Чем отличается LED от светодиода

Сов или дискретные диоды? плюсы и минусы

Чем отличается LED от светодиода

COB (chip-on-board) — одна из самых распространенных технологий создания светодиодов, применяемых в системах направленного света. В последние годы светильники на COB-матрицах начали стремительно вытеснять светотехническое оборудование на основе дискретных диодов. Однако, у каждой технологии есть свои плюсы и минусы. О них стоит помнить, принимая решение, в каких случаях применять COB разумно, а в каких — нет.

Сов vs суперъяркий диод: case study

Чтобы наглядно увидеть плюсы и минусы технологии COB, давайте проверим ее в деле по сравнению с аналогичным решением для создания направленного света — суперъярким диодом. И ту, и другую технологию возьмем в составе изделия — светильника. Оценивать будем по следующим параметрам:

1.  Дизайн;2.  Качество светового пучка;3.  Энергоэффективность;4.  Долговечность;

5.  Применимость.

Ита-а-ак, леди и джентельмены, поприветствуем! В левом углу ринга — даунлайт на сверхъярком светодиоде; в правом углу ринга — даунлайт с COB-матрицей! Fight!

1. Дизайн

Первое, что хочется отметить, — это внешний вид соперников. Зачастую именно он является определяющим при выборе заказчиком LED-источника света.

На фото ниже представлены два “бойца” из нашего каталога — встраиваемый светильник на сверхъярких светодиодах 7W TD20 IP44 Round (слева) и встраиваемый точечный светильник на основе LED-матрицы от Edison Opto 7W G2 TD20 IP44 (справа).

Разница очевидна и состоит в количестве светящих точек (источников светового излучения) в даунлайте: для светильника из сверхъярких диодов 7W TD20 IP44 Round — 7 точек; для светильника на базе COB-матрицы от Edison Opto 7W G2 TD20 IP44 — одна точка (как в привычных галогенных лампах).

На вкус и цвет, как говорится, товарищей нет, но, по нашему опыту, более консервативные во взглядах покупатели отдают предпочтение светильникам на COB-матрице (вероятно, из-за более привычного вида источника света).

2. Качество светового пучка

Теперь обратим внимание на то, как соперники держатся на ринге — на техничность и стиль работы, а именно на формируемый каждым из них световой пучок.

Из-за большого количества одиночных источников света (в случае с даунлайтом на сверхъярких диодах) проявляет себя эффект мультитеней, который отчетливо виден на фото слева.

В свою очередь, COB-матрицы до последнего времени имели свой недостаток, а именно неравномерное распределение интенсивности светового пучка (с максимумом в центре). К счастью, осенью 2014 года было найдено решение: применение двойной системы, рефлектор + единая оптика на всю COB-матрицу. До этого момента сверхъяркие диоды демонстрировали более равномерный и симметричный световой пучок, что давало им некоторое преимущество в глазах потребителей.

Справедливо будет отметить, что новая оптическая система светильников на базе COB-матриц вносит дополнительные потери мощности из-за применения акрила и силикона в линзе. Однако получаемое качество светового пучка высоко ценится нашими заказчиками: ритейлерами и теми, кто занимается рекламно-выставочной деятельностью.

3. Энергоэффективность

Тему энергоэффективности мы невольно уже затронули, когда говорили о качестве светового пучка.  Давайте продолжим разговор и столкнем две испытываемые нами технологии. Чтобы сравнение получилось честным, биться на ринг пригласим спортсменов в одной и той же весовой категории. Для светодиодной техники это означает, что ключевые базовые параметры обоих светильников одинаковы:

  1. Светоотдача и COB-матрицы, и сверхъяркого диода: 100 лм/Вт;
  2. Коэффициент мощности используемого источника питания светильника: >0,95.

Наш практический опыт показывает, что противостояние двух технологий на сегодняшний день дает приблизительно один результат — достойные 75-80 лм/Вт. В случае с COB-матрицей потери вызваны рефлектором, в случае с супер-ярким диодом — линзами. Излишне говорить, что по мере совершенствования светодиодных технологий постепенно от года к году растет и светоотдача самих диодов, и светоотдача приборов на их основе.

Еще раз отметим, что применение новой оптики в светильниках на базе COB может несколько снижать их энергоэффективность, которое компенсируется качеством светового пучка.

4. Долговечность

В целом, соперники бьются на равных, но надолго ли им хватит силы и выносливости? Ведь зачастую побеждает не тот, кто сильнее, а тот, кто способен дольше устоять на ринге. Поговорим о долговечности.

В любом  светодиодном изделии долговечность определяется многими факторами, не в последнюю очередь — драйвером (источником питания). Если взять одинаково надежные драйверы в наших двух случаях, то светильник на базе COB будет менее «поворотлив» и «устанет» быстрее. Из-за компактных габаритов с матрицы труднее отводить тепло, поэтому полезный срок службы по стандарту L70 у матриц, как правило, ниже — 30-40 тысяч часов против 50 у сверхъярких дискретных диодов.

Однако вышеприведенные цифры справедливы только для качественных светодиодов среднего и выше среднего ценовых сегментов, которые используются в грамотно спроектированном светильнике. Сомнительная родословная источников света, драйвера или же конструктивно-технологического исполнения прибора способны свести долговечность на «нет». Нокаут в первом же раунде — увы, не столь уж редко случающееся событие: как в боксе, так и в применении светодиодного оборудования.

Подведем итоги

В aledo-pro мы придаем первостепенное значение качеству света и хотели бы отметить, что особенности технологий, которые сегодня применяются при производстве светодиодов, важно учитывать заказчикам при принятии решений о выборе в пользу одной из них.

Сегодня рынок светодиодных решений в России находится на стадии становления (российские стандарты в этой области еще только формируются), поэтому риск приобрести некачественное светотехническое оборудование весьма высок.

Из всех правил бывают исключения, кроме, пожалуй, одного: выбор в пользу той или иной конкретной технологии лишь тогда по-настоящему безопасен и эффективен, если он делается исходя из решаемой задачи и при поддержке профессионалов, обладающих хорошей репутацией. 

Источник: https://aledo-pro.ru/articles/view/COB/

Чем отличаются светодиодные лампы от других ламп?

Чем отличается LED от светодиода

Светодиодные лампы используют для освещения дома, офиса, производственных помещений или улицы. Источник света в них – диод, состоящий из крохотных кристаллов. В других видах ламп свет излучает раскаленная спираль, газ или ртуть. 

Один из популярных вопросов: чем отличается светодиодная лампа от LED. Ответ: ничем. Это два названия одного вида ламп. Аббревиатура LED расшифровывается как Light Emitting Diode – светоизлучающий диод. В разных описаниях речь идет об одних и тех же лампах.

В чем отличие светодиодных ламп друг от друга? Они различаются по мощности, диапазону цветовой температуры, устойчивости к внешним воздействиям. В сравнении с другими видами ламп у них есть много достоинств: они работают дольше, не выделяют ядовитые вещества, работают при напряжении от 180 до 260 В, потребляют меньше электроэнергии.

Чем отличаются светодиодные лампы от других источников освещения

Часто LED светильники сравнивают с привычными лампами накаливания, галогенными и люминесцентными аналогами. Итак, посмотрим, чем отличается светодиодная лампа от обычной.

Лампы накаливания

Первое, чем отличаются светодиодные лампы от ламп накаливания – светящий элемент. Внутри груши лампы накаливания установлена спираль из металла, которая излучает свет, раскаляясь. Такие приборы стоят дешево, подходят к большинству светильников, мгновенно зажигаются при включении.

Недостатки этого вида освещения:

● Короткое время работы. Лампа рассчитана примерно на 1 000 часов работы, а у светодиода срок жизни – около 100 000 часов.

● Высокое энергопотребление. Только одна десятая потребляемой энергии превращается в свет, остальные 90% расходуются в виде тепла.

Люминесцентные лампы

Чтобы понять, чем отличаются светодиодные лампы от люминесцентных, нужно знать принцип их работы. В LED лампах светит диод. Лампа дневного света – это трубка, заполненная люминофором. Она потребляет меньше электричества, чем лампа накаливания и работает дольше: от 2 000 до 20 000 часов.

Но у люминесцентной лампы есть ряд проблем:

● ртути – от 10 мг до 1 г на колбу. Светильник токсичен и опасен для окружающей среды.

● Мерцание. Лампа чувствительна к перепадам тока. Постоянное мерцание раздражает и утомляет зрение.

● Выгорание. Люминофор со временем вырабатывается – у лампы изменяется спектр и уменьшается светоотдача.

Ультрафиолетовые лампы

Чем отличается светодиодная лампа от ультрафиолетовой? Последняя работает так же, как и люминесцентная. УФ свечение образуется, когда электромагнитные разряды воспламеняют пары ртути в колбе. Для изготовления такой лампы используют специальное стекло, которое пропускает ультрафиолет.

опасность этого источника света – пары ртути, которые выделяются в воздух при нагревании колбы. А если она разобьется придется очищать помещение от токсичного металла.

Галогенные лампы

Чем отличаются люминесцентные лампы от галогенных: в первую очередь – принципом работы. «Галогенка» по сути – лампа накаливания, колба которой заполнена парами галогенов (брома или йода). Это повышает срок ее работы до 4 000 часов.

Недостатки галогенных светильников:

● Сильный нагрев. Температура лампочки повышается из-за газов внутри. Она может обжечь или стать причиной пожара.

● Хрупкость. Брать ее можно только за корпус. Если прикоснуться к поверхности лампы, она перегорит.

Чем светодиодная лампа отличается от энергосберегающей: главный конкурент

LED лампочки часто путают с энергосберегающими, хотя эти два вида совсем не похожи. «Экономки» долгое время были лучшими на рынке, но светодиоды быстро обошли их по эффективности.

Лампа энергосберегающая или люминесцентная использует в пять раз меньше энергии, чем лампа накаливания, при такой же яркости. Но она имеет свои особенности:

● Неудобная колба. Большая груша или спираль часто не влезает в плафон и выглядит не очень привлекательно.

● Время на разогрев. В момент включения лампочка светит более тускло, постепенно разогреваясь.

● Колебание света. Едва заметное мерцание вызывает напряжение глаз и головную боль.

Главный недостаток светодиодных ламп в сравнении с другими видами освещения – высокая стоимость. Но это компенсируется такими преимуществами:

● Экономичность. Лампы накаливания перегорают уже через несколько месяцев, а светодиоды работают до 5 лет.

● Устойчивость к внешним воздействиям. Диод не испортится на морозе или под дождем. Рабочая температура: от -20 до +40. Прочный корпус защитит его во время падения.

● Безопасность. Лампа не содержит токсичных веществ и не нагревается до температуры, которая может вызвать возгорание. Это особенно важно, если вы хотите использовать лед лампы для дома.

Светодиодные лампы устанавливают дома, в школах и больницах, в цехах заводов, на детских площадках и вдоль проезжей части. Для каждой цели найдется подходящий прибор.

Источник: https://evrosvet.com.ua/blog/chem-otlichayutsya-svetodiodnye-lampy-ot-drugikh-lamp/

Разница между светодиодом и лампочкой

Чем отличается LED от светодиода

В 2009 году Правительство РФ запретило продажу на территории страны ламп накаливания мощностью более 100 Вт, взяв курс на повышение оборота энергоэффективных источников света.

Из обломков копий, сломанных в спорах о преимуществах и недостатках LED и ламп накаливания, можно восстановить Великую Китайскую стену (которая, кстати, задержит поток малонадежных осветительных приборов).

Конечному потребителю не слишком интересно, чем отличается светодиод от лампочки, – ему важнее сравнить стоимость и долговечность, приведя к разумному показателю соотношение цена/качество. Посмотрим, на что ориентироваться при выборе.

статьи

Итак, под плафонами и абажурами наших люстр и торшеров прижились три типа ламп: накаливания, люминесцентная и светодиодная.

Это так называемые лампы общего назначения. Специальное предполагает применение тех же технологий в разного рода приборах для индикации или создания светового пучка. Принцип действия остается неизменным, а вот технические характеристики варьируются весьма широко.

Это, к примеру, светодиод, который устанавливается в обычную бытовую технику для индикации процессов:

Светодиод-индикатор

А это – лампа накаливания, используемая в габаритных огнях автомобилей:

Лампа накаливания для габаритных огней

Рассмотрим, как работает такое привычное и простое освещение.

Сравнение

Обычная лампочка накаливания, повсеместное распространение которой ввел указами еще Владимир Ильич, состоит в общем случае из стеклянной колбы, тела накала (преимущественно из вольфрама) и токовводов с предохранителем. При замыкании электрической цепи (включении) ток проходит через тело накала, нагревая его до определенной температуры, и оно начинает излучать видимый свет широкого спектра. Чтобы избежать окисления металла, колбу заполняют инертным газом или создают в ней вакуум.

В основе работы светодиода лежат свойства полупроводникового материала, из которого он изготовлен. Пропуская электрический ток через кристалл, мы получаем оптическое излучение узкого спектра – видимый свет определенного цвета. Для получения белого светодиода используются три кристалла, дающих красное, синее и зеленое свечение, в одном корпусе.

Самое значимое для потребителя отличие светодиода от лампочки накаливания – он всегда будет энергоэффективнее, вне зависимости от назначения и области применения. При переходе на экономичные осветительные приборы показатели не единожды измерялись, результаты публиковались, и теперь известно:

Как видим, экономия энергии значительная, и это самое главное преимущество светодиода.

Кроме того, LED-диоды выделяют мало тепла: их КПД близок к 90 %, и они преобразуют практически всю полученную энергию в световой поток. Лампа накаливания в среднем имеет КПД около 4 %, а остальное уходит в нагрев поверхности. Светодиодные лампы пожаробезопасны – температура их колб не поднимается выше 50 ℃. Альтернатива в 4 раза горячее.

В силу особенностей конструкции светодиоды – вещь довольно прочная, так что сотрясение или удар не влияет на их работу. Нить накала в обычных лампочках рвется при незначительном воздействии.

Срок службы в благоприятных условиях определяется в 1000 часов, и все мы помним запасы в глубине шкафа. LED-лампы теоретически способны проработать 50 000 часов, однако производители гарантий на такой срок, конечно, не дают.

Кристалл перегореть не может, но зачастую со временем деградирует, из-за чего яркость снижается.

Потребитель, который разобрался, в чем разница между светодиодом и лампочкой, в выборе сомневаться вроде бы не должен. Однако осветительные приборы с более чем столетней историей по-прежнему занимают немалую часть витрин магазинов. Преимущество в глазах многих у них одно, но решающее – цена.

Стандартная лампочка с цоколем Е27 стоит около 20 рублей, тогда как светодиодная с тем же световым потоком – от 130. К тому же дешевые модели безымянных производителей часто бывают бракованными, а их технические характеристики – неточными: вместо заявленных 700 Lm вполне можно получить 500 Lm.

Есть и еще один момент: цвет светового потока от лампы накаливания всегда близок к естественному солнечному, а у LED варьируется довольно широко – от теплого к мертвенно-белому. В приборах, использующих множество светодиодов, добиться требуемого оттенка освещения может быть непросто.

Таблица

Светодиод Лампочка
Световой поток излучает полупроводниковый кристалл при прохождении через него электрического тока Световой поток излучает тело накаливания при нагреве током до определенных температур
Низкий уровень энергопотребления Высокий уровень энергопотребления (в среднем в десять раз выше светодиода)
КПД около 90 % КПД около 4 %
Температура поверхности колбы нагревается до 50 ℃ Температура поверхности колбы может достигать 200 ℃ (пожароопасны)
Длительный срок службы (теоретически до 50 000 часов), но со временем может деградировать кристалл Короткий срок службы (до 1000 часов)
Устойчивость к ударам и сотрясениям Хрупкость
Относительно высокая стоимость Низкая цена
Теплый и холодный оттенки светового потока Теплый цвет

Источник: https://thedifference.ru/chem-otlichaetsya-svetodiod-ot-lampochki/

Светодиодное освещение — что нужно знать о технологии LED

:

Появление LED-элементов (light-emitting diode) ознаменовало эволюционный виток в развитии светотехнической продукции. Технология инфракрасного диода была запатентована в 1961 году, но применимый на практике светодиод появился только год спустя. Первые LED-лампы стоили до $200, падение цены на них началось спустя тридцать лет – в начале 90-х, когда создали дешевый диод синего цвета.

В течение последнего десятилетия частные лица и владельцы бизнеса все чаще выбирают доступное светодиодное освещение. Серийный выпуск LED-элементов, демонстрирующий высокие темпы роста, отражает оживленный спрос на них.

Что такое светодиодное освещение? Принцип работы светодиода

Светодиод представляет собой прибор на основе полупроводниковых кристаллов с электронно-дырочным переходом. Он создает оптическое излучение в узком диапазоне спектра при пропускании через него электрического тока. Под действием последнего каждый кристалл начинает излучать лучи в спектре RGB, а белый цвет является результатом их смешения. При изменении соотношения цветов получают оттенки белого света от теплого до холодного.

Если говорить о современных светодиодных лампах, то они состоят из следующих элементов:

  • Плата с диодами
  • Драйвер для выпрямления тока
  • Радиатор для отвода тепла
  • Цоколь (Е27, Е14, Е40, GU10, GU5.3 и др.)
  • Колба (традиционной формы, в виде свечи, шара, эллипса, «кукурузы»)
  • Держатели (нижний и верхний)

Преимущества и недостатки светодиодного освещения

Как и другие популярные источники освещения – традиционные и люминесцентные – они тоже имеют достоинства и недостатки. К преимуществам LED светильников относят следующие характеристики:

  • Срок службы. Они способны работать до 100 000 ч. У лампы накаливания этот показатель составляет до 1 000 ч, у галогенной – до 4 000 ч, у люминесцентной – до 10 000 ч.
  • Экономное потребление энергии. Они расходуют в среднем в 7 раз меньше электричества, чем лампа накаливания, в 2 раза меньше люминесцентной и в 4 раза меньше галогенной при условии, что они дают одинаковую по освещенность помещения.
  • Параметры светоотдачи. Мощность светового потока в них составляет 50-100 лм на 1 Вт. У галогенных эта характеристика составляет до 22 лм, у люминесцентных – до 60 Вт, у ламп накаливания – до 17 лм. В трех последних 40-90 % мощности тратится на нагрев корпуса.
  • Экологичность. В составе LED-лампы отсутствуют токсичные компоненты. Лампы накаливания и галогенные не претендуют на экологичность из-за того объема энергопотребления, которое тратится «впустую». Люминесцентные содержат пары ртути и требуют соблюдения выполнения строгих правил утилизации, утвержденных на законодательном уровне.
  • Запас прочности конструкции. Лампы накаливания и галогенные легко разбиваются при падении с высоты до 1 м и легком механическом воздействии. А сильная вибрация приведет к тому, что в них порвутся нити накаливания. Колбы люминесцентных лампы более прочные, но разбивать их нежелательно из-за потенциального вреда для здоровья. Самый прочный корпус у LED-ламп, так как колба – самый хрупкий элемент конструкции – изготовлена из пластика.
  • Естественный свет. Ближайший к нему спектр дают светодиоды. Их индекс цветопередачи составляет 80-85 единиц, в то время как у естественного солнечного освещения – 100 единиц (абсолютное значение). Среди остальных решений к этой характеристике приближаются только люминесцентные лампы с их 60-65 единицами.
ЭТО ИНТЕРЕСНО:  Как снять лампочку ближнего света

Светодиодные источники света не нуждаются в регулярном техническом обслуживании и подходят для освещения влажных и пыльных помещений. На их срок службы не влияет частое включение и отключение питания, в отличие от галогенных, люминесцентных и ламп накаливания.

С момента появления на рынке источники света на основе светодиодов непрерывно дешевеют, но до сих пор остаются дорогими на фоне альтернативных решений. Это является их главным и единственным недостатком. Но если учитывать срок службы и уменьшенное потребление энергии, установка LED-освещения будет предпочтительнее с экономической точки зрения.

Рабочий ток (мА, миллиамперы)

Светодиодные элементы работают от 10-100 мA и более. Чем мощнее диод, тем выше сила тока ему требуется, но тем больше вероятность перегорания светодиода. Для выпрямления характеристики силы тока используют драйверы. Чем более точно они работают, тем дольше прослужит диод.

Напряжение (В, вольты)

Зависит от полупроводников и других химических элементов, использованных при изготовлении LED-элемента. Их качественные и количественные характеристики напрямую влияют на цвет свечения.

Мощность (Вт, ватты)

Определяется силой тока и напряжением. Чем выше мощность, тем сильнее нагревается светодиод, но тем быстрее он выходит из строя. Чтобы не допустить подобного развития событий, их принудительно охлаждают, устанавливая радиаторы из алюминия или других материалов с похожими характеристиками.

Цветовая температура (К, Кельвин)

Она зависит от материалов изготовления диода. Температура определяет оттенок свечения светодиода. Он может теплым желтым (1 800 – 3 500 К), нейтрально белым (3 600 – 5 000 К) или голубовато-холодным (5 100 К и выше).

Световой поток (лк, люксы)

Определяет интенсивность освещения. Означает, какое количество люмен (единиц светового потока) приходится на единицу мощности, равную 1 Вт.

Угол рассеивания (°, градус)

Он зависит от характеристик рассеивающей линзы. Для одного диода угол рассеивания составляет от 50 до 120 °. Если требуется акцентное (точечное) освещение, используют собирательную линзу. Если угол рассеивания требуется увеличить до 270-360°, изготавливают модульные конструкции.

Как светодиодное освещение помогает экономить?

Мы рассмотрели, насколько выгоднее светодиодные решения на фоне галогенных, люминесцентных и ламп накаливания. Главные плюсы LED в экономическом плане определяются их сроком службы и уменьшенным потреблением энергии. Предлагаем убедиться в этом на примере.

Световой поток Светодиодная лампа Энергосберегающая лампа Лампа накаливания
50 лм. 1 вт. 4 вт. 20 вт.
100 лм. 2 вт. 5 вт. 25 вт.
100-200 лм. 2,5-3 вт. 6-7 вт. 30-35 вт.
300 лм. 4 вт. 8-9 вт. 40 вт.
400 лм. 5 вт. 10 вт. 50 вт.

Возьмем популярную лампу накаливания на 60 Вт. Ближайшей к ней по характеристикам мощности будет светодиодная лампа на 9 Вт. Здесь видна семикратная экономия потребляемой энергии, что отразится на счетах за потребленное электричество.

Добавляем к этому преимущество в светоотдаче (78 лм/Вт против 13 лм/Вт) и срок службы, который отличается в 50-100 раз (до 100 000 часов непрерывной работы против 1 000 часов).

Отнимаем необходимость в специальной утилизации (для предприятий это не бесплатная услуга) и потребность в замене ламп в результате повреждения – и на выходе получаем экономически обоснованное решение.

Квартирное

Такие лампы устанавливают в люстры, настольные светильники, бра и точечные источники освещения. Их покупают в комплекте со светильниками или отдельно, с целью перейти на экономное потребление электроэнергии.

Офисное

Для офисов и кабинетов светодиоды используются в составе встраиваемых или потолочных накладных светильников. Они дают равномерный рассеянный световой поток со схожими характеристиками на каждом рабочем месте.

Торговое

В этом случае светодиодное освещение играет важную роль в получении прибыли от продаж, так как представляет товар в удачном ракурсе. С этой целью устанавливают светильники-даунлайты, карданные и модульные модели, трековые на шинопроводе и другие виды.

Промышленное

Светодиоды используют в производственных цехах, на складских комплексах, животноводческих фермах. Такие источники света способны выдерживать агрессивные условия эксплуатации: температуру более 35 ° и влажность более 80 %, чрезмерное запыление, регулярное механическое воздействие.

Аварийное

Как запасной вариант, при отключении основного освещения, используют светодиодные светильники на промышленных объектах, в медицинских и развлекательных учреждениях, в торговых сетях. Есть полностью автономные модели и те, которые предназначены для подключения к централизованному электропитанию. Также выделяют категорию эвакуационных аварийных светильников, которые указывают выходные пути в экстренных ситуациях (например, при срабатывании пожарной сигнализации).

Консольное (уличное) и архитектурное

Уличные и архитектурные светильники со светодиодами устанавливают на трассах и городских улицах, парках и вдоль пешеходных дорожек.

LED-элементы в составе лент и отдельных источников освещения используют для подсветки фасадов зданий и скульптур. Для получения различных эффектов применяют оптические системы, отражатели, светильники с углом рассеивания до 180 °. Для выделения архитектурных объектов прибегают к гирляндам, а медиафасады, изготовленные на основе модульных сеток, используют для трансляции рекламы и другого контента.

Прожекторное

Светодиоды являются составными элементами современных прожекторов – приборов дальнего действия с большим охватом: спорткомплексов, паркингов, вокзалов. Количество LED-элементов в них составляет от 30 и более, а мощность варьируется от 20 до 100 Вт. Так достигается высокая концентрация светового потока, позволяющая визуально выделить объекты, расположенные на расстоянии в десятках метров.

Выводы: какое оно, светодиодное освещение?

По основным характеристикам – сроку службы, экономичности, экологичности и параметрам светоотдачи – светодиодное освещение превосходит люминесцентное, галогенное и накаливания. Диоды становятся дешевле в производстве, совершенствуются их конструктивные элементы и одновременно с этим увеличивается популярность. Можно уверенно утверждать: за светодиодными источниками – будущее.

Источник: https://interalighting.ru/blog/2515_svetodiodnoe-osveshchenie

Модернизация микроскопа. LED Освещение

Последние 5 лет в вопросе источников света для микроскопии произошла маленькая революция. Практически все известные производители перешли на светодиодные источники света.

Еще несколько лет назад светодиоды начали устанавливать в микроскопы рутинного и учебного классов, а сегодня каждый второй исследовательский микроскоп снабжается мощным светодиодным источником света.

Модернизация микроскопа заменой источника света — и Это очень интересное направление, поэтому, для начала, расскажем почему светодиоды завоевали такую популярность во всех направлениях микроскопии.

Зачем менять старый, но работающий всю жизнь, галогенный осветитель на новый светодиодный?

Ответ кажется неутешительным. Светодиодные осветители ярче, гораздо экономичнее, на порядок дольше служат, а главное, позволяют добиться ранее недоступного разрешения микроскопа. Рассмотрим все по порядку.

Приведенный по мощности спектр светодиодного и галогенного источника света

Относительная спектральная характеристика галогенной лампы (HAL) и белого светодиода (LED)

Замечание: Под светодиодным источником мы будем понимать «люминофорный светодиод» – светодиод, основанный на принципе люминесценции с комбинированием синего (чаще) или ультрафиолетового (реже) полупроводникового излучателя и люминофорного конвертера.

Самая распространённая конструкция такого светодиода содержит синий полупроводниковый чип и люминофор с максимумом переизлучения в области жёлтого цвета. Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии (желто-красное излучение).

Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет два пика – узкий пик в синей и пологий в желтой областях.

Глядя на спектр галогенной лампы и люминофорного светодиода можно сделать некоторые выводы. Во-первых, светодиод работает только в видимом и ближнем УФ и ИК спектре. У него нет огромного «хвоста» в инфракрасном диапазоне, в отличие от галогенного источника.

Этот хвост и обуславливает низкую производительность галогенных ламп – для того чтобы получить высокую яркость в видимом спектре, лампа постоянно должна перерабатывать бОльшую часть электрической энергии в тепло. Низкий КПД галогенного источника света резко увеличивает затрачиваемую мощность.

Возможно, в рамках одного микроскопа это не так сильно скажется в счетах на электричество, но в масштабах клиники или отдела экономия при модернизации микроскопов будет значительная.

Видимый спектр белого люминофорного светодиода и галогенной лампы

Сконцентрируемся на отличиях в видимом спектре. Как вы уже знаете, разрешение микроскопа напрямую зависит от длины волны источника света.

В случае галогенного осветителя максимальная интенсивность находится в желто-красной зоне, в то время как у светодиода есть отчетливый пик в синей области – 450 нм, позволяющий увеличить разрешение микроскопа в полтора раза. Это будет заметно при работе на объективах 50–150х в субмикронном и микронном диапазоне контролируемых размеров.

Цветовая температура при выборе светодиода может варьироваться от 3000 до 6500К, но оптимальным будет подбор цветовой температуры, близкой к галогенному источнику с цветобалансирующим DayLight фильтром – около 4000К.

Постоянство цветовой температуры при изменении интенсивности

При работе на микроскопе вы редко работаете на полной яркости источника, а значение номинальной цветовой температуры галогенной лампы определяется именно для максимально допустимого светового потока. При уменьшении интенсивности галогенного источника (снижение напряжения на лампе) ее цветовая температура уменьшается и свет становится более теплым. При работе с цифровой камерой, вам приходится использовать разный баланс белого при съемке образцов на разных уровнях интенсивности.

Съемка образца с изменением интенсивности галогенного осветителя 12В 100Вт. При падении интенсивности изображение приобретает желто-оранжевый оттенок. Автоматическая экспозиция изменяет выдержку съемки, поэтому яркость всех снимков для нас одинаковая.

Это вносит неудобство в работу, к тому же субъективно, изображения на объективах до 20х кажутся желтее чем на объективах от 50х, так как при работе с большим увеличением вам требуется больше света.

Светодиодные осветители сохраняют цветовую температуру при изменении интенсивности. Изменение интенсивности светодиода происходит за счет изменения скважности напряжения на контактах осветителя.

Изменение скважности в мегагерцовой чистоте не заметно глазу (монитор, перед которым вы сидите тоже обладает светодиодной подсветкой, мигание которой с мегагерцовой частотой вы никогда не заметите). При подернизации микроскопа, мы разрабатываем и интегрируем электрические схемы в штатив вашего микроскопа, с сохранением всех органов управления.

Мы не добавляем внешние блоки и дополнительную коммутацию. Мощный источник света интегрируется на место старой лампы, а привычный вам регулятор яркости подключается к дополнительной схеме устанавливаемой в штатив.

Эквивалентная мощность при равном световом потоке

Узнать требуемую мощность светодиодного осветителя не трудно. Она в должна быть ориентировочно в 10 раз меньше чем мощность галогенного источника. Таким образом, если в микроскопе установлена лампа мощностью 30Вт, светодиода мощностью 3Вт будет достаточно, а светодиод на 10Вт обеспечит тройной прирост интенсивности.

Недостатки светодиодов, с которыми мы успешно справляемся

  • Белые светодиоды в производстве значительно дороже и сложнее аналогичных по световому потоку ламп накаливания, хотя их цена постоянно снижается. Этот недостаток окупается длительностью безотказной работы светодиодных источников света. 20 000 часов – это почти 10 лет непрерывной работы на микроскопе по 8 часов в день.

Источник: https://dmicro.ru/articles/modernizaciya-microskopa-led/

Как отличить хороший светодиод от плохого

Многие из вас знают какие цены предлагают китайцы на светодиодные лампы для  габаритов авто. Одну и туже лампочку можно увидеть по разной цене по 100руб и по 200руб. А фирменные  габаритные лампы или просто хорошие стоят уже от 500руб.

Большинство не видит разницы, кроме как в цене. Ведь в фирменной и китайской стоят практически одинаковые светодиоды. Тут большинство и совершают главную ошибку, на самом деле яркость и срок службы могут отличаться в десятки раз.

  • 1. Размер кристалла
  • 2. Различия по мощности
  • 3. Примеры отличий
  • 4. Проводники
  • 5. Материал основания и вес
  • 6. Разброс параметров
  • 7. Как купить хорошие светодиоды
  • 8. Итоги

Размер кристалла

При близком рассмотрении вы видите темную точку под желтым люминофором, это и есть кристалла. Самой важным параметром всего диода является размер кристалла. От его размеров зависит количество люмен и сила тока, на которой он сможет работать в номинальном режиме.

Единицей измерения служит «mil», это одна тысячная дюйма, в миллиметрах 0,0254. Для удешевления стоимости , ставят лед чип поменьше и дают ток побольше. Он работает поярче, но не долго.

Мощные светодиодные матрицы COB обычно состоят из кристаллов на 1W, их количество соответствует полной мощности. Уменьшение размера,  позволяет оставить количество неизменным.

Соответствие мощности и размера:

  1. 45*45mil = 3W;
  2. 45*45mil = 1W;
  3. 30*30mil = 1W с натягом;
  4. 24*40mil= 0,75W;
  5. 24*24mil = 0,5W;
  6. около 20mil = 0,5W для SMD5730;
  7. около 8mil =0,08W для SMD

Чтобы проверить размер, приходится разбирать светодиод полностью. Убирать прозрачный поликарбонатный колпак, снимать слой желтого люминофора. Затем применяю цифровой штангенциркуль или микрометр, смотря чем удобней подлезть.

Различия по мощности

Многие из вас знают, что есть SMD3528, SMD2835 , SMD5050 , SMD5630 , SM5730 , SMD4014, SMD7014 и считают характеристики всех диодов с таким названием одинаковыми. Эти числа обозначают только размер корпуса и никак не характеризуют электрические параметры.

Источник: http://led-obzor.ru/kak-otlichit-horoshiy-svetodiod-ot-plohogo

Температурный режим белых светодиодов

См. также:
Теплоотводящие материалы на основе карбона
Модуль активного охлаждения SynJet

Большинство светодиодов, в привычном понимании, как кажется не выделяют ощутимого тепла в отличии от многих других источников света, но это не так. На самом деле, правильный температурный режим, возможно, самая важная сторона конструкции светодиодной системы. Особенно это актуально для светодиодов освещения, когда в светильнике сосредоточено большое количество достаточно мощных излучателей. В этой статье рассматривается роль тепла в эффективности светодиодов.

Все источники света преобразуют электрическую энергию в энергию излучения и тепла в различных пропорциях. Лампы накаливания излучают в основном инфракрасное (ИК) излучение с небольшим количеством видимого света. Флуоресцентные и металлогалогенные источники конвертируют бóльшую долю энергии в видимый свет, но также излучают в инфракрасной (ИК), ультрафиолетовой (УФ), и тепловой областях спектра.

Светодиоды производят мало, или вообще не излучают ИК или УФ энергию, но конвертируют только 20% -30% мощности в видимый свет. Остальная мощность преобразуется в тепло, которое должно быть отведено из светодиодного корпуса с помощью основной печатной платы и радиатора, корпуса, или элементов рамы светильника.

Приведенная ниже таблица показывает примерные пропорции, в которой энергия потребляемой мощности преобразуется в тепло и энергию излучения, включая видимый свет, для различных полихромных (белых) источников света.

Оценка коэффициента преобразования мощности, для «белых» источников света

Лампы накаливания† (60 Вт) Флуоресцентные† (обычные линейные) Металлогалогенные‡ Светодиодные*
Видимый свет 8% 21% 27% 20-30%
Инфракрасный 73% 37% 17% ~ 0%
Ультрафиолетовый 0% 0% 19% 0%
Всего лучистой энергии 81% 58% 63% 20-30%
Тепло (теплопроводность + конвекция) 19% 42% 37% 70-80%
Итого 100% 100% 100% 100%

† Из Справочника‡ OSRAM SYLVANIA

* Зависит от эффективности светодиодов. Этот диапазон указан для лучших в настоящее время достижений технологии в цветовых температурах от теплой (150 lm/W) до холодной (100 lm/W). Перспективный план Министерства энергетики США (март 2009) предусматривает увеличение эффективности более чем на 50% к 2025 году.

Почему вопрос теплового режима так важен?

Избыточное тепло непосредственно влияет как на текущую эффективность, так и на изменение эффективности с течением времени наработки. Кратковременные (обратимые) эффекты — это смещение цвета и снижение светоотдачи, в то время как долговременный эффект – это ускоренное снижение светового выхода и тем самым сокращение срока полезного использования светодиода.

ЭТО ИНТЕРЕСНО:  Какой газ в газоразрядных лампах

Световой выход различных цветных монохромных светодиодов по-разному зависит от изменения температуры. Так, наиболее чувствительны к температуре янтарные и красные светодиоды, и наименее чувствительны — синие (см. график).

Эти индивидуальные температурные зависимости могут привести к заметным сдвигам цвета в системах на основе RGB, если рабочая температура отличается от рекомендуемой.

Производители светодиодов тестируют и сортируют (бинуют) свою продукцию по яркости и цвету на основании фотометрических измерений в определенных условиях — при подаче 25 миллисекундного мощного импульса при фиксированной температуре в 25°C. За время действия импульса, температура чипа практически не меняется.

В рабочем режиме, при постоянном токе при комнатной температуре и применении технических мер к снижению температуры, температура светодиодного чипа, как правило, 60°C или выше. Поэтому белые светодиоды будут обеспечивать, по крайней мере, на 10% меньше света, чем указано производителем, а сокращение светового потока для изделий с недостаточным теплоотводом может быть значительно выше.

Время непрерывной работы при повышенной температуре значительно ускоряет процесс снижения яркости (деградацию), что приводит в итоге к сокращению срока полезного использования.

График ниже показывает световой поток в течение долгого времени (экспериментальные данные до 10000 часов и экстраполяция за ее пределами) для двух одинаковых светодиодов при одинаковом токе, но с разницей температуры чипа в 11°C.

Расчетный срок службы (определяется на уровне снижения светового потока на 70%) уменьшился с ориентировочно 37000 часов, до 16 000 часов (57% изменения) при повышении температуры на 11°C.

Тем не менее, производители продолжает улучшать долговечность светодиодов при более высоких рабочих температурах. Например, производители мощных белых светодиодов обычно оценивают срок службы около 50000 часов при 70%-ном снижении светового потока, при температурах чипа не выше 100°C.

Что определяет температуру светодиодного чипа?

Три причины влияют на температуру чипа светодиода в первую очередь: управляющий ток, эффективность теплоотвода и температура окружающей среды. В целом, чем выше управляющий ток, тем больше тепловыделение. Тепло должно быть отведено от чипа, чтобы сохранить ожидаемый световой поток, цвет и срок службы. Количество тепла, которое может быть удалено из системы, зависит от температуры окружающей среды и конструкции теплоотвода.

Типичная светодиодная система высокой мощности состоит из излучателя, печатной платы на металлической основе (MCPCB), а также внешнего радиатора. Излучатель содержит светодиодный чип, оптику с герметизирующим компаундом, теплопроводную подложку (используется для отвода тепла от чипа), и припаян к MCPCB.

MCPCB — это особая разновидность печатной платы с тонким диэлектрическим слоем на металлической подложке (обычно из алюминия). MCPCB механически закрепляется на внешнем радиаторе, который может представлять собой устройство, интегрированное в дизайн светильника. В некоторых случаях, роль радиатора выполняет несущий корпус светильника.

Размер радиатора зависит от количества тепла, которое должно быть рассеяно и теплофизических свойств материала.

Тепловой дизайн и осознание условий эксплуатации являются критическими соображениями при разработке и применении светодиодных светильников для освещения.

Надежность изделия, а следовательно и его коммерческая ценность будут зависеть в первую очередь от дизайна радиатора для отвода тепла и способности свести к минимуму температуру излучателя.

Удержание температуры чипа в нижней области, рекомендуемой спецификацией производителя, необходимо для того, чтобы максимально использовать потенциал производительности светодиодов.

По состоянию на 2011 год, анализ бюллетеней Департамента Энергетики США.
Подборка и перевод — Ланской А.О., ноябрь 2011

Назад к каталогу статей >>>

Источник: https://led-displays.ru/rejim_svetodioda.html

Отличие светодиодов 3528 и 5050 — База знаний Novolampa

Отличие светодиодов 3528 и 5050 — База знаний Novolampa

Организовать светодиодное освещение в квартире, офисе или любом другом пространстве можно с использованием одного из двух наиболее популярных типов чипов — 3528 и 5050. Информация в этой статье поможет сделать выбор, SMD 3528 или SMD 5050. Расскажем, какие лучше и чем 5050 отличается от 3528.

Современные производители и пользователи говорят о светодиодном освещении как о самом технологичном, высоконадежном, экологичном. Светодиоды 3528, 2835, 5050, 5630, 5730 выигрывают в сравнении с галогеновыми, неоновыми и другими приборами прошлого поколения, так как обладают широким спектром применения, считаются экономичными и при этом максимально эффективными по светоотдаче. Подобное описание определенно вызывает доверие.

В статье приведены подробные характеристики LED 5050 и LED 3528, что поможет увидеть разницу светодиодов. Для начала выясним, какой смысл скрывается за англоязычной аббревиатурой SMD. Surface Mounted Devices — так называются устройства поверхностного монтажа. Основное отличие 5050 и 3528 заключается в габаритах. Параметры обозначаются цифрой в названии диода. У LED 5050 ширина и длина совпадают — 5 мм. У LED 3528 соотношение сторон составляет 3,5 х 2,8 мм.

SMD 3528

SMD 5050

Маркировка 3528 означает, что чип располагает одним кристаллом и двумя выводами для подключения. Такие диоды монохромны: воспроизводят один цвет (белый, синий, красный, зеленый, желтый). А еще миниатюрны, благодаря чему ленты/лампы на их базе удобно использовать для точечного освещения — например, если нужно сделать акцент на конкретной детали интерьера.

Приборы, внутрь которых встроены SMD 5050, обладают мощным световым потоком, поэтому легко справляются и с декоративной иллюминацией, и с полноценным освещением. Диод состоит из трех кристаллов и шести выводов для подключения. Форм-фактор и цена чуть больше, чем у предшественника. Зато показатели светоотдачи на площадь светодиода тоже отличаются в лучшую сторону.

Нередко на упаковках 3528 и 5050 встречается обозначение RGB. Так компании помечают, что в конструкции имеются синие, красные и зеленые кристаллы. Управление происходит с помощью контроллера или специального приложения на планшетном компьютере (смартфоне).

Полезно помнить, что в RGB-лентах на основе SMD 3528 каждый элемент отвечает только за один цвет. К примеру, вы хотите получить желтое свечение, соответственно, подключаете красные и зеленые светодиоды. Синие диоды остаются в потухшем состоянии. Следовательно, провалы и разбежка световых пятен неизбежны.

RGB 5050 способы беспрепятственно производить практически любые оттенки и, благодаря смешению, радовать глаза равномерным естественным белым цветом.

Уровень освещённости в условиях полной темноты

Характеристики

В этом блоке приведем основные данные, на которые может обращать внимание потребитель в случае покупки. В каждом пункте представлены два показателя. Первый относится к SMD 3528, а второй — к SMD 5050.

  • Световой поток достигает 5,5 лм / 18,0 лм.
  • Мощность составляет примерно 0,10 Вт на 100 м² / 0,21 Вт на 120 м².
  • Показатель номинального тока — 0,025 А / 0,060 А.
  • Напряжение — 3,2 В / 3,3 В.
  • Угол свечения — 120° / 125°.
  • Внешний вид матрицы SMD 3528 (слева) и 5050 (справа).

Не следует забывать, что спецификации различных фирм могут расходиться. Внимательно читайте инструкцию перед приобретением товара.

Разновидности светодиодов

Рассмотрим светодиодные ленты 3528 и 5050. Их принято разделять по количеству LED-диодов на 1 м, которых традиционно бывает 30, 60, 72, 120, 240 штук.

Ленты выпускаются в том числе под разное напряжение. Более прочих распространены 12-вольтные; 24- и 220-вольтные применяются реже.

Профессиональные модели могут выделяться дополнительными особенностями. Вот некоторые из них:

  • Функция White-MIX пригождается тогда, когда хочется поменять оттенок цветовой температуры с нейтрального на теплый или холодный.
  • Светодиодные ленты типа «Бегущий огонь» создают всевозможные визуальные эффекты, за счет чего удается придумать неповторимый дизайн.
  • Pixel Light DMX открывает пользователю доступ к управлению каждым LED по отдельности с помощью контроллера или компьютера.

Не упускайте из виду такой важный нюанс, как наличие герметичного влаго-, пылезащитного корпуса, если подбираете модель для влажного помещения или открытой территории.

Итоги

Чтобы решить, какие светодиоды подойдут под конкретный запрос — 5050 или 3528, стоит сперва разобраться с задачами. Когда поймете, требуется ли вам акцентная подсветка или основное освещение, предпочитаете вы один цвет или многоцветность, насколько принципиальна высокая яркость свечения, сразу определитесь с моделью. Приобрести продукцию на базе SMD 3528 и SMD 5050 можно в интернет-магазине Novolampa.

Всегда существует вероятность купить модель либо слишком мощную, либо недостаточно мощную. Избежать промаха и лишних расходов позволят предварительный расчет и консультация экспертов Novolampa. Закажите обратный звонок прямо сейчас.

Источник: https://novolampa.ru/baza-znaniy/otlichie-svetodiodov-3528-i-5050/

Хотите вечных светодиодов? Расчехляйте паяльники и напильники. Или домашнее освещение самодельщика

Когда-то давным давно, когда я еще учился в школе, а на дворе был конец перестройки, мой дядя (заронивший в меня интерес к электронике) припер домой сумку вынесенного через проходную завода добра. Собственно, такие сумки он приносил домой вполне регулярно, пополняя запасы, хранившиеся в диване. Диван этот, как вы догадываетесь, манил, и иногда в отсутствии дяди я в него заглядывал с восторгом.

Но кое-что из этой сумки в диван не попало, а попало в мои руки. Дядя мне вручил пачку — штук десять — макетных плат, и новенькую нераспечатанную коробку дефицитных, да и не дешевых в то время светодиодов. Причем светодиоды были не простые: вместо привычной маркировки АЛ-что-то там на коробке стоял код из четырех цифр, как я понял — они были экспериментальные. И они были яркие. По сравнению с привычными АЛ307 или АЛ310 — просто ослепительные.

И их к тому же было много — штук 50.

Идея «куда это богатство применить» возникла моментально: светодиоды были распаяны на одной из макетниц — сколько влезло (влезли не все), и из них вышел великолепный красный фонарь для печати фотографий, который абсолютно не засвечивал фотобумагу даже в упор. Правда, тут же я узнал о том, что «светодиоды не греются» — это вранье, так что ток пришлось снизить вдвое, с 10 мА на светодиод до 5. А еще через полгода успешной эксплуатации узнал и о том, что «светодиоды не перегорают» — это тоже неправда: первый светодиод в сборке погас, оказался пробит. А со временем и весь фонарь пришел в негодность. И вот сейчас я снова слышу из каждого утюга про «вечные» светодиодные лампочки, а дома за неполный год перехода на светодиодные лампы перегорела уже третья по счету.

Почему светодиодные лампочки не вечны?

Да потому что ничего нет вечного. Светодиод, к тому же — штука тонкая. Буквально. В его структуре имеются слои толщиной в считанные нанометры, образующие квантовые ямы.

Диффузия и электромиграция к таким слоям безжалостны — они размывают их, создают дефекты, постепенно снижая световыход и увеличивая вероятность катастрофы в масштабах крохотного кристалла, в котором, к слову, выделяется световая и тепловая энергия, удельное значение которой в расчете на кубический сантиметр p-n перехода можно сравнить разве что с ядерным взрывом (немного утрировано, но сами прикиньте плотность энерговыделения). Чем светодиод горячее, тем все эти негативные процессы будут идти быстрее. А он, как мы уже в курсе, греется. Греется даже тогда, когда через него идет ток в 10 миллиампер. А тем более — когда это мощный прибор, ток через который как минимум 100 мА, а бывает — и ампер, и даже три ампера. И в тепло, не смотря на всю энергетическую эффективность светодиодов, переходит значительная доля от подведенной к светодиоду электроэнергии. От двух третей до трех четвертей. А куда охлаждаться светодиодам в светодиодной лампочке? А некуда, по большому счету. Светодиод сам по себе спроектирован, чтобы его можно было охлаждать. Кристалл припаян к массивному основанию из меди или высокотеплопроводной керамики, у этого основания есть специальная площадка для пайки к внешнему теплоотводу, в роли которой — плата с алюминиевой или медной подложкой. А подложка эта, по идее, должна быть через термопасту прикручена к хорошему радиатору с большой площадью. А прикручена она в лучшем случае к металлическому корпусу светодиодной лампы, площадь которого совершенно недостаточна для рассеивания более чем нескольких ватт тепла, да еще и в закрытом плафоне. В худшем — корпус вообще пластмассовый, и в этот корпус еще попадает тепло от драйвера и от не вышедшего наружу и потерявшегося в недрах лампочки света. Вот и жарятся светодиоды при температуре, превышающей 100, а то и 130°С. И, кстати, не только светодиоды, но и драйвер, который тоже нередко выходит из строя.

Что делать-то?

Одно из трех. Либо мы, оставив на месте старую люстру, ставим в нее лампочки меньшей мощности. Они меньше будут греться и у них больше шансов прожить долго.

Разумеется, в комнате станет темно: мы вернемся во времена, когда в люстре из экономии и пожаробезопасности стояли лампочки по 25 ватт, от которых ушли, поставив на их место пятнадцативаттные энергосберегайки, сделавшие из темной берлоги светлое помещение, в котором приятно находиться. Либо мы покупаем новую люстру, в которую можно вкрутить больше лампочек.

Так мы останемся со светлой комнатой и получим (возможно) более долгую жизнь лампочек. Только на люстру, как и на лампочки, придется потратиться. И, наконец, третий вариант: мы забываем само понятие «светодиодная лампа», как страшный сон и ставим на место люстры специально спроектированный светодиодный светильник.

Продуманный и в плане хорошего использования светового потока (у светодиодных ламп типа «висит груша — нельзя скушать» с этим в приборах, рассчитанных на лампы накаливания, не всегда хорошо — они плоховато светят вбок и назад), и в плане качественного охлаждения.

Рынок

На рынке есть такие светильники. Но по большей части они во-первых, дорогие, а во вторых — страшные. Этакие промышленные штуковины, которые уместны в гараже, цеху, в торговом зале гипермаркета, в офисе, наконец — но не в квартире. Нет, есть и красивые, и дизайнерские очень эффектно выглядящие светильники. Но — во-первых, опять же, цена, а во-вторых, в жертву дизайну принесено охлаждение.

Так, классическая китайская светодиодная люстра-блин — это пятьдесят ватт светодиодов, сидящих на алюминиевой плате в виде кольца диаметром 45 см и шириной сантиметров 8. И — все. Никакого тебе корпуса с оребрением, ничего. И опять-таки, плата в почти наглухо закрытом корпусе. Ну хоть драйвер чуть наружу вынесен. Вердикт: жить будет, как светодиодная лампочка.

Только когда сдохнет, менять придется не лампочку за 150 рублей, а люстру за пять-десять тысяч. В общем, выход, кажется, один: умелые руки.

Самодельный светильник: проектирование

Сразу скажу: светильник будет не на светодиодной ленте и без блютуса. Для начала, оценим, сколько нам нужно света. Тут дело вкуса, но я люблю, когда в жилище светло. Всякий интимный полумрак я люблю в особых случаях, в романтичной обстановке, но в обычной жизни он навевает тоску. Считать можно по-всякому, но я воспользуюсь тем фактом, что с люстрой с пятью энергосберегайками по 15 ватт, дававшими каждая по 950 лм, в комнате было хорошо. То есть 5 килолюмен нам будет достаточно.

Теперь идем на сайт Cree, находим там Datasheet на модули CXA2530. Почему именно на них? Да потому что у меня есть несколько штук таких модулей, и с ними удобно работать: к ним просто припаиваются провода, а сами модули сажаются прямо на радиатор с помощью прилагающегося фланца. А еще их несложно купить — известный китайский интернет-магазин в помощь. У имеющихся у меня модулей бин светового потока Т4, это соответствует номинальному световому потоку 3440-3680 лм.

Сразу 20% от этой цифры отнимаем — они потеряются на рассеивателе. Получаем световой поток 2750-2950 лм, а учитывая, что получается этот поток при мощности около 30 Вт, получаем потребную для освещения мощность (подведенную к светодиодам) около 50 Вт. Поскольку комната у нас длинная, мы уберем люстру из центра и сделаем два одинаковых светильника по 25 ватт.

Приняв КПД светодиодов за 25% (достаточно консервативная оценка — скорее всего, лучше, но уж точно не хуже), выясняем, что в каждом светильнике выделяется 18,75 Вт тепла. И наша задача — выбрать под это тепловыделение радиатор. Вот как мы это сделаем.

Будем исходить из максимальной температуры кристалла = 85°C и температуры окружающей среды = 35°C. То есть = 50°C.

Перепад температуры пропорционален рассеиваемой мощности, а коэффициент пропорциональности называется тепловым сопротивлением: , и измеряется оно в кельвинах (или градусах цельсия) на ватт. В нашем случае тепловое сопротивление кристалл-окружающая среда должно быть равно 2 °С/Вт.

Из чего же состоит тепловое сопротивление? Первый его компонент — это тепловое сопротивление, присущее самому корпусу светодиода. Фирма Cree не дает эту величину в даташите напрямую, предлагая воспользоваться странным графиком, но в ранних публикациях в журналах о выпуске новых светодиодных матриц указывалось значение 0,8 °С/Вт.

ЭТО ИНТЕРЕСНО:  Кто изобрел лампочку Яблочков

Второй компонент общей величины теплового сопротивления — это сопротивление, создаваемое слоем термопасты между корпусом и радиатором. В качестве термопасты мы возьмем старый-добрый Алсил-3, с теплопроводностью = 1,7-2 Вт/м*К. При слое пасты толщиной 50 мкм и площади теплорассеивающей поверхности 2,8 (площадь круга диаметром 19 мм под излучающей поверхностью матрицы) получаем = 0,105 °С/Вт.

Итак, на радиатор у нас остается 1,1 °С/Вт. Исходя из этой цифры, выбираем радиатор, накинув процентов 30 «на вранье», на растекание тепла от маленькой матрицы и на то, что радиатор будет неоптимально ориентирован в пространстве.

Например, нам подойдет профиль АВМ-076 размером сечения 176х40 мм с тепловым сопротивлением куска длиной 100 мм 0,5 °С/Вт. Нам хватит куска этого профиля длиной 80-100 мм. 100 мм — это стандартные куски, имеющиеся в продаже, 80 нужно заказывать у производителя (Виртуальная механика, virtumech.

ru), такой вариант выглядит несколько более эстетичным за счет меньшей ширины.

Осталось выбрать драйвер. Критерии для его выбора — это ток и рабочие пределы выходного напряжения. Мощность 25 Вт получается при токе около 0,7 А, напряжение на матрице при этом составит около 35-36 В.

Конструкция

Перебрав несколько вариантов конструкции светильника, я остановился на рассеивателе из матового полупрозрачного пластика, имеющем вид полуцилиндра. Форма эта получается простейшим способом — за счет крепления изогнутой пластины к боковым сторонам радиатора. Способ крепления достаточно произволен — на винтах с прижимными пластинами, на клею — я воспользовался красным двусторонним скотчем «Момент».

В качестве рассеивателя я применил рассеивающую пленку из подсветки разбитого ЖК монитора — она имеет очень хорошее светопропускание. Можно также заматировать абразивом пленку для печати на лазерном принтере или любую другую плотную пластиковую пленку. Матрица с предварительно припаянными проводами устанавливается с помощью комплектного фланца в центре радиатора с помощью двух винтов М3 (гайки использовать неудобно, так что придется поработать метчиком).

Перед приклеиванием рассеивателя свободную от матрицы плоскую поверхность радиатора рекомендуется оклеить алюминиевым скотчем или окрасить белой краской — это снизит потери света. По поводу термопасты — хотелось бы заметить, что использование темной термопасты не рекомендуется: она процентов на 10 снизит световой поток.

Я это хорошо заметил на двух экземплярах, один из которых я сделал с Алсилом-3, а на второй алсила не хватило и я воспользовался пастой из комплекта кулера фирмы Scythe, имевшей темно-серый цвет. Разница при измерении люксметром очевидна. Также нет смысла использовать более дорогие, чем алсил, термопасты с большей теплопроводностью: и на алсиле падает в худшем случае пара-тройка градусов, погоды они не сделают.

После сборки первого светильника (в котором я использовал радиатор от процессора Pentium II и который поселился в кухне, у него чуть меньшая мощность в районе 15 Вт), я принял решение ставить в светильники для комнаты не одну матрицу, а две — это «размазало» пятно света на рассеивателе и сделало свет более комфортным. Более разумно было бы в таком случае ставить менее мощные модули, скажем, CXA1820.

Модули соединил параллельно, нежелательных последствий в виде неравномерного распределения тока между ними это не вызвало — обе матрицы светятся на глаз одинаково. Но длину подводящих проводов я на всякий случай выровнял. Крепление к потолку у меня — с помощью коромысла из жесткой стальной проволоки диаметром 2 мм, концы которого продеты в отверстия в крайних ребрах радиатора и загнуты.

За центр коромысла зацеплен крючок, прикрепленный к потолку — такой длины, чтобы между натяжным потолком и радиатором оказалось расстояние в пару сантиметров. Драйвер спрятан за натяжным потолком. Если бы светильники делались до потолка, можно было бы в него запрятать и радиаторы. Поверхность радиатора можно покрасить в черный цвет перманентным маркером или тонким слоем из баллончика (толстым не надо — теплоизоляция). А можно и не красить, глаза он особо не мозолит.

Результаты

Светло. Под лампами на высоте столешницы — 450 лк, в середине комнаты 380 лк. Свет комфортный, цветопередача — вполне (правда, на кухне оказалось, что сырое мясо под этим светом выглядит, как-будто его слегка подкрасили черничным соком).

Радиаторы после многочасовой работы теплые, но не горячие. Мерцание равно нулю (заслуга качественных драйверов).

И по ценам: матрицы обошлись в 550 рублей каждая (курс с тех пор, конечно, поменялся), радиаторы — по 600 рублей, драйвера — по 250 рублей, пленка досталась бесплатно.

Итого — 2200+1200+500 = 3900 рублей. Плюс два-три часа работы.

Источник: https://habr.com/ru/post/437420/

Светодиод или галоген?

Что выбрать? Светодиодные или галогенные лампы? Светодиодные слишком дорогие, светодиодные слишком синие, яркость у светодиодов не регулируется и т.д ..? Да Мы тоже слышали эти устаревшие мнения Правда состоит в том, что многие низкокачественные, дешевые светодиодные лампы не достаточно хороши и не являются диммируемыми.

Цены на светодиодные лампы снизились, а мощность и световой поток в люменах выросли, благодаря чему этот выбор хорош как никогда.

Так зачем покупать галогенные лампы, потребляющие энергию, или энергосберегающие лампы, наполненные ртутью, которые не будут работать зимой..? Скажите «нет» непрерывным заменам ламп (и тем высоким потолкам?!) или огромным счетам за электроэнергию!

Смотреть подробную информацию об экономии и преимуществах (Pdf 57kt)

Сравнительная таблица

Галогенные лампы Светодиодные лампы
Ресурс 2500 часов           Ресурс 50 000 часов
Срок службы 1X Срок службы 25X
Рабочая температура 250°C Рабочая температура 70°C
Энергопотребление 50 Вт (5,5X) Энергопотребление  9 Вт (1X)
Световой поток 500 Лм/1 м2 Световой поток 600 Лм/1 м2
Световая эффективность 12 Лм/Вт Световая эффективность 90 Лм/Вт
Спектр – только один цвет Спектр – множество вариантов
Обслуживание – плохо  Обслуживание – хорошо 
УФ/ИК излучение – Да УФ/ИК излучение – Нет
Тяжелые металлы – Да Тяжелые металлы – Нет
Ударопрочность – Нет Ударопрочность – Да
Цена — Низкая Цена – Высокая
Расходы в течение всего срока эксплуатации – Высокие Расходы в течение всего срока эксплуатации – Низкие

Температура

Галогенные лампы вырабатывают много тепла (> 250°C), что может быть вредно для освещаемых объектов и поверхностей. Понятно, что поскольку галоген нагревается, появляется опасность, если свет вступает в контакт с легковоспламеняющимися тканями или при случайном прикосновении к лампе.

Необходимость установки противопожарного экрана внутри потолка и еще большего снижения уровня потолка из-за природы галогенов также являются недостатками. Светодиоды, с другой стороны, безопасны при прикосновении, даже если работают часами напролет.

В общественных местах вы даже экономите на вентиляции, так как светодиоды не нагревают помещение, поэтому нет необходимости в дополнительном охлаждении.

Счета за электроэнергию

Светодиодной лампой мощностью 9 Вт вы можете заменить галогенную лампу мощностью 50-75 Вт. Галогенные лампы вырабатывают инфракрасное излучение, поэтому большая часть энергии уходит в тепло, а не свет. Со светодиодами вы можете сэкономить до 80% расходов на электроэнергию.

Отсутствие УФ-излучения

Кварцевая нить накала, из которой, в основном, состоят галогенные лампы, излучает большое количество УФ-лучей, которые требуют наличие на лампе стекла, а также аккуратного производства. Светодиод не излучает УФ-лучей и безопасен для использования даже в музеях и художественных галереях.

Ресурс

Производители галогенных ламп (крупные) обеспечивают ресурс в 2500 часов (несколько лет с потреблением 4 часа в день). Светодиодные лампы (в основном) имеют срок службы 50 000 часов (34 года с потреблением 4 часа в день). Представьте себе, сколько вы сэкономите, когда не нужно будет приобретать новые лампы в ближайшем будущем!

Цвет светового потока

Цветовая температура галогенных ламп составляет от 2800K до 3500K в зависимости от производителя и типа лампы. Светодиоды предлагают вам широкий выбор в зависимости от продавца. В основном мы продаем лампы с цветом 3000K или 4000K, но у нас также есть 3500K (светодиодные ленты 17 Вт/м), а также RGB-полоски с целой палитрой цветов! Светодиод хорошо сохраняет цветовую температуру, в то время как галоген – нет, и температура начинает меняться довольно быстро.

Отсутствие пассивных недостатков

Нить накала галогенной лампы находится под давлением, что является недостатком. Нельзя касаться галогенной лампы голыми руками, чтобы поменять лампу, нужно надевать перчатки, так как отпечатки ваших рук на лампе сокращают срок ее службы.

Когда срок службы галогенной лампы подходит к концу, иногда она может даже взорваться (стекло разбивается), а горячие осколки могут разлететься по вашей квартире.

Светодиодные лампы изготавливаются по-другому, внутри у них нет движущихся частей, поэтому они прочны, ударопрочны и безопасны для прикосновения.

Источник: https://ledfin.ru/svetodiod-ili-galogen

Виды светодиодов: разделение по классам и типам

В настоящее время светодиоды обрели широкую популярность. При этом четко разделить их по мощности, яркости свечения, области применения, форм-фактору и другим параметрам не представляется возможным, поскольку у каждого производителя своя классификация. Тем не менее, различные виды светодиодов можно объединить в классы по некоторым характерным признакам.

Индикаторные и осветительные LED

Чтобы яснее представлять, какие бывают светодиоды, их можно разделить на две большие группы: индикаторные и осветительные.

Индикаторные используются в основном в целях цветовой индикации, а также при подсветке дисплеев, приборных панелей и других приборов. То есть это светодиоды сравнительно небольшой мощности (до 0.2 Вт) с умеренной яркостью.

Осветительные LED используются при освещении помещений в составе светодиодных ламп и лент, в автомобильных фарах и везде, где требуется получить высокую интенсивность свечения. Мощность таких светодиодов может достигать десятков ватт.

Индикаторные LED

Индикаторные светодиоды, в свою очередь, можно разбить на несколько групп.

DIP светодиоды

Светодиоды этого типа представляют собой светоизлучающий кристалл в выводном корпусе, часто с выпуклой линзой. Типы корпусов: цилиндрические, диаметром 3, 4, 5, 8, 10 мм, и прямоугольные.

Выпускаются в очень широком диапазоне цветов – вплоть до ИК и УФ диапазонов. Могут быть как одноцветными, так и многоцветными (когда в одном корпусе сосредоточено несколько кристаллов разных цветов), — например, RGB.

Одним из недостатков этих LED можно отметить невысокий угол рассеяния светового потока: обычно не более 60⁰.

Super Flux “Piranha”

Конструктивно светодиоды Пиранья представляют собой сверхъяркие светодиоды в прямоугольном корпусе с четырьмя выводами. Такая конструкция позволяет надежно закрепить светодиод на плате.

Доступные разновидности: красный, зеленый, синий и три белых (различаются температурой свечения). Выпускаются в корпусах с линзой (3 и 5 мм) и без нее. Угол рассеяния варьируется в пределах от 40⁰ до 120⁰.

Область применения Piranha – подсветка автомобильных приборов, дневных ходовых огней, рекламных вывесок и т.д.

Straw Hat

Наряду с Piranha, большим углом рассеяния светового потока обладают светодиоды типа Straw Hat («соломенная шляпа»). Внешне они напоминают обычные цилиндрические двухвыводныне LED, но с меньшей высотой и увеличенным радиусом линзы, за что и получили свое название.

Излучающий кристалл в этих светодиодах расположен ближе к передней стенке линзы (не забудьте почитать про назначение линзы для светодиода), благодаря чему достигается угол рассеяния порядка 100-140⁰.

Выпускаются красные, синие, зеленые, желтые и белые LED. Благодаря способности создавать ненаправленное излучение, могут использоваться в декоративных целях, в качестве замены ламп аварийной тревоги и других местах, где требуется равномерная подсветка с низким энергопотреблением.

SMD светодиоды

Кроме выводных LED, выпускаются светодиоды типа SMD. Сюда следует отнести сверхъяркие цветные и белые светодиоды мощностью около 0.1 Вт в корпусе для поверхностного монтажа. Размеры корпусов обычно стандартные для любых элементов типа SMD: 0603, 0805, 1210 и т.д., где маркировка обозначает длину и ширину в сотых долях дюйма или в миллиметрах. При этом существуют как разновидности с выпуклой линзой, так и без нее.

Благодаря простоте монтажа, на основе этих LED выпускаются светодиодные ленты. Например, широкую известность в этой области приобрел светодиод Cree SMD 3528.

Осветительные LED

Эти светодиоды применяются при освещении помещений и улиц в составе фонарей, автомобильных фар, светодиодных лент и т.д. В связи с этим обладают большой мощностью, высокой интенсивностью излучения, и выпускаются только в белом цвете в корпусах для поверхностного монтажа.

Обычно производятся две разновидности, различающиеся цветовой температурой: cool white (холодный белый) и warm white (теплый белый).

Поскольку кристаллов, излучающих белый свет, в природе не существует, при производстве осветительных светодиодов прибегают к различным технологиям смешения трех базовых цветов (RGB). От способа их сложения зависит цветовая температура получаемого белого света.

Одним из способов получения белого свечения является покрытие излучающего кристалла тремя слоями люминофора, причем каждый слой отвечает за свой базовый цвет. Другой метод состоит в нанесении двух слоев люминофора на кристалл голубого цвета.

Осветительные SMD LED

Большинство осветительных светодиодов также выпускаются в корпусах SMD. В отличие от индикаторных, характеризуются большей мощностью и производятся только в белом цвете.

Стоит отметить, что некоторые осветительные LED небольшой мощности, например упомянутые выше SMD 3528, могут использоваться в качестве индикаторных, поэтому здесь разделение на типы довольно условное.

Основная область применения SMD – светодиодные ленты и лампы, переносные фонари, фары автотранспорта. При этом они дают довольно направленное излучение (порядка 100⁰-130⁰), поэтому при освещении больших территорий приходится использовать большое количество этих LED для равномерной засветки площади.

Конструктивно осветительные SMD представляют собой покрытый люминофором излучающий кристалл на теплоотводящей подложке, обычно медной или алюминиевой. Встречаются как разновидности с линзой, так и без нее.

COB светодиоды

Большое распространение получили светодиоды типа COB (Chip On Board, чип на плате). По сути, это интеграция большого количества (обычно несколько десятков) кристаллов SMD в одном корпусе, которые потом покрываются люминофором.

На картинке вверху показаны для сравнения Cree SMD 5050 (слева) и COB – матрица из 36 чипов (справа).

COB используются только для освещения. Их световой поток на порядок больше, чем у одиночных SMD. Однако следует учесть, что эти светодиоды не подойдут для создания узконаправленного излучения ввиду большого угла рассеяния светового потока. При этом создать абсолютно ненаправленное излучение тоже не получится – угол рассеяния светодиодов менее 180⁰.

Замечено, что некоторым людям неприятен спектр свечения светодиодов типа SMD или COB. Кроме того, недостаточное количество светодиодов при засветке больших площадей приводит к тому, что освещенность носит дискретный характер, то есть сильно освещенные участки чередуются со слабо освещенными. Это нужно учитывать при выборе осветительных LED.

Filament LED

Этот тип светодиодов также используется пока только для освещения. Широкое распространение получили в качестве декоративной подсветки помещений. Спектр свечения, в отличие от SMD и COB, гораздо приятнее человеческому глазу и напоминает свет лампы накаливания. При этом сохраняются все присущие LED достоинства: низкое энергопотребление и долгий срок службы.

В этом ролике демонстрируется сравнение декоративной лампы накаливания мощностью 40 Вт и лампы Filament на 4 Вт:

Здесь видно, что при мощности в 10 раз меньше, световой поток, отдаваемый лампой Filament, в 3-4 раза больше.

В то же время КПД Filament даже выше, чем у тех же SMD, — при одинаковой мощности первые позволяют получить большую освещенность. Это достигается за счет технологии COG (Chip On Glass, чип на стекле), при которой светоизлучающие кристаллы устанавливаются на стеклянную подложку, а затем покрываются люминофором.

Сама подложка имеет цилиндрическую форму, что позволяет получить угол рассеяния светового потока 360⁰. То есть такие LED очень хороши при создании ненаправленного излучения.

Лазерные диоды

И напоследок еще об одном типе, который нельзя отнести ни к индикаторным, ни к осветительным LED, – лазерный диод. Собственно, светодиодом его можно считать с натяжкой, поскольку по технологии производства он не имеет ничего общего с обычными LED.

Лазерные диоды представляют собой особым образом обработанные полупроводниковые кристаллы, которые при подаче напряжения генерируют очень узкий пучок света. При этом образцы нового поколения позволяют получить угол расхождения луча в пределах 5-10⁰. Встречаются как модели, работающие в видимом диапазоне, так и вне его (УФ и ИК).

Широкое применение эти диоды нашли в лазерных указках, целеуказателях, DVD-приводах, оптических компьютерных мышах, линиях оптоволоконной связи.

Заключение

Четко классифицировать все многообразие светодиодов достаточно сложно, поскольку редко те или иные LED производятся для каких-то конкретных целей. Тем не менее, основные направления их применения, — индикация и освещение, — пока остаются прежними, и приведенная здесь классификация подойдет для создания общего представления о видах светодиодов.

Источник: http://ledno.ru/svetodiody/vidy-led.html

Понравилась статья? Поделиться с друзьями:
Электро Дело