал над технологией беспроводной передачи электроэнергии. Вопрос крайне актуальный для всего человечества. В теории с помощью эфира две мощные КТ, размещенные в паре километров друг от друга, смогут передавать электричество. Для этого они должны быть настроены на одинаковую частоту. Также есть мнение, что КТ может стать своего рода вечным двигателем.
Внедрение данной технологии сделает все имеющиеся сегодня АЭС, ТЭС, ГЭС и прочие просто ненужными. Человечеству не придется сжигать твердые ископаемые, подвергаться риску радиационного заражения, перекрывать русла рек. Но ответ на вопрос, почему никто не развивает данную технологию, остается за конспирологами.
Настольная катушка Тесла, продающаяся сегодня в качестве сувенира
Принцип работы
Сегодня многие домашние электрики пытаются собрать КТ, при этом не всегда понимая принцип работы трансформатора Тесла, из-за чего терпят фиаско. На самом деле КТ недалеко ушла от обычного трансформатора.
Есть две обмотки – первичная и вторичная. Когда к первичной обмотке подводят переменное напряжение от внешнего источника, вокруг нее создается магнитное поле или, как его еще называют, колебательный контур.
Когда заряд пробьет разрядник, через магнитное поле энергия начнет перетекать к вторичной обмотке, где будет образовываться второй колебательный контур. Часть накапливаемой в контуре энергии будет представлена напряжением.
Ее величина будет прямо пропорциональна времени образования контура.
Таким образом, в КТ имеется два связанных между собой колебательных контура, что и является определяющей характеристикой при сравнении с обычными трансформаторами. Их взаимодействие создает ионизирующий эффект, из-за чего мы видим стримеры (разряды молний).
Устройство катушки
Трансформатор Тесла, схема которого будет представлена ниже, состоит из двух катушек, тороида, защитного кольца и, конечно, заземления.
Эскиз настольной КТ
Необходимо рассмотреть каждый элемент в отдельности:
- первичная катушка располагается в самом низу. К ней подводится питание. Она обязательно заземляется. Делается из металла с малым сопротивлением;
- вторичная катушка. Для обмотки используют эмалированную медную проволоку примерно на 800 витков. Таким образом витки не расплетутся и не поцарапаются;
- тороид. Данный элемент уменьшает резонансную частоту, накапливает энергию и увеличивает рабочее поле.
- защитное кольцо. Представляет из себя незамкнутый виток медного провода. Устанавливается, если длина стримера больше длины вторичной обмотки;
- заземление. Если включить незаземленную катушку, стримеры (разряды тока) не будут бить в воздух, а создадут замкнутое кольцо.
Чертеж КТ
Самостоятельное изготовление
Итак, простейший способ изготовления катушки Теслы для чайников своими руками. Часто в интернете можно увидеть суммы, превышающие стоимость неплохого смартфона, но на деле трансформатор на 12V, который даст возможность насладиться включением светильника без использования розетки, можно собрать из кучи гаражного хлама.
Что должно получиться в итоге
Понадобится медная эмалированная проволока. Если эмалированной не найти, тогда дополнительно понадобится обычный лак для ногтей. Диаметр провода может быть от 0.1 до 0.3 мм.
Чтобы соблюсти количество витков понадобиться около 200 метров. Намотать можно на обычную ПВХ-трубу диаметром от 4 до 7 см. Высота от 15 до 30 см. Также придется прикупить транзистор, например, D13007, пара резисторов и проводов.
Неплохо было бы обзавестись кулером от компьютера, который будет охлаждать транзистор.
Вам это будет интересно Цифровой мультиметр
Теперь можно приступить к сборке:
- отрезать 30 см трубы;
- намотать на нее проволоку. Витки должны быть как можно плотнее друг к другу. Если проволока не покрыта эмалью, покрыть в конце лаком. Сверху трубы конец провода продеть через стенку и вывести наверх так, чтобы он торчал на 2 см выше поставленной трубы.;
- изготовить платформу. Подойдет обычная плита из ДСП;
- можно делать первую катушку. Нужно взять медную трубу 6 мм, выгнуть ее в три с половиной витка и закрепить на каркасе. Если диаметр трубки меньше, то витков должно быть больше. Ее диаметр должен быть на 3 см больше второй катушки. Закрепить на каркасе. Тут же закрепить вторую катушку;
- способов изготовления тороида довольно много. Можно использовать медные трубки. Но проще взять обычную алюминиевую гофру и металлическую перекладину для крепления на выпирающем конце проволоки. Если проволока слишком хлипкая, чтобы удержать тороид, можно использовать гвоздь, как на картинке ниже;
- не стоит забывать про защитное кольцо. Хотя если один конец первичного контура заземлить, от него можно отказаться;
- когда конструкция готова, транзистор соединяется по схеме, крепится к радиатору или кулеру, далее нужно подвести питание и монтаж окончен.
Первую катушку можно сделать плоской, как на картинке
В качестве питания установки многие используют обычную крону Дюрасель.
Трансформатор Тесла своими руками, простейшая схема
Расчет катушки
Расчет КТ обычно производится при изготовлении трансформатора промышленной величины. Для домашних экспериментов достаточно использовать приведенные выше рекомендации.
Сам расчет подскажет оптимальное количество витков для вторичной катушки в зависимости от витков первой, индуктивность каждой катушки, емкость контуров и, самое важное, необходимую рабочую частоту трансформатора и емкость конденсатора.
Пример расчета КТ
Меры безопасности
Собрав КТ, перед запуском нужно принять некоторые меры предосторожности. Во-первых, нужно проверить проводку в помещении, где планируется подключение трансформатора. Во-вторых, проверить изоляцию обмоток.
Вам это будет интересно Что такое удельное сопротивление
Также стоит помнить, о простейших мерах предосторожности. Напряжение вторичной обмотки в среднем равняется 700А, 15А для человека уже смертельно. Дополнительно стоит подальше убрать все электроприборы, попав в зону работы катушки, они с большой вероятностью сгорят.
КТ – это революционное открытие своего времени, недооцененное в наши дни. Сегодня трансформатор Тесла служит лишь для развлечения домашних электриков и в световых представлениях. Сделать катушку можно самостоятельно из подручных средств. Понадобятся ПВХ труба, несколько сотен метров медного провода, пара метров медных труб, транзистор и пара резисторов.
Источник: https://rusenergetics.ru/ustroistvo/katushka-tesla
Собрать катушку Тесла с минимальными вложениями? / Интересное / Статьи / Еще / Обо всем
Миллионы вольт! Искры, молнии, треск! Сверхвысокое напряжение! Все это — трансформатор Тесла!
Как работает это устройство? Почему оно зажигает лампы в руках? Возможна ли беспроводная передача энергии на расстояние? И, самое главное, как собрать трансформатор Тесла своими руками, причем, с минимальными вложениями?
НИЖЕ — БОЛЕЕ СЛОЖНЫЙ ВАРИАНТ
Сочетание нескольких физических законов в одном приборе воспринимается далёкими от физики людьми как чудо или фокус: вылетающие разряды, похожие на молнии, светящиеся вблизи катушки люминесцентные лампы, не подключённые к обычной электросети и т.д.
При этом собрать катушку тесла своими руками можно из стандартных деталей, продающихся в любом магазине электротехники.
Настройку устройства разумнее делегировать тем, кто знаком с принципами электричества, либо тщательно изучить соответствующую литературу.
- Как Тесла изобрёл свою катушку
- Принцип работы катушки тесла и применение
- Изготовление катушки Тесла своими руками в домашних условиях
- Особенности изготовления других видов устройств
Никола Тесла — величайший изобретатель XX века
Одним из направлений работы Никола Тесла в конце девятнадцатого столетия стала задача передачи электрической энергии на большие расстояния без проводов. 20 мая 1891 года на своей лекции в университете штата Колумбия (США) он продемонстрировал сотрудникам Американского института электроинженерии удивительный прибор. Принцип его действия лежит в основе современных энергосберегающих люминесцентных ламп.
Во время экспериментов с катушкой Румкорфа по методике Генриха Герца Тесла обнаружил перегревание стального сердечника и плавление изоляции между обмотками при подключении к прибору высокоскоростного генератора переменного тока. Тогда он принял решение модифицировать конструкцию, создав воздушный зазор между обмотками и перемещая сердечник в различные положения. Он добавил в схему конденсатор, препятствующий выгоранию катушки.
Принцип работы катушки тесла и применение
При достижении соответствующей разности потенциалов избыток энергии выходит в виде стримера с фиолетовым свечением
Это резонансный трансформатор, в основе работы которого лежит следующий алгоритм:
- конденсатор заряжается от высоковольтного трансформатора;
- при достижении необходимого уровня заряда происходит разрядка с проскакиванием искры;
- в первичной катушке трансформатора происходит замыкание, приводящее к возникновению колебаний;
- перебирая точку подключения к виткам первичной катушки, изменяют сопротивление и настраивают всю схему.
В результате высокое напряжение в верхней части вторичной обмотки приведёт к появлению впечатляющих разрядов в воздухе. Для большей наглядности принцип действия устройства сравнивают с качелями, которые раскачивает человек.
Качели — это колебательный контур из трансформатора, конденсатора и разрядника, человек — первичная обмотка, ход качели — движение электрического тока, а высота подъёма — разность потенциалов.
Достаточно несколько раз с определённым усилием толкнуть качели, как они поднимутся на значительную высоту.
Помимо познавательно-эстетического использования (демонстрация разрядов и светящихся без подключения к сети ламп), устройство нашло своё применение в следующих отраслях:
- радиоуправление;
- передача данных и энергии без проводов;
- дарсонвализация в медицине — обработка поверхности кожи слабыми токами высокой частоты для тонизирования и оздоровления;
- поджиг газоразрядных ламп;
- поиск течи в вакуумных системах и др.
Изготовление катушки Тесла своими руками в домашних условиях
Проектирование и создание устройства не представляет сложности для людей, знакомых с принципами электротехники и электричества. Однако даже новичку под силу будет справиться с этой задачей, если провести грамотные расчёты и скрупулёзно следовать пошаговой инструкции. В любом случае до начала работ следует обязательно ознакомиться с правилами техники безопасности для работ с высоким напряжением.
Катушка тесла представляет собой две катушки без сердечника, посылающих большой импульс тока. Первичная обмотка состоит из 10 витков, вторичная — из 1000. Включение в схему конденсатора позволяет снизить до минимума потери искрового заряда. Выходная разность потенциалов превышает миллионы вольт, что позволяет получать эффектные и зрелищные электрические разряды.
Перед тем как взяться за изготовление катушки своими руками, необходимо изучить схему её строения
Инструменты и материалы
Для сбора и последующего функционирования катушки Тесла понадобится подготовить следующие материалы и оборудование:
- трансформатор с выходным напряжением от 4 кВ 35 мА;
- болты и металлический шарик для разрядника;
- конденсатор с рассчитанными параметрами ёмкости не ниже 0,33 µF 275 В;
- ПВХ труба диаметром 75 мм;
- эмалированная медная проволока сечением 0,3–0,6 мм — пластиковая изоляция предотвращает пробой;
- полый металлический шар;
- толстый кабель или трубка из меди сечением 6 мм.
Пошаговая инструкция по изготовлению катушки
В качестве источника питания также можно использовать мощные батареи
Алгоритм изготовления катушки состоит из следующих этапов:
- Подбор источника питания. Оптимальный вариант для новичка — трансформаторы для неоновых вывесок. В любом случае выходное напряжение на них не должно быть ниже 4кВ.
- Изготовление разрядника. От качества этого элемента зависит общая производительность устройства. В самом простом случае это могут быть вкрученные на расстоянии в несколько миллиметров друг от друга обыкновенные болты, между которыми установлен металлический шарик. Расстояние подбирают таким образом, чтобы искра пролетала в том случае, когда только разрядник подключён к трансформатору.
- Расчёт ёмкости конденсатора. Резонансную ёмкость трансформатора умножают на 1,5 и получают искомую величину. Конденсатор с заданными параметрами разумнее приобрести готовый, поскольку при отсутствии достаточного опыта сложно собрать этот элемент самостоятельно, чтобы он работал. При этом могут возникнуть сложности с определением его номинальной ёмкости. Как правило, при отсутствии большого элемента конденсаторы катушки представляют собой сборку из трёх рядов по 24 конденсатора в каждом. При этом на каждом конденсаторе должен быть установлен гасящий резистор 10 МОм.
- Создание вторичной катушки. Высота катушки равна пяти её диаметрам. Под эту длину подбирают подходящий доступный материал, например, поливинилхлоридную трубу. Её обматывают медной проволокой в 900–1000 витков, а затем покрывают лаком для сохранения эстетичного внешнего вида. К верхней части прикрепляют полый шар из металла, а нижнюю часть заземляют. Желательно продумать отдельное заземление, так как при использовании общедомового велика вероятность выхода из строя других электроприборов. Если готовый металлический шар отсутствует, то его можно заменить другими аналогичными вариантами, выполненными самостоятельно:
- обернуть пластиковый шар фольгой, которую следует тщательно разгладить;
- обмотать алюминиевой лентой гофротрубу, свёрнутую в круг.
- Создание первичной катушки. Толщина трубки препятствует резистивным потерям, с увеличением толщины уменьшается её способность к деформированию. Поэтому сильно толстый кабель или трубка будут плохо сгибаться и трескаться в местах сгибов. Шаг между витками выдерживают в 3–5 мм, количество витков зависит от общих габаритов катушки и подбирается экспериментально, также как и место подключения устройства к источнику питания.
- Пробный запуск. После выполнения первичных настроек запускают катушку.
Её в основном используют в оздоровительных целях
Для изготовления плоской катушки предварительно готовят основание, на которое последовательно укладывают два медных провода сечением 1,5 мм параллельно плоскости основания. Сверху укладку лакируют, продлевая срок службы. Внешне этот прибор представляет собой ёмкость из двух вложенных друг в друга спиральных обкладок, подключаемых к источнику питания.
Технология изготовления мини-катушки идентична выше рассмотренному алгоритму для стандартного трансформатора, но в этом случае понадобится меньше расходных материалов, а запитать её можно будет от стандартной батарейки «Крона» 9В.
как создать мини-катушку тесла
При подключении катушки к трансформатору, выводящему ток посредством музыкальных волн высокой частоты, можно получить устройство, разряды которого меняются в зависимости от ритма звучащей музыки. Используется при организации шоу и развлекательных аттракционов.
Катушка Тесла — высокочастотный резонансный трансформатор высокого напряжения. Потери энергии при высокой разнице потенциалов позволяют получать красивые электрические явления в виде молний, самозагорающихся ламп, реагирующих на музыкальный ритм разрядов и др. Собрать этот прибор можно из стандартных электротехнических деталей. Однако не следует забывать о мерах предосторожности как во время создания, так и во время использования устройства.
Источник: https://page.maple4.ru/inoe/stati/interesnoe/1556-sobrat-katushku-tesla-za-100-rublej.html
Как рассчитать катушку тесла?
Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.
Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.
Принцип катушки Тесла
Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.
Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.
Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.
Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.
Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.
Вторая катушка и Cs образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.
Главные свойства катушки Тесла:
- Частота второго контура.
- Коэффициент обеих катушек.
- Добротность.
Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром.
Подобие с качелями
Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.
Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.
Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.
Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же трансформатор.
Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.
Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.
Главные катушки Тесла
Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.
- Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
- Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
- Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
- Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.
Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).
Главные элементы катушки Тесла
В разных конструкциях основные черты и детали общие.
- Тороид – имеет 3 опции.Первая – снижение резонанса.Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.Тороиды можно изготовить из гофры и других материалов.
- Вторичная катушка – базовая составляющая Тесла.Длина в пять раз больше диаметра мотки.Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства.
- Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
- Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.Эти обмотки изготавливают в виде цилиндра, конуса.
- Заземление – это важная составляющая часть.Стримеры бьют в заземление, замыкают ток.Будет недостаточное заземление, то стримеры будут ударять в катушку.
Катушки подключены к питанию через землю.
Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».
Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.
Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.
Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.
Катушка Тесла своими руками
Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.
Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.
Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.
Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность.
Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.
Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.
Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.
Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.
- Два провода скрепляются, оголенные концы были повернуты в сторону.
- Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
- Подключается питание катушке Тесла своими руками.
- Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
- Заземление второй катушки.
Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.
Безопасность
Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мехах защиты.
Расчет катушки Тесла
Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.
Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).
Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.
Бифилярная катушка Тесла
Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке.
Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом.
Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Источник: https://1000eletric.com/kak-rasschitat-katushku-tesla/
Катушка Тесла. Устройство и виды. Работа и применение
Одним из знаменитых изобретений Николы Тесла была катушка Тесла. Это изобретение представляет собой резонансный трансформатор, который образует высокочастотное повышенное напряжение. В 1896 году на изобретение выдан патент, который имел название аппарата для образования электрического тока высокого потенциала и частоты.
Со времен Николы Тесла появилось много различных видов трансформаторов Тесла. Рассмотрим распространенные основные виды таких трансформаторов, как катушка Тесла
SGTC – катушка, работающая на искровом разряде, имеет классическое устройство, используемое самим Теслой. В этой конструкции элементом коммутации является разрядник.
У маломощных устройств разрядник выполнен в виде двух отрезков толстого проводника, находящихся на определенном расстоянии. В устройствах большей мощности используются вращающиеся разрядники сложной конструкции с применением электродвигателей.
Такие трансформаторы производят при необходимости получения стримера большой длины, без каких-либо эффектов.
VTTC – катушка на основе электронной лампы, которая является коммутирующим элементом. Подобные трансформаторы способны функционировать в постоянном режиме и выдавать разряды большой толщины. Такой тип питания обычно применяют для создания катушек высокой частоты. Они создают эффект стримера в виде факела.
SSTC – катушка, в конструкции которой в качестве ключа используется полупроводниковый элемент в виде мощного транзистора. Такой вид трансформаторов также способен функционировать в постоянном режиме. Внешняя форма стримеров от такого устройства бывает самой различной. Управление с полупроводниковым ключом более простое, существуют такие катушки Тесла, которые умеют играть музыку.
DRSSTC – трансформатор, имеющий два контура резонанса. Роль ключей играют также полупроводниковые компоненты. Это наиболее сложный в настройке и управлении трансформатор, однако, он используется для создания впечатляющих эффектов. При этом большой резонанс получается в первом контуре. Во втором контуре образуется наиболее яркие толстые и длинные стримеры в виде молний.
Устройство и работа
Элементарный трансформатор Тесла включает в себя две катушки, тороид, конденсатор, разрядник, защитное кольцо и заземление.
Тороид выполняет несколько функций:
- Снижение частоты резонанса, особенно для вида катушки Тесла с полупроводниковыми ключами.Полупроводниковые элементы плохо функционируют на повышенных частотах.
- Накапливание энергии перед возникновением электрической дуги. Чем больше размер тороида, тем больше энергии накоплено. В момент пробоя воздуха тороид выдает эту накопленную энергию в электрическую дугу, при этом увеличивая ее.
- Образование электростатического поля, отталкивающего дугу от вторичной обмотки. Часть этой функции исполняет вторичная обмотка. Однако тороид помогает ей в этом. Поэтому электрическая дуга не бьет во вторичную обмотку по кратчайшему пути.
Обычно наружный диаметр тороида в два раза больше диаметра вторичной обмотки. Тороиды производят из алюминиевой гофры и других материалов.
Вторичная обмотка трансформатора Тесла является основным элементом конструкции. Обычно длина обмотки относится к ее диаметру 5 : 1. Диаметр проводника для катушки выбирают из расчета, чтобы разместилось около 1000 витков, которые должны располагаться плотно между собой. Витки обмотки покрывают несколькими слоями лака или эпоксидной смолы. В качестве каркаса выбирают ПВХ-трубы, которые можно купить в строительном магазине.
Защитное кольцо служит для предохранения от выхода из строя электронных элементов в случае попадания электрической дуги в первичную обмотку. Защитное кольцо устанавливается, если размер стримера (электрической дуги) больше длины вторичной катушки. Это кольцо выполнено в виде медного незамкнутого проводника, заземленного отдельным проводом на общее заземление.
Первичная обмотка чаще всего выполняется из медной трубки, применяемой в кондиционерах. Сопротивление первичной обмотки должно быть небольшим, так как по ней будет проходить большая сила тока. Трубку чаще всего выбирают толщиной 6 мм.
Также можно использовать для намотки проводники большого сечения. Первичная обмотка является своеобразным элементом подстройки в таких катушках Тесла, в которых первый контур резонансный.
Поэтому место подключения питания выполняют с учетом его перемещения, с помощью которого меняют частоту резонанса первого контура.
Форма первичной обмотки может быть различной: конической, плоской или цилиндрической
Катушка Тесла должна иметь заземление. Если его не будет, то стримеры будут бить в саму катушку, для замыкания тока.
Колебательный контур образован конденсатором совместно с первичной обмоткой. В этот контур также подключен разрядник, который является нелинейным элементом. Во вторичной обмотке также образован контур колебаний, в котором конденсатором выступает емкость тороида и межвитковая емкость катушки. Чаще всего для предохранения от электрического пробоя вторичную обмотку покрывают лаком или эпоксидной смолой.
В результате катушка Тесла, или другими словами трансформатор, состоит из двух контуров колебаний, связанных между собой. Это и придает трансформатору Тесла необычные свойства, и является основным отличительным качеством от обычных трансформаторов.
При достижении напряжения пробоя между электродами разрядника, образуется электрический лавинообразный пробой газа. При этом происходит разряд конденсатора на катушку через разрядник. Вследствие этого цепь контура колебаний, который состоит из конденсатора и первичной обмотки, остается замкнутой на разрядник. В этой цепи возникают колебания высокой частоты. Во вторичной цепи образуются резонансные колебания, в результате чего возникает высокое напряжение.
Во всех видах катушки Тесла главным элементом являются контуры: первичный и вторичный. Однако генератор колебаний высокой частоты может отличаться по конструкции.
Катушка Тесла по сути дела состоит из двух катушек, не имеющих металлического сердечника. Коэффициент трансформации катушки Тесла в несколько десятков раз выше отношения числа витков обеих обмоток.
Поэтому выходное напряжение трансформатора достигает нескольких миллионов вольт, что и обеспечивает мощные электрические разряды длиной в несколько метров.
Важным условием является образование контура колебаний первичной обмоткой и конденсатором, вхождение в резонанс этого контура с вторичной обмоткой.
Виды эффектов от катушки Тесла
- Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
- Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
- Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
- Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.
Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии.
Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.
Малоизвестные эффекты катушки Тесла
Некоторые люди считают трансформатор Тесла каким-то особенным устройством, обладающим исключительными свойствами. Также есть мнение, что такое устройство способно стать генератором энергии и вечным двигателем.
Иногда говорят, что при помощи такого трансформатора можно передавать электрическую энергию на значительные расстояния, не используя провода, а также создать антигравитацию. Такие свойства не подтверждены и не проверены наукой, но Тесла говорил о скорой доступности таких способностей для человека.
В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.
Применение
- Величина напряжения на выходе катушки Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
- Катушка Тесла нашла применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
- Катушка Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
- Иногда такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.
Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх. В настоящее время катушка Тесла не нашла широкого применения на практике в быту.
Катушка Тесла на будущее
В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей.
Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.
Похожие темы
Источник: https://electrosam.ru/glavnaja/jelektrotehnika/katushka-tesla/
Лучи смерти, электромобиль, котик и другие мифы о Николе Тесле
Значительная часть мифов о Николе Тесле появилась еще при жизни эпатажного серба, а он сам их распространению вовсе не препятствовал. Можно даже сказать, наоборот — окружив свою деятельность ореолом загадочности и никак не комментируя то, что о нем говорят, он косвенно эти слухи поддерживал. Что, впрочем, легко объяснимо.
Тесла, несмотря на всю свою известность, до начала XX века не был особо богат, его эксперименты требовали огромных вложений, ему даже приходилось показывать фокусы. А его умение изображать из себя чудотворца стабильно приносило ему деньги.
Это, впрочем, не умаляет важности многих его открытий и изобретений, но сегодняшняя тема — именно ворох легенд.
Беспроводная передача электричества
Башня Ворденклиф на Лонг-Айленде предназначалась для трансатлантической телефонии, радиовещания, и демонстрации беспроводной передачи электроэнергии. Первые полномасштабные испытания башни состоялись в июне 1903 года.
Оговоримся, да, Тесла действительно занимался этим вопросом. Однако предположения, что ему все же удалось найти эффективный способ передавать энергию без помощи традиционных проводов, как минимум необоснованны.
В 1901 году он вложил огромную часть своих средств в постройку башни Ворденклиф, проект поддерживал крупный американский капиталист Джон Морган. Тесла представлял свою башню как эксперимент по передаче радиоволн, на самом деле пытаясь при этом найти способ беспроводной передачи электричества.
Новаторство этой идеи, которую невозможно было долго скрывать, и колоссальные расходы очень быстро спугнули и текущих, и потенциальных инвесторов. Проект рухнул, и смелые стремления Теслы не были реализованы, а реальная возможность передавать энергию без проводов с достаточно высоким КПД появилась лишь совсем недавно.
Впрочем, при жизни Тесла не раз демонстрировал то, что подобная передача энергии вполне реальна при использовании специальных передающей и приемной катушек, разработанных им.
Тунгусский феномен
Место падения Тунгусского метеорита
РИА Новости
Колоссальный взрыв, произошедший в результате падения знаменитого метеорита, часто связывают с экспериментами по передаче энергии. Причем гипотеза эта достаточно новая — тексты, проповедующие ее, появились лишь в начале 2000-х — даже спустя сто лет «срывателям покровов» не дает покоя загадочная башня знаменитого физика.
Единственным аргументом, который говорит о связи взрыва с опытами Теслы, является тот факт, что падение метеорита не оставило после себя ни видимого кратера, ни обломков. Кроме того, в течение нескольких дней на территории от Атлантики до Центральной Сибири наблюдалось интенсивное свечение неба и светящиеся облака.
До настоящего времени ни одна из гипотез, объясняющих феномен, не стала общепринятой, однако большая часть астрономов считает, что тунгусские события были связаны с падением на Землю ядра кометы или рыхлого сгустка космической пыли. Но гипотеза о причастности волшебника от мира электричества до сих пор регулярно всплывает в статьях.
Авторов не переубеждает тот факт, что проект «Ворденклиф» фактически был закрыт еще за два с половиной года до тунгусского феномена.
Лучи смерти
Dickenson V. Alley/Wellcome Library, London
Благодаря старомодной фантастике это словосочетание превратилось в настоящий мем. А ведь изначально супероружие, способное без единого снаряда стирать с лица земли целые армии, ассоциировалось исключительно с именем Николы Теслы.
Вообще, широкое обсуждение возможности появления сверхоружия началось в первой половине двадцатого века — в эпоху мировых войн.
Пропагандистские машины работали на полную катушку, чтобы устрашать противника планами о разработках чудо-оружия (больше всех старался Третий рейх во время Второй мировой — кто не слышал про Wunderwaffe?), да и сам Тесла подливал масла в огонь.
«Пошлете ли вы войска в атаку там, где действуют эти лучи, отправите вы 10 тысяч самолетов или миллионную армию, самолеты будут немедленно сбиты и армия уничтожена», — говорил он в 1939 году в интервью для New-York Tribune. Что в итоге? Практически ничего. Испытаний лучей смерти никто не зафиксировал, рабочих прототипов супероружия так и не появилось до 70–80-х годов XX века. Но история запомнила другое страшное оружие — после бомбардировок Хиросимы и Нагасаки.
Филадельфийский эксперимент
Эсминец «Элдридж»
National Archives and Records Administration
Легенда, сравнимая по масштабам хайпа с «Зоной 51», йети и прочими черными вертолетами.
В далеком 1943 году американский эсминец «Элдридж», якобы используя то ли специальную электромагнитную станцию невидимости, разработанную лично Эйнштейном, то ли и вовсе придуманный Николой Теслой телепорт, исчез с военно-морской базы в Филадельфии, внезапно появился в Норфолке, а затем таким же мистическим образом вернулся на родную стоянку.
Естественно, большая часть моряков погибла, другая часть стройным маршем отправилась в сумасшедшие дома. Потом появились загадочные письма некоего сеньора Альенде, якобы служившего на «Элдридже», повествующие об удивительных чудесах, происходивших с выжившими моряками.
Позже был издан уфологический бестселлер «Аргументы в пользу НЛО», в котором история также была упомянута, и, наконец, легенда стала любимой для исследователей аномальных явлений. Конечно, в конце концов слухи были опровергнуты самими моряками, служившими на эсминце. Но особенно забавны попытки приплести Теслу к этой истории. Ученый умер почти за год до спуска «Элдриджа» на воду. Так что, увы, телепорт он не изобретал. А что касается самой легенды — эсминец даже не заходил в филадельфийский порт в ноябре 1943 года.
Машина, вызывающая землетрясения
Электромеханический генератор колебаний или попросу осциллятор Теслы
Wikimedia Commons
Конечно, Тесла ее не изобрел, но пытался. Да и заинтересован он был скорее в исследовании эффекта резонанса, а не в создании разрушительного оружия. Даже несмотря на громкие заявления, что правильно расположенный резонатор Теслы был бы способен расколоть на куски ни много ни мало планету.
По легенде, невероятный осциллятор был уничтожен самим Теслой после того, как чуть не разрушил здание в Нью-Йорке, в котором он проводил свои эксперименты. Якобы сначала ученый вызвал резонанс в одной из металлических балок, затем Тесла прикрепил к ней свой прибор, который вскоре вошел в резонанс с ее колебаниями, и здание начало разрушаться, то есть практически вызвал своеобразное землетрясение.
Надо сказать, что в этом году в Нью-Йорке действительно была замечена повышенная сейсмическая активность, но ее природа была вполне естественной. Кроме того, остались чертежи знаменитого резонатора. И увы, они, мягко говоря, несовершенны. Найти их может любой желающий — и удостовериться, что попытки создать такое устройство по планам великого серба ни к чему не приведут.
Это, кстати, даже знаменитые разрушители легенд проверяли.
Электромобиль
Небольшой автомобиль, разработанный голландцами Стратином Гронингеном и Кристофером Беккером в 1835 году
rug.nl
Несмотря на свое имя, компания Tesla Motors не имеет никакого отношения к великому изобретателю. И слухи о том, что первый электромобиль был изобретен именно им, также всего лишь слухи, лишенные всяческого обоснования. Во-первых, сами электромобили появились значительно раньше, чем принято полагать, — еще в XIX веке, даже раньше, чем привычные машины с двигателем внутреннего сгорания.
Правда, соотношение скорости и потребления энергии было у них таким, что оставалось только плакать. Именно поэтому слухи об электромобиле Теслы были напрямую связаны с легендами о том, что он изобрел вечный двигатель, источник бесперебойной энергии, работающий на пронизывающем всю окружающую реальность эфире.
В эфир Тесла, кстати, искренне верил и всю свою жизнь пытался найти способы с ним взаимодействовать. Особо популярной история об электрокаре стала, когда в середине двадцатого века объявился некий Петер Саво, называвший себя племянником Теслы, лично тестировавший с ним это изобретение.
Досадно только, что у него не было ни одного документального доказательства не только существования подобного чуда техники, но и его родственной связи с гениальным изобретателем.
Котик Теслы
Напоследок, самый милый миф о Тесле, который, возможно, даже не миф. Сомневаться в нем позволяет то, что мифологизировать собственное прошлое было одним из излюбленных развлечений ученого. В одном из своих писем он рассказывал, как именно он заинтересовался исследованиями электричества.
В детстве, гладя своего кота, увидел на его шерсти искры, как потом стало ясно, от статического электричества. Отец поведал трехлетнему ребенку, что это электричество — почти то же самое, что и молнии. И с тех пор Никола так и не потерял интереса к этому удивительному явлению.
За 86 лет своей жизни Тесла упомянул об этом полумифическом коте всего один раз.
Источник: https://daily.afisha.ru/brain/3037-luchi-smerti-elektromobil-kotik-i-drugie-mify-o-nikole-tesle/
Как мы для музея науки сделали самую большую катушку Тесла в Украине
31 Янв 2017
В 2016 году мне предложили принять участие в проекте по созданию мощной катушки Тесла для музея науки в родном городе. Отказаться означало бы предать свои идеалы и собственных детей, которые обожают научные опыты. Под катом не только описание конструкции получившегося прибора, но и немного о мужской любви к науке, энтузиастах и о том, как рождаются и реализовываются социальные проекты.
Предыстория
Это история о людях.
Кто не любит истории о людях, может спокойно пропустить этот раздел.
Вначале немного о себе. Меня зовут Артем. Сейчас я работаю конструктором в одной частной фирме, но по образованию — физик, а методика преподавания физики детям является моим увлечениям. По данной тематике я уже публиковал посты на Geektimes (один и два).
Четыре года назад я был полностью погружен наукой, работал в “Лаборатории методики преподавания физики” родного университета, проводил курсы повышения квалификации для учителей всей области, был соведущим кружка “Юных физиков” для детей от 5 лет, а также работал учителем физики и развивал авторский сайт.
Именно тогда в Украине впервые начали проводиться Научные пикники.
Это прекрасное мероприятие по популяризации науки, когда университеты, лаборатории, исследовательские центры выходят на площадь вместе с физическими экспонатами, жидким азотом, скелетами и манекенами, микроскопами, телескопами, редкими насекомыми и летучими мышами. В общем, каждый выставляет то, чем занимается и что будет интересно для остальных. Разумеется, в Научном пикнике приняли активное участие и лаборатория, и школа, и кружок, где я работал.
Там я познакомился с одним из организаторов пикника — Сергеем. Этот парень мечтал о музее науки для нашего города и убеждал меня, что если не опускать руки и быть активным, то все обязательно получится.
Так оно и случилось, Научный пикник имел ошеломительный успех, на основании такого положительного результата университет решил дать зеленый свет команде Сергея и щедро выделил под музей некоторые помещения внушительной площади.
Это было, наверное, самое романтичное время. Почти без финансирования попытка сделать из разрушенных помещений музей науки за месяц-два выглядело безумием.
Но Сергей не унывал, он носился, как метеорит, латая дыры в полу, завешивал стены без ремонта тканью, изготавливал перегородки и подставки для будущих экспонатов. Сергей проявил поразительную целеустремленность и волю, а также замечательные организационные способности.
Наша лаборатория, как и многие другие, помогала проекту демонстрационными приборами и идеями бюджетных, но увлекательных экспонатов.
Музей благополучно открылся, а я уехал с женой и детьми в Черногорию. Там я тоже организовал кружок по астрономии и физике, но основным местом работы уже стал конструкторский отдел.
В прошлом году я вернулся в Украину. Сергей сделал мне экскурсии по обновленному музею. За два года музей сделал ремонт, в несколько раз увеличил экспонатную базу и значительно разросся по занимаемой площади. Было невероятно приятно обнаружить работающим один из демонстрационных приборов — “оптический стол”, который своими руками собирал еще на рассвете проекта.
Сергей рассказал о желании раздобыть для музея “катушку Тесла”, он не только нашел продавца, но договорился с одной замечательной компанией “Х” о спонсировании проекта и даже успел получить деньги. Однако, непосредственно перед продажей, продавец решил увеличить цену в два раза. Разумеется, общение на этом было завершено. А Сергей оказался в незавидном положении.
Спустя некоторое время Сергей позвонил мне и сообщил, что нашел какого-то паренька, который уже собрал несколько небольших катушек Тесла, и готов попробовать собрать катушку покрупнее. Но ему нужна помощь с механикой. Ненавязчиво мне предложили присоединиться к проекту без права отказаться.
Предстояла встреча с этим “тесластроителем”, которого, кстати, тоже звали Сергеем. Вполне очевидно, что он был каким-то фриком, у которого мания к катушкам Тесла, а идея фикс — большая Катушка. Но как только мы начали обсуждать проект, пошли нестыковки с представляемым (мне кажется тут нужно вставить “мною”) образом.
Собеседник начал последовательно излагать конструкцию прибора, не повторялся, не говорил ничего лишнего. Все физические термины употреблялись правильно, а физическим явлениям давалась верная трактовка. На все вопросы звучали внятные и логически обоснованные ответы.
Оказалось, что я общаюсь адекватным преподавателем известного технического вуза, который действительно увлекается катушками Тесла.
Сергей оказался обладателем такого ценного качества, как скрупулезность. За что сразу завоевал глубокое уважение. Он долго и тщательно подготавливал свое рабочее место, подбирал заранее инструмент и обустраивался, все контакты он всегда, абсолютно всегда, тщательно лудил.
Если в спешке выполнить не качественное соединение, то Сергей промолчит, а потом тихонько возьмет и исправит. Может показаться, что такая щепетильность излишняя, но на самом деле она экономит огромное количество времени. Ведь за весь период работы мы ни разу не столкнулись с ошибкой неправильной сборки.
Чтобы не путаться среди Сергеев, далее будем называть его Сергеем А., а первого — Сергеем В.
Что такое катушка Тесла?
Я попросил Сергея А. (автора катушки) собственнолично рассказать о катушке. Весь текст в этом разделе принадлежит ему:
В конце 19-го и начале 20-го веков Никола Тесла проводил эксперименты с высоковольтными высокочастотными резонансными трансформаторами без ферромагнитного сердечника (воздушный трансформатор). Этот вид трансформаторов впоследствии был назван трансформатором Теслы или катушкой Тесла.
В настоящее время трансформатор Тесла является скорее игрушкой для тех, кто увлекается DIY и желает заиметь в своей коллекции что-нибудь эдакое, чем устройством, имеющим определенную сферу применения. Нечасто в одной несложной конструкции может сочетаться столько физических явлений. К тому же не найдется такого человека, которого катушка Тесла не сможет удивить видом своих электрических разрядов.
Зачем нужны катушки Тесла? В первую очередь, для образовательных целей. Ведь здесь затрагивается множество тем:
- в статике – изучение теории, знакомство с электрическими компонентами, чтение схем, научиться пользоваться мультиметром и использовать симуляторы электрических схем, наконец, понять различие между индуктивностью и емкостью;
- в динамике – электрические колебания, резонанс напряжений, передача энергии, ионизация, природа плазмы, свойства электромагнитного излучения, воздействие тока на живого человека.
Если вы хотите заряжать устройства без проводов, производить впечатление на случайных незнакомцев и вам нравится запах горелой электроники или озона, то это повод собрать себе настольную катушку Тесла, тем более что это дешевле, чем ходить на свидания.
«Построить катушку Тесла — это то, что следует сделать каждому хотя бы один раз» – какой-то парень.
Первый резонансный трансформатор был построен Николой Тесла в 1891 году и, по сути, являлся беспроводным телеграфом. Принцип работы прямолинеен: необходимо зарядить высоким напряжением большой конденсатор, а затем разрядить его через катушку индуктивности, роль которой выполняет первичная обмотка трансформатора, при этом необходимо замкнуть энергию в образовавшемся колебательном контуре.
Вследствие резонанса напряжений в первичном контуре амплитуда колебаний возрастет, при этом часть энергии будет передана вторичной обмотке трансформатора (что характеризуется коэффициентом связи между обмотками), последняя вместе с металлический тороидом также образуют колебательный контур.
Дальше процесс может быть описан аналогично раскачиванию качели: если толкать качели в нужный момент, то скоро они начнут подлетать очень высоко, это и будет напряжением на выходе из катушки Тесла. Когда напряжение становится настолько высоким, что воздух для него перестает быть диэлектриком, вся накопленная энергия образует электрический разряд, или стример.
На протяжении многих лет в конструкцию трансформаторов Теслы вносились изменения, благодаря чему на сегодняшний день существует несколько топологий устройства, обладающих схожим принципом работы, при этом различающиеся на компонентном уровне.
SGTC (Spark Gap Tesla Coil) – трансформатор Тесла на разряднике. Является классическим исполнением, применяемым самим Николой Тесла.
В качестве ключевого элемента используется два контакта произвольной формы, между которыми возникает электрический разряд. Конструктивно состоит всего из 6 элементов и работает часто с первого раза.
Правда, в маломощных исполнениях ждать красивых разрядов не приходиться, но позажигать лампочки на расстоянии или полюбоваться коронарным свечением — пожалуйста.
Производной этой топологии является вид ARSGTC (Asynchronous Rotary Spark Gap Tesla Coil), где в качестве коммутирующего ключа применяется вращающийся электродвигатель, замыкающий контакты и быстро рвущий образовавшуюся электрическую дугу, что позволяет получить наибольшую длину разрядов при относительно небольшой входной мощности. Данный тип и был нами взять для повторения.
VTTC (Vacuum Tube Tesla Coil) – трансформатор Тесла на радиолампах. Требует работы с высокими анодными напряжениями и не рекомендуется для новичков.
SSTC (Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключей используются полупроводниковые компоненты. Наиболее распространено применение транзисторов MOSFET или IGBT (не путать с LGBT). Благодаря использованию современной компонентной базы катушками этого типа можно легко управлять, модулируя частоту молний внешним источником сигнала, например музыкой.
DRSSTC (Dual Resonant SSTC) – катушки Тесла с двойным резонансным контуром. Топология значительно сложнее в изготовлении, чем ее предшественница, но это компенсируется улучшенным соотношением длины разряда к длине вторичной обмотки.
QCWDRSSTC (Quasi-Continuous-Wave DRSSTC) – вариант катушек Тесла с двойным резонансным контуром, но способной производить характерные только для этой топологии длинные прямые молнии, иногда в 10 раз превышающие длину вторичной обмотки.
А еще существуют биполярные катушки Тесла, но об этом в другой раз.
Как видите, катушки Тесла бывают на любой «вкус и цвет», и любой желающий может выбрать себе такую, какую захочет. За последние годы рынок постарался удовлетворить возросший спрос радиолюбителей и экспериментаторов на трансформаторы Теслы, и теперь даже на AliExpress есть наборы, из которых в домашних условиях можно собрать рабочее устройство.
Источник: https://se7en.ws/kak-my-dlya-muzeya-nauki-sdelali-samuyu-bo/