Кто первым изобрел электричество

Рассказ об электричестве детям

В повседневной жизни мы часто сталкиваемся с таким понятием как «электричество». Что же такое электричество, всегда ли люди знали о нём?

Без электричества представить нашу современную жизнь практически невозможно. Скажите, как можно обойтись без освещения и тепла, без электродвигателя и телефона, без компьютера и телевизора? Электричество настолько глубоко проникло в нашу жизнь, что мы порой и не задумываемся, что это за волшебник помогает нам в работе.

Этот волшебник – электричество. В чём же заключается суть электричества? Суть электричества сводится к тому, что поток заряженных частиц движется по проводнику (проводник – это вещество, способное проводить электрический ток) в замкнутой цепи от источника тока к потребителю. Двигаясь, поток частиц выполняют определённую работу.

Это явление называется «электрический ток». Силу электрического тока можно измерить. Единица измерения силы тока — Ампер, получила своё название в честь французского ученого, который первым исследовал свойства тока. Имя ученого-физика – Андре Ампер.

Открытие электрического тока и других новшеств, связанных с ним, можно отнести к периоду: конец девятнадцатого — начало двадцатого века. Но наблюдали первые электрические явления люди ещё в пятом веке до нашей эры.

Они замечали, что потёртый мехом или шерстью кусок янтаря притягивает к себе лёгкие тела, например, пылинки. Древние греки даже научились использовать это явление – для удаления пыли с дорогих одежд.

Ещё они заметили, что если сухие волосы расчесать янтарным гребнем, они встают, отталкиваясь друг от друга.

Вернёмся ещё раз к определению электрического тока. Ток – направленное движение заряженных частиц. Если мы имеем дело с металлом, то заряженные частицы – это электроны. Слово «янтарь» по-гречески – это электрон.

Таким образом, мы понимаем, что всем нам известное понятие «электричество» имеет древние корни.

Электричество – это наш друг. Оно помогает нам во всём. Утром мы включаем свет, электрический чайник. Ставим подогревать пищу в микроволновую печь. Пользуемся лифтом. Едем в трамвае, разговариваем по сотовому телефону. Трудимся на промышленных предприятиях, в банках и больницах, на полях и в мастерских, учимся в школе, где тепло и светло. И везде «работает» электричество.

Как и многое в нашей жизни, электричество, имеет не только положительную, но и отрицательную сторону. Электрический ток, как волшебника-невидимку, нельзя рассмотреть, учуять его по запаху.

Определить наличие или отсутствие тока можно только, используя приборы, измерительную аппаратуру. Первый случай поражения электрическим током со смертельным исходом был описан в 1862 году.

Трагедия произошла при непреднамеренном соприкосновении человека с токоведущими частями. В дальнейшем случаев поражения электрическим током произошло немало.

Электричество! Внимание, электричество!

Этот рассказ об электричестве – для детей. Но, само по себе, электричество — понятие далеко не детское. Поэтому, хотелось бы и в этом рассказе обратиться к мамам и папам, бабушкам и дедушкам.

Уважаемые взрослые! Рассказывая об электричестве детям, не забудьте подчеркнуть, что ток – невидим, а потому особенно коварен. Что не нужно делать взрослым и детям? Не дотрагивайтесь руками, не подходите близко к проводам и электрокомплексам.

Недалеко от линий электропередач, подстанций не останавливайтесь на отдых, не разводите костров, не запускайте летающие игрушки. Лежащий на земле провод может таить в себе смертельную опасность.

Электрические розетки, если в доме маленький ребёнок, – объект особого контроля.

Главное требование, предъявляемое к взрослым — не только самим соблюдать правила безопасности, но и постоянно информировать детей о том, насколько может быть коварен электрический ток.

Заключение

Физики «дали доступ» человечеству к электричеству. Ради будущего учёные шли на лишения, тратили состояния, чтобы вершить великие открытия и дарить результаты своих трудов людям.

Будем бережно относится к трудам физиков, к электричеству, будем помнить о той опасности, которую оно потенциально несёт в себе.

Басню про электричество можно посмотреть здесь

Автор рассказа: Ирис Ревю

Источник: https://detskiychas.ru/rasskazy/rasskaz_electrichestvo_detyam/

Исторические факты: кто из физиков и в каком году изобрёл электричество, первые опыты и современные разработки

Современный мир невозможен без электричества. Сейчас никто и не задумывается о технологии его производства, а в древние времена даже не знали такого слова. Но пытливые умы находились и тогда. В 700-м году до нашей эры наблюдательный греческий философ Фалес заметил, что янтарь начинал притягивать лёгкие предметы, когда происходило трение с шерстью. На этом знания приостановились.

Дальнейшее развитие знаний

Только по прошествии многих столетий эта отрасль знаний получила дальнейшее развитие.

Английский физик и по совместительству врач при королевском дворе Уильям Гильберт, окончивший лучшие ВУЗы Оксфорда и Кембриджа, стал основоположником науки об электричестве.

Он изобрёл первый прообраз электроскопа под названием версор и с его помощью выяснил, что не только янтарь, но и другие камни имеют свойства притягивать мелкие предметы (соломинки). Среди «электрических» минералов:

  • алмаз;
  • аметист;
  • стекло;
  • опал;
  • карборунд;
  • сланцы;
  • сапфир;
  • янтарь.

С помощью аппарата учёный смог сделать несколько интересных открытий. Среди них: серьёзное влияние пламени на электрические свойства тел, которые были приобретены при трении. А ещё Гильберт высказал предположение, что гром и молния — явления электрической природы.

Само понятие «электричество» впервые прозвучало в XVI веке. В 1663 году бургомистром Магдебурга по имени Отто фон Герике была создана специальная машина для исследования. С её помощью можно было наблюдать эффект притяжения и отталкивания.

Первые опыты с электричеством

В 1729 году в Англии был проведён первый опыт передачи электричества на небольшое расстояние учёным Стивеном Греем. Но в процессе было определено, что не все тела могут передавать электричество. Через 4 года после первых серьёзных исследований учёный из Франции Шарль Дюфе выявил, что существует два типа заряда электричества: стеклянного и смоляного в зависимости от материала, используемого для трения.

В середине XVII века в Голландии Питер ван Мушенбрук создаёт конденсатор под названием «Лейденская банка». Немного времени спустя появляется теория Бенджамина Франклина и проводятся первые исследования, которые опытным путём подтверждают теорию. Проведённые исследования стали основой для создания громоотвода.

После этого была открыта новая наука, которую начинают изучать. А в 1791 году выпускается «Трактат о силе электричества при движении мышц» автором Гальвани.

В 1800 году итальянский изобретатель Вольта стал тем, кто создал новый источник тока под названием Гальванический элемент.

Этот аппарата представляет собой объект в виде столба из цинковых и серебряных колец, разделённых бумажками, смоченными в солёной воде. Через пару лет русский изобретатель Василий Петров открывает «Вольтову дугу».

Примерно в том же десятилетии физик Жан Антуан Нолле изобрёл первый электроскоп, зарегистрировавший более быстрое «стекание» электричества с тел острой формы и сформировал теорию о влиянии тока на живые организмы.

Этот эффект стал основой изобретения медицинского электрокардиографа. С 1809 году началась новая эпоха в области электричества, когда англичанин Деларю изобрёл лампу накаливания.

Уже через 100 лет появились современные лампочки с вольфрамовой спиралью и заполнением инертным газом. Их разработчиком стал Ирвинг Ленгмюр.

Сложные исследования и великие открытия

В начале XVIII века Майкл Фарадей написал трактат об электромагнитном поле.

Электромагнитное взаимодействие было обнаружено при проведении опытов датским учёным Эрстедом в 1820 году, а уже через год физик Ампер связывает электричество и магнетизм в своей теории. Эти исследования стали основой для появления современной науки — электротехники.

В 1826 году Георг Симон Ом на основании проведённых опытов смог сформулировать основной закон электрической цепи и ввёл новые термины электротехники:

  • «проводимость»;
  • «электродвижущая сила»;
  • «падение напряжения в цепи».

Последователем Эрстеда стал Андре-Мари Ампер, который сформулировал правило определения направления тока на магнитную стрелку. Эта закономерность получила множество названий, одно из которых «правило правой руки». Именно он изобрёл усилитель электромагнитного поля — многовитковые катушки, состоящие из медного провода с установленными сердечниками из мягкого железа. На основании этой разработки в 1829 году был изобретён электромагнитный телеграф.

Новый виток исследований

Когда известный английский учёный в области физики Майкл Фарадей ознакомился с работой Х. Эрстеда, он провёл исследования в области взаимосвязи электромагнитных и электрических явлений и обнаружил, что магнит вращается вокруг проводника тока и, наоборот, проводник — вокруг магнита.

После этих опытов учёный ещё 10 лет пытался трансформировать магнетизм в электрический ток, а в результате открыл электромагнитную индукцию и основы теории электромагнитного поля, а также помог сформировать основу для появления новой отрасли науки — радиотехники. В 20 годы прошлого столетия, когда на территории СССР была начата организация масштабная электрификация, появился термин «лампочка Ильича».

Так как многие разработки проводились параллельно в разных странах, историки спорят о том, кто изобрёл электричество первым. В развитие науки об электричестве вложили свои силы и знания многие учёные-изобретатели: Ампер и Ленц, Джоуль и Ом. Благодаря таким усилиям современный человек не испытывает проблем с организацией подачи электричества в свои дома и другие помещения.

Источник: https://elektro.guru/osnovy-elektrotehniki/kto-i-kogda-izobrel-elektrichestvo.html

Кто изобрел электричество и в каком году

Современная жизнь невозможна без освещения, автомобилей, оборудования, цифровой и другой техники, в их основу заложен единый ресурс, в связи с этим многие люди задаются вопросом кто изобрел используемое повсеместно электричество. Кем был тот человек, с которого началось развитие науки и производства, и стала потенциально возможной нынешняя комфортабельность жизни?

Природа явления

Изобретения электричества как такового не было, поскольку это явление природное и изучение его началось еще в Древней Греции в 7 веке до нашей эры. Философ и естествоиспытатель Фалес Милетский обратил внимание на то, что если янтарь натереть шерстью овцы, то у камня появляется способность притягивать к себе некоторые легкие предметы. Он же и сформулировал термин. Поскольку по-гречески янтарь называется «электрон», то выявленная сила была означена Фалесом «электричеством».

Научные изыскания

Реальные научные исследования электрической природы начинались только в XVII веке в эпоху Возрождения. В Магдебурге в то время служил бургомистром Отто фон Герике, но власть не была настоящим увлечением чиновника.

Все свободное время он проводил в своей лаборатории, где после тщательного изучения трудов Фалеса Милетского изобрел первую в мире электрическую машину. Правда ее применение было не практическим, а скорее научным, она позволяла изобретателю исследовать эффекты притяжения и отталкивания посредством электрической силы.

Машина представляла собой стержень, на котором кружился шарик серы, в данной конструкции он заменял янтарь.

Основатель электротехники

Также в конце XVII века при английском дворе трудился придворный медик и физик Уильям Гилберт. Его также вдохновили труды древнегреческого мыслителя, и он перешел к собственным исследованиям по данной тематике. Этот изобретатель разработал прибор для изучения электричества – версор.

С его помощью он смог расширить знания об электрических явлениях. Так он установил, что подобными янтарю свойствами обладают сланцы, опал, алмаз, карборунд, аметист и стекло.

Кроме этого, Гилберт установил взаимосвязь между пламенем и электричеством, а так же сделал ряд других открытий, которые позволили современным ученым называть его основоположником электротехники.

Передача электричества на расстояние

В XVIII веке исследования по теме были успешно продолжены. Два ученых из Англии Гренвилл Уилер и Стивен Грей установили, что электричество проходит через одни материалы (их назвали проводниками) и не проходит через другие. Они же поставили первый опыт по передаче электрической силы на расстояние. Ток прошел небольшую дистанцию. Так 1729 год можно назвать первой датой, при ответе на вопрос, в каком году изобрели промышленное электричество. Далее открытия последовали одно за другим:

  • профессор математики из Голландии Машенбрук изобрел «лейденскую банку», которая по своей сути явилась первым конденсатором;
  • французский естествоиспытатель Шарль Дюфе классифицировал электрические силы на стеклянные и смоляные;
  • Михаил Ломоносов доказал, что молнии получаются из-за разности потенциалов, и изобрел первый громоотвод;
  • профессор из Франции Шарль Кулон открыл закон взаимосвязи между неподвижными зарядами точечного формата.

Все установленные факты были собраны под одной обложкой Бенджамином Франклином, он же предложил несколько перспективных теорий, например, то, что заряды могут быть, как положительными, так и отрицательными.

От теории к практике

Все установленные факты были верны, и легли в основу практических разработок. В XIX веке научные изыскания одно за другим находили практические воплощения:

  • итальянский ученый Вольт разработал источник постоянного электрического тока;
  • ученый из Дании Эрстед установил электрические и магнитные взаимосвязи между предметами;
  • ученый из Санкт-Петербурга Петров разработал схему, которая позволяла использовать электрический ток для освещения помещений;
  • англичанин Деларю изобрел первую в мире лампу накаливания
  • Ампер вывил факт, что магнитное поле формируется не статическими зарядами, а электрическим полем;
  • Фарадей открыл электромагнитную индукцию и спроектировал первый двигатель;
  • Гаусс разработал теорию электрического поля;
  • итальянский физик Гальвани установил наличие электричества в организме человека, в частности выполнении движений мышцами посредством электротока.

Работы каждого из вышеназванных ученых мужей послужили основой для тех или иных направлений, поэтому любого их них смело можно назвать первым в мире ученым, кто изобрел электричество.

Эпоха «Великих открытий»

Сделанные открытия и осуществленные разработки позволили выполнить системный анализ явления и его возможностей, после которого сделались возможными проекты различных электрических систем и устройств. Кстати, к чести России можно сказать, что первым населенным пунктом на планете, который был освещен электричеством, стало Царское Село в 1881 году. Так, в результате труда нескольких поколений мы можем жить в максимально комфортном мире.

История электричества: видео

Источник: https://electroadvice.ru/eto-interesno/kto-izobrel-elektrichestvo-i-v-kakom-godu/

Электрический ток, откуда он берется и как добирается до наших домов?

Дороги и тропинки эти отнюдь не просты, порой извилисты и многократно меняют направление, но знать, как они выглядят – обязанность каждого культурного человека XXI века.

Века, облик которого во многом определяет покорившаяся нам электроэнергия, которую мы научились преобразовывать так, чтобы были удовлетворены все наши потребности – как в промышленности, так и в частном пользовании. Ток в проводах линий электропередач и ток в батарейках наших гаджетов – очень разные токи, но они остаются все тем же электричеством.

Какие усилия приходится прилагать электроэнергетикам, инженерам, чтобы обеспечить мощнейшие токи сталеплавильных заводов и маленькие, крошечные токи, допустим, наручных часов? Сколько работы приходится проделывать всем тем, кто поддерживает систему преобразований, передачи и распределения электроэнергии, какими такими методами обеспечена стабильность этой системы? Чем «Системный Оператор» отличается от «Федеральной Сетевой Компании», почему обе этих компании были, есть и будут в России не частными а государственными?

Вопросов очень много, ответы на них надо знать, чтобы более менее представлять, зачем нам так много энергетиков и чем же они, грубо говоря, занимаются? Мы ведь настолько привыкли, что с электричеством в домах и в городах все в полном порядке, что про электроинженеров вспоминаем только тогда, когда что-то вдруг перестает работать, когда мы выпадаем из зоны привычного уровня комфорта. Темно и холодно – вот только тогда мы с вами и говорим об энергетиках, причем говорим такие слова, которые мы печатать точно не будем.

Мы уверены, что нам откровенно повезло – взяться за эту не простую, нужную, да еще и огромную тему согласился настоящий профессионал. Просим любить и жаловать – Дмитрий Таланов, Инженер с большой буквы.

Знаете, есть такая страна – Финляндия, в которой звание инженера настолько значимо, что в свое время ежегодно издавался каталог с перечнем специалистов, его имеющих.

Хотелось бы, чтобы и в России когда-нибудь появилась такая славная традиция, благо в наш электронно-интернетный век завести такой ежегодно обновляемый каталог намного проще.

Статья, которую мы предлагаем вашему вниманию по инженерному коротка, точна и емка. Конечно, обо всем, что написал Дмитрий, можно рассказать намного подробнее, и в свое время наш журнал начал цикл статей о том, как в XIX веке происходило покорение электричества.

Георг Ом, Генрих Герц, Андре-Мари Ампер, Алессандро Вольт, Джеймс Ватт, Фарадей, Якоби, Ленц, Грамм, Фонтен, Лодыгин, Доливо-Добровольский, Тесла, Яблочков, Депрё, Эдисон, Максвелл, Кирхгоф, братья Сименсы и братья Вестингаузы – в истории электричества много славных имен, достойных того, чтобы мы о них помнили. В общем, если кому-то хочется припомнить подробности того, как все начиналось, милости просим, а статья Дмитрия – начало совсем другой истории. Очень надеемся, что она вам понравится, а продолжение статей Дмитрия Таланова мы увидим в самое ближайшее время.

ЭТО ИНТЕРЕСНО:  Для чего проводят измерение сопротивления петли фаза ноль

Уважаемого Дмитрия от себя лично – с дебютом, ко всем читателям просьба – не скупитесь на комментарии!

Для чего нам электроэнергия и насколько она помогает нам жить, может узнать каждый, обведя критическим взглядом свое жилище и место работы

Первое, что бросается в глаза, это освещение. И верно, без него даже 8-часовой рабочий день превратился бы в муку. Добираться до работы во многих мегаполисах и так небольшое счастье, а если придется это делать в темноте? А зимой так и в оба конца! Газовые фонари помогут на главных магистралях, но чуть свернул в сторону, и не видно ни зги. Можно легко провалиться в подвал или яму. А за городом на природе, освещаемой только светом звезд?

Источник: http://geoenergetics.ru/2017/10/10/elektricheskij-tok-otkuda-on-beretsya-i-kak-dobiraetsya-do-nashix-domov/

История создания электродвигателя

Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.

Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.

1820, Эрстед

Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.

1821, Фарадей

Первый электродвигатель Фарадея, 1821 г.

Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат «О некоторых новых электромагнитных движениях и о теории магнетизма», где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем в истории.

1822, Ампер

Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.

1822, Барлоу

Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.

1825, Араго

Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.

1825, Стёрджен

Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.

Вращающееся устройство Йедлика, 1827/28 гг.

1827, Йедлик

Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.

1831, Фарадей

Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.

1831, Генри

Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.

1832, Пикси

Генератор постоянного тока Пикси

Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.

Источник: https://engineering-solutions.ru/motorcontrol/history/

Специальное предложение

Еще в седьмом веке до нашей эры, греческий философ Фалес Милетский заметил необычное свойство янтаря – при трении о шерсть камень начинал притягивать к себе нетяжелые предметы.

В более неопределённый период времени (между 250 годом до н. э. и 250 годом н. э) произошло изобретение багдадской батареи, которое некоторые ученые считают первым гальваническим элементом.

                                                                         багдадская батарея   (фото .wikipedia.org)

В 17 веке Отто фон Герике соорудил первую электростатическую машину — шар из серы, который натирается руками.

В следующем веке уже намечался будущий прорыв – открыт «закон Кулона», Вольта изобрёл источник гальванического тока, ученые впервые разложили воду электрическим током. Также были проведены исследования атмосферного электричества, разработаны первые теории электричества.

Однако, до девятнадцатого века сложно говорить об электротехнике, как о науке – скорее, это были наблюдения и первые предвестники, которые позже переросли в великие открытия и полностью перевернули жизнь человечества.

XIX век

В XIX веке произошел настоящий прорыв в изучении и освоении электричества. Условно, с точки зрения становления электротехники, в девятнадцатом столетии обозначаются несколько периодов.

Зарождение научных основ электротехники

Начиная с 1800 года и до 30-тых годов XIX столетия закладываются научные основы электротехники. Первый электрохимический генератор – «Вольтов столб», стал толчком в развитии электротехники, за которым последовала череда важных открытий. На этом этапе были открыты законы Ома, Ампера, Био – Савара; найдены и описаны основные свойства электрического тока. Швейгер изобрел первый индикатор электрического тока.

Становление электротехники

Далее, вплоть до семидесятых годов XIX века, появляются первые электрические устройства.

Одно из важнейших открытий данного этапа – явление электромагнитной индукции, которое выявил Фарадей. Затем последовали изобретения первых электрических машин постоянного и переменного токов, Якоби построил первый электродвигатель с непосредственным вращением якоря.

                                                                                      электродвигатель Якоби
                                                                             (фото engineering-solutions.ru/motorcontrol/history)

В этот период сформировались законы Ленца и Кирхгофа, впервые были созданы источники электрического освещения и электрические приборы, происходит зарождение электроизмерительной техники.

Тем не менее в это время электрическая энергия не получает обширного применения, так как на тот момент еще не был изобретен экономичный электрический генератор.

Электротехника – самостоятельная отрасль

После 70-х годов XIX столетия начинается эра электротехники как самостоятельной отрасли техники. Новый этап открывает изобретение электромашинного генератора с самовозбуждением.

На это время приходится невероятный прогресс промышленности, сопровождавшийся непрерывным ростом потребности в электрической энергии.
Появляются первые электрические станции постоянного тока, П. Н. Яблочков изобретает «электрическую свечу» (о нем и других выдающихся русских ученых читайте в нашем обзоре), разрабатываются способы передачи электричества на большие расстояния за счёт существенного повышения напряжения ЛЭП.

                                                                   электрическая свеча (фото .wikipedia.org)                                                                              

Дальнейшее развитие электрического освещения способствовало улучшению электрических машин и трансформаторов; ближе к концу века стартовало массовое производство однофазных трансформаторов с замкнутой магнитной системой. 

В конце XIX века происходят значительные события – начинается строительство центральных электростанций переменного тока, открывается первая в мире ГЭС, разработаны трёхфазная электрическая сеть, трехфазные электрические двигатели и трансформаторы. Огромный вклад в развитие электротехники в эти годы внесли Михаил Доливо-Добровольский, Никола Тесла, Чарльз Браун и другие.

Начинается эпоха электричества: повышаются мощности и напряжения, возникают новые образы и виды электрических машин. Электрическая энергия проникает в различные отрасли производства и получает огромное распространение в различных сферах жизни.

XX век и наши дни

В начале века в России положено начало Московскому энергетическому институту – он вырос из появившейся в 1905 году специальности по электротехнике, которую ввели в Московском высшем техническом училище.

С появлением специального образования, а, следовательно, и приумножением профессиональных кадров, электротехника продолжает получать широчайшее распространение. Таким образом, развивается преобразовательная техника, а в дальнейшем и необыкновенный рост промышленной электроники.

На основе электротехники разрабатываются первые электронные вычислительные машины, без которых сложно представить сегодняшний мир.

Одно из последних достижений электротехники – беспроводная передача электричества: изобретатели смогли зажечь обыкновенную лампочку с расстояния более двух метров.

Электротехника стала незыблемой частью жизни нашего общества, надежное функционирование которой обеспечивают современные цифровые устройства релейной защиты и автоматики (РЗА).

Источник: http://i-mt.net/blog/obzory/istoriya-elektrotehniki

Как электричество вошло в нашу жизнь

Электричество как явление природы известно очень давно. Еще в VII веке до нашей эры древние греки знали об одном любопытном свойстве янтаря: если его потереть о шерсть, то он будет притягивать мелкие предметы. Слово янтарь по-гречески звучит, как «электрон», и хотя греки не знали о причинах такого явления, они подарили миру его название — электричество.

1745. Электрометр

Ещё многие столетия такие рукотворные проявления электричества были чем-то вроде забавы, и только в Средние века учёные начали его изучать. В 1745 году российский естествоиспытатель Михаил Ломоносов для изучения атмосферного электричества сконструировал один из первых приборов, измеряющих электрический заряд.

1785. Закон Кулона

А в 1785 году французский учёный Шарль Кулон открыл закон, описывающий взаимодействие электрически заряженных тел (их притяжение и отталкивание). Этот закон с тех пор называется «законом Кулона», а единица электрического заряда — кулон.

Считается, что после открытия этого закона, электрические явления из категории наблюдений и испытаний стали относиться к категории точной науки. Простыми словами, Кулон опытным путём определил, что чем больше заряды, тем сильнее их притяжение, и чем больше расстояние между ними, тем эта сила меньше.

Причём сила уменьшается пропорционально квадрату расстояния между ними. 

Для этого Кулон изобрёл крутильные весы, в котором подвешивалась на шёлковой нити палочка с металлическим шариком с одной стороны и противовесом с другой.

При воздействии на шарик другим заряженным шариком палочка отклонялась от начального состояния и нитка закручивалась. Это отклонение можно было измерить движением стрелки на другом конце шёлковой нити.

Считается, что после открытия этого закона, электрические явления из категории наблюдений и испытаний стали относиться к категории точной науки.

1800. Батарейка Вольта

Уже в 1800 году итальянский физик Алессандро Вольта изобрёл химический источник тока (фактически, мощную батарейку). Учёный фактически опустил в кислоту медную и цинковую пластинки, соединённые проволокой.

При этом цинковая пластина начала растворяться, а около медной появились пузыри газа. Это означало, что по проволоке протекал ток. Это изобретение дало учёным достаточно сильный, надёжный источник тока и позволило продвинуть изучение электрических явлений.

Имя изобретателя увековечено в названии единицы электрического напряжения — вольт.

1821

В 1821 году французский физик Андре-Мари Ампер обнаружил, что если по проводу течёт электроток, то возле него образуется магнитное поле, тем самым он установил связь между электрическими и магнитными явлениями. Ампер впервые ввел понятие электрического тока, и теперь единица измерения силы тока стала называться ампер.

Эстафету исследований продолжил английский физик Майкл Фарадей. В том же 1821 году учёный создал простейший электродвигатель, преобразующий электрический ток в механическое движение.

1831. Электромагнитная индукция

А в 1831 году Фарадей сформулировал и описал явление электромагнитной индукции. Упрощённо это означает следующее: при движении в магнитном поле проводника (например, медного провода) возникает электрический ток.

И вот теперь стало возможным создание полноценных электрогенераторов, превращающих механическое движение в электрический ток. Это было прорывом в развитии электротехники: появилась возможность получать электрический ток из механического движения, например, вращения турбины паровой машины. Практически открылись двери для развития электроэнергетики.

1872. Лампочка Ладыгина

С этого времени началось непрерывное улучшение электродвигателей и генераторов электрического тока, начали создаваться приборы, использующие электричество. К примеру, в 1872 году российский инженер Михаил Лодыгин так усовершенствовал лампочку накаливания, что его конструкция практически не меняется до сих пор.

1897. Электрон

И что самое интересное, после всех этих открытий только в 1897 году английский физик Джозеф Томсон открыл электрон как элементарную частицу, движение которой образует электрический ток.

Источник: https://oyla.xyz/article/kak-elektricestvo-voslo-v-nasu-zizn

Электричество: в каком году появилось и кто изобрел, история открытия постоянного и переменного тока

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество».

С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии.

Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта, который придумал и изобрел гальванический элемент — источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ — двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

Первое применение электроэнергии

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый.

Однако запустить лампочку в массовое производство смог другой ученый — американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время.

ЭТО ИНТЕРЕСНО:  Что относится к дополнительным Электрозащитным средствам до 1000 В

Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году. Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе.

Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие — было выполнено освещение Кремля, когда к власти пришел Михаил III.

По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток, так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Электроток в жизни и природе

Сейчас электричество в наши дома поступает благодаря электрическим станциям. На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды.

Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор.

В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе, первыми на ум приходят молнии, но это далеко не единственный его источник.

Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток.

Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.

Источник: https://220v.guru/vse-ob-elektroenergii/kto-i-v-kakom-godu-izobrel-elektrichestvo-istoriya-otkrytiya.html

10 изобретений Томаса Эдисона, повлиявшие на жизнь каждого из нас

1 звезда 2 звезды 3 звезды 4 звезды 5 звезд

Заслуженный изобретатель и «главный электрик» мира Томас Эдисон изобрел сотни приборов и даже систем, которые работают по сей день. Мы расскажем о 10 изобретениях, изменивших мир.

За свою жизнь Томас Эдисон получил 1093 патента в США и несколько тысяч патентов в других государствах. Практически каждое из его изобретений упрощало жизнь людей и двигало человечество к развитию научно-технического прогресса.

В преддверии выхода киноленты «Война токов» (дата выхода в России — 5 декабря 2019 года) мы вспомнили о 10 наиболее значимых на наш взгляд для человечества изобретений Эдисона.

На все эти изобретения имеются соответствующие патенты (кроме 4 пункта), поэтому в их «принадлежности» Эдисону не возникает сомнений.

8 Система электрического освещения

Эдисон первым создал концепцию современного электрического освещения. Для этого он разработал специальные поворотные выключатели, унифицированные (с обозначением Ехх, где хх — диаметр в миллиметрах) цоколи с резьбой для вкручивания лампочек, клеммы, штепсельные розетки с вилками, предохранители, лампы накаливания и собственно счетчик электроэнергии.

Не все эти приборы он изготавливал самостоятельно, но он смог соединить их в единую систему электроснабжения. Также в эту систему он добавил трехпроводную сеть постоянного тока напряжением 110 В.
В том же году (1880), когда начинает действовать система, Эдисон представляет новую лампу накаливания со сроком службы в 1200 часов.

Благодаря подобной системе освещения и электроснабжения компания Эдисона стала продавать 75 % всех лампочек в США.

10 Щелочная батарея

Это далеко не все изобретения Эдисона, которые повлияли на мир в целом. Поделитесь в комментариях, а какие открытия этого гениального ученого на ваш взгляд самые значимые в работе его мастерской!

Хотите раскрыть для себя некоторые секреты мира электрики? Тогда загляните сюда:

Источник: https://ichip.ru/tekhnologii/10-izobretenij-tomasa-edisona-povliyavshie-na-zhizn-kazhdogo-710272

История искусственных источников света: от огня до лазеров

В XIX веке широкое распространение получило газовое освещение. В 1807 году первые газовые фонари зажигаются на одной из центральных улиц Лондона — Пэлл-Мэлл. А уже к 1823 году улицы Лондона, общей протяженностью 215 миль, освещали сорок тысяч газовых фонарей (которые было принято называть рожками). Зажигались они каждый вечер вручную специальными людьми — фонарщиками. Кстати, эта должность была в некоторых странах выборной и весьма почетной.

Однако газовое освещение было не слишком эффективным. проблема заключалась в том, что газовое пламя, горящее при недостаточном притоке кислорода, дает яркий свет, но при этом сильно коптит, а чистое некоптящее пламя (при избытке кислорода) практически невидимо.

Но в 1885 году Уэлсбах предложил использовать калильную сетку, представляющую собой мешочек из ткани, пропитанный раствором неорганических веществ (различных солей). При прокаливании ткань сгорала, оставляя тонкий «скелет», ярко светящийся при нагревании под действием пламени.

В конце XIX века появились керосиновые лампы, их можно встретить и до сих пор. Многие из них оснащены калильными сетками (теперь уже металлическими или асбестовыми).

Первые шаги электричества

Первым электрическим источником света был, как это ни странно, «фонарик на батарейках». Правда, свет излучала не лампа накаливания, а электрическая дуга между угольными электродами, а батареи занимали целый стол. В 1809 году сэр Хэмфри Дэви продемонстрировал дуговой свет в Королевской академии наук в Лондоне. Генераторов в то время не было (Фарадей открыл явление электромагнитной индукции лишь в 1832 году), и батареи были единственным источником электропитания.

В 1878 году наш соотечественник Павел Яблочков усовершенствовал конструкцию, поставив электроды вертикально и разделив их слоем изолятора. Такая конструкция получила название «свеча Яблочкова» и использовалась во всем мире: например, Парижский оперный театр освещался с помощью таких «свечей».

Электрическая дуга давала яркий и достаточно сбалансированный по спектру свет, что позволяло использовать его очень широко. К 1884 году крупные американские города освещали более 90 тыс. дуговых ламп.

Горячие нити

Большинство людей связывают изобретение ламп накаливания с именем Эдисона. Однако, несмотря на все его заслуги в этой области, изобретателем лампы был все же не он.

Первая лампа накаливания больше напоминала ювелирное изделие или произведение искусства как по трудоемкости, так и по стоимости. Задолго до Эдисона, в 1820 году, Уоррен Де ла Рю поместил платиновую проволочку в стеклянный сосуд, из которого был откачан воздух, и пропустил по ней ток. Лампа получилась удачной, но платиновой! Она была настолько дорогой, что о широком ее использовании не могло быть и речи.

Множество изобретателей экспериментировали с различными материалами, но лишь в 1879 году Джозеф Свен и Томас Эдисон независимо друг от друга разработали лампу накаливания с угольной нитью.

Для своего изобретения Эдисон устроил массовую грандиозную презентацию: в канун нового, 1880 года он использовал 100 своих ламп, чтобы осветить улицы, лабораторию и станцию городка Менло-Парк (Нью-Джерси). Поезда ломились от желающих посмотреть на это чудо, и Пенсильванской железной дороге даже пришлось пустить дополнительные составы.

Лампы Эдисона работали около ста часов, потребляли 100 Вт и давали световой поток в 16 кандел (для сравнения — современная 100-ваттная лампа накаливания дает свет силой порядка 100−140 кандел).

Дальнейшее совершенствование ламп происходило по двум направлениям: угольная нить была заменена в 1907 году на вольфрамовую, а с 1913 года лампы стали газонаполненными (сначала их заполняли азотом, потом перешли на аргон и криптон). Оба усовершенствования были сделаны в лабораториях компании General Electric, основанной Томасом Эдисоном.

Хорошо знакомая читателям нашего журнала современная лампа накаливания дешева, широко используется в быту, однако нельзя сказать, что свет ее идеален: он смещен в сторону красной и ИК-областей спектра. Эффективность также оставляет желать лучшего: ее КПД составляет всего 1−4%. В этом смысле лампа накаливания — скорее отопительный, а не осветительный прибор.

Лампы с начинкой

У обычных ламп накаливания, кроме низкого КПД, есть еще один серьезный недостаток. Вольфрам при работе постепенно испаряется с раскаленной поверхности нити и оседает на стенках колбы. Колба приобретает «тонированный» вид, что ухудшает светоотдачу. А за счет испарения вольфрама с поверхности нити жизнь лампы сокращается.

А вот если в газ, наполняющий колбу, добавить пары, например, йода, картина меняется.

Атомы испаренного вольфрама соединяются с атомами йода, образуя йодид вольфрама, который не оседает на стенках колбы, а разлагается на раскаленной поверхности нити накаливания, возвращая вольфрам в нить, а пары йода — обратно в колбу.

Но есть одно условие: температура стенок колбы тоже должна быть достаточно высокой — около 250 °C. Именно поэтому колбы галогенных ламп такие компактные и, естественно, горячие!

Галогенные лампы, за счет высокой температуры нити, дают более белый свет и имеют более длительное время жизни по сравнению с обычными лампами накаливания.

Холодный свет

Эти лампы — прямые потомки электрической дуги. Только разряд в них происходит между двумя электродами в емкости, заполненной различными газами. В зависимости от давления (низкого —

Источник: https://www.popmech.ru/technologies/8057-istoriya-iskusstvennyh-istochnikov-sveta-ot-ognya-do-lazerov/

Кто придумал электричество

> Теория > Кто придумал электричество

В наше время жизнь без электричества просто остановится. Однако, так было не всегда – раньше люди и слова такого не слышали. На протяжении веков, благодаря усилиям поколений талантливых ученых и исследователей, человечество продвигалось к открытию и использованию этого чудесного природного явления. Освоение электрического тока можно смело считать одним из главных достижений человечества.

Электричество – одна из основ современной цивилизации

Открытие электричества: первые шаги

Точного ответа на вопрос, когда появилось электричество, не существует. Как природная сила оно существовало всегда, а вот долгий путь к изобретению и использованию электричества был начат еще в 8 веке до н.э.

История даже сохранила имя человека, давшего название этому явлению. Философ Фалес Миллетский, проживавший в Древней Греции обратил внимание на то, что натертый шерстью янтарь может притянуть к себе небольшие предметы за счет какой-то силы.

«Янтарь» по-гречески означает «электрон», отсюда и пошло «электричество».

Фалес Милетский – основоположник исследований электричества

Настоящее зарождение исследований в этой области история электричества относит к середине 17 века, и связано оно с именем бургомистра из немецкого Магдебурга Отто ф.Герике (по совместительству ученый-физик и изобретатель).

Он в 1663 году, после изучения трудов Фалеса, создал особую машину для исследования эффектов электрического притяжения и отталкивания, это и был первый в мире электрический механизм.

Аппарат состоял из серного шарика, который крутился на металлическом стержне и, подобно янтарю, притягивал и отталкивал различные предметы.

Среди первопроходцев, способствовавших появлению в нашей жизни электричества, можно назвать англичанина У. Гилберта, который служил физиком и медиком при дворе. Он считается основоположником электротехники (науки о свойствах и применении электричества), изобрел электроскоп и сделал несколько замечательных открытий в этой области.

Новые открытия

Статическое электричество и защита от него

В 1729 году англичане Стивен Грей и Грэнвилл Уилер впервые обнаружили, что электрический ток свободно проходит через некоторые тела (названные проводниками) и не проходит через другие (непроводники), это было первым шагом к использованию электроэнергии в промышленных целях.

В Англии же впервые в мире пытаются передать электричество на какое-то расстояние, занимался этим ученый С. Грей, в процессе опытов он также столкнулся с разной степенью проводимости тел.

Профессора математики Голландца П.ван Мушенбрука называют тем, кто изобрел первый конденсатор для электричества – это знаменитая «лейденская банка» (названа по имени родного города изобретателя). Прибор представлял собой обычную стеклянную банку, с обоих концов запаянную тонкими листами сплава олова со свинцом. Таким образом, появляется возможность накапливать электричество.

Лейденская банка – первый электрический накопитель

Известный американский политический деятель Бенджамин Франклин также был среди тех, кто открыл электричество для широкого применения в жизни. Он опытным путем определил, что электрические заряды делятся на положительные и отрицательные, а также изучил электрическую природу молний.

На основе открытий Франклина в России ученые Рихман и великий Михайло Васильевич Ломоносов изобрели громоотвод, доказав на практике, что молнии получаются из разности потенциалов атмосферного электричества. Ломоносов вообще оказал огромное влияние на изучение электрических явлений (особенно атмосферных).

Молодая наука об электричестве продолжает стремительно развиваться – на протяжении 18-19 веков появлялись все новые открытия и изобретения, писались новые научные трактаты, главным предметом которых был электрический ток.

Так, в 1791 году выпущена в свет книга об электричестве в мышцах человека и животных, возникающая при их сокращении, автором был итальянский физик Гальвани. Другой итальянец – Алессандро Вольта, был тем, кто создал в 1800 году доселе неизвестный источник тока, названный «гальванический элемент» (в честь того самого Гальвани), который через несколько сотен лет предстает в виде всем известной батарейки.

Гальванический элемент Вольта – прообраз современной батарейки

«Вольтов столб» был выполнен в виде собственно столба, отлитого из цинка и серебра, между слоями которых была проложена просоленная бумага.

Через несколько лет в России профессор физики из Санкт-Петербурга В. Петров представляет научному миру мощную электрическую дугу, назвав ее «Вольтова дуга». Он тот, кто придумал использовать свет от электричества для освещения внутри помещений.

Были продемонстрированы возможности для использования электрических явлений в хозяйственной жизни. Собранная ученым батарея была действительно гигантской (длина – 12, а высота – около 3 метров), напряжение ее было постоянным и составляло 1700 вольт.

Это изобретение положило начало опытам по созданию ламп накаливания и методов электрической сварки металлов.

Великие открытия в области электричества

Опыты Петрова в России способствовали тому, что в 1809 году ученый Деларю в Англии сконструировал первую в мире лампу накаливания. А сто лет спустя американский химик и Нобелевский лауреат И.

Ленгмюр выпустил первую лампочку, у которой была светящаяся спираль из вольфрама, помещенная в запаянную колбу с инертным газом. Это дало старт новой эпохе.

Многие ученые и в Европе, и в США, и в России проводили многочисленные опыты и исследования, чтобы лучше понять природу электричества и поставить его на службу человеку.

Так, в 1820 году датчанин Эрстред выявил взаимодействие электрических частиц, а в 1821 знаменитый Ампер выдвинул и доказал теорию о связи магнетизма и электрических явлений. Свойства электромагнитного поля углубленно исследовал англичанин М.

Фарадей, он же открыл закон электромагнитной индукции, гласящий, что в замкнутом проводящем контуре при временном изменении магнитного потока возникают электрические импульсы, а также сконструировал первый электрогенератор.

Работы этих ученых и десятков других менее известных привели к появлению новой науки, которой немецкий инженер Вернер фон Сименс дал название «электротехника».

В 1826 году Г.С.Ом после многочисленных опытов выдвинул закон электроцепи (известный также, как «закон Ома»), а также новые термины: «проводимость», «электрическая движущая сила», «напряжение электротока». Его последователь, А-М. Ампер, вывел знаменитое правило «правой руки», т.е.

определение направлений течения электротока с помощью магнитной стрелки. Он же изобрел прибор для усиления электрополя – катушки медных проводов вокруг железных сердечников.

Эти наработки стали предвестниками одного из главных изобретений в области электротехники (электромагнитного телеграфа) немецким учёным Самуилом Томасом Земмерингом.

Электромагнитный телеграф Земмеринга

В России изобретатель Михаил Лодыгин придумал лампочку, максимально напоминающую современные аналоги: вакуумная колба, внутри которой помещена спиралевидная нить накаливания, сделанная из тугоплавкого вольфрама.

Ученый продал права на это изобретение американской корпорации «Дженерал Электрик», которая запустила их в массовое производство.

ЭТО ИНТЕРЕСНО:  Что такое мтз в релейной защите

Поэтому справедливо было бы считать первооткрывателем лампочек именно россиянина, хотя во всех американских учебниках физики «отцом лампочки» значится их ученый Т.Эдисон, который тоже внес немалый вклад в изобретение электричества.

Современный виток исследований

Что такое мини катушка Тесла

Недавние грандиозные открытия в области электричества связаны с именем великого Николы Теслы, значение и масштабы которых до сих пор не оценены по достоинству. Этот гениальный человек изобрел такие вещи, которые еще только предстоит использовать:

  • синхронный генератор и асинхронный электродвигатель, совершившие промышленную революцию в современном мире;
  • флюоресцентные лампы для освещения больших пространств;
  • концепция радио была представлена Теслой на несколько лет раньше «официального отца» радио – Маркони;
  • дистанционно управляемые приборы (первой была лодка на больших батареях, управляемая с помощью радио);
  • двигатель с вращающимися магнито-полями (на этой основе сейчас производят новейшие автомобили, не нуждающиеся в бензине);
  • промышленные лазеры;
  • «Лазер Башня» – первый в мире прибор для беспроводного коммуникацирования, прообраз всемирной сети Интернет;
  • множество бытовых и промышленных электроприборов.

Гений в мире электричества – Никола Тесла

В России в Советские годы проводилась массированная электрификация, массово производились «лампочки Ильича», советские ученые развивали и совершенствовали познания в электричестве и электротехнике.

Все знают, что такое электричество, и сталкиваются с ним постоянно в повседневной жизни. Однако однозначно назвать того, кто изобрел электричество, невозможно. Каждый из великих ученых и исследователей внес свой неоценимый вклад в дело изучения и использования этого замечательного природного явления.

Источник: https://elquanta.ru/teoriya/kto-pridumal-ehlektrichestvo.html

Кто изобрел лампочку? Роль Эдисона в создании электрической лампы

Американскому изобретателю Томасу Эдисону приписывают разработку первой практичной лампочки в 1879 году. Однако история ламп накаливания не так проста, так как в ней приняли участие множество ученых, каждый из которых внес свой вклад, который в конечном итоге привел к этому достижению — доступной, долговечной и безопасной лампе накаливания, генерирующей свет в течение долгого времени.

История электрического освещения

Чтобы выяснить происхождение лампочки, нам нужно отправиться более чем на 200 лет назад в лабораторию Гемфри Дэви, выдающегося английского химика и изобретателя. В 1800 году Дэви прикрепил два провода с угольными палочками к батарее, что позволило продемонстрировать яркую дугу света между угольными электродами.

Это привело к появлению электрической дуговой лампы — первого широко используемого типа электрического света и первой коммерчески успешной формы электрической лампы.

Конечно, различные изобретатели улучшили дизайн Дэви, добавив пружинные системы, а также соли редкоземельных металлов в электроды, что позволило увеличить яркость дуги.

Лампы электрической дуги были популярны на протяжении десятилетий благодаря их высокой яркости, способной освещать огромные фабричные интерьеры или целые улицы. В течение большей части XIX века это был единственный тип электрического освещения для больших площадей, и он был самым дешевым вариантом освещения улиц по сравнению с газовыми или масляными лампами.

Однако углеродные стержни приходилось заменять так часто, что это превращалось в работу на полный рабочий день. Более того, лампы излучали опасное ультрафиолетовое излучение, создавали шум и мерцание при горении света и представляли серьезную опасность пожара. Многие здания, такие как театры, сгорели в результате чрезмерного нагрева и искр, создаваемых электрическими дуговыми лампами.

И хотя эти лампы подходили для улиц и огромных залов, они были совершенно непрактичны для освещения домов и небольших помещений.

Мир нуждался в более совершенной технологии освещения, и многие изобретатели усердно трудились, чтобы найти идеальное решение. Слава и богатство наверняка были обещаны тем, кто добьется успеха. Но путь оказался пронизан многими проблемами.

Вакуум

В 1840 году британский физик Уоррен де ла Рю предложил новую конструкцию лампочки, которая предусматривала запуск платиновой катушки внутри вакуумной трубки, чтобы минимизировать воздействие кислорода. Однако высокая стоимость платины помешала этой конструкции получить коммерческий успех. В 1841 году Фредерик де Молейенс представил первый патент на вакуумную лампу накаливая.

Затем, в 1850 году, сэр Джозеф Уилсон Свон начал работать над лампочкой, используя нити из карбонизированной бумаги вместо платины в вакуумной стеклянной колбе. К 1860 году британский изобретатель получил патент на частичную вакуумную лампу накаливания с угольной нитью. Проблема с этим устройством заключалась в том, что ему не хватало вакуума и соответствующего электрического источника, что делало его неэффективным, лампа перегорала слишком быстро.

Позже Джозеф Свон внес некоторые улучшения. Сначала он работал с нитью из копировальной бумаги, но обнаружил, что они быстро сгорают. Наконец, в 1878 году Свон продемонстрировал новую электрическую лампу в Ньюкасле, Англия, в которой использовалась углеродная нить, полученная из хлопка. Электрическая лампочка Свона могла работать 13,5 часов, и его дом стал первым домом в мире, освещенным электрическим светом. В ноябре 1880 года Свон получил патент Великобритании 4933 на свое изобретение.

Американский изобретатель и бизнесмен Томас Эдисон внимательно следил за развитием событий. Он понял, что главной проблемой первоначального дизайна Свона было использование толстой углеродной нити. Эдисон считал, что она должна быть тонкой и иметь высокое электрическое сопротивление.

Он адаптировал образцы из патента 1875 года, который он приобрел у изобретателей Генри Вудворда и Мэтью Эванса, продемонстрировав свою лампу накаливания в декабре 1879 года, которая могла работать 40 часов. Использование Эдисоном более тонких нитей и лучшего вакуума дало ему преимущество в гонке.

Затем он подал в суд на Свона за нарушение патента.

К 1880 году луковицы Эдисона работали 1200 часов и были достаточно надежными. Тем не менее, этот прорыв потребовал тщательного тестирования более 3000 образцов ламп накаливания между 1878 и 1880 годами. Более того, инженеры Эдисона в Менло-Парк протестировали более 6000 растений, чтобы определить, какой тип углерода будет гореть дольше, и, наконец, остановились на карбонизированной бамбуковой нити. В большинстве современных ламп накаливания используются вольфрамовые нити.

Позже, исследователи Эдисона постепенно улучшали дизайн и производство нитей. В начале 20-го века команда Эдисона представила средства для улучшения нитей, которые остановили потемнение внутренних поверхностей стеклянных колб.

К сожалению для Эдисона, патент Свона оказался сильной претензией — по крайней мере, в Соединенном Королевстве. В конце концов, они объединили свои усилия и создали компанию Edison-Swan United, которая впоследствии стала крупнейшим в мире производителем лампочек.

В 1880 году Эдисон также основал компанию Edison Electric Illuminating в Нью-Йорке, которую финансировала JP Morgan. Эта компания построила первые электростанции, которые питали новые запатентованные лампочки. Позднее Edison Electric объединится с компаниями двух других изобретателей, Уильяма Сойера и Албона Мэна, и создала General Electric, которая и по сей день является одной из крупнейших корпораций в мире.

Итог: Эдисон был не первым изобретателем, который работал над лампочками. Фактически, к тому времени, когда он начал работать над своими первыми проектами, лампочка уже существовала, и около 20 различных изобретателей по всему миру готовили свои патенты. В тоже самое время много русских изобретателей работали над своими устройствами (Лодыгин, Кон, Козлов и Булыгин). Дизайн Эдисона был просто наиболее практичным, что объясняет его всемирный успех.

Источник: https://www.gymnasium-nur.ru/science-news/kto-izobrel-lampochku-rol-edisona-v-sozdanii-elektricheskoj-lampy/

Кто изобрёл электричество: история возникновения, век и год изобретения

Электричество — это вид энергии, которую не требовалось изобретать, а только обнаружить и изучить. История отдает должное первооткрывателю Бенджамину Франклину, именно его эксперименты помогли установить связь между молнией и электричеством. Хотя на самом деле, правда об открытии электроэнергии намного сложнее, поскольку в ее истории не существует единого определяющего момента, дающего прямой ответ на вопрос, кто изобрёл электричество.

История

То, как люди стали производить, распределять и использовать электроэнергию и устройства, на которых протекают процессы генерации, является кульминацией почти 300 летней истории исследований и разработок электричества.

История открытия

Сегодня ученые считают, что человечество начало использовать электроэнергию намного раньше. Примерно в 600 году до н.э. древние греки обнаружили, что потирание меха на янтаре вызывает притяжение между ними. Это явление демонстрирует статическое электричество, которое полностью описали ученые в 17 веке в пояснениях, как появляется электричество.

Кроме того, исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, и объяснили их происхождение, как древние батареи, предназначенные для получения света в древнеримских местах. Подобные устройства также были найдены в археологических раскопках возле Багдада, а это означает, что древние персы также могли открыть конструкцию ранней формы батарей.

Кто изобрёл электричество

К 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение раннего электростатического генератора, разграничение положительных и отрицательных зарядов и классификация материалов в качестве проводников или изоляторов.

Важно! В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus», чтобы описать силу, которую некоторые вещества создают, если их потереть друг с другом. Чуть позже другой английский ученый Томас Браун, написал несколько книг с использованием термина «электричество», чтобы описать свои исследования, основанные на работе Гилберта.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Эксперимент Бена Франклина

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод.

Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

Русский ученый и инженер А. Н. Лодыгин

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.

Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.

Электродуговая лампа П.Н.Яблочкова

Кто является основоположниками науки об электричестве

Вот список некоторых известных ученых, сделавших свой вклад в развитии электроэнергии.

Французский физик Андре Мари Ампер

Основоположниками науки об электричестве являются:

  1. Французский физик Андре Мари Ампер, 1775-1836, работавший по электромагнетизму. Единица тока в системе СИ — ампер, названа в его честь.
  2. Французский физик Чарльз Августин из Кулона, 1736-1806, который был пионером в исследованиях трения и вязкости, распределения заряда на поверхностях и законов электрической и магнитной силы. Его именем названа единица заряда в системе СИ — кулон и закон Кулона.
  3. Итальянский физик Алессандро Вольта, 1745-1827, тот кто изобрел источник постоянного тока, награжден Нобелевской премией по физике 1921 года, в системе СИ единица напряжения — вольт, названа в его честь.
  4. Георг Симон Ом, 1789-1854, немецкий физик, первооткрыватель, оказавший влияние на развитие теории электричества, в частности закона Ома. В системе СИ единица сопротивления — ом, названа в его честь.
  5. Густав Роберт Кирхгоф, 1824-1887, немецкий физик, внесший вклад в фундаментальное понимание электрических цепей, известен своими двумя законами по теории цепей.
  6. Генрих Герц, 1857-1894, немецкий физик, демонстрирующий существование электромагнитных волн. В системе СИ единица частоты — Герц названа в его честь.
  7. Джеймс Клерк Максвелл,1831-1879, шотландский математик и физик, сформулировал систему уравнений об основных законах электричества и магнетизма, названную уравнениями Максвелла.
  8. Майкл Фарадей, 1791-1867, английский химик и физик, основоположник закона индукции. Один из лучших экспериментаторов в истории науки, его обычно считают отцом электротехники. Единица емкости в системе СИ — постоянная Фарадея, названа в его честь.
  9. Томас Эдисон, 1847-1931, американский изобретатель, имеющий более 1000 патентов, наиболее известен разработкой лампы накаливания.

Томас Эдисон

Теории и законы электричества

Общие законы, регулирующие электричество, немногочисленны и просты и применяются неограниченным количеством вариантов.

Закон Ома

Закон Ома — ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению между ними.

I = V / R или V = IR или R = V / I

Где:

I — ток через провод в амперах;

V — напряжение, измеренное на проводнике в вольтах;

R — сопротивление провода в Ом.

В частности, он также гласит, что R в этом отношении постоянна, не зависит от тока.

Закон Ватта, подобно закону Ома, подтверждает связь между мощностью (ваттами), током и напряжением: P = VI или P = I 2 R.

Закон Кирхгофа (KCL) доказывает, что суммарный ток или заряд, поступающий в соединение или узел, в точности равен заряду, покидающему узел, поскольку ему некуда деться, кроме как уйти, поскольку внутри узла заряд не может быть поглощён. Другими словами, алгебраическая сумма всех токов, входящих и выходящих из узла, должна быть равна нулю.

Закон Фарадея гласит о том, что индуцированная электродвижущая сила в любой замкнутой цепи равна отрицательному значению временной скорости изменения магнитного потока, заключенного в ней.

Закон Ленца утверждает, что направление тока, индуцированного в проводе изменяющимся магнитным полем по фарадеевскому закону, создаст магнитное поле, противостоящее изменению, которое его вызвало. Проще говоря, размер эдс, индуцированной в цепи, пропорциональна скорости изменения потока.

Закон Гаусса гласит, что суммарный электрический поток с замкнутой поверхности равен вложенному заряду, деленному на диэлектрическую проницаемость.

Какое было первое электрическое изобретение

В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.

Создание Лейденской банки

Далее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году. Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.

Вам это будет интересно  Все об напряженности электрического поля

Когда появилось электричество на территории России

Практически электрическое освещение в России появилось в 1879 на Литейном мосте в Петербурге, а официально — в 1880, с созданием 1-го электротехнического отдела, занимавшегося внедрением электричества в экономику государства. В 1881 Царское село было освещено электрическими фонарями. Лампы накаливания в Кремле в 1881 г осветили вступления на трон Михаила III.

Энергетика России 2018

Прообраз российской энергосистемы был создан в 1886 г с основанием промышленно-коммерческого общества. В его планы входила электрификация населенных пунктов: улиц, заводов, магазинов и жилых домов. Первая крупная электрическая станция начала свою работу в 1888 г. в Зимнем дворце и на протяжении 15 лет считалась самой мощной в Европе. К 1917 г.

в столице уже было электрифицировано около 30% домов. Далее развитие энергетики в СССР шло по плану ГОЭЛРО принятого 22 декабря 1920 года. Этот день до сих пор отмечается в России и странах СНГ, как День энергетика. План во многом позаимствовал наработки российских специалистов 1916 года. Благодаря ему была увеличена выработка электроэнергии, а к 1932 г.

она возросла с 2 до 13,5 млрд кВт.

В 1960 г. уровень выработки электроэнергии составил 197.0 млрд. кВт-часов, и далее он продолжал неуклонно расти. Ежегодно в стране вводились новые энергетические мощности: ГРЭС, ТЭЦ, КЭС, ГЭС и АЭС. Суммарная их мощность к концу 1980 составила 266.7 тыс. МВт, а выработка электрической энергии в СССР достигла рекордных 1293.9 млрд. кВт∙ч.

После развала СССР, Россия продолжала наращивать темп развития энергетики, по результатам 2018 года выработка электроэнергии в стране составила −1091 млрд. кВт∙ч, что позволило стране войти в четверку мировых лидеров после Китая, США и Индии.

Источник: https://rusenergetics.ru/novichku/kto-izobryol-elektrichestvo

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как долго можно хранить литий ионный аккумулятор

Закрыть
Для любых предложений по сайту: [email protected]