Электростатический диполь. Электростатическое поле. Напряженность
Электрическое поле, которое окружает заряд, это реальность, независящая от нашего желания что-либо изменить и как-то повлиять на это. Отсюда можно сделать вывод, что электрическое поле является одной из форм существования материи, так же как и вещество.
Электрическое поле зарядов, находящихся в состоянии покоя, называют электростатическим. Чтобы обнаружить электростатическое поле определенного заряда нужно внести в его поле другой заряд, на который будет действовать определенная сила в соответствии с законом Кулона. Однако без наличия второго заряда электростатическое поле первого заряда существует, но никак себя не проявляет.
Напряженностью Е характеризуют электростатическое поле. Напряженность в некоторой точке электрического поля – физическая величина, которая равна силе, действующей на помещенный в определенную точку поля единичный положительный покоящийся заряд, и направленная в сторону действия силы.
Если в электрическое поле, создаваемое зарядом q, внести «пробный» положительный точечный заряд qпр, то по закону Кулона на него будет действовать сила:
Если в одну точку поля помещать различные пробные заряды q/пр, q//пр и так далее, то на каждый из них будут действовать различные силы, пропорциональные величине заряда. Отношение F/qпр для всех зарядов, вносимых в поле, будет идентичным, а также будет зависеть лишь от q и r, определяющих электрическое поле в данной точке. Данную величину можно выразить формулой:
Если предположить, что qпр = 1, то E = F. Отсюда делаем вывод, что напряженность электрического поля является его силовой характеристикой. Из формулы (2) с учетом выражения кулоновской силы (1) следует:
Из формулы (2) видно, что за единицу напряженности принимается напряженность в определенной точке поля, где на единицу заряда будет действовать единица силы. Поэтому в системе СГС единицей напряженности является дин/СГСq, а в системе СИ будет Н/Кл. Соотношение между приведенными единицами называют абсолютной электростатической единицей напряженности (СГСЕ):
Вектор напряженности направлен от заряда вдоль радиуса при образующем поле положительном заряде q+, а при отрицательном – q – по направлению к заряду вдоль радиуса.
Если электрическое поле образовано несколькими зарядами, то силы, которые будут действовать на пробный заряд, складываются по правилу сложения векторов. Поэтому напряженность системы, состоящей из нескольких зарядов, в данной точке поля будет равна векторной сумме напряженностей каждого заряда в отдельности:
Данное явление носит название принцип суперпозиции (наложения) электрических полей.
Напряженность в любой точке электрического поля двух точечных зарядов – q2 и +q1 можно найти использовав принцип суперпозиции:
По правилу параллелограмма будет происходить сложение векторов Е1 и Е2. Направление результирующего вектора Е определяется построением, а его абсолютная величина может быть вычислена с использованием формулы ниже:
Где α – угол между векторами Е1 и Е2.
Давайте рассмотрим электрическое поле, которое создает диполь. Электрический диполь – это система равных по величине (q = q1 = q2), но противоположных по знаку зарядов, расстояние между которыми очень мало, если сравнивать с расстоянием до рассматриваемых точек электрического поля.
Электрический дипольный момент p, являющийся основной характеристикой диполя и определяемый как вектор, направленный от отрицательного заряда к положительному, и равный произведению плеча диполя l на заряд q:
Также вектором является плечо диполя l, направленным от отрицательного заряда к положительному, и определяет расстояние между зарядами. Линия, которая проходит через оба заряда, носит название – ось диполя.
Давайте определим напряженность электрического поля в точке, которая лежит на оси диполя по середине (рисунок ниже а)):
В точке В напряженность Е будет равна векторной сумме напряженностей Е/ и Е//, которые создаются положительными и отрицательными зарядами но отдельности. Между зарядами –q и +q векторы напряженностей Е/ и Е// направлены в одну сторону, поэтому по абсолютной величине результирующая напряженность Е будет равна их сумме.
Если же нам необходимо найти Е в точке A, лежащей на продолжении оси диполя, то в разные стороны будут направлены вектора Е/ и Е//, соответственно по абсолютной величине результирующая напряженность будет равна их разности:
Где r – расстояние между точкой, которая лежит на оси диполя и в которой происходит определение напряженности, и средней точкой диполя.
В случае r>>l, величиной (l/2) в знаменателе можно пренебречь, тогда получим следующее соотношение:
Где p – момент электрический диполя.
Данная формула в системе СГС примет вид:
Теперь нужно вычислить напряженность электрического поля в точке С (рисунок выше б)), лежащей на перпендикуляре, восстановленном из средней точки диполя.
Так как r1 = r2, то будет иметь место равенство:
В точке С вектор результирующей напряженности по абсолютной величине будет равен:
Так как r>>l, то можно считать r1 ≈ r, тогда представленную выше формулу можно записать в другом виде:
Напряженность диполя в произвольной точке можно определить по формуле:
Где α – угол между плечом диполя l и радиус-вектором r, r – расстояние от точки, в которой определяется напряженность поля, до центра диполя, р – электрический момент диполя.
Пример
На расстоянии R = 0,06 м друг от друга находятся два одинаковых точечных заряда q1 = q2 = 10-6 Кл (рисунок ниже):
Необходимо определить напряженность электрического поля в точке А, которая расположена на перпендикуляре, восстановленном в центре отрезка, который соединяет заряды, на расстоянии h = 4 см от этого отрезка. Также нужно определить напряженность и в точке В, находящейся на середине отрезка, который соединяет заряды.
Решение
По принципу суперпозиции (наложением полей) определяется напряженность поля Е. Таким образом, векторной (геометрической) суммой определяется Е, создаваемых каждым зарядом в отдельности: Е = Е1 + Е2.
Напряженность электрического поля первого точечного заряда равна:
Где q1 и q2 – заряды, образующие электрическое поле; r – расстояние от точки, в которой вычисляется напряженность, до заряда; ε0 – электрическая постоянная; ε – относительная диэлектрическая проницаемость среды.
Для определения напряженности в точке В сначала нужно построить векторы напряженности электрических полей от каждого заряда. Поскольку заряды положительны, то векторы Е/ и Е// будут направлены от точки В в разные стороны. По условию q1 = q2:
Это значит, что в средине отрезка напряженность поля равна нулю.
В точке А необходимо произвести геометрическое сложение векторов Е1 и Е2. В точке А напряженность будет равна:
Источник: https://elenergi.ru/elektrostaticheskij-dipol-elektrostaticheskoe-pole-napryazhennost.html
Вектор напряженности электрического поля
В соответствии с теорией близкодействия, взаимодействия между заряженными телами, которые удалены друг от друга, осуществляется посредством полей (электромагнитных), создаваемых этими телами в окружающем их пространстве.
Если поля создаются неподвижными частицами (телами), то поле является электростатическим. Если поле не изменяется во времени, то его называют стационарным. Электростатическое поле является стационарным. Это поле — частный случай электромагнитного поля.
Силовой характеристикой электрического поля служит вектор напряженности, который можно определить как:
где $\overrightarrow{F}$- сила, действующая со стороны поля на неподвижный заряд q, который называют иногда «пробным». При этом необходимо, чтобы «пробный» заряд был мал, чтобы не искажал поле, напряженность которого с его помощью измеряют. Из уравнения (1) видно, что напряженность совпадает по направлению с силой, с которой поле действует на единичный положительный «пробный заряд».
Напряженность электростатического поля не зависит от времени. Если напряженность во всех точках поля одинакова, то поле называют однородным. В противном случае поле неоднородно.
- Курсовая работа 460 руб.
- Реферат 220 руб.
- Контрольная работа 220 руб.
Силовые линии
Для графического изображения электростатических полей используют понятие силовых линий.
Определение
Силовыми линиями или линиями напряженности поля, называются линии, касательные к которым в каждой точке поля совпадают с направлениями векторов напряженности в этих точках.
Силовые линии электростатического поля являются разомкнутыми. Они начинаются на положительных зарядах и заканчиваются на отрицательных. Иногда они могут уходить в бесконечность или приходить из бесконечности. Силовые линии поля не пересекаются.
Вектор напряженности электрического поля подчиняется принципу суперпозиции, а именно:
\[\overrightarrow{E}=\sum\limitsn_{i=1}{{\overrightarrow{E}}_i(2)}.\]
Результирующий вектор напряженности поля может быть найден как векторная сумма напряженностей составляющих его «отдельных» полей. Если заряд распределен непрерывно (нет необходимости учитывать дискретность), то суммарная напряженность поля найдется как:
\[\overrightarrow{E}=\int{d\overrightarrow{E}}\ \left(3\right).\]
В уравнении (3) интегрирование проводят по области распределения зарядов. Если заряды распределены по линии ($\tau =\frac{dq\ }{dl}$ -линейная плотность распределения заряда), то интегрирование в (3) проводят по линии.
Если заряды распределены по поверхности и поверхностная плотность распределения $\sigma=\frac{dq\ }{dS}$, то интегрируют по поверхности.
Интегрирование проводят по объему, если имеют дело с объемным распределением заряда: $\rho =\frac{dq\ }{dV}$, где $\rho $ — объемная плотность распределения заряда.
Напряженность поля
Напряжённость поля в диэлектрике равна векторной сумме напряженностей полей, которые создают свободные заряды ($\overrightarrow{E_0}$) и связанные заряды ($\overrightarrow{E_p}$):
\[\overrightarrow{E}=\overrightarrow{E_0}+\overrightarrow{E_p}\left(4\right).\]
Очень часто в примерах мы сталкиваемся с тем, что диэлектрик является изотропным. В таком случае, напряжённость поля может быть записана как:
Источник: https://spravochnick.ru/fizika/elektrostatika/vektor_napryazhennosti_elektricheskogo_polya/
Работа сил электростатического поля — справочник студента — МБОУ
Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.
Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.
Бесплатная оценка заказа!
Потенциал
Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.
Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.
Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.
Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.
В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.
Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.
Бесплатная оценка заказа!
Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.
Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.
Разность потенциалов
Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов
Эту формулу можно представить в ином виде
Эквипотенциальная поверхность (линия) — поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.
Напряжение
- Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.
- Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.
- От величины напряжения зависит ток в цепи и энергия заряженной частицы.
Принцип суперпозиции
Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности
Как определить знак потенциала
При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.
На рисунке изображены линии напряженности. В какой точке поля потенциал больше?
Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.
Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.
Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.
Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.
Зависимость напряженности и потенциала от расстояния
Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен
Напряжение в природе
Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В. Напряжение в телефонных сетях может достигать 60 В.
Электрический угорь способен создавать напряжение до 650 В.
Энергия взаимодействия зарядов*
- Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1
- Аналогично Тогда энергия взаимодействия двух точечных зарядов
- Энергия взаимодействия n зарядов
Источник: https://school16rostov.ru/estestvennye/rabota-sil-elektrostaticheskogo-polya-spravochnik-studenta.html
Электрическое поле – FIZI4KA
ЕГЭ 2018 по физике ›
Электродинамика – раздел физики, изучающий свойства и взаимодействия электрических зарядов, осуществляемые посредством электромагнитного поля.
Электростатикой называется раздел электродинамики, в котором рассматриваются свойства и взаимодействия неподвижных электрически заряженных тел или частиц.
Электромагнитное взаимодействие – это взаимодействие между электрически заряженными частицами или макротелами.
Точечный заряд – заряженное тело, размер которого мал по сравнению с расстоянием, на котором оценивается его действие.
Электризация тел
Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.
Способы электризации:
- трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
- через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
- при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
- при ударе;
- под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.
Взаимодействие зарядов. Два вида зарядов
Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.
Обозначение – \( q \), единица измерения в СИ – кулон (Кл).
Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10-19 Кл), наименьший положительный заряд (1,6·10-19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.
Величина заряда тела будет равна
где \( N \) — число избыточных или недостающих электронов;
\( e \) — элементарный заряд, равный 1,6·10-19 Кл.
Важно!
Частица может не иметь заряда, но заряд без частицы не существует.
Электрические заряды взаимодействуют:
- заряды одного знака отталкиваются:
- заряды противоположных знаков притягиваются:
Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.
Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.
Закон сохранения электрического заряда
Систему называют замкнутой (электрически изолированной), если в ней не происходит обмена зарядами с окружающей средой.
В любой замкнутой (электрически изолированной) системе сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.
Полный электрический заряд \( (q) \) системы равен алгебраической сумме ее положительных и отрицательных зарядов \( (q_1, q_2 q_N) \):
Важно!
В природе не возникают и не исчезают заряды одного знака: положительный и отрицательный заряды могут взаимно нейтрализовать друг друга, если они равны по модулю.
Закон Кулона
Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.
Закон Кулона формулируется так:
сила взаимодействия \( F \) двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям \( q_1 \) и \( q_2 \) и обратно пропорциональна квадрату расстояния между ними \( r \):
Источник: https://fizi4ka.ru/egje-2018-po-fizike/jelektricheskoe-pole.html
Электрическое поле
24.05.2019
Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.
Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.
Понятие напряженности электрического поля
Определение 1
Напряженность электрического поля – это силовая характеристика, которая используется для количественного определения электрического поля.
Второе значение термина – физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда.
Напряженность электрического поля можно задать формулой:
E→=F→q.
Напряжение электрического поля является векторной величиной. Направление вектора E→ совпадает с направлением силы, которая воздействует на положительный пробный заряд в пространстве.
Напряженность электрического поля
Какое поле называют электростатическим?
Определение 2
Электростатическое поле – это электрическое поле, которое окружает неподвижные и не меняющиеся со временем заряды.
Очень часто в контексте темы электростатическое поле будет именоваться электрическим для краткости.
Электрическое поле может быть создано сразу несколькими заряженными телами. Такое поле также можно исследовать с помощью пробного заряда. В этом случае мы будем оценивать результирующую силу, которая будет равна геометрической сумме сил каждого из заряженных тем в отдельности.
Определение 3
Напряженность электрического поля, которая создается в определенной точке пространства системой зарядов, будет равна векторной сумме напряженностей электрических полей:
E→=E1→+E2→+
Электрическое поле подчиняется принципу суперпозиции.
Определение 4
Согласно формуле, напряженность электростатического поля, которое создается точечным зарядом Q на расстоянии r от него, в соответствии с законом Кулона, будет равна по модулю:
E=14πε0·Qr2.
Это поле называется кулоновским.
В кулоновском поле направление вектора E⇀ зависит от знака заряда Q: если Q>0, то вектор E⇀ направлен по радиусу от заряда, если Q0 вектор E→ параллелен r→, а при Q
Источник: https://chipstock.ru/podklyuchenie/elektricheskoe-pole.html
Электрическое поле: основные понятия
Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.
Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.