Измерение сопротивления изоляции электрооборудования
Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.
Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.
Стандарты измерения изоляции
Измерение сопротивления изоляции электрооборудования до 1000В производится по правилам, установленным п. 612. 3 стандарта МЭК 364-6-61. При измерении сопротивления изоляции проводов ( кабелей) сначала проводят измерения между фазными проводниками всех пар фаз поочередно. Затем измеряется сопротивление изоляции каждого фазного провода относительно земли.
Основное условие – отсоединить электроприборы, вывернуть лампы и снять предохранители. В том случае, если к цепи стационарно подключены электронные приборы, то измерение должно проводиться по другой методике: соединяются фазные и нейтральные проводники и измеряется сопротивление между ними и землей.
Если не соблюдать это правило при измерении сопротивления изоляции электрооборудования, то есть риск повреждения электронных приборов.
Дополнительно требования к измерению сопротивления изоляции изложены в п. 1. 20 приложения 1 ПТЭЭП и п.413.3 ГОСТ Р 50571.3-94. Они касаются не только состояния системы, в которой проводится измерение.
Особое внимание уделяется помещению, в котором проводятся электроизмерительные работы как части электрохозяйства: пол и стены помещения, зоны или площадки, где проводится измерение сопротивления изоляции, должны быть непроводящими.
Это необходимо для того, чтобы при прикосновении к частям аппаратуры с разными потенциалами в случае, если изоляция повреждена, не произошло поражения током.
Требования жестко устанавливают расположение токопроводящих частей при измерении сопротивления изоляции: так, открытые проводящие части и сторонние проводящие части разводятся на расстояние. Между открытыми проводящими частями и сторонними проводящими частями должны быть установлены эффективные приборы.
Сторонние проводящие части изолируются с определенным напряжением: при измерении сопротивления изоляции электрооборудования при номинальном напряжении электроустановок не выше 500 В – 50 кОм, при напряжении свыше 500 В — 100 кОм.
Для того, чтобы измерить изоляцию поверхностей, требуется провести три измерения: в одном метре от сторонних проводящих частей, два других – на большем удалении. Нормативы измерений установлены в МЭК 364-6-61.
Измерения сопротивления изоляции проводится с помощью мегаоомметра, а испытания оборудования с подачей повышенного напряжения промышленной частоты или выпрямленного напряжения в электроустановках до и выше 1 кВ – выполняется только бригадой от двух человек и больше, с группой допуска по электробезопасности у производителя работ — не ниже четвертой ( IV) , у члена бригады –должна быть третья группа ( III) по электробезопасности (ЭБ) ,у охраняющего рабочее место допускается вторая (II) группа по ЭБ. Все испытания электрооборудования, выполняемые с помощью передвижной установки, проводятся по наряду. Допуск к работам в электроустановке осуществляет оперативный персонал, а вне электроустановок – ответственный руководитель работ или производитель работ. Если напряжение в установке ниже 1 кВ, для измерения все равно требуются два работника, один из которых должен иметь допуск по электробезопасности не меньше третьей группы. Измерение сопротивления изоляции может проводиться одним работником с третьей группой по электробезопасности. Ротор работающего генератора в части измерения сопротивления изоляции проверяется двумя работниками третьей и четвертой группой по электробезопасности. После подключения мегаоомметра к токоведущим частям надо снять заземление. Заземление необходимо для снятия заряда с токоведущих частей.
В соответствии с нормативным документом «Правила по охране труда при эксплуатации электроустановок» (ПОТ), список мероприятий по измерению сопротивления изоляции электрооборудования определяет лицо, выдающее наряд или распоряжение.
Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормативных документах: Объем и нормы испытаний электрооборудования ( ОиНИЭ, РД (СО) 34.45-51.300-97), Правила устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП).
В ГОСТ Р 50571.16-99 также указаны нормируемые величины сопротивления изоляции электроустановок.
Важно, чтобы соблюдался температурный режим и уровень влажности, допустимый при измерении сопротивления: температура изоляции не должна подниматься выше +35 градусов Цельсия и опускаться ниже +5 градусов. Степень увлажненности рассчитывается по формуле Kабс=R60/R15, где R60 – измеренное сопротивление изоляции через 60 секунд после приложения напряжения мегаоомметра, R15 – через 15 секугд. Отношение этих двух величин называется коэффициентом абсорбции.
Практика измерения сопротивления изоляции электрооборудования показывает, что оптимальная влажность воздуха для достижения коэффициента абсорбции, отличающегося от заводских показателей не более, чем на 20%, должна быть не выше 80%. Коэффициент абсорбции не должен превышать величину 1,3 (нормируется в ПТЭЭП) при температуре от +10 до +30 градусов Цельсия.
Если по результатам измерений электрооборудование имеет коэффициент абсорбции ниже 1,3- оно подлежит сушке.
Измерение сопротивления изоляции электроустановок производится с помощью цифровых измерителей с преобразованием напряжения, либо мегаоомметры генераторного типа. Ежегодная поверка приборов проводится органами Госстандарта РФ, в Санкт-Петербурге — ФГУ Тест –Санкт Петербург, или ВНИИМ им. Д.И.Менделеева о чем выдаются свидетельства о проверке. Если проверка не проведена в срок, прибор к эксплуатации не допускается.
Измерение сопротивления изоляции групповых кабельных линий электропроводок проводится мегаоомметрами на 1 кВ для магистральных кабелей — на напряжение 2,5 кВ . Для измерения сопротивления изоляции электрооборудования после монтажа значения напряжения мегаомметра (0,5 или 1 кВ) указаны в НД ПУЭ ,глава 1.8 в таб. 1.8.34.
Заключение о непригодности проводки делается в случае, если после измерения сопротивления изоляции выясняется, что сопротивление менее нормируемого значения.
Порядок измерения сопротивления изоляции
В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5). Мегаомметры серии Ф. 4100, с электронным питанием от электросети, рассчитаны на номинальное рабочее напряжение 100, 500, 1000 (Ф4101, Ф4102). Мегаоомметры ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) уже не выпускаются, тем не менее, мегаомметры типа M l101 М, МС-05, МС-06 используются с большим успехом.
Минимальный класс точности приборов – четвертый. Измерение сопротивления изоляции электроустановок происходит путем присоединения мегаоомметров к схеме. Присоединение проводится с помощью гибких одножильных проводов. Сопротивление изоляции этих проводов, длина которых должна составлять не менее 2-3 метров, должна составлять 100 Мом.
Концы проводов маркируются, на них со стороны мегаоомметра надеваются оконцеватели, а противоположные концы снабжаются зажимами типа «крокодил», при этом зажимы снабжаются специальными щупами или изолированными ручками. Провода при измерении сопротивления изоляции электроустановок «не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей.
При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) — к проводнику тока».
Измерение сопротивления изоляции силовых кабелей и электропроводок
Начало измерения сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить.
Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаоомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию.
При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.
Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.
Источник: http://www.gorod812.com/blog/izmerenie-soprotivleniya-izolyatsii-elektrooborudovaniya
Измерение сопротивления изоляции кабеля
Здравствуйте, читатели блога «Заметки электрика».
В прошлой статье про испытание кабельных линий я рассказывал Вам, что одним из пунктов испытания кабельных линий является измерение сопротивления изоляции кабеля.
Вот об этом мы подробно с Вами и поговорим. Рассмотрим как правильно произвести измерение сопротивления изоляции, как силовых, так и контрольных кабелей. А также познакомимся с методикой проведения этих замеров.
Подготовка к измерению сопротивления изоляции кабеля
Перед началом проведения работ по измерению сопротивления изоляции кабеля необходимо точно знать температуру окружающего воздуха.
С чем это связано?
А связано это с тем, что при отрицательных температурах, при наличии в кабельной массе частиц воды, эти частички будут находиться в замерзшем состоянии, т.е. в виде кусочков льда. Все Вы знаете, что лед является диэлектриком, т.е. не обладает проводимостью.
Поэтому при проведении измерения сопротивления изоляции при отрицательных температурах эти частички замерзшей воды выявлены не будут.
Приборы и средства измерения
Второе, что нам необходимо для проведения измерения сопротивления изоляции кабельных линий, это наличие приборов и средств измерений.
Для измерения сопротивления изоляции кабелей различного назначения я и работники нашей электролаборатории используем прибор MIC-2500. Есть и другие приборы, но мы их используем несколько реже.
Этот прибор производства фирмы Sonel и с помощью него можно замерить сопротивление изоляции кабельных линий, проводов, шнуров, электрооборудования (двигатели, трансформаторы, выключатели и т.п.), а также произвести замер степени старения и увлажненности изоляции.
Хочу заметить, что прибор MIC-2500 входит в государственный реестр приборов, которые разрешены для измерения сопротивления изоляции.
Прибор MIC-2500 должен ежегодно сдаваться в государственную поверку. После прохождения поверки на прибор ставят голограмму и штамп о прохождении поверки. В штампе указывается серийный номер прибора и дата следующей поверки.
Соответственно, что производить измерение сопротивления изоляции необходимо только исправным и прошедшим поверку прибором.
Нормы сопротивления изоляции для различных кабелей
Перед тем, как перейти к нормам сопротивления изоляции кабелей, необходимо как то их классифицировать.
Я Вам предлагаю свою упрощенную классификацию кабелей.
Кабели по назначению делятся на:
- высоковольтные силовые выше 1000 (В)
- низковольтные силовые ниже 1000 (В)
- контрольные и кабели управления, будем их называть просто контрольными (сюда входят вторичные цепи РУ, цепи питания электроприводов выключателей, отделителей, короткозамыкателей, цепи управления, цепи защиты и автоматики и т.п.)
- др.
Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных силовых кабелей производится мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются мегаомметром на напряжение 500-2500 (В).
Источник: http://zametkielectrika.ru/izmerenie-soprotivleniya-izolyacii-kabelya/
Чем измеряют сопротивление изоляции
› Инструмент
01.11.2019
Всё о и для ремонта квартир и загородного строительства своими руками. На сайте вы найдете ответы на вопросы связанные с ремонтом квартиры, загородном строительсве которые вам помогут реализовать ваши мечты и сэкономить ваши деньги.
Сопротивление — это величина, которая отображает способность материалов сопротивляться прохождению электрического тока. Чем она ниже, тем меньше потерь электричества на проводниках и тем большее количество тока можно передать безопасно. Сопротивление изоляции кабеля позволяет оценить целостность оболочек, а значит, определить, пригодно ли изделие для использования.
От целостности изоляции электропроводок зависит безопасность и долговечность провода.
Современные изделия имеют несколько оболочек для разных целей, расположенных друг под другом: защиты от электромагнитных помех, поражения током людей, разрыва, попадания влаги, воздействия агрессивных сред.
Чтобы убедиться в целостности всех слоев, нужно проводить испытания. Их цель — убедиться в том, что оболочки не повреждены на всей длине изделия. Поэтому тест должен быть неразрушающим. Единственный вариант — измерить сопротивление изоляции кабеля.
Сопротивление проводника рассчитывается по формуле:
где R — искомая величина, удельное сопротивление материала (табличная величина), l — длина проводника, S — площадь сечения.
Из формулы видно, что, чем больше площадь проводника, тем ниже будет его сопротивление. На этом и основывается принцип испытания целостности через измерения изоляции кабеля. В случае её повреждения площадь, по которой проходит ток, уменьшится, как результат — повысится сопротивление.
Результаты испытания изоляции кабелей и допустимое сопротивление изоляции должны быть равны или отличаться незначительно. Конкретные цифры поданы в сопутствующей изделиям технической документации. Также можно определить, сколько должно быть сопротивление по формуле, представленной выше.
Значение берите из таблицы ниже, длина изделия измеряется в метрах, площадь — в мм2.
Нормы сопротивления изоляции кабеля: таблица удельных сопротивлений материалов при нормальных условиях
В работе понадобится специальный инструмент. Также есть несколько процедур, которые нужно провести перед тем, как начать испытание изоляции.
Условия для проведения теста
Перед тем как измерить сопротивление изоляции, нужно знать о микроклимате помещения. В таблице выше указаны удельные сопротивления материалов при нормальной температуре (+20°C). При повышении этого значения повышается удельное сопротивление материалов, а с ним — сопротивление изоляции проводов и кабелей. Снижение температуры влияет на показатель незначительно. Но, если между слоями есть лед, его не удастся выявить, так как вещество не проводит электричество.
Изменение удельного сопротивления высчитывается по формуле
где — удельное сопротивление при температуре +20°С, а — температурный коэффициент (табличное значение), t — температура воздуха.
Значение а — небольшое, например, для меди оно равно 0,0068, а для алюминия — 0,00429.
Идеальная температура воздуха для испытания — +20°С. При ней все результаты будут максимально приближены к табличным значениям. Если не удается создать нормальное термическое условие, то нужно позаботиться о том, чтобы в помещении температура была выше 0°С, иначе не удастся выявить наличие влаги под оболочками.
Оборудование
Замер сопротивления изоляции выполняют с помощью мегаомметра. Существует оборудование для разных типов проводки и для определения разных характеристик. Некоторые устройства способны предоставить просто значения, другие определяют наличие воды, влажность оболочек.
Измерение сопротивления изоляции кабеля — настолько важная процедура, что за ней следят государственные органы. Испытания можно проводить только с использованием оборудования, которое внесено в специальный реестр. Ежегодно приборы отдаются на проверку работоспособности, после которой на них наносят голограмму, штамп с информацией о сроке годности.
При выборе устройств для измерений сопротивления изоляции проводов нужно руководствоваться следующим:
Тип проводников, которые будут тестироваться. В зависимости от него, подбирается диапазон, в котором способен работать мегаомметр. Тип индикации. Существуют аналоговые (со стрелкой и циферблатом), световые, графические приспособления.
Точность каждого из них гарантирует государственный орган контроля (если изделие внесено в соответствующий реестр) — тип индикации влияет лишь на простоту, скорость работы. Удобнее всего использовать изделия с дисплеем. Но они при прочих равных условиях стоят дороже остальных. Климатическое исполнение.
Для измерения сопротивления изоляции в условиях Крайнего Севера нужны особые модели. Компактность. Зависит от источника питания — электрогенератор, аккумулятор, гальванический элемент.
Дополнительные возможности. Существуют мультиметры, в конструкции которых предусмотрен мегаомметр. С ними можно не только проверить сопротивление изоляции, но и померить напряжение, силу тока, коэффициент абсорбции (силу поглощения влаги).
Мегоомметр с дисплеем позволяет проводить измерение сопротивление изоляции в разы быстрее
Классификация проводов
При измерениях сопротивлений важны типы кабелей. Существуют разные классификации. Для данных целей важно напряжение, которое можно пропускать через изделие. В зависимости от него продукция делится на следующие типы:
Высоковольтные — для тока свыше 1000 Вольт. Низковольтные — для напряжения до 1000 Вольт;
Контрольные — провода, которые используют в оборудовании. К ним относятся вторичные цепи РУ, цепи питания отделителей, управляющих элементов, защиты, автоматики.
В зависимости от типа проводки используется соответствующий прибор для проверки.
Существуют нормативы, по которым определяется пригодность изделий к эксплуатации в зависимости от результатов измерения сопротивления изоляции (из расчета на 1000 метров):
для высоковольтных — не ниже 10 МОм; для низковольтных — не менее 0,5 МОм;
контрольные — не ниже 1 МОм.
Подробнее о нормах сопротивления изоляции кабеля — в п. 6.2. ПТЭЭП и п. 1.8.37 ПУЭ.
Испытанию подлежат все проводники. Отличаются временные промежутки, с которыми проводят измерение сопротивления изоляции электропроводки:
замеры проводников мобильных электроустановок — не реже одного раза в полгода; электропроводка наружных электроустановок, а также оборудования, установленного в опасных помещениях, проверяется на соответствие нормам раз в год.
проверка сопротивления изоляции остальных выполняется раз в три года.
Проведение подобных испытаний необходимо, в первую очередь, для обеспечения безопасности сети. Это не просто требование органов контроля, которое нужно проводить «для галочки». Поэтому интервалы, с которыми проводят проверку, могут изменяться. Следует проводить внеочередные тесты, если есть подозрения, что изоляция могла быть повреждена.
Работа с проводниками различных типов
Порядок того, как проверить защиту изделий, зависит от их типа. Алгоритм работы с каждым видом проводников несколько отличается. Поэтому нужно рассмотреть инструкции по работе с разными вариантами электропроводки.
Общим для всех случаев правилом является проверка наличия напряжения в сети с помощью специальных приборов. Если состояние кабеля достоверно неизвестно, он считается активным.
Сопротивление оболочек измеряют следующим образом:
Устанавливают испытательное заземление на непроверяемые жилы. Зажимы монтируют на сторону, с которой будет проводиться тестирование. Разводят друг от друга жилы кабеля, находящиеся с противоположной от заземления стороны.
Устанавливают/включают предупреждающие и запрещающие знаки — плакаты, конусы, световые таблички. Для большей безопасности рекомендуется поручить кому-нибудь охранять территорию, на которой проводится проверка изоляции.
Проверять кабельную продукцию с помощью мегаомметра на 2,5 кВ в течение 1 минуты.
Записать результаты замера в блокнот.
При работе с высоковольтными проводами испытания проводятся на каждой жиле. Если нужно проверить изоляцию на низковольтных кабелях, тестируют следующие пары:
А-В; В-С; А-С; А-N; В-N; С-N; А-РЕ; В-РЕ; С-Р; нуль и земля, предварительно отсоединив первый от нулевой шины.
Особенность работы с контрольной проводкой
Контрольную проводку можно тестировать на оборудовании, не отключая жилы от схемы. Немного отличается способ подсоединения оборудования:
Один вывод мегаомметра подключают к испытуемой жиле. Второй щуп присоединяют либо к заземлению, либо к неиспытуемой жиле.
Остальные жилы соединяют между собой и заземляют.
Что потребуют органы контроля?
Органы государственного контроля, в частности пожарная инспекция, могут потребовать протоколы измерения сопротивления изоляции. В них содержится информация о полученных данных, условиях, при которых проведено испытание, приборе, исполнителе. Поэтому подобную работу можно доверить только организации, у которой есть разрешение на выполнение подобных исследований. Если замеры сделает обычный электрик, протокол не будет иметь силы.
Хорошо, если работник организации умеет выполнять подобную работу. Контроль сопротивления изоляции стоит осуществлять для себя, чтобы быть уверенным в качестве используемых проводников, их безопасности для имущества и окружающих.
Источник: https://instrument16.ru/instrument/chem-izmeryayut-soprotivlenie-izolyatsii.html
Измерение сопротивления изоляции. Методика и приборы. Порядок
Качественные изолирующие материалы определяют функциональность и надежность снабжения объектов электрической энергией. Каждый специалист на предприятии должен понимать важность свойств изоляции оборудования. Периодически необходимо контролировать работу электрических устройств, проводить измерение сопротивления изоляции.
Материал изоляции кабелей имеет свой срок службы. На качество диэлектрического материала изоляции влияют следующие факторы:
- Высокое напряжение.
- Солнечный свет.
- Механические повреждения.
- Температурный режим.
- Среда использования.
Измерение сопротивления изоляции рекомендуется для более точного выяснения причин повреждений в кабельной цепи, или цепи электрических устройств, а также для проверки возможности дальнейшей эксплуатации изоляции.
Если дефект изоляции обнаружен визуально, то выполнять измерения сопротивления уже нет необходимости. При обнаружении нарушения изоляции с помощью мегомметра, можно предотвратить:
- Неисправности устройств.
- Возникновение пожара.
- Аварийные ситуации.
- Чрезмерный износ устройства.
- Короткие замыкания.
- Удары электрическим током персонала, обслуживающего устройства.
Методика
Главной характеристикой состояния изоляции электрооборудования принято считать сопротивление постоянному току, поэтому обязательной частью проверки цепей является контроль сопротивления изоляции.
Приборы
Значение сопротивления изоляции контролируется при помощи мегомметрами. Сегодня популярными являются мегомметры марок: М — 4100, ЭСО 202 / 2Г, MIC – 30, MIC — 1000, MIC-2500. Прогресс технологий в электротехнике не стоит на месте, поэтому виды измерительных приборов постоянно обновляются.
Мегомметр состоит из источника питания постоянного тока и механизма измерения. В качестве источника тока может использоваться генератор переменного тока с выпрямительным мостом.
Мегомметры можно разделить по величине напряжения:
- До 1000 вольт.
- До 2500 вольт.
В комплекте к прибору приложены гибкие медные проводники. Их длина может достигать до 3 метров. Сопротивление изоляции измерительных проводов должно быть более 100 мегом. Концы проводов мегомметра должны быть оснащены наконечниками со стороны подключения к прибору. Другие концы проводов должны оснащаться зажимами вида «крокодил» с рукоятками из диэлектрического материала.
Перед началом контрольных измерений необходимо выполнить:
- Перед непосредственным измерением необходимо выполнить контрольную проверку прибора. Такая проверка производится путем определения показаний прибора во время разомкнутых и замкнутых проводников. При разомкнутых проводниках стрелка или индикатор должны показывать бесконечное сопротивление. При замкнутых проводах показания должны быть близки к нулю.
- Обесточить измеряемый кабель. Для проверки отсутствия напряжения необходимо пользоваться указателем напряжения, который испытан на заведомо подключенном к напряжению участке цепи электроустановки, согласно требованиям правил охраны труда.
- Произвести заземление токоведущих жил испытуемого кабеля.
Во время измерения сопротивления на участках цепи свыше 1000 вольт, необходимо применять диэлектрические резиновые перчатки.
Запрещается касаться токоведущих элементов, присоединенных к мегомметру.
Сопротивление проверяется для отдельной фазы по отношению к другим фазам. При отрицательном результате необходимо проверить сопротивление изоляции между отдельной фазой и землей.
Схема проверки сопротивления
Измерение сопротивления изоляции на кабеле, рассчитанном на напряжение более 1000 вольт, на изоляцию накладывают экранное кольцо, которое соединено с экраном.
При работах с кабелями до 1000 вольт, имеющих нулевые жилы, необходимо знать:
- Изоляция нулевых проводов должна быть не хуже, чем у фазных проводников.
- Нулевые проводники должны быть отключены от заземления со стороны приемника и источника питания.
При вращении ручки привода генератора мегомметра необходимо добиться устойчивого состояния стрелки прибора. Только после этого можно измерять сопротивление. Для устойчивого положения стрелки ручку вращают со скоростью около 120 об / мин.
После начала вращения ручки до момента измерения должно пройти не менее 1 минуты. Далее после подключения проводов к кабелю необходимо выждать 15 секунд. После этого зафиксировать величину сопротивления.
При ошибочно выбранном интервале измерений, необходимо выполнить следующие мероприятия:
- Снять напряжение с измеряемого проводника, подключить к нему заземление.
- Установить правильное положение переключателя и возобновить измерение на новом диапазоне.
При подключении и снятии заземления применение диэлектрических перчаток является обязательным. После проведения измерений на кабеле накапливается заряд энергии, который необходимо снять перед отключением прибора. Заряд снимается при помощи наложения заземления.
Измерение сопротивления изоляции осветительной цепи выполняется мегомметром, рассчитанным на напряжение до 1000 вольт. Работы по измерению включают в себя следующие этапы:
- Измерение сопротивления изоляции магистрали: от щитов 0,4 кВ до электрических автоматов распредщитов.
- Сопротивления изоляции от этажных распредщитов до квартирных щитков.
- Измерение сопротивления изоляции цепи освещения от автоматов выключения и групповых щитков до арматур освещения. В светильниках перед измерением отключается напряжение, выключатели света должны находиться во включенном состоянии, нулевые рабочие и защитные провода должны быть отключены, лампы освещения вывернуты. Если применяются газоразрядные лампы, то их допускается не выкручивать, однако необходимо снять стартеры.
- Значение сопротивления на участках освещения и осветительной арматуры должно быть выше 0,5 мегома.
Информация по применению в измерениях приборов, и итоги замеров оформляются протоколами.
Требования безопасности
Работники измерительной лаборатории, направленные для исполнения работ в различных электроустановках, и не находящиеся в штате предприятия, владеющего электроустановкой, считаются командированными работниками.
Специалисты должны иметь в наличии определенной формы удостоверения. При этом должна быть отметка комиссии командирующей фирмы о присвоении группы электробезопасности. Фирма, отправляющая специалистов, несет ответственность за исполнение нормативов по технике безопасности и соответствию групп по электробезопасности.
Организация работ сотрудников предполагает выполнение мероприятий перед началом работ:
- Извещение владельца проверяемой электроустановки о целях работы.
- Предоставление специалистам права производства работ в виде выдачи наряда, назначения ответственных лиц.
- Проведение вводного инструктажа.
- Ознакомление с электросхемой и особенностями установки.
- Подготовка рабочего места.
Организация (владелец) несет ответственность за соблюдением требований охраны труда. Работы осуществляются по наряду-допуску.
При выполнении измерений необходимо:
- Соблюдать указания инструкций, применяемых приборов, разработанных на предприятии. Также необходимо выполнять вспомогательные требования согласно нарядам-допускам.
- Запрещается начинать работы по измерениям, не убедившись в отсутствии напряжения на измеряемом участке. Контролировать отсутствие напряжения питания при выполнении измерений. Это требование выполняется с помощью испытанного указателя, который должен быть протестирован на подключенных к напряжению элементах электроустановки, согласно правилам ТБ. Напряжения контролировать между фазами, землей и фазами. Эта операция требует особой тщательности и ответственности.
- Коммутацию приборов осуществлять при обесточенных токоведущих частях.
- Обеспечить использование средств защиты и специального инструмента с диэлектрическими ручками, которые заранее испытаны.
Бригада специалистов должна иметь в составе не менее 2-х человек, включая производителя работ с 4 группой электробезопасности, и работника с 3 группой электробезопасности.
При выполнении измерений запрещается подходить к токоведущим элементам ближе безопасного расстояния, которое определено в таблице.
Интервалы проведения проверок
Временные нормативы проведения плановых измерений величин сопротивлений, значение напряжения для измерения изоляции описываются в правилах технической эксплуатации. Ежегодно производится измерение сопротивления изоляции осветительной аппаратуры, лифтовой проводки, а также электропроводки подъемно-транспортных механизмов.
В остальных случаях такие проверки осуществляются один раз в несколько лет. Каждые 6 месяцев производится проверка переносного электрооборудования и инструмента, а также сварочных аппаратов.
При невыполнении установленных интервалов проверок повышается вероятность появления различных нежелательных неисправностей электроустановок. Нарушители этих правил могут подвергаться определенным санкциям и штрафам. В организациях должны быть разработаны планы проведения проверок изоляции. При этом делается упор на особенности и технические запросы, которым должны соответствовать электроустановки, а также кабельные сети. Изоляция проверяется во время эксплуатационных испытаний.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrotehnika/jelektrobezopasnost/izmerenie-soprotivleniia-izoliatsii/
Для чего нужно проводить замер сопротивления изоляции
Коронавирус:
последние новости
ONLINE-Новости
Еще новости
Афиша
Поможем детям
- Динара едет домой
Пресс-релизы 17 Марта 2016
Нужно отметить, что надежность и бесперебойность работы электрооборудования обеспечивается за счет множества параметром, одним из самых важных является качество изоляции.
Замер сопротивления изоляции позволяет обеспечить безопасное использование и работу электрооборудования, обеспечивая эффективную эксплуатацию всей системы энергоснабжения.
Можно сказать, что периодические замеры сопротивления изоляции предотвращают возникновения аварий и поломок, которые могут привести к остановке рабочего процесса.
Изоляция в силовом кабеле или проводе питающем электронику обеспечивает разделение разных по полярности жил друг от друга. Очень часто в качестве материала для изоляции проводов используются пропитанная специальным составом бумага или резина, гибкий пластик.
Выбор материала изоляции часто зависит от места использования кабеля, но никак не влияет на его основные функции.
Проверка степени защитных свойств изоляции проводится с помощью специального измерительно прибора, который замеряет сопротивление изоляции в проводах или кабелях.
Под значением слова «сопротивление» нужно понимать способность материала, из которого изготовлена изоляция, сопротивляться электрическому току, протекающему по жилам провода. В процессе диагностировании электрических и электронных схем, измерение показателей сопротивления изоляции является одним из важнейших параметром.
Состояние изоляции проводов оказывает большое влияние на качество электроснабжения в целом. Пропускная способность и долговечность работы кабеля зависит от материала изоляции и его качества, а также от того состояния, в каком она находится.
Перед тем, как ввести в эксплуатацию электрооборудование все кабеля подвергают всевозможным проверкам на сопротивление их изоляции. Такие проверки проходят как на заводе-изготовителе, так и непосредственно на месте монтажа. Тщательная и многократная проверка играет не последнее значение, потому как при транспортировочных работах кабель может подвергаться механическим воздействиям, в результате которых нарушается изоляция. В итоге, такой кабель категорически нельзя использовать.
После того, как будет произведен монтаж кабеля, необходимо измерять сопротивления его изоляции. Если выявятся слабые места и повреждения, то нужно оперативно их ликвидировать, после чего снова провести замер сопротивления.
На правах рекламы
Печать Нашли ошибку в тексте?
Выделите ее и нажмите Ctrl + Enter Отправить нам новость
Источник: https://www.business-gazeta.ru/article/305054
Современные приборы для измерения сопротивления изоляции
Сопротивление изоляции — характеристика, влияющая на степень безопасности эксплуатации электроустановок.
Сопротивление изоляции является важной характеристикой состояния изоляции электрооборудования. Поэтому измерение сопротивления производится при всех проверках состояния изоляции.
Для установления соответствия Rиз. нормальным значениям, а также для своевременного выявления и устранения повреждений электроустановки проводят приемосдаточные испытания (по нормам ПУЭ) и испытания в процессе эксплуатации. Помимо соответствия Rиз.
нормам, установленным Правилами технической эксплуатации электроустановок потребителей, критерием состояния изоляции служит сравнение измеренных значений с данными, полученными при предыдущих испытаниях или при вводе в эксплуатацию. Резкое снижение Rиз.
по отношению к предыдущим измерениям на (30—40%) свидетельствует о неблагополучном состоянии изоляции.
Снижение сопротивления изоляции ниже установленных норм может привести к пожару и получению электрических травм!
От состояния электроизоляции напрямую зависят потери электрического тока, связанные с возможностью его утечки из электросистемы через участки с некачественной изоляцией, ее безопасность для человека и возможность длительной безаварийной работы. Для того чтобы подобных проблем не возникало, необходимо точно придерживаться правил проектирования и эксплуатации электросетей.
Измерение сопротивления изоляции с использованием специальных методов и оборудования должно регулярно проводиться на всех электрических линиях и сетях, только так можно заранее выявить степень изношенности изоляции и ее изолирующие качества.
Основные показатели сопротивления изоляции:
- Сопротивление изоляции постоянному току Rиз. Наличие грубых внутренних и внешних дефектов (повреждение, увлажнение, поверхностное загрязнение) снижает сопротивление изоляции. Определение Rиз (Ом) производится методом измерения тока утечки, проходящего через изоляцию, при приложении к ней выпрямленного напряжения.
- Коэффициент абсорбции. Лучше всего определяет увлажнение изоляции. Коэффициент абсорбции — это отношение измеренного сопротивления изоляции через 60 секунд после приложения напряжения мегаомметра (R60) к измеренному сопротивлению изоляции через 15 секунд (R15). Если изоляция сухая, то коэффициент абсорбции начительно превышает единицу, в то время как у влажной изоляции коэффициент абсорбции близок к единице. Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20%, а его значение должно быть не ниже 1.3 при температуре 10–30оС. При невыполнении этих условий изделие подлежит сушке.
- Коэффициент поляризации. Указывает способность заряженных частиц и диполей в диэлектрике перемещаться под действием электрического поля, что определяет степень старения изоляции. Коэффициент поляризации также должен значительно превышать единицу. Коэффициент поляризации — это отношение измеренного сопротивления изоляции через 600 секунд после приложения напряжения мегаомметра R600 к измеренному сопротивлению изоляции через 60 секунд (R60).
Прибор, предназначенный для измерения сопротивления изоляции, называется мегаомметром.
Современной промышленностью изготавливается целый ряд приборов для измерения сопротивления изоляции (мегаомметры):
1151 IN — Измеритель сопротивления изоляции
1152 MF — Измеритель сопротивления изоляции
1800 IN — Измеритель сопротивления изоляции
1801 IN — Измеритель сопротивления изоляции
1832 IN — Измеритель сопротивления изоляции
1851 IN — Измеритель сопротивления изоляции
2732 IN — Измеритель сопротивления изоляции
2751 IN — Измеритель сопротивления изоляции
2801 IN — Измеритель сопротивления изоляции
2803 IN — Измеритель сопротивления изоляции
2804 IN — Измеритель сопротивления изоляции
4101 IN — Измеритель сопротивления изоляции
4102 MF — Измеритель сопротивления изоляции
4103 IN — Измеритель сопротивления изоляции
4104 IN — Измеритель сопротивления изоляции
4153 IN — Измеритель сопротивления изоляции
6200 IN — Измеритель сопротивления изоляции
6201 IN — Измеритель сопротивления изоляции
6210 IN — Измеритель сопротивления изоляции
6211 IN — Измеритель сопротивления изоляции
6212 IN — Измеритель сопротивления изоляции
APPA 605 — Мегомметр
APPA 607 — Мегомметр
CA 6523 — Измеритель сопротивления изоляции
CA 6525 — Измеритель сопротивления изоляции
CA 6543 — Измеритель сопротивления изоляции
CA 6545 — Измеритель сопротивления изоляции
CA 6547 — Измеритель сопротивления изоляции
CA 6549 — Измеритель сопротивления изоляции
DM1008S — Измеритель сопротивления изоляции
DM1528S — Измеритель сопротивления изоляции
Fluke 1503 — Измеритель изоляции
Fluke 1507 — Измеритель изоляции
Fluke 1550B — Мегаомметр
Fluke 1577 — Измеритель изоляции
Fluke 1587 — Измеритель изоляции
M261 — Измеритель изоляции — приставка к токовым клещам серии M266
MG1000 — Измеритель сопротивления изоляции
MG500 — Измеритель сопротивления изоляции
MI 2077 — Измеритель сопротивления изоляции
MI 2094 — Комплексная высоковольтная испытательная установка
MI 3103 — Мегаомметр
MI 3121 — Измеритель сопротивления изоляции и целостности электрических цепей
MI 3121H 2,5кВ — Измеритель сопротивления изоляции и целостности электрических цепей
MI 3200 — Многофункциональный измеритель сопротивления изоляции
MI 3201 — Многофункциональный измеритель параметров изоляции
MI 3202 — Измеритель параметров изоляции
MIC-1000 — Измеритель сопротивления, увлажнённости и степени старения электроизоляции
MIC-2 — Измеритель сопротивления электроизоляции
MIC-2500 — Измеритель сопротивления, увлажнённости и степени старения электроизоляции
MIC-3 — Измеритель сопротивления электроизоляции, проводников присоединения к земле и выравнивания потенциалов
MIC-5000 — Измеритель сопротивления, увлажненности и степени старения электроизоляции
MS5201 — Измеритель изоляции
АМ-2002 — Мегаомметр
АМ-2004 — Мегаомметр
АМ-2015 — Высоковольтный тестер изоляции
АМ-2082 — Измеритель сопротивления изоляции
АМ-2125 — Тестер сопротивления изоляции высоковольтный
АМ-3083 — Импульсный тестер обмоток
Е6-24 — Мегаоммметр
ЦС0202-1 — Мегаомметр
ЦС0202-2 — Мегаомметр
ЭС0202/1Г — Мегаомметр
ЭС0202/2Г — Мегаомметр
ЭС0210/1 — Мегаомметр
ЭС0210/1Г — Мегаомметр
ЭС0210/2 — Мегаомметр
ЭС0210/2Г — Мегаомметр
ЭС0210/3 — Мегаомметр
ЭС0210/3Г — Мегаомметр
Источник: http://www.elpriz.ru/cgi-bin/articles/view.cgi?id=23
Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения
Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки.
Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб.
Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
- Аналоговые (электромеханические) — мегаомметры старого образца.Аналоговый мегаомметр
- Цифровые (электронные) – современные измерительные устройства.Электронный мегаомметр
Рассмотрим их особенности.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы
Упрощенная схема электромеханического мегаомметра
Обозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
- Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
- На отображаемые данные влияет равномерность вращения динамо-машины.
- Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
- Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.
Современная аналоговая модель мегаомметра Ф4102
Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Как правильно пользоваться мегаомметром?
Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.
Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.
Испытуемый объект | Уровень напряжения (В) | Минимальное сопротивление изоляции (МОм) |
Проверка электропроводки | 1000,0 | 0,5> |
Бытовая электроплита | 1000,0 | 1,0> |
РУ, Электрические щиты, линии электропередач | 1000,0-2500,0 | 1,0> |
Электрооборудование с питанием до 50,0 вольт | 100,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с номинальным напряжением до 100,0 вольт | 250,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с питанием до 380,0 вольт | 500,0-1000,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Оборудование до 1000,0 В | 2500,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Перейдем к методике измерений.
Пошаговая инструкция измерения сопротивления изоляции мегаомметром
Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи.
Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2.
Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
- Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке.Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка каждого провода относительно других жил.
Алгоритм испытаний
Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:
- Подготовительный этап (полностью описан выше).
- Установка переносного заземления для снятия электрического заряда.
- На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
- В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
- Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
- Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
- Отключение переносного заземления с тестируемого объекта.
- Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
- Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
- Снимаем остаточное напряжение при помощи переносного заземления.
- Производим отключение измерительных щупов.
Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.
По итогам испытаний принимается решение о возможности эксплуатации электроустановки.
Правила безопасности при работе с мегаомметром
При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:
- При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
- Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
- При подключении щупов необходимо касаться их изолированных участков (рукоятей).
- После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
- Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.
Подборка видео по теме
Источник: https://www.asutpp.ru/izmerenie-soprotivleniya-izolyatsii-megaommetrom.html
Измерение сопротивления изоляции электропроводки: мегаомметром 1000В
По токоведущим жилам проводов и кабелей ток течет в нужном направлении. А изолирующее покрытие этих жил препятствует прохождению тока в места, где ему нельзя появляться. Это исключает случайное прикосновение людей к токоведущим частям, предотвращает короткие замыкания в распределительных сетях.
Измерение сопротивления изоляции
Но оболочки проводников – вещь непрочная. Уже в процессе прокладки кабеля их можно передавить или содрать об острые кромки предметов, попадающихся на трассе. При разделке концов кабеля можно случайно порезать ножом изоляцию токоведущих жил. При пайке поливинилхлорид плавится и теряет изоляционные свойства, а резина со временем высыхает и трескается, обнажая покрытые ею проводники.
Причины ухудшения изоляции
Способствует ухудшению изоляционных свойств кабелей и локальные нагревы контактных соединений. Тепло, распространяясь по металлической жиле, нагревает материал покрытия, снижая его изоляционные свойства. Это относится и к соединительным коробкам, и к местам подключения проводников к автоматическим выключателям, нулевым шинам, розеткам.
Повреждение изоляции из-за перегрева
Корпуса коммутационных аппаратов: выключателей, автоматов, рубильников – выполняются из изоляционных материалов. Снижение изоляции происходит, если на них оседает пыль, грязь, металлические опилки. Уменьшению изоляционных свойств содействует перегрев корпусов, обугливание их после коротких замыканий.
Бич электрощитовых – влажность.
Повреждения трубопроводов, образование конденсата, подтопление подвальных помещений с распределительными устройствами – все это приводит к появлению капелек воды между выводами электрооборудования, находящихся под разными электрическими потенциалами.
Вода в чистом виде электрический ток не проводит. Но, попадая на грязь и пыль, покрывающую корпуса электроприборов, она растворяет находящиеся в ней вещества, становясь проводником электрического тока. Происходит короткое замыкание.
Повреждение изоляции кабеля в процессе монтажа
Наибольший риск встретить поврежденную изоляцию возникает после монтажных работ. Второй пик проблем встречается уже в эксплуатации, через некоторое количество лет после монтажа. Отдельным видом выделяются повреждения, связанные с неправильной эксплуатацией электроприборов и электропроводки, затопления квартиры соседями и вбитые в трассу гвозди при попытке повесить картину на стену.
Отличие мегаомметра от мультиметра
Отключился автомат, квартира погрузилась во мрак. Причина – короткое замыкание. Нужно найти место повреждения, иначе света не будет. Если в результате перегрева замкнулись между собой две жилы в соединительной коробке или в кабеле, найти его можно и мультиметром в режиме измерения сопротивления. На неисправной паре жил он покажет ноль. Но это – простой случай.
Обугленный участок изоляции имеет сопротивление, далекое от нуля. Через него протекает небольшой ток, подогревая оболочку, постепенно ухудшая изоляцию. В какой-то момент происходит пробой, ток резко возрастает, срабатывает защита.
Поврежденный участок мгновенно остывает, его сопротивление увеличивается. Мультиметр покажет, что оно равно бесконечно большой величине.
Чтобы нейти такое повреждение, нужен прибор, выдающий при измерениях в тестируемую цепь напряжение, соизмеримое или большее, чем напряжение в сети. Таким прибором является мегаомметр.
Устройство мегаомметра
Для измерений этот прибор выдает в проверяемую цепь постоянный ток. Переменный для этой цели не годится, поскольку все кабельные линии обладают емкостным сопротивлением. А конденсаторы переменный ток проводят. Это приведет к искажению результатов измерений.
В зависимости от рабочего напряжения сети и тестируемой аппаратуры, выпускаются мегаомметры с напряжением 100, 500, 1000 и 2500 В.
Стовольтовые используются для проверки изоляции низковольтных кабелей и полупроводниковой техники, на 500 В – обмоток электрических машин небольшой мощности. Приборы с напряжением 2500 В предназначены для измерений на высоковольтных аппаратах, кабельных и воздушных линиях.
Какой прибор выбрать для проведения измерений – указано в нормативно-технической документации по наладке или эксплуатации, ПУЭ, паспортах на электрооборудование.
Для измерения сопротивления изоляции в бытовых осветительных и розеточных сетях используются мегаомметры на напряжение 1000 В.
В устаревших конструкциях мегаомметров для выработки измерительного напряжения использовался генератор, ротор которого приводился во вращение рукояткой. Ее раскручивали до скорости 120 оборотов в минуту, иначе напряжение на выходе оказывалось ниже номинального. Измерительный механизм у таких устройств – аналоговый, со шкалой и стрелкой.
Шкала делилась на две части – верхнюю и нижнюю, соответствующие двум диапазонам измерения сопротивлений. Отметки на шкале располагались неравномерно, что усложняло отсчет показаний. Да и снимать эти показания, одновременно вращая ручку мегаомметра, было не очень-то удобно – корпус прибора дергался, стрелка прыгала. К тому же у пользователя были заняты обе руки: одной он удерживал прибор на месте, другой – крутил ручку.
Измерительные щупы на контактах удерживал его помощник, либо к ним припаивали зажимы типа «крокодил».
Мегаомметр М4100
Для каждого измерительного напряжения выпускался свой мегаомметр. Лишь модель типа ЭСО 202 содержала переключатель на 500, 1000 или 2500 В. Для выполнения измерений в электролабораториях содержали целый парк мегаомметров.
Мегаомметр ЭСО 202/2
Современные приборы стали полупроводниковыми. Выбор пределов измерений у них происходит автоматически, а испытательное напряжение выбирается перед измерениями в меню или с помощью переключателя. Габариты прибора позволяют его удерживать в руке совместно с одним из щупов, что позволяет проводить измерения единолично. Некоторые модели снабжаются кнопкой запуска на одном из щупов.
Мегаомметр Fluke
Но многие современные мегаомметры имеют один существенный недостаток, переводящий их в режим обычного пробника. По правилам, измеренным сопротивлением изоляции является величина, показанная прибором через 60 секунд после начала испытания. Большинство же моделей выдают испытательное напряжение на несколько секунд и не имеют режима длительной генерации напряжения. Не все дефекты можно выявить за столь короткое время.
Правила проведения измерений мегаомметром
Мегаомметр относится к приборам, измеряющим характеристики электрооборудования, связанные с определением возможности его безопасной эксплуатации. А на его выводах при измерениях присутствует опасное для жизни напряжение. Поэтому его применение возможно в случаях:
- Прибор должен проходить метрологическую поверку один раз в год.
- Пользоваться мегаомметром дозволяется обученному персоналу.
- Правом выдачи протокола с заключением о пригодности электропроводки к дальнейшей эксплуатации обладает только лицензированная электротехническая лаборатория. Измерения, проведенные другими лицами, юридической силы не имеют.
Если в вашем распоряжении оказался мегаомметр, то измерять сопротивление изоляции вы можете только по личной инициативе. Закончили монтаж электропроводки соседу, измерили — убедились в отсутствии дефектов. Но если при подключении соседского домика к сети энергоснабжающая организация потребует протокол измерений – ваши труды не зачтутся. Соседу придется вызывать специалистов и платить им деньги за ту же самую работу.
В детских садах, школах, учреждениях и на предприятиях сопротивление изоляции электропроводок измеряется регулярно. Результаты оформляются протоколами, которые требуют представители пожарной охраны и энергонадзора. К протоколам прикладываются регистрационные документы лаборатории, выполнившей измерения. Без них они – никому не нужная бумажка.
Протокол измерения сопротивления изоляции
Если в помещении организации произойдет пожар, первым делом от ее руководителей требуют протоколы измерений изоляции. Если их нет – виновные определяются автоматически. То же происходит и при поражении сотрудника электрическим током. Даже, если он сам засунул в розетку отвертку, держась за ее стержень. Если при расследовании несчастного случая не обнаружится протокол измерений изоляции – проблемы руководству обеспечены.
Тем не менее, мегаомметр – прибор, полезный для людей, занимающихся монтажом электропроводки. Лучше найти дефект сразу, до приезда специально обученных персон. Иначе они приедут еще раз, после устранения дефекта. Искать его самостоятельно персонал лаборатории не обязан. Вернувшись, они заставят владельца выложить дополнительную сумму за труды. Скорее всего, он вычтет ее из вашего гонорара.
После замены электропроводки в квартире измерения изоляции официально не требуются. Поэтому их не помешает выполнить для самоуспокоения, а в глазах клиента ваш рейтинг в итоге только возрастет.
Правила измерения изоляции мегаомметром
Перед каждым использованием у любого мегаомметра проверяют целостность изоляции измерительных проводов. Это важно, так как повреждения приводят к электротравмам.
На мегаомметре устанавливают необходимое испытательное напряжение , затем проверяют исправность измерительной цепи и прибора. Для этого щупы соединяют накоротко, производят измерение. Прибор покажет ноль. Щупы рассоединяют и снова проводят измерение. Прибор покажет бесконечность. Эти манипуляции производят регулярно, чтобы своевременно обнаружить сбитые настройки, оборвавшийся провод, ослабевший контакт или неисправность мегаомметра.
Правила измерений сопротивления изоляции требуют, чтобы для кабельной линии была измерена изоляция между жилами во всех возможных комбинациях. Для трехжильного кабеля – три измерения, для четырехжильного – шесть, пятижильного – десять. В реальности реализовать эту проверку можно, имея в наличии кабель с отключенными жилами. Отключать их для проверки после монтажа – операция сложная.
Измерение сопротивления изоляции кабельной линии
Поскольку в системах с глухозаземленной нейтралью нулевой рабочий и защитный проводники соединены между собой, то и прибор между ними покажет ноль.
Но, даже если отключить от объекта питающий кабель, все нулевые рабочие и защитные проводники, объединенные на шинах, покажут одно и то же сопротивление между собой. Если оно укладывается в норму, то все хорошо.
А если нет – придется их отсоединять от шин по очереди, следя за изменениями изоляции.
Упрощенный способ измерения для розеточных групп – измерить сопротивление фазного проводника от автоматического выключателя питания относительно нулевой и РЕ шины.
Для осветительной сети все сложнее. Под фазным потенциалом при работе светильников оказывается участок от автомата питания до осветительного прибора, проходящий через выключатель. Если не вывернуть лампу из светильника, прибор покажет его сопротивление. Поэтому при измерениях сопротивления изоляции осветительных сетей лампы выворачивают, а выключатели переводят во включенное положение. Так тестируется участок, реально находящийся под напряжением в эксплуатации.
И не забываем про полупроводниковые ПРА. У них на входе выпрямитель. Чтобы его не повредить, провода от светильника отключают. Хотя современные мегаомметры, почуяв неладное, резко снижают испытательное напряжение до минимальной величины. Полупроводниковые элементы редко выходят из строя, но испытывать судьбу лишний раз не стоит.
Результаты измерений для бытовой электропроводки должны уложиться в предел 0,5 МОм. Все, что ниже этой планки, подлежит устранению. На самом деле, новые кабельные линии имеют сопротивление изоляции сотни и тысячи мегаом. Значения ниже сотни характерны для старой электропроводки, да еще и порядком изношенной.
Источник: http://electric-tolk.ru/izmerenie-soprotivleniya-izolyacii-elektroprovodki/
Как проходят измерения сопротивления изоляции проводки
Проверка состояния изоляции кабелей является важной составляющей мер безопасности. Для замеров созданы специальные лаборатории, оснащенные необходимым оборудованием. В каких случаях, и как именно происходят замеры сопротивления?
В каких случаях проводятся измерения
Согласно действующим нормативам измерение сопротивления изоляции электропроводки осуществляется в следующих случаях:
- при проведении технического обслуживания (ТО) любой категории сложности;
- по окончании пусковых испытаний электротехнических объектов;
- в случаях обнаружения неисправностей, проявляющихся в процессе текущей эксплуатации в виде токовых утечек;
- по окончании ремонта электросетей и оборудования.
При техобслуживании замер сопротивления изоляции электропроводки составляет основу используемых при испытаниях методик, согласно которым электрические цепи проверяются на отсутствие утечек. Аналогичным образом проводятся замеры и во всех остальных случаях, отличающихся от техобслуживания только особенностями организации предстоящих испытаний.
В соответствии с действующими стандартами при проведении ТО параметры изоляции электропроводки, в том числе сопротивление, проверяются между всеми её жилами (фазной, нулевой и заземляющей). Особую важность приобретает это требование в случае проверки питающих цепей электродвигателей самых различных классов.
Теми же нормативами (ПТТЭП, в частности) оговаривается и периодичность измерения параметров изоляции в рамках техобслуживания электропроводки.
Измерительные средства
Для проведения испытаний электрического провода или кабеля на целостность изоляции используются специальные приборы, называемые мегомметрами (делают замер высокого сопротивления).
Они работают по принципу воздействия на измеряемую цепь высоковольтным напряжением, формируемым встроенной в устройство схемой.
Современные образцы этих приборов работают от аккумулятора с формирователем высокого напряжения.
Известные модели мегомметров различаются по величине испытательного напряжения, подаваемого на изоляцию проверяемой цепи. Согласно этому показателю они делятся на устройства с номинальными контрольными напряжениями из следующего ряда: 100, 500, 1000 и 2500 Вольт.
Сразу оговоримся, что померить сопротивление изоляционной оболочки с помощью обычного цифрового прибора не представляется возможным. Указанное ограничение объяснятся тем, что изоляция электропроводки обладает высоким сопротивлением и напряжение, выдаваемое прибором в соответствующем режиме, очень мало для оценки защитных свойств оболочки провода.
Мультиметром удаётся проверить лишь целостность оболочки силовых проводов, для чего сначала следует внимательно осмотреть их изоляцию, а затем зачистить места вывода контактных групп.
И только после этого можно будет подсоединять к ним щупы мультиметра, переведённого в режим замера «Ω» (на пределе десятки кОм). При исправной изоляции прибор будет показывать сопротивление в пределах 3,5-10 кОм.
Нормируемые показатели
Для современных кабельных изделий действующие нормативы по сопротивлению изоляции в режиме проверки постоянным током выглядят следующим образом:
- для силового кабеля, эксплуатируемого в сетях с напряжениями более 1000 Вольт, величина сопротивления строго не нормируется; при этом её рекомендуемое значение должно превышать 10 МОм;
- для образцов кабельной продукции, работающих в сетях с максимумом напряжения до 1000 Вольт, нормируемое сопротивление не должно быть меньше, чем 0,5 МОм;
- для проводных изделий контрольного назначения сопротивление не должна быть менее 1 МОм.
При изучении вопроса о том, какова периодичность проведения испытаний изоляции, необходимо отметить, что этот показатель определяется нормативами, приводимыми в ПТЭЭП.
Так для осветительных установок и сетей, например, сопротивление изоляции измеряется один раз в три года. Аналогичные требования предъявляются и к электропроводке большинства категорий промышленных сетей.
Дополнительная информация! В наружных электрических сетях, а также в особо опасных помещениях проверка изоляции проводки организуется ежегодно.
Такие же сроки должны соблюдаться и в случаях, когда испытывают проводку промышленного оборудования специального назначения (краны, лифты и тому подобное).
Правила работы с мегомметром
Для проведения специальных испытаний, организуемых с учётом требований к периодичности замеров сопротивления у изоляции электропроводки, применяются мегомметры с пределами замеров до нескольких Мегом.
При работе с этими приборами должны соблюдаться определённые правила, позволяющие избегать опасных ситуаций в обращении с высоковольтным оборудованием.
Последнее означает, что непосредственно перед началом замеров сопротивления следует проверить мегомметр на работоспособность. Для этого необходимо закоротить контрольные выводы прибора, а затем, вращая ручку встроенного в него генератора, убедиться в наличии короткого замыкания по отклонению стрелки прибора.
Вслед за тем следует разомкнуть концы измерительных шин и тем же способом проверить отсутствие отклонения, свидетельствующего об обрыве цепи.
При выполнении контрольных замеров должны быть приняты необходимые меры защиты от высоковольтного напряжения, позволяющие организовать проверку без повышенной опасности для испытателя.
С этой целью перед обследованием промышленных установок с помощью мегомметра со всех цепей, на которых должно замеряться сопротивление изоляции, в первую очередь необходимо снять рабочее напряжение.
И лишь после этого можно приступать к проверке изоляции между фазным, нулевым и заземляющим проводниками электрической цепи. Во всех указанных случаях показания прибора должны превышать 0,5 МОм.
После того, как испытание изоляции завершено, все замеры выполнены – фазный провод исследуемой цепи следует разрядить, прикоснувшись к нему хорошо заземлённым проводом.
Внимательное ознакомление с приведённым материалом позволит пользователю иметь представление о сроках и методах проведения испытаний. При этом всегда следует помнить о том, что подобными замерами занимаются специальные лаборатории, оснащённые высоковольтным оборудованием и располагающие штатом классных специалистов.
Источник: https://evosnab.ru/instrument/avo/izmerenie-soprotivlenija-izoljacii