Постоянный и переменный ток: преимущества и недостатки ⋆ diodov.net
Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?
Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.
Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции.
Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно.
Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.
Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.
I1 = P/U1 = 1000 кВт/10 кВ = 100 А.
I2 = P/U2 = 1000 кВт/100 кВ = 10 А.
Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.
Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.
Pпот1 = I12∙R = 1002∙10 = 100000 Вт = 100 кВт.
Pпот2 = I22∙R = 102∙10 = 1000 Вт = 1 кВт.
Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.
Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.
Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.
Преимущества переменного тока
Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.
Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.
Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.
Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока.
Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин.
Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.
Недостатки постоянного тока
Из выше изложенного следуют такие недостатки.
- Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
- Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
- Сложности в развязке высокого и низкого напряжений.
Недостатки переменного тока
- Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его.
В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.
Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами.
А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.
- Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.
Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.
Преимущества постоянного тока
- Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
- Постоянный ток в отличие от переменного протекает по всему сечению проводника.
Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.
К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.
Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя.
Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения.
Такие инверторы должны получать питание от источника постоянного напряжения.
Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.
Выводы: постоянный или переменный ток
Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества.
Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции.
К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.
Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.
Источник: https://diodov.net/postoyannyj-i-peremennyj-tok-preimushhestva-i-nedostatki/
Постоянный и переменный ток для чайников — советы электрика — Electro Genius
09.06.2019
В электричестве есть два рода тока – постоянный и переменный. Устройства также требуют для питания один или другой вид тока. От этого зависит возможность их работы, а иногда и целостность после подключения к неправильному питанию. Чем отличается переменный ток от постоянного мы расскажем в этой статье, дав краткий ответ наиболее простыми словами.
Определение
Электрическим током называется направленное движение заряженных частиц. Так звучит определение из учебника по физике. Простыми словами можно перевести так, что у его составляющих всегда есть какое-то направление. Собственно, это направление и является определяющем в сегодняшнем разговоре.
Переменный ток (Alternative Current – AC) отличается от постоянного (Direct Current – DC) тем, что у последнего электроны (носители заряда) всегда движутся в одном направлении.
Соответственно отличием переменного тока является то, что направление движения и его сила зависят от времени.
Например, в розетке направление и величина напряжения, соответственно и сила тока, изменяется по синусоидальному закону с частотой в 50 Гц (50 раз за секунду изменяется полярность между проводами).
Для так сказать чайников в электрике изобразим это на графике, где по вертикальной оси изображена полярность и напряжение, а по горизонтальной время:
Красной линией изображено постоянное напряжение, оно остаётся неизменным с течением времени, разве что изменяется при коммутации мощной нагрузки или КЗ. Зелеными волнами показан синусоидальный ток.
Вы можете видеть, что он протекает то в одну, то в другую сторону, в отличие от постоянного тока, где электроны всегда протекают от минуса к плюсу, а направлением движения электрического тока выбран путь от плюса к минусу.
Если сказать по-простому, то разницей в этих двух примерах является то, что у постоянки всегда плюс и минус находятся на одних и тех же проводах.
Если говорить о переменном, то в электроснабжении используют понятия фазы и нуля.
Если рассматривать по аналогии с постоянкой, то фаза и ноль являются плюсом и минусом, только полярность меняется 50 раз в секунду (в США и ряде других стран 60 раз в секунду, а в самолётах более 400 раз).
Происхождение
Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.
Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.
Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.
Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.
Формулы для расчета постоянного тока
Разницей между переменкой и постоянкой являются и формулы для расчетов процессов, происходящих в цепи. Так сопротивление рассчитываются по Закону Ома для участка цепи или для полной цепи:
E=I/R
E=I/(R+r)
Мощность также просто рассчитываются:
P=UI
Формулы для расчета переменного тока
В расчётах цепей переменного тока разница в формулах обусловлена отличием процессов, протекающих в емкостях и индуктивностях. Тогда формула закона Ома будет для активного сопротивления:
Для ёмкости:
Для индуктивности:
Здесь 1/wC и wL – емкостное и индуктивное реактивные сопротивления, а w – угловая частота, она равна 2пиF.
Для цепи с ёмкостью и индуктивностью:
wL-1/wC – это реактивное сопротивление, оно обозначается как Z.
Источник: https://orenburgelectro.ru/drugoe/postoyannyj-i-peremennyj-tok-dlya-chajnikov-sovety-elektrika.html
Электродвигатели постоянного тока. Устройство и работа. Виды
Электрические двигатели, приводящиеся в движение путем воздействия постоянного тока, применяются значительно реже, по сравнению с двигателями, работающими от переменного тока. В бытовых условиях электродвигатели постоянного тока используются в детских игрушках, с питанием от обычных батареек с постоянным током. На производстве электродвигатели постоянного тока приводят в действие различные агрегаты и оборудование. Питание для них подводится от мощных батарей аккумуляторов.
Устройство и принцип работы
Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.
Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.
Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.
Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.
Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди
Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.
Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.
Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа.
В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор.
После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.
Независимое возбуждение
При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.
Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.
Параллельное возбуждение
Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.
Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.
Последовательное возбуждение
В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.
Смешанное возбуждение
Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.
Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.
Особенности эксплуатации
Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.
Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.
Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.
Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.
Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.
На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.
Преимущества электродвигателей постоянного тока
- Небольшие габаритные размеры.
- Легкое управление.
- Простая конструкция.
- Возможность применения в качестве генераторов тока.
- Быстрый запуск, особенно характерный для моторов с последовательной схемой возбуждения.
- Возможность плавной регулировки скорости вращения вала.
Недостатки
- Для подключения и эксплуатации необходимо приобретать специальный блок питания постоянного тока.
- Высокая стоимость.
- Наличие расходных элементов в виде медно-графитных быстроизнашивающихся щеток, изнашивающегося коллектора, что значительно снижает срок эксплуатации, и требует периодического технического обслуживания.
Широко популярными двигатели постоянного тока стали в электрическом транспорте. Такие двигатели обычно входят в конструкции:
- Электромобилей.
- Электровозов.
- Трамваев.
- Электричек.
- Троллейбусов.
- Подъемно-транспортных механизмов.
- Детских игрушек.
- Промышленного оборудования с необходимостью управлением скорости вращения в большом диапазоне.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/elektrodvigateli-postoiannogo-toka/
Устройство автомобилей
Развитие автомобилестроения сопровождалось ростом требований к безотказности и увеличению срока службы автомобилей, комфорту их эксплуатации, снижению эксплуатационных затрат на техническое обслуживание и ремонт, а также соответствие все возрастающим требованиям безопасности движения.
В связи с этим появилась необходимость существенного увеличения мощности и срока службы автомобильных генераторов, как основных источников электрического тока, улучшения их эксплуатационных характеристик и снижения эксплуатационных затрат.
Появилась необходимость уменьшения габаритных размеров и массы генераторов, как, впрочем, и многих других агрегатов и устройств, что позволяло гибко проектировать компоновку и внешний дизайн автомобилей, а также получать экономию дорогостоящих металлов.
Удовлетворение перечисленных требований путем совершенствования конструкции и технологии производства генераторов постоянного тока, учитывая низкую надежность и малый срок службы щеточно-коллекторного узла, а также габаритные размеры и массу генераторов постоянного тока, стало неосуществимо. Поэтому было выбрано новое направление в развитии автомобильных генераторов – создание генераторов переменного тока.
Название «генератор переменного тока» несколько условно, и касается в основном особенностей конструкции генератора, поскольку они оснащены встроенными полупроводниковыми выпрямителями и питают потребители постоянным (выпрямленным) током.
В генераторах постоянного тока таким выпрямителем является щеточно-коллекторный узел, осуществляющий выпрямление переменного тока, полученного в обмотках якоря.
Развитие полупроводниковой техники позволило применить в генераторах переменного тока более совершенный и надежный выпрямитель на полупроводниковых диодах, в котором отсутствовали механические детали и узлы, подверженные износу и отказам.
***
Преимущества и недостатки генераторов переменного тока
К основным преимуществам генераторов переменного тока по сравнению с генераторами постоянного тока можно отнести следующие свойства:
- при одинаковой мощности их масса в 1,82,5 раза меньше, причем примерно в три раза меньше расходуется ценного цветного металла – меди;
- при одинаковых габаритах генераторы переменного тока выдают большую мощность;
- ток начинает вырабатываться при меньшей частоте вращения ротора;
- проще схема и конструкция регулирующего устройства вследствие отсутствия элемента ограничения силы тока и реле обратного тока;
- проще и надежнее конструкция токосъемного устройства, особенно, в бесконтактных генераторах переменного тока;
- меньше эксплуатационные затраты из-за высокой надежности работы и увеличения срока службы.
С практической точки зрения преимущества генератора переменного тока проявляются в том, что вырабатываемый им ток снимается с неподвижных обмоток, закрепленных на корпусе-статоре.
Обмотка возбуждения, выполненная на вращающемся роторе, существенно легче неподвижных обмоток статора, поэтому ротор можно вращать с большей скоростью, не опасаясь явлений дисбаланса вращающихся масс.
Да и ток возбуждения в этом случае подвести проще, поскольку он небольшой. В результате щетки и контактные кольца служат дольше.
Кроме того, генератор постоянного тока, в отличие от генератора переменного тока, начинает вырабатывать ток при относительно большой частоте вращение якоря. По этой причине для его полноценного функционирования, например, на холостых оборотах двигателя, необходимо значительное передаточное число привода, что в дальнейшем (на рабочей частоте коленчатого вала) может привести к дисбалансу (из-за значительной массы якоря), износу подшипников и элементов привода генератора.
Определенное преимущество генераторов переменного тока проявляется, также, в том, что при необходимости получения высокого напряжения (например, для питания высоковольтных потребителей), достаточно использовать небольшой трансформатор. Увеличить напряжение постоянного тока таким способом не удастся. Несмотря на то, что в автомобильных бортовых сетях необходимость получения высокого напряжения возникает крайне редко, такую возможность нельзя сбрасывать со счетов.
Основные недостатки генератора переменного тока — необходимость выпрямления вырабатываемого им тока, а также некоторое рассеивание мощности в окружающих ротор и статор металлических деталях из-за возникновения вихревых и реактивных токов в переменном электромагнитном поле. Тем не менее, достоинства генераторов переменного тока с лихвой окупают отмеченные недостатки.
Первые автомобильные генераторы переменного тока были спроектированы для работы с отдельными селеновыми выпрямителями и вибрационными регуляторами напряжения. Селеновые выпрямители имели значительные размеры, и их приходилось размещать отдельно от генератора, в местах, где обеспечивалось хорошее охлаждение.
Для присоединения такого выпрямителя к генератору требовалась дополнительная проводка. Кроме того, селеновые выпрямители были недостаточно теплостойки, и допускали максимальную рабочую температуру не выше +80 ˚С.
По этим причинам в дальнейшем от селеновых выпрямителей отказались, и стали применять кремниевые диоды, которые были менее габаритны, обладали хорошей теплостойкостью, что позволяло размещать их непосредственно в генераторе.
На смену вибрационным регуляторам напряжения пришли сначала контактно-транзисторные, а затем бесконтактные на дискретных элементах и бесконтактные интегральные регуляторы.
Габаритные размеры интегральных регуляторов позволяют встраивать их в генератор, который совместно со встроенными регулятором и выпрямительным блоком называется генераторной установкой.
***
Принципиальное устройство генератора переменного тока
На рис. 1 представлена упрощенная схема генератора переменного тока, который состоит из двух основных частей: статора с неподвижной обмоткой, в которой индуцируется переменный ток, и ротора, создающего магнитное поле.
Полюсы ротора поочередно проходят мимо неподвижных катушек статора, размещенных на пазах с внутренней стороны корпуса генератора. При этом изменяется направление магнитного потока, а, следовательно, и направление индуцируемой в катушке ЭДС.
Обычно число полюсов магнита на роторе и число катушек в корпусе позволяет получить трехфазный ток. У трехфазных генераторов обмотки имеют одну общую точку, где соединяются их концы, поэтому такая схема соединения называется «звездой», а общая точка обмотки – нулевой точкой.
Вторые концы обмоток присоединяют к двухполупериодному выпрямителю. Магнитное поле ротора может создаваться постоянным магнитом или электромагнитом. В последнем случае к обмотке возбуждения электромагнита подводится постоянное напряжение.
Применение в роторе электромагнитов усложняет конструкцию генератора, так как необходимо подводить напряжение к вращающейся детали – ротору, но в этом случае возможно регулирование напряжения изменением частоты вращения ротора. Кроме того, магнитные свойства постоянных магнитов существенно зависят от их температуры.
Более подробно устройство и работа автомобильного генератора переменного тока приведены на следующей странице.
***
Для автомобильных генераторов надежность и срок службы определяются тремя факторами:
- качеством электрической изоляции;
- качеством подшипниковых узлов;
- надежностью токосъемных (щеточно-контактных) устройств.
Первые два фактора зависят от уровня развития смежных производств. Третий фактор может быть исключен путем использования бесконтактных генераторов, имеющих более высокую надежность и ресурс, чем контактные генераторы, использующие щеточно-контактные токосъемные устройства. Это стимулировало создание автомобильных бесконтактных генераторов переменного тока с электромагнитным возбуждением – индукторных генераторов и генераторов с укороченными полюсами.
К бесконтактным генераторам с электромагнитным возбуждением относятся индукторные генераторы и генераторы с укороченными клювами. Работает генератор следующим образом.
Обмотка возбуждения, по которой протекает постоянный ток, создает в магнитной системе поток, который при вращении ротора изменяется по величине без изменения знака.
Этот поток замыкается, проходя через воздушные зазоры между валом и элементами ротора, зубцы которого выполнены в виде звездочки, воздушный зазор между ротором и статором, магнитопровод статора и крышку генератора.
Изменение магнитного потока в якоре при вращении ротора происходит за счет изменения магнитного сопротивления воздушного зазора между зубцами статора и ротора.
Магнитный поток Ф у индукторных генераторов пульсирующий.
Магнитный поток в воздушном зазоре периодически изменяется от Фmах, когда оси зубцов ротора и статора совпадают, до Фmin, когда оси зубцов ротора и статора смещены на угол 180˚ электрических градусов.
Таким образом, магнитный поток имеет среднюю постоянную и переменную составляющую с амплитудой
Фпер = 0,5 (Фmах — Фmin)
3убец и впадина ротора (индуктора) генератора образуют пару полюсов, поэтому частота тока якоря в индукторе генератора может быть определена по формуле:
f = zn/60,
где z- число зубцов ротора.
В генераторах с укороченными полюсами бесконтактность достигается за счет неподвижного крепления обмотки возбуждения с помощью немагнитной обоймы. Полюсы клювообразной формы имеют длину меньше половины длины активной части ротора. В процессе вращения ротора магнитный поток возбуждения пересекает витки обмотки статора, индуцируя в них ЭДС.
Генераторы с укороченными полюсами просты по конструкции, технологичны. Роторы таких генераторов имеют малое рассеяние.
К недостаткам можно отнести несколько большую, чем у контактных генераторов, массу при той же мощности. Также следует отметить трудность крепления обмотки возбуждения и обеспечения жесткости и механической прочности ее крепления.
Применение на автомобилях существующих конструкций индукторных генераторов долго сдерживалось следующими трудностями:
- невысокие удельные показатели;
- повышенный уровень пульсации выпрямленного напряжения;
- повышенный уровень шума.
Дальнейшее совершенствование конструкции и устранение вышеперечисленных недостатков позволило использовать индукторные генераторы переменного тока на автомобилях.
Впервые бесщеточные генераторы с укороченными полюсами 45.3701 и 49.3701 были использованы на автомобилях марки «УАЗ».
***
Небольшой видеоролик позволит наглядно понять основные принципы работы и устройство автомобильного генератора переменного тока.
***
Устройство и работа генератора автомобиля ВАЗ
Дистанционное образование
- Группа ТО-81
- Группа М-81
- Группа ТО-71
Олимпиады и тесты
Источник: http://k-a-t.ru/mdk.01.01_elektro/21-generator/index.shtml
Системы электрической тяги
Подробности Категория: Электроснабжение
В настоящее время в мире имеют место различные системы тяги как постоянного, так и переменного тока.
Система тяги постоянного тока. Исторически первой появилась система тяги постоянного тока.
Этому способствовали возникновение первых электротехнических отраслей, которые использовали технику постоянного тока, достаточно хорошо изученную к тому времени. Был создан двигатель постоянного тока, имевший наилучшие тяговые характеристики среди известных тогда двигателей. Система оказалась настолько удачной, что, появившись в конце прошлого века, успешно функционирует и в наши дни.
Существуют различные модификации систем тяги постоянного тока, различающихся, в основном, уровнем подводимого к электроподвижному составу (ЭПС) напряжением — от 750 до 3000 вольт. На рис. 23 приведена принципиальная схема наиболее распространенной системы тяги постоянного тока.
Недостаток этой системы состоит в необходимости преобразования переменного тока в постоянный.
Тяговые подстанции получают электроэнергию от электроэнергетических систем общего назначения с высоким уровнем напряжения (чаще всего 110220 кВ). На тяговых подстанциях постоянного тока происходит преобразование энергии переменного тока высокого напряжения в энергию постоянного тока с уровнем напряжения, необходимым для работы цепей тяговых двигателей (чаще всего 3000 В).
На большинстве отечественных подстанций постоянного тока имеет место двойная трансформация, что и отражено на рис. Промежуточный уровень напряжения (обычно 10 кВ) используется для питания нетяговых железнодорожных потребителей.
Рис. 1. Принципиальная схема системы тягового электроснабжения 3 кВ. на рисунке А, В, С – фазы ЛЭП; ПТ – понижающий трансформатор; Р – шины нетяговых (районных потребителей); ТТ – тяговый трансформатор; ПВ – полупроводниковый выпрямитель; НВ – нейтральная вставка; ЭПС – электроподвижной состав
Достоинством системы тяги постоянного тока являются: 1. Слабое электромагнитное влияние на смежные устройства электрических железных дорог, 2. Отсутствие реактивных потоков по тяговым сетям и, вследствие этого, исключение необходимости использования средств компенсации реактивной мощности
К основным недостаткам следует отнести: 1.Низкий уровень напряжения в тяговой сети и малые расстояния между тяговыми подстанциями (в среднем 15 км). 2.
Значительное гальваническое влияние на подземные коммуникации (оболочки кабелей, трубопроводы и др.), устройства пути (крепежные элементы), и арматуру контактной сети, что приводит к их коррозии. 3.
Относительно большое сечение проводов контактной сети и значительный расход цветных металлов. 4. Сложность тяговых подстанций.
5. Наличие пусковых реостатов на электроподвижном составе, приводящих к значительным потерям при пуске. Это особенно проявляется на ЭПС пригородного сообщения с частыми остановками и пусками.
Пути совершенствования систем электрической тяги постоянного тока 3 кВ
Системы тяги постоянного тока остаются эффективным транспортным средством. Их технико-экономические показатели не уступают другим системам в пригородном пассажирском электрическом транспорте и метрополитена.
Подстанции. Тяговые подстанции, располагающиеся через несколько километров, получают переменный ток высокого напряжения из электрической сети общего назначения и с помощью трансформаторов и выпрямителей преобразуют его в постоянный ток пониженного напряжения.
Входные цепи переменного тока и выходные постоянного защищены быстродействующей коммутационной аппаратурой, отключающей оборудование в случае возникновения токов короткого замыкания.
Уровень напряжения и мощность ТП зависят от многих факторов, например, типа ЭПС, интенсивности движения и т.д.
Для того чтобы система электроснабжения соответствовала энерговооруженности современного подвижного состава, необходимо увеличение мощности, поступающей от тяговых подстанций. Это связано со следующими факторами:
- Необходимостью обеспечения повышенных ускорений и высоких скоростей движения, что обусловливает более высокие пиковые нагрузки;
- Повышение интенсивности движения поездов приводит к росту доли работы системы в режиме полной нагрузки.
- Повышение уровня комфорта для пассажиров связано с увеличением мощности для питания бортовых систем подвижного состава.
Трансформаторы. Прогресс в трансформаторостроении позволяет изготавливать их с меньшими габаритами и массой. Это делает возможным использование таких трансформаторов для закрытых распределительных устройств. В то время как трансформаторы для открытых распределительных устройств в системах тяги переменного тока, обычно выполняются с жидкостным охлаждением.
Отказ от применения дорогостоящих и подчас опасных охлаждающих жидкостей обусловливает дальнейшее совершенствование сухих трансформаторов открытого типа. Устранение жидкости из трансформаторов обеспечивает преимущества, выражающиеся в меньшей стоимости, габаритах, массе и объеме строительных работ. Нет надобности в системах улавливания трансформаторного масла в случае его аварийного разлива.
Герметичные трансформаторы в виде литого блока практически не требуют технического обслуживания, что значительно снижает эксплуатационные расходы в расчете на весь жизненный цикл, а также более приемлемы с экологической точки зрения.
Выпрямители. В последние годы произошло много изменений в схемах и конструкции выпрямительных устройств для тягового применения. Эти изменения включают в себя переход на капсулированное (с помещением в герметичные кожухи) исполнение и многофазную последовательную мостовую схему без плавких предохранителей.
Прогресс в полупроводниковой технике привел к появлению капсюльных (пуговичных) силовых диодов, имеющих значительно большую мощность. За рубежом освоен выпуск устройств, рассчитанных на мощность до 2 МВт и напряжение 750 В, только с одним диодом в каждом фазовом плече, в то время как в более ранних конструкциях для получения той же мощности обычно приходилось включать в каждое фазовое плечо до пяти диодов.
Кроме того, для удовлетворения все более жестких требований поставщиков электроэнергии, 6-фазные выпрямители повсеместно заменяют 12-, а в ряде случаев 24-фазными устройствами. Для повышения надежности и снижения уровня помех параллельные мостовые схемы заменяются последовательными.
Современные выпрямительные устройства тягового применения имеют достаточную перегрузочную способность, обеспечивающую надежность их работы на период действия защитных устройств.
Значительная вероятность короткого замыкания на стороне выпрямленного напряжения делает проблему защиты выпрямителя весьма актуальной. Выключатели постоянного тока предназначены для защиты от короткого замыкания, и обеспечивают требуемый уровень безопасности. Если выключатель постоянного тока не сработает в течение 20 мс после возникновения короткого замыкания, то в следующие 80 200 мс цепь будет отключена выключателем переменного тока.
Благодаря гарантированной способности выпрямителя выдержать такую аварийную ситуацию до срабатывания выключателя переменного тока он остается полностью защищенным.
Коммутационная аппаратура. Выключатели постоянного тока за последнее время мало изменились. Типовым остается установленный на тележке выключатель выкатного типа, спроектированный с учетом требований по изоляции. Разработками последних лет являются бесконтактные полупроводниковые выключатели, но их применение, вероятно, будет ограничено из-за высокой стоимости и необходимости обеспечения изоляции цепей.
Блочные тяговые подстанции. В последнее время широкое распространение получили блочные (модульные) тяговые подстанции. В таких подстанциях коммутационная аппаратура переменного и постоянного тока, трансформаторы, выпрямители, и испытываются на заводе-изготовителе. Блок транспортируется на место, устанавливается на заранее подготовленный фундамент и подсоединяется к питающей сети переменного тока и к контактной сети постоянного тока.
Основными преимуществами блочных подстанций являются:
- низкая стоимость, вследствие более низких расходов на строительство здания;
- быстрота установки и ввода в эксплуатацию;
- снижение отказов в эксплуатации;
- облегчение пуска в эксплуатацию за счет выполнения полного цикла испытаний на заводе.
Рекуперативное торможение. При торможении кинетическая энергия подвижного состава преобразуется в электрическую и передается по контактной сети либо к другим тяговым нагрузкам (электровозам), либо, если тяговых нагрузок нет, с помощью специального инвертора передается в питающую сеть. Это экономит энергию, которая в случае торможения колодками теряется бесполезно.
При рекуперативном торможении напряжение в контактной сети повышается, и, если в пределах зоны питания той же тяговой подстанции движется другой поезд, находящийся в режиме тяги, он может получать энергию на движение, вырабатываемую тормозящим поездом.
Источник: https://lokomo.ru/elektrosnabzhenie/sistemy-elektricheskoy-tyagi.html
Однофазные электрические цепи переменного тока
Обложка | Оглавление | Лабораторные | Коллоквиум | Глоссарий |
КрымскийВалерий Вадимович
Большинствопотребителей электрической энергииработает на переменном токе. В настоящеевремя почти вся электрическая энергиявырабатывается в виде энергии переменноготока. Это объясняется преимуществомпроизводства и распределения этойэнергии. Переменный ток получают наэлектростанциях, преобразуя с помощьюгенераторов механическую энергию вэлектрическую.
Основное преимуществопеременного тока по сравнению с постояннымзаключается в возможности с помощьютрансформаторов повышать или понижатьнапряжение, с минимальными потерямипередавать электрическую энергию набольшие расстояния, в трехфазныхисточниках питания получать сразу дванапряжения: линейное и фазное.
Крометого, генераторы и двигатели переменноготока более просты по устройству, надежнейв работе и проще в эксплуатации посравнению с машинами постоянного тока.
Вэлектрических цепях переменного токанаиболее часто используют синусоидальнуюформу, характеризующуюся тем, что всетоки и напряжения являются синусоидальнымифункциями времени.
В генераторахпеременного тока получают ЭДС, изменяющуюсяво времени по закону синуса, и тем самымобеспечивают наиболее выгодныйэксплуатационный режим работыэлектрических установок.
Кроме того,синусоидальная форма тока и напряженияпозволяет производить точный расчетэлектрических цепей с использованиемметода комплексных чисел и приближенныйрасчет на основе метода векторныхдиаграмм. При этом для расчета используютсязаконы Ома и Кирхгофа, но записанные ввекторной или комплексной форме.
2.1. Способы представления синусоидальных токов, напряжений, эдс
Всовременной технике широко используютразнообразные по форме переменные токии напряжения: синусоидальные, прямоугольные,треугольные и др. Значение тока,напряжения, ЭДС в любой момент времениt называется мгновенным значением иобозначается малыми строчными буквами,соответственно
i= i(t); u = u(t); e = e(t).
Токи,напряжения и ЭДС, мгновенные значениякоторых повторяются через равныепромежутки времени, называют периодическими,а наименьший промежуток времени, черезкоторый эти повторения происходят,называют периодом Т.
Есликривая изменения периодического токаописывается синусоидой, то ток называютсинусоидальным. Если кривая отличаетсяот синусоиды, то ток несинусоидальный.
Впромышленных масштабах электрическаяэнергия производится, передается ирасходуется потребителями в видесинусоидальных токов, напряжений и ЭДС,
Прирасчете и анализе электрических цепейприменяют несколько способов представлениясинусоидальных электрических величин.
1. Аналитический способ
Длятока
(2.1)
i(t)= Im sin(ωt+ ψi),
длянапряжения
(2.2)
u(t)= Um sin(ωt +ψu),
дляЭДС
(2.3)
e(t)= Em sin(ωt +ψe),
Вуравнениях (2.1 – 2.3) обозначено:
Im,Um,Em –амплитуды тока, напряжения, ЭДС;значениев скобках – фаза (полная фаза);ψi,ψu,ψe –начальная фаза тока, напряжения, ЭДС;ω– циклическая частота, ω = 2πf;f –частота, f = 1 / T; Т – период.
Величиныi, Im –измеряются в амперах, величины U, Um,e, Em –в вольтах; величина Т (период) измеряетсяв секундах (с); частота f – в герцах (Гц),циклическая частота ω имеет размерностьрад/с. Значения начальных фаз ψi,ψu,ψe могутизмеряться в радианах или градусах.Величина ψi,ψu,ψe зависитот начала отсчета времени t = 0.Положительное значение откладываетсявлево, отрицательное – вправо.
Источник: https://studfile.net/preview/5680120/
Освещение на постоянном токе — «хорошо забытое старое»?
- 25 ноября 2015 г. в 16:00
- 4673
Известный экспериментатор и предприниматель Томас Эдисон в XIX веке предложил систему электроснабжения на постоянном токе. К началу XX века на смену ей пришли электрические сети на переменном токе, которые предложили Никола Тесла и Джордж Вестингауз.
Переменный ток повсеместно вытеснил постоянный, но, как известно, наука и техника развиваются по спирали. И уже в XXI веке предлагается делать в офисах и производственных цехах отдельную проводку для светодиодного освещения, по которой потечет постоянный ток.
причина, по которой постоянный ток не выдержал конкуренции — малая дальность передачи электроэнергии. Из-за невозможности использования трансформаторов напряжение в линии электропередачи приблизительно соответствовало напряжению в розетке. Применительно к реалиям США конца XIX века — это напряжение было около 110 В. В итоге электростанция не могла размещаться далее 1,5 км от потребителя. Это было значительным недостатком в XX веке, но сейчас ситуация изменилась.
Для выработки электроэнергии все чаще используются альтернативные источники: солнце, ветер и некоторые другие. Общей особенностью таких источников является нестабильность количества вырабатываемой энергии в данный момент, что требует использовать аккумуляторы. Кроме этого, сейчас предлагается и такое решение — накапливать электроэнергию, получаемую из сети, в аккумуляторах в те промежутки времени суток, когда она стоит дешево, а потом отдавать ее в часы, когда тарифы высокие.
Для накопления энергии повсеместно применяются аккумуляторы, использующие преобразование электрической энергии в химическую и обратно. Эти аккумуляторы дают постоянный ток.
При этом многие приборы, потребляющие электроэнергию, изначально устроены таким образом, что питаются от постоянного тока (например, компьютеры), а чтобы они могли питаться от переменного тока, приходится добавлять в конструкцию дополнительно блоки питания.
Тогда зачем нужны преобразования постоянного тока в переменный и обратно, если можно непосредственно с аккумулятора подавать постоянный ток потребителю? Значительно упростится конструкция многих устройств, подключаемых к электросети, а также централизованную систему бесперебойного питания.
К тому же, не будет потерь в проводке, связанных с излучением электромагнитного поля проводником, через который проходит переменный ток. Исходя из этого, в тех случаях, когда внутренняя сеть использует альтернативные источники энергии, а также систему бесперебойного питания, в ней предпочтительно передавать постоянный ток.
Но не все так просто, как может показаться. Огромное количество приборов изначально спроектировано на питание переменным током и на постоянный ток их так просто не переделать. В первую очередь, речь идет об устройствах, в которых установлены моторы.
Но даже электрочайник, рассчитанный на переменный ток, нельзя питать от постоянного, хотя там, казалось бы, только резистивная нагрузка. При размыкании контактов в цепи переменного тока гашение дуги происходит быстрее, чем в цепи постоянного.
Термореле, которое размыкает цепь при кипении, рассчитано на переменный ток и большая длительность дуги на постоянном токе выведет его из строя.
Производить технику широкого применения под новый стандарт питания постоянным током слишком расточительно, если учесть, что доля альтернативных источников в общем объеме производимой в мире электроэнергии пока не превышает 3%.
Поэтому на момент написания статьи основной отраслью, где наблюдается массовый переход на внутренние электрические сети постоянного тока, являются гигантские центры обработки данных. В них сервера питаются от постоянного напряжения 380 В.
Данное значение напряжения позволяет использовать серийно выпускаемые кабели для 230 В переменного тока [1]. Тем не менее, электропитание ЦОД — довольно узкий сегмент рынка.
Другим применением внутренних сетей на постоянном токе, которое, по прогнозам ряда авторитетных ученых действительно может стать массовым, является освещение. Естественно, светодиодное, так как светодиод по своему принципу работы может питаться только от постоянного тока. Необходимость преобразования переменного тока в постоянный является одной из причин, почему светодиодные светильники до сих пор стоят значительно дороже аналогов с традиционными источниками света.
Существующие примеры питания ламп от постоянного тока
Накопленный светотехникой опыт еще с первых ламп Томаса Эдисона показывает, что питание традиционных источников света от постоянного тока не меняет их технические характеристики или же ведет к ухудшению параметров. В то же время, питание ламп на основе светодиодов постоянным током улучшает качество их работы.
Существует множество легенд, согласно которым при питании лампы накаливания от постоянного тока, она служит дольше. Или, наоборот, питание от переменного тока продлевает срок службы лампы по сравнению с постоянным. Но, на самом деле, питание лампы накаливания что от постоянного тока, что от переменного тока частотой 50 или 60 Гц, не влияет само по себе на срок службы.
При питании люминесцентных ламп от постоянного тока возникает так называемый «трамвайный эффект», выражающийся в потемнении в процессе эксплуатации одного из концов трубки. Даже если лампа закрыта молочным рассеивателем, такой работающий светильник выглядит некрасиво. С этим эффектом борются, периодически вынимая лампу из светильника и вставляя обратно ее с другой полярностью.
Название «трамвайный эффект» связано с тем, что его впервые обнаружили при переводе освещения в салонах трамваев с ламп накаливания на люминесцентные. Электрооборудование трамвая работает от постоянного тока, соответственно, от постоянного тока решили питать и лампы, освещающие салон.
В современных транспортных средствах используются люминесцентные лампы, питающиеся через ЭПРА переменным током с частотой порядка единиц или десятков кГц.
Светодиодные лампы-ретрофиты типоразмера MR16 выпускаются с питанием от напряжения 12 В. Данные лампы поддерживают питание какпеременным, таки постоянным током. Каждая модель лампы совместима с трансформаторами для галогенных ламп из определенного списка. При замене галогенных ламп MR16 совместимость светодиодных ламп, подходящих по светотехническим параметрам и цене, с уже установленными трансформаторами, зачастую отсутствует.
Поэтому вместо трансформатора устанавливают блок питания, дающий напряжение 12 В постоянного тока. Так же рекомендуется поступать и в случае, когда изначально устанавливаются светодиодные лампы MR16. Практика показывает, что питание светодиодных ламп MR16 от постоянного тока обеспечивает более стабильную работу и более высокий КПД по сравнению с питанием от переменного тока.
Питание от постоянного тока позволяет также полностью избавиться от пульсаций светового потока.
Снижение потерь в системе электроснабжения
Структурные схемы организации электропитания светодиодных светильников на переменном и постоянном токе в типичном офисном здании показаны на рис. 1.
Как видно на рисунке, в системе на переменном токе потери в проводах составляют 3%, а на постоянном — всего 1%, что обусловлено законами физики. Снижение потерь в блоке питания с 5% до 2% связано скорее с экономическими факторами, так как на группу светильников уже выгодно использовать более дорогой блок питания с повышенным КПД. Итого за счет перехода с переменного тока на постоянный теоретически можно получить снижение потерь на 5%.
Источник: https://www.elec.ru/articles/osveshenie-na-postoyannom-toke-horosho-zabytoe-sta/
Комбинированная система бесперебойного электропитания постоянного и переменного тока для объектов связи и телекоммуникаций
- Универсальный вход переменного тока (однофазный/ трёхфазный)
- Отключение неприоритетной нагрузки
- Мониторинг всех модулей, входящих в систему, состояния АБ и нагрузки. Дистанционный контроль и управление
- Одновременное питание потребителей и заряд (непрерывный подзаряд) АБ
Обеспечение повышенной надёжности и бесперебойного электропитания оборудования объектов связи телекоммуникаций:
- Автоматических телефонных станций;
- Аппаратуры передачи данных;
- Маршрутизаторов, коммутаторов, мультиплексоров;
- Магистральных оптоволоконных сетей передачи данных;
- Серверов, рабочих станций, персональных компьютеров;
- Прочего телекоммуникационного оборудования.
Описание
При наличии входного напряжения переменного тока допустимого диапазона система обеспечивает электропитание потребителей, а также заряд и содержание до 4-х групп аккумуляторных батарей. При отключении или недопустимом отклонении параметров сетевого напряжения электропитание потребителей производится в автономном режиме от аккумуляторов.
Система имеет высокую удельную мощность и малые габариты за счет использования нового типа частотно-резонансных выпрямителей, имеющих высокое значение КПД (не менее 95%).
Система имеет повышенную надёжность за счёт распределённой системы управления модулями-инверторами.
Конструктивно система и входящие в ее состав модули (блоки) выполнены в металлических корпусах 19-ти дюймового стандарта. Система выпускается как в шкафном, так и в модульном исполнении. В шкафу системы размещается её оборудование и оборудование потребителя. Аккумуляторные батареи могут размещаться как в шкафу системы, так и отдельно.
Для защиты от опасных воздействий сети электропитания система может комплектоваться распределительной панелью переменного тока с комплексным устройством защиты типа РП-УЗК
При необходимости в состав системы может быть включён преобразователь постоянного напряжения ПП-48М для электропитания потребителей постоянного тока напряжением 12, 24, 60 В.
Дополнительно в состав системы может быть включено Устройство автоматического включения резерва АВР для организации гарантированного электропитания при наличии двух независимых источников питания, таких как, раздельные фидеры сети переменного тока, двигатель-генераторные установки, инверторные системы, альтернативные источники переменного тока.
Краткие технические характеристики:
Диапазон фазного входного напряжения, В | 85 – 300 |
Номинальное выходное напряжение постоянного тока, В | 48 |
Диапазон регулировки номинального выходного напряжения постоянного тока, В | 46 – 57 |
Максимальная выходная мощность для нагрузки 48В, кВт | от 0,84 до 69,6 |
Максимальный выходной ток нагрузки 48В, А | от 18,2 до 1440 |
Дополнительные выходные напряжения постоянного тока, В | 12, 24, 60 |
Максимальная выходная мощность для нагрузки 12В, кВт | от 0,15 до 1,65 кВт |
Максимальная выходная мощность для нагрузки 24В, кВт | от 0,15 до 3,3 кВт |
Максимальная выходная мощность для нагрузки 60В, кВт | от 0,3 до 3,3 кВт |
Номинальное выходное напряжение переменного тока, В | 220/380 |
Номинальная выходная мощность по переменному току, кВА | до 30 |
Отличительные особенности системы:
- Одновременное питание потребителей и заряд (непрерывный подзаряд) АБ;
- Температурная компенсация напряжения заряда и подзаряда (содержания) АБ в буферном режиме;
- Автоматическая защита АБ от глубокого разряда;
- Наличие модуля отключения неприоритетной нагрузки (опционально);
- Бистабильные контакторы в модуле защиты от глубокого разряда и модуле отключения неприоритетной нагрузки для исключения самопроизвольного отключения питания нагрузки;
- Универсальный вход переменного тока – однофазный/ трёхфазный;
- Мониторинг состояния АБ, в том числе напряжения, тока заряда и разряда, температуры, симметрии 12 В сегментов аккумуляторной батареи (до 4-х групп);
- Тестирование АБ в ручном или автоматическом (задаваемом по расписанию или дистанционно) режиме на реальную нагрузку в соответствии с установленными параметрами;
- Мониторинг состояния нагрузки, в том числе напряжения, тока, состояния автоматических выключателей;
- Мониторинг модулей-выпрямителей и модулей-инверторов, в том числе состояний входа и выхода, диагностика исправности, отображение напряжения сети;
- «Горячая» замена модулей-выпрямителей, модулей-инверторов и управляющего контроллера без прерывания питания нагрузки;
- Селективное отключение любого модуля-выпрямителя и модуля-инвертора, входящего в состав системы;
- Настройка параметров системы в интерактивном режиме с использованием ЖК-дисплея;
- Наличие широкого набора системных журналов: журнал батарей, журнал аварийных событий, журнал замены составных частей, журнал пиковой нагрузки, журнал описания выхода, журнал сервисного и технического обслуживания, журнал статистики;
- Местная и дистанционная сигнализация режимов работы, отображение на встроенном ЖК-дисплее основных параметров системы, аварийных и системных сообщений;
- Дистанционный контроль и управление с помощью интерфейсов «сухие» контакты, USB, RS-232 и Web/SNMP — адаптера, хранение информации о событиях в памяти системы (1000 записей);
- Фиксация системной информации на SD-карту памяти с интервалом 10 минут в течении всего срока службы системы (до 20 лет) для анализа нештатных ситуаций и статистической обработки;
- Возможность подключения до 4-х внешних дискретных датчиков, например, открывания двери, пожара, аварии грозозащиты, срабатывания охранной сигнализации и т.п.
Стоимость системы зависит от конкретных требований заказчика и может составлять от 200 000 до 4 000 000 руб.
Используемая продукция в решении:
Источник: https://www.atsconvers.ru/solutions/solution/5/