Для чего нужен дроссель в лампах

Дроссель для люминесцентных ламп: схема подключения

Для чего нужен дроссель в лампах

» Освещение

Несмотря на повышение спроса на светодиодные источники света, люминесцентные лампы все еще остаются на пике популярности. Во многом это объясняется относительно небольшой стоимостью осветительного устройства и пускорегулирующего аппарата (далее ПРА), необходимого для его работы. Рассмотрим функциональное назначение и принцип работы последних.

Основные функции

Люминесцентные источники света не представляется возможным напрямую включить в электрическую сеть. На это имеются следующие причины:

  • чтобы создать стойкий разряд в лампе люминесцентного типа, необходимо предварительно разогреть ее электроды и подать на них стартовый импульс;
  • поскольку источники света газоразрядного типа обладают отрицательным дифференциальным сопротивлением, для них характерно после выхода в рабочий режим возрастание силы тока. Его необходимо ограничивать, чтобы не допустить выхода источника света из строя.

Исходя из описанных выше причин, необходимо использовать  ПРА.

ПРА электромагнитного типа

Принцип работы

Рассмотрим принцип работы электромагнитного дросселя на примере типичной схемы подключения для ламп газоразрядного типа .

Типичная схема подключения

На схеме обозначены:

  • EL – лампа газоразрядного (люминесцентного) типа;
  • SF – стартер, он представляет собой устройство состоящее из колбы, наполненной инертным газом, внутри нее находятся контакты из биметалла. Параллельно к колбе установлен конденсатор;
  • LL –дроссель (электромагнитный);
  • спирали лампы (1 и 2);
  • C – конденсатор (компенсирует реактивную мощность), его емкость зависит от мощности лампы, ниже показана таблица соответствия.
Мощность газоразрядного источника (Вт) Емкость конденсатора (мкФ)
15 4,50
18 4,50
30 4,50
36 4,50
58 7,00

Встречаются устройства, в схемах которых отсутствует компенсирующий конденсатор,  это недопустимо, поскольку реактивная нагрузка приводит к следующим негативным последствиям:

  • происходит увеличение потребляемой мощности, что приводит к повышенному расходу электроэнергии;
  • существенно сокращается ресурс оборудования.

Теперь перейдем непосредственно к принципу работы, приведенной выше типовой схемы. Условно ее можно разделить на следующие этапы:

  • при подключении к электросети, через цепь дроссель «LL» – спираль « 1» – стартер «SF» – спираль «2» начинает проходить ток, сила которого от 40 до 50 мА;
  • под воздействием этого процесса в колбе стартера ионизируется инертный газ, что приводит к повышению силы тока и разогреву биметаллических контактов;
  • нагревшиеся электроды в стартере замыкаются, это вызывает резкое повышение силы тока, примерно до 600 мА. Дальнейший его рост ограничивает индуктивность дросселя;
  • за счет увеличившейся силы тока в цепи происходит разогрев спиралей (1 и 2), в результате чего ими излучаются электроны, разогревается газовая смесь, что приводит к разряду ;
  • под воздействием разряда возникает ультрафиолетовое излучение, которое попадает на покрытие из люминофора. В результате он светится в видимом спектре;
  • когда источник света «зажигается», его сопротивление уменьшается, соответственно, понижается напряжение на дросселе (до 110 В);
  • контакты стартера остывают и размыкаются.

Тандемное подключение

Ниже показана схема, где две лампы люминесцентного типа включены последовательно.

Схема тандемного подключения

Принцип работы у представленной схемы не отличается от типового подключения, единственная разница — в параметрах стартеров. При двухламповом подключении применяются стартеры, у которых «пробивное» напряжение 110 В (тип S2), для однолампового – 220 В (тип S10).

Стартеры S10 и S2 на 220 и 110 В соответственно

Особенности дросселей электромагнитного типа

Говоря об особенностях электромагнитных ПРА, необходимо заметить, что единственные преимущества этих устройств – относительно невысокая цена, простая эксплуатация и несложный монтаж. Недостатков у классической схемы подключения значительно больше:

  • наличие громоздкого и «шумного» дросселя;
  • стартеры, к сожалению, не отличаются надежностью;
  • наличие эффекта стробирования (лампа мерцает с частотой 50 Гц) вызывает повышенную утомляемость у человека, что приводит к снижению его работоспособности;
  • при вышедших из строя стартерах проявляется фальстарт, то есть лампа, перед тем как «зажечься», несколько раз мигает, это снижает рабочий ресурс источника света;
  • примерно около 25% мощности расходуется на электромагнитный балласт, в результате существенно снижается КПД.

Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков.

Пускорегулирующий аппарат электронного типа (ЭПРА)

Массово ЭПРА появились  не так давно, около тридцати лет назад, в настоящее время они практически вытеснили электромагнитные устройства. Этому способствовали многочисленные преимущества перед классической схемой включения, назовем основные из них:

  • повышение световой отдачи ламп люминесцентного типа благодаря высокочастотному разряду;
  • отсутствие шума, характерного для низкочастотных электромагнитных дросселей;
  • снижение эффекта стробирования значительно расширило сферу применения;
  • отсутствие фальстарта увеличивает срок эксплуатации люминесцентных источников;
  • КПД может достигать 97%;
  • по сравнению с ПРА электромагнитного типа, энергопотребление снижено на 30%;
  • нет необходимости компенсировать реактивную нагрузку;
  • в некоторых моделях электронных устройств предусмотрено управление мощностью источника освещения, это производится регулировкой частоты в преобразователе напряжения.

ЭПЛА внешний вид и внутренне устройство

Стоит также отметить: благодаря отсутствию громоздкого дросселя, стало возможным уменьшить размеры электронного балласта, что позволило  разместить его в цоколе. Это существенно расширяет сферу применения, делая возможным использование в осветительных приборах вместо источников, в которых используется нить накала.

ЭПРА, размещенный в цоколе

В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств.

Схема типичного ЭПРА

Перечень элементов:

  • номиналы резисторов: R1 и R2 -15 Ом, R3 и R4 – 2,2 Ом, R5 – 620 кОм, R6 – 1,6 Мом;
  • используемые конденсаторы: C1 – 47 нФ 400 В, С2 – 6800 пФ 1200 В,  С3 – 2200пФ, С4 – 22 нФ, С5 – 4,7 мкФ 350 В;
  • диоды: VD1-VD7 – 1N400;
  • транзисторы: Т1 и Т2 – 13003;
  • диодный симистор VS – DB3.

Завершая тему ЭПРА, необходимо заметить — их существенным недостатком является относительно высокая стоимость качественных устройств. Что касается недорогих моделей, надежность таковых оставляет желать лучшего.

Подключение без балласта

При необходимости газоразрядные источники света возможно включить в сеть питания без электромагнитного или электронного балласта. Схема такого включения показана ниже.

Бездроссельный способ подключения

Для реализации такого подключения понадобится:

  • лампа люминесцентного типа – 40 Вт и накаливания – 60 Вт (последняя будет работать как балластное сопротивление);
  • два конденсатора 0,47 мкФ 400 В (играют роль умножителя);
  • диодный мост КЦ404А или аналогичный, можно использовать четыре диода, рассчитанных под ток не менее 1 А и обратное импульсное напряжение 600 В.

Данная схема проигрывает по своим параметрам подключению при помощи электромагнитного дросселя и ЭПРА. Она приведена для ознакомления.

Обсудить на форуме

Источник: https://www.asutpp.ru/drossel-dlya-lyuminescentnyx-lamp.html

Какое значение имеет дроссель в люминесцентных лампах

Для чего нужен дроссель в лампах

Дроссель для люминесцентных ламп – это обязательное устройство для нормального функционирования осветительного прибора. Разобравшись в принципе работы такого приспособления можно правильно подключить светильник к электрической цепи самостоятельно.

Для чего нужен?

Люминесцентная лампа не может работать по принципу простой лампы накаливания. Чтобы обеспечить ее функционирование необходимо дополнительное устройство, которое способно создать импульс для электрического пробоя наполненной газом среды. Таким элементом является дроссель. Он поддерживает требуемую мощность в процессе работы светильника.

Чтобы задействовать люминесцентную лампочку необходимо не только обеспечение доступа тока, а и подача напряжения к ней. Для этого подключают дроссель, который ограничивает нарастание движения электрического заряда при подключении к электросети.

Основными функциями ограничивающего ток устройства являются:

  • обеспечение беспрерывной работы лампы независимо от возникающих в электрической сети отклонений напряжения;
  • организация подачи оптимального и безопасного для конкретного светильника тока, способствующего быстрому разогреву при зажигании электродов;
  • стабилизация разрядов тока при номинальных показателях.

С помощью дросселя в люминесцентной колбе происходит формирование разряда за счет образования в обмотке импульса повышенного напряжения.

Технические характеристики

Приобретая дроссель нужно внимательно изучать технические характеристики устройства. Он должен соответствовать параметрам газоразрядного осветительного прибора. Существенную роль играет индуктивность дросселя. Такая величина обозначает индуктивное сопротивление устройства, способствующее регулировке поступающего к светильнику электричества.

Немаловажной величиной является коэффициент потери мощности при поддержке необходимых параметров эклектического питания лампы. Также имеет значение качество изделия.

В основном технические данные отличаются в зависимости от мощности дросселя. Согласно такому значению приспособление делят на три группы – «B», «D» и «C». Некоторые электронные модели имеют показатели климатических условий использования.

Электромагнитный дроссель для люминесцентных ламп

Виды

Дроссели бывают двух видов:

  1. Электронный. Такое приспособление работает без подключения стартера. Основными его достоинствами считаются – высокая скорость включения, небольшие габариты и вес изделия, а также способность обеспечить равномерное свечение лампы без мерцаний. Работает электронный дроссель совершенно бесшумно.
  2. Электромагнитный. Такое устройство для люминесцентных светильников подсоединяется параллельно со стартером. Дроссель электромагнитный имеет несложную конструкцию и надежен в использовании. Такие изделия отличаются невысокой стоимостью. К недостаткам данного приспособления причисляют – длительное включение, наличие характерного шума во время работы, возможность мерцаний при запуске, необходимость установки конденсатора.

Согласно типу сетей, в которые подключаются светильники, дроссели различают:

  • бытовые однофазные устройства – 220 Вольт;
  • трехфазные приспособления для люминесцентных ламп промышленного применения – 380 Вольт.

В некоторых моделях дроссель располагается в специальном кожухе, что позволяет размещать его в светильниках наружного расположения. Многие устройства для обеспечения свечения размещены внутри лампу. Такой вариант позволяет надежно защитить дроссель от влияния различных внешних факторов.

Электронный дроссель для люминесцентных ламп

Устройство и схема

Конструкция дросселя вмещает в себя такие компоненты:

  • сердечник, на который намотана проволока из изолирующего материала;
  • специальная смесь для дополнительной защиты обмоточного провода, изготовлена из устойчивых к возгоранию веществ;
  • термоустойчивый корпус для размещения намотки.

Стандартная схема подключения со стартером – это наиболее простой и распространенный вариант подключения люминесцентных ламп. Несмотря на некоторые недостатки, такое подсоединения имеет хорошие показатели.

Стандартная схема подключения люминесцентных ламп

Подключение

Чтобы подключить дроссель по схеме со стартером следует выполнить несколько простых действий:

  • подсоединить стартер к контактам, которые находятся по бокам на выходе осветительного прибора;
  • на свободные выводы подключить дроссель;
  • конденсатор соединить с питающими контактами.

Подключение всех элементов проводится параллельно. За счет конденсатора можно значительно уменьшить сетевые помехи.

Подключение электромагнитного дросселя к люминесцентной лампе

Как проверить исправность?

Дроссель является достаточно прочным и надежным составным элементом люминесцентной лампы. Поэтому выходит из строя устройство очень редко.

Но все же иногда может возникать обрыв его обмотки или перегорание. Также при нарушении изоляционного слоя между витками дроссель перестает функционировать. Как определить исправность дросселя?

Проверка проводится мультиметром. Прибор, настроенный на величину сопротивления подключают к выводам дросселя. При нарушениях в обмотке на измерительном приборе высвечивается бесконечное сопротивление. Минимальные показатели этого значения свидетельствуют о непригодности изоляции или замыкании между витками.

При перегорании обмотки в катушке ощущается характерный паленый запах, который изначально исходит от детали в процессе ее работы. Все описанные характеристики неисправности дросселя в основном относятся к устройствам электромагнитного типа.

Как заменить?

Иногда при выходе дросселя из строя его начинают ремонтировать. Для этого требуются особые знания и навыки. Чаще всего деталь заменяется. Установку нового дросселя может сделать каждый:

  • полностью отключить подачу электроэнергии в доме;
  • снять дроссель;
  • разъединить крепежи и провода, проводящие к светильнику ток;
  • подключить к ним новый дроссель, вставляя на место старого.

Выполнять замену нельзя при простом отключении лампы, так как напряжение от этого не исчезнет.

Дроссель в люминесцентной лампе – это простой, но необходимый для создания свечения элемент. Имея представление о работе такого устройства можно подключать светильник и заменять в нем нерабочие детали без помощи специалиста.

Источник: https://master-houses.ru/drossel-v-lyuminestsentnyh-lampah-05/

Дроссель для люминесцентных ламп: для чего нужен, виды, схема индукционного, как подключить, принцип работы электромагнитного

Для чего нужен дроссель в лампах

Люминесцентная лампа относится к газоразрядным устройствам. Следовательно, в ее конструкции должен присутствовать элемент, ограничивающий ток. В противном случае сила тока будет нарастать лавинообразно, что несомненно приведет к поломке лампы, а, возможно, и к ее взрыву. Такой ограничитель разработчиками люминесцентных ламп предусмотрен. Его роль играет электронное или электромагнитное устройство – дроссель (или балласт).

Как выбрать нужный вид

Выбрать дроссель к люминесцентной лампе, в первую очередь обращайте внимание на его мощность: она должна совпадать с мощностью светильника.

Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется. Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги.

Еще один вопрос, требующий решения: какой дроссель вы хотите купить – электронный или электромагнитный. Цены на них заметно отличаются.

Cтоимость электромагнитного дросселя в зависимости от мощности начинается примерно со 150 рублей (импортный вариант), а
минимальная цена на электронный дроссель составляет около 500 рублей.

Рекомендуем Вам также более подробно ознакомиться с мощностью люминесцентных ламп.

Электронный дроссель не требует установки стартера в лампу.

Классификация приборов

В люминесцентных лампах могут использоваться электромагнитные или электронные дроссели. Каждому из видов присущи определенные достоинства и недостатки.

Электромагнитные

Электромагнитный дроссель представляет собой катушку с металлическим сердечником. Для обмотки используются медный и алюминиевый провода. От их диаметра зависит нормальная работа светильника. Потери мощности устройства составляют от 10 до 50%.

Чем мощнее люминесцентная лампа, тем меньше процент потерь мощности.

Люминесцентные лампы с электромагнитными дросселями стоят недорого, не требуют дополнительной настройки. Однако электромагнитный дроссель весьма чувствителен к нестабильности электрической сети. Малейшее колебание приводит к мерцанию лампы и повышению уровня шума: светильник начинает гудеть.

Перед зажиганием лампы из-за несинхронности работы дросселя с частотой сети происходят вспышки. Они приводят к ускоренному износу ПРА.

На разогревание электромагнитного дросселя тратится четверть мощности светильника.

Два класса электромагнитных дросселей – D и С – запрещены Европейской комиссией. На данный момент на рынке можно найти люминесцентные лампы с электромагнитными дросселями только классов В1 и В2. Они характеризуются пониженными потерями электроэнергии.

Электромагнитные дроссели имеют право на жизнь, они обеспечивают достаточную надежность светильников. Но сейчас их активно вытесняют электронные балласты.

Рекомендуем Вам также ознакомиться как сделать своими руками блок питания из энергосберегающей лампы.

ЭТО ИНТЕРЕСНО:  Какое количество точечных светильников на квадратный метр

Электронные ПРА

Электронный дроссель имеет более сложную конструкцию. В его состав входят:

  1. Фильтр электромагнитных помех. Гасит электромагнитные импульсы самого светильника и устраняет внешние помехи – от сети.
    выпрямитель: служит для преобразования тока.
  2. Схема коррекции коэффициента мощности. Отвечает за контроль сдвига по фазе переменного тока, который проходит через нагрузку.
  3. Фильтр сглаживающий. Снижает уровень пульсации переменного тока.
  4. Инвертор. Отвечает за преобразование постоянного тока в переменный.
  5. Балласт. Индукционная катушка, участвующая в накоплении энергии, подавлении помех и плавной регулировке яркости свечения.

Некоторые модели ЭПРА оснащаются защитой от перепадов напряжения (колебаний напряжения в электрической сети или ошибочного пуска устройства без лампы).

При включении лампы ток из выпрямителя поступает на буфер конденсатора. Там происходит сглаживание частоты пульсации. Высокое напряжение попадает на инвертор и заряжает микросхемы и конденсаторы.

При достижении напряжения 5,5 В микросхема сбрасывается. Зарядка конденсатора обратной связи (компенсационной) регулируется транзисторами. Как только напряжение достигнет 12 В, система входит в следующую фазу – предварительного нагрева.

Поджиг происходит при минимальном значении напряжения 600 В. Этот процесс происходит всего за 1,7 сек.

В отличие от электромагнитного, электронный дроссель не допускает чрезмерного нагревания осветительного прибора, поэтому возникновения пожара можно не бояться.

Схема подключения с люминесцентными лампами 2х18

Схема подключения ПРА с двумя люминесцентными лампами, мощностью 18В

Для подключения двух ламп мощностью 18W требуется индукционный тип устройства мощностью не менее 36 Вт (подойдет ПРА на 40 Вт) и два стартера S2 на 4-22 Вт.

более подробно про люминесцентный светильник 2х36.

Стартеры подключаются параллельно каждой лампе. В результате будут задействованы по одному контакту-штырю с каждой стороны лампы. Остальные контакты подключаются через индукционный дроссель к питающей электрической сети.

Снизить помехи и компенсировать реактивную мощность можно при помощи конденсатора, подключенного параллельно к питающим контактам осветительного прибора.

Присутствие конденсатора не требуется, если в люминесцентной лампе предусмотрена встроенная защита.

Вариантов, подключения ПРА и ЭПРА множество, поэтому далее приведет несколько понятных рисунков-схем с самыми распространенными видами соединений.

Схема последовательного подключения ламп через дроссельПодключение с использованием дополнительной лампы накаливания (без дросселя)Схема подключения с двумя дросселями

Подключить своими руками

Электромагнитный дроссель можно изготовить и своими руками. Но делается это редко. Гораздо чаще умельцы самостоятельно восстанавливают ПРА, так как приобрести нужную модель не всегда удается (особенно трудно найти ее в «глубинке»).

С устройства снимается защитный чехол и две половинки сердечника (они имеют Г-образную форму). Затем снимается обмотка. Если по каким-то причинам снятие витков провода затруднено, их можно срезать, используя ножовку по металлу.

Для новой обмотки можно использовать медный провод диаметром 0,64-0,8 мм. Тысячу витков наматывают без межслойной изоляции внавал.

Чем больше мощность дросселя, тем проще его восстановить. Маломощные (следовательно, и малогабаритные) дроссели заливаются компаундом, что делает процесс их восстановления весьма проблематичным.

На перемотку дросселя уходит не более двух часов.

Сравнение двух видов дросселей позволяет сделать вывод, что несомненное преимущество имеют ЭПРА. Они легче и меньше по габаритам. Такие характеристики облегчают создание миниатюрных осветительных приборов, потребность в которых неуклонно возрастает.

Данное видео более подробно расскажет Вам про дроссель для люминесцентных ламп.

Источник: https://finelighting.ru/texnologii-i-normy/sistemy/drosseli/vybiraem-podklyuchaem-lyuminescentnyx-lamp-pravilno.html

Дроссели и стартеры для ламп. Зачем нужны и какие выбрать

13.07.2016

Люминесцентные лампы в общественных местах на сегодняшний день практически полностью вытеснили лампы накаливания. В этом нет ничего удивительного, ведь они обладают рядом неоспоримых преимуществ:

— потребляют до 50% меньше энергии

— служат до 15 раз дольше

— окупают свою цену сроком службы

— не взрываются

Для увеличения срока использования и обеспечения бесперебойной работы лампы используются дроссель и стартер.

Зачем нужен стартер и дроссель?

Стартер, как и в машине, — это пусковое устройство, необходимое, чтобы зажечь лампу.

Дроссель стабилизирует работу лампы. Он берет на себя все перепады напряжения.

Как они работают?

Стартер – это колбочка из стекла, наполненная газом и оснащенная двумя электродами. Обычно ее заключают в пластиковый корпус.

Дроссель – это катушка в металлической оболочке. Мощность дросселя должна быть равна мощности лампы.

Вся цепочка работает следующим образом: после начала подачи тока стартер прогревает электроды и увеличивает подачу тока. Затем он размыкает контакт, передавая электричество на дроссель. Дроссель накапливает электричество, которое, при достижении определенного значения, пробивает колбу лампы, обеспечивая свечение газа внутри, лампа загорается. В дальнейшем он поддерживает работу лампы.

Стартер участвует только при включении лампы, пока лампа горит, он не требуется. Некоторые светильники можно включить даже без стартера (это называется холодным стартом), но такой метод включения сильно снижает срок службы лампы. Без дросселя светильник работать не может.

Какие существуют стартеры?

Существует всего три вида стартеров:

Самые популярные и простые – стартеры тлеющего разряда. Представляют собой лампу с биметаллическими электродами. Обеспечивают сравнительно быстрое зажигание лампы.

Более сложные – тепловые стартеры. Они зажигают лампу дольше, что продлевает ее долговечность. Более сложны в подключении.

Полупроводниковые стартеры после прогрева контактов размыкают цепь, создавая импульс в дросселе и лампе.

Каким может быть дроссель?

Дросселей всего два вида – электромагнитные и электронные.

Первые работают при последовательном подключении и требуют обязательно наличия стартера. Имеют серьезный недостаток – лампа с таким дросселем мерцает, создавая повышенную нагрузку на глаза.

Дроссели второго вида более современны и обладают большим количеством плюсов: не требуют обязательной установки стартера (холодный старт), уменьшают мерцание во время включения и работы лампы, а также снижают шум.

Какого производителя выбрать?

Источник: https://stv39.ru/articles/?ELEMENT_ID=71951

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Источник: https://sovet-ingenera.com/elektrika/svetylnik/drossel-dlya-lyuminescentnyx-lamp.html

Зачем используют дроссель для люминесцентных ламп?

Люминесцентные лампы в качестве источника света достаточно часто можно встретить как в просторных общественных местах, так и в квартирах. Столь большой спрос на них обусловлен, прежде всего, их экономичными свойствами. Если провести их сравнение с лампами накаливания, то, безусловно, они выигрывают практически по всем параметрам (высокий КПД и высокая светоотдача, долговечность).

Но есть одно но, которое в некоторой степени может, является как преимуществом, так и недостатком. Это наличие дросселя и стартера. В данной статье речь пойдет как раз о дросселе.

Попробуем разобраться, для чего нужен дроссель для люминесцентных ламп, какой у него принцип работы, уделим внимание техническим характеристикам, составным компонентам, видам дросселей, а также рассмотрим другие не менее важные вопросы.

Для чего нужен

Для нормальной работоспособности источника света, чего нельзя сказать про обычные разрядные лампы, нужен дроссель, роль которого будет заключаться в выполнении пускорегулирующей функции в люминесцентных лампах.

Такой светильник при помощи одного электроснабжения включить не получится. Для него требуется вспомогательный пускорегулирующий элемент – дроссель.Поэтому в модель включения обязательно в качестве балласта добавляют сопротивление.

Роль сопротивления заключается в ограничении тока. При излишнем нагревании светильника, у дросселя срабатывает реактивное сопротивление, которое как раз и ограничивает подачу тока.

Сопротивление дросселя, можно сказать, сбавляет обороты лавинообразного нарастания тепла при включении источника света в электросеть.

Дроссель является неотъемлемым элементом люминесцентного устройства, функции которого состоят в следующем:

  • создает безопасное и достаточное поступления тока, для дальнейшего разогрева электродов лампочки при ее включении;
  • за счет импульса высокого напряжения, который образуется в обмотке, появляется разряд в колбе люминесцента;
  • стабилизирует разряд электротока;
  • предоставляет бесперебойное функционирование лампы даже в ситуации периодические случающихся отклонений напряжения в сети.

Одной из важнейших характеристик дросселя является его индуктивность или индуктивное сопротивление, благодаря которому функционируют люминесцентные источники света. При покупке ограничителя необходимо внимательно ознакомиться с его техническими характеристиками, которые полностью должны отвечать характеристикам лампы.

Устройство

Устройство дросселя для люминесцентных ламп включает в себя следующее составляющие: сердечник, сделанный из электротехнического сплава, медный провод и кожух. Выглядит это следующим образом: на сердечник наматывается медный провод, а кожух служит для них окантовкой.

Механизм разбора ограничителя на составные части, сводить к следующим простым действиям:

  • убирается окантовка;
  • раскручивается провод;
  • в результате остается только сердечник, состоящий из пластин.

Производить расчёт катушки индуктивности нужно только тогда, когда идет подключение сразу нескольких источников света либо если дроссель люминесцентной лампы составляется согласно установленным показателям.

Как зажечь без дросселя

На практике бывают случаи, когда катушка индуктивности выходит из строя. Возникает вопрос: «Как можно подключить люминесцентную лампу через дроссель?» Однако, здесь есть выход – с помощью постоянного тока повышенного номинала люминесцентная лампа может быть включена и без дросселя либо стартера. У такого способа есть, конечно, свои недостатки, однако, для экстренной ситуации вариант неплохой.Подключение люминесцентной лампы без дросселя  приведено ниже.

Подключение люминесцентной лампы без дросселя.

Чтобы разобраться, как работает подключение светильника без ограничителя необходимо понять механизм розжига самого источника света.Такой тип подключения производиться с заранее замкнутыми попарно контактами светильника с обеих сторон. Целая спираль либо нет, значения не имеет.

На один контакт светильника подается положительный электрический заряд, а на другой контакт – отрицательный заряд. Долговечность от такого способа так называемой «реинкарнации» конечно снижается. Но в основном таким способом подключают уже сгоревшие источники света.

ЭТО ИНТЕРЕСНО:  Что грозит за установку светодиодных ламп

Особо сильным разнообразием данный тип подключение газоразрядных ламп без катушки индуктивности похвастаться не может. Разве что, для такого способа подключения необходима будет большое поступление повышенного напряжения во время запуска источника света.

То насколько напряжение будет повышенным, зависит от технических параметров самой лампы и электросети, в которую она будет подключать

Как проверить исправность

Принцип проверки ограничителя достаточно прост. Все, что нужно сделать, это достать его из люминесцентной лампы и проверить сопротивление дросселя при помощи тестера либо мультиметра.У ограничителя, находящегося в исправном состоянии, сопротивление на тестере покажет определенное постоянное значение.

Если ограничитель все же неисправен, то тестер покажет значение, которое будет значительно отличаться от нормальных показателей, выходить за норму.

Таким образом, сбой в работе дросселя может быть обусловлен обрывом либо перегоранием окантовки, а также может произойти ввиду того, что нарушена изоляция между витками провода.

Причиной сбоя может служить обрыв либо перегорание окантовки, если значение напряжения на тестере будет бесконечно высоким. О перегорании также свидетельствует неприятный запах, который особенно ощутим во время включенной лампы.Если же значение напряжение на тестере слишком низкое, то в данном случае подозрение о нарушении изоляции провода полностью находит свое подтверждение.

Как заменить

Заменить дроссель в люминесцентной лампе, благодаря его компактности, очень легко. Прежде чем приступать к демонтажу дросселя, нужно отключить электричество в помещении, поскольку простого выключения лампы будет не достаточно, для того, чтобы напряжение в лампе спало. Достаточно просто снять крепеж и отсоединить провода, поставить новый дроссель и вновь подсоединить провода в том же порядке, в каком они были соединены изначально.

Источник: https://lightgid.ru/osvetitelnye-ustanovki/zachem-ispolzuyut-drossel-dlya-lyuminestsentnyh-lamp

Как проверить дроссель с мультиметром и без него. Все причины неисправности ПРА и ЭПРА

Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.

Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?

Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.

Вот так она выглядит в разрезе.

В схемах балласт нужен для трех функций:

  • контроля тока, чтобы он не превышал номинала
  • образование за счет индуктивности кратковременного импульса повышенного напряжения
  • сглаживания возможных пульсаций в сети 220В

Подключается он последовательно, а параллельно ему монтируется стартер.

Стартер необходим для поджига лампы.

Как работает лампа дневного света

Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.

После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.

Из-за нагрева форма электрода меняется и происходит его замыкание.

В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.

У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.

От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.

Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.

Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:

  • подача 220В из розетки и замыкание контактов стартера
  • разогрев спиралей электродов
  • размыкание контактов стартера
  • подача высоковольтного импульса от дросселя
  • образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы

Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:

  • сама лампочка
  • стартер
  • дроссель

При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.

Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?

Как проверить дроссель ПРА без мультиметра

Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.

О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.

Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.

В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.

Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.

Подключаете ее последовательно по следующей схеме с ПРА и смотрите как она светит.

  • если не горит совсем – в балласте обрыв, дроссель неисправен
  • горит ярко – в балласте межвитковое короткое замыкание
  • моргает или светит в половину накала – дроссель исправен

Проверка балласта ПРА мультиметром

Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.

Повреждение дросселя может быть пяти видов:

  • замыкание витков в одной обмотке
  • неисправность магнитопровода

Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.

Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.

При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.

Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.

Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:

а на выходе свечения нет:

то считайте что обрыв вы нашли.

Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.

Но изоляция может высохнуть или нарушиться.

Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.

Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.

Найти такое повреждение очень трудно, даже при помощи мультиметра.

Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.

Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.

Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:

  • мощностью на 20Вт — сопротивление от 55 до 60 Ом
  • мощностью на 40Вт – сопротивление от 24 до 30 Ом
  • мощностью на 80Вт – сопротивление от 15 до 20 Ом

Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.

При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.

Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.

Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.

Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.

О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.

Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.

Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.

Повреждение электронного дросселя

А если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку.

Все современные модели выпускаются с электронными дросселями без стартеров.

ЭПРА расшифровывается как — электронная пуско-регулирующая аппаратура.
У нее множество электронных компонентов напаяны на плату и помещены в один корпус.

Прозвонить мультиметром всего лишь два конца здесь уже не получится. Придется последовательно шаг за шагом проверять все элементы схемы.

Начинать лучше с предохранителя. Вызваниваете его целостность в режиме прозвонки.

Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части.

Еще внимательно проглядите все места пайки. Какие-то ножки могут отвалиться и контакт пропадет.

Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.

Данные сопротивлений берите из таблиц в интернете, согласно их расцветки.

И сравнивайте с теми фактическими замерами, которые у вас получились.

В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя.

Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько.

Источник: https://svetosmotr.ru/kak-proverit-drossel-s-multimetrom-i-bez-nego/

Для чего нужен дроссель для люминесцентных ламп?

Подключение лампы с электромагнитным дросселем

Электромагнитный дроссель находит применение в цепях коммутации люминесцентной лампы.

Назначение дросселя – формирование импульса для пробоя газонаполненной среды и поддержание необходимого напряжения и тока в схеме и на контактах элементов работающего светильника. Принцип работы дросселя основан на способности катушки индуктивности извлекать энергию из источника тока и сохранять ее в виде магнитного поля.

Чтобы выяснить, как работает дроссель, нужно рассмотреть свойства катушки индуктивности. Она плохо проводит переменный ток или совсем не проводит его. Индуктивность измеряется в Генри (Гн) и ее значение можно увеличить путем применения сердечника, оно таким образом повышается в несколько раз.

Во время замыкания контактов выключателя величина тока на катушке постепенно возрастает, а при размыкании сначала растет многократно, а затем плавно уменьшается. В соленоиде этот параметр не изменяется мгновенно.

Дроссель для люминесцентных ламп – это катушка индуктивности с ферромагнитным сердечником. Он находит применение только в электрических цепях, в которых предусмотрено наличие электромагнитного ПРА.

На картинках показана схема подключения газоразрядной лампы низкого давления с использованием электромагнитного дросселя.

  • 2 – электроды лампы;
  • 1 – колба (трубка);
  • Ст – стартер;
  • С1 – конденсатор, находящийся в одном корпусе со стартером;
  • С2 – конденсатор, повышающий коэффициент мощности;
  • Д – дроссель.

Механизм запуска лампы с электромагнитным балластом

При замыкании выключателя ток протекает по следующему пути: «дроссель – электрод лампы – стартер – второй электрод лампы – сеть».

Величины этого тока очень мало для зажигания лампы. Но его значения хватает для нагревания электродов стартера и появления в нем тлеющего разряда. Напряжение этого разряда меньше напряжения сети, но больше напряжения работающей лампы.

Разогретый биметаллический электрод в стартере замыкается со вторым, после чего тлеющий разряд между ними гаснет, электроды остывают и занимают первоначальное положение.

В момент замыкания электродов в стартере ток в схеме значительно возрастает и электроды люминесцентной лампы начинают нагреваться. В то же время при размыкании цепи на дросселе (в результате самоиндукции) происходит скачок напряжения, который, складываясь с входным напряжением сети, создает условия для включения лампы.

К этому моменту температура на электродах лампы успевает повыситься до значения, необходимого для эмиссии, а дросселирующее устройство создает высоковольтный импульс. Поэтому в лампе создаются условия для возникновения тлеющего разряда, который сначала происходит в аргоновой среде до тех пор, пока ртуть, помещенная в колбу, не перейдет полностью в парообразное состояние. После этого разряд будет происходить в ртутных парах, и лампа войдет в стабильный рабочий режим.

Напряжение на работающей лампе меньше сетевого за счет его падения на дросселе. Поскольку для срабатывания стартера напряжение на нем должно превышать величину напряжения на включенной лампе, повторно разряд в этом приборе не зажжется.

Зажигание лампы происходит при условии совпадения по фазе импульса дросселируемого напряжения и напряжения сети. Но поскольку совпадения этих значений относительно разбросаны по времени, стартер может срабатывать неоднократно перед тем, как лампа войдет в рабочий режим. В этом случае наблюдается мигание лампы в процессе включения. Одновременно в стартере создаются радиопомехи, для подавления которых служит конденсатор, находящийся в общем со стартером футляре.

Так выглядит электромагнитный дроссель

Это означает, что кроме зажигания этого осветительного прибора дроссель необходим для ограничения возрастания тока разряда до величины, при достижении которой лампа выходит из строя.

Все, изложенное выше, объясняет, для чего нужен дроссель.

В результате того, что он ограничивает ток в схеме работающей лампы, он представляет собой дополнительную нагрузку (балласт) и на нем теряется какая-то часть мощности. По уровню этих потерь дроссели делятся на следующие классы: D – с обычными; C – с пониженными; B – с особо низкими.

Потери мощности в дросселях
Класс Потери мощности, Вт
дросселя С лампой С лампой С лампой
18 Вт 36 Вт 58 Вт
D 12 10 14
С 10 9 12
В2 8 7 9
В1 6 6 8

В силу физических свойств дросселя на нем происходит сдвиг по фазам между напряжением и током. Ток отстает от напряжения на величину, которую принято обозначать как cos φ. Чем выше его значение, тем экономичнее прибор, и наоборот, при понижении этой величины энергоэффективность снижается.

На рисунке показан график изменения тока и напряжения на люминесцентной лампе и лампе накаливания.

Основные виды дросселей

  • Электромагнитный дроссель для лампы, который подключается последовательно с лампой и в схеме необходимо наличие стартера.
ЭТО ИНТЕРЕСНО:  Как правильно установить точечные светильники для натяжных потолков

К его достоинствам можно отнести низкую стоимость, простоту конструкции и достаточную надежность.

Недостатки: возможность появления шума и мерцания во время работы и при запуске; довольно продолжительный процесс включения; необходимость подключения конденсатора для снижения потерь.

Мощность дросселя должна соответствовать мощности лампы.

  • Электронный дроссель, для подключения которого не нужен стартер.

Положительные качества: быстрое включение; обеспечение работы лампы без миганий; компактность, малый вес.

В результате использования этого вида дросселей снижаются мерцания. Пульсаций при запуске лампы не происходит. Снижается вероятность появления шума при работе.

Дроссели можно разделить на две группы по типу сетей, в которых эксплуатируются лампы:

  1. однофазные (для использования в быту) на 220 В;
  2. трехфазные, которые устанавливаются в светильниках, работающих в сетях на 380 В. Это светильники для освещения промышленных предприятий, улиц и объектов сельскохозяйственного профиля.

Все эти виды дросселей также можно разделить по месту их расположения:

  • находящиеся внутри корпуса светильника, который обеспечивает им защиту от неблагоприятных факторов внешней среды и атмосферы;
  • помещенные в специальный кожух. Такое герметичное исполнение позволяет устанавливать эти приборы в осветительных сетях наружного освещения.

Ремонт светильников с перегоревшими дросселями

Светильники с перегоревшими электромагнитными дросселями можно отремонтировать самостоятельно, заменив отказавший элемент другим, например, применяемым в иных вариантах световой аппаратуры.

Например, в настольных светильниках с ЭмПРА можно использовать плату (с элементами, обеспечивающими горение лампы) от энергосберегающей лампы.

Для этого нужно найти экономичную перегоревшую лампочку (той же мощности, что и у ремонтируемой) с сохранившейся в хорошем состоянии электронной «начинкой».

Перегоревшая энергосберегающая лампа с электронной начинкой

Далее необходимо отделить от лампы цоколь вместе с платой и извлечь саму плату. При этом запомнить, где находятся выводы на высоковольтный конденсатор, на лампу и на входное напряжение питания 220 В.

Отделение платы

Все штырьки, расположенные на плате, и конденсатор (на картинке он зеленого цвета) необходимо выпаять.

Он пойдет в нижнюю, пластмассовую часть цоколя настольной лампы.

Снимаем нижнюю пластину

Для этого снимаем нижнюю пластину в месте, отмеченном на рисунке, и вытаскиваем из вскрытого кожуха находящиеся в нем детали, которые были соединены при помощи латунных трубок с электродами лампы.

Вместо удаленных нами элементов к проводам, идущим на электроды, присоединяем конденсатор, выпаянный с платы, и помещаем во вскрытый кожух. После этого отделенную нами пластину возвращаем на место и приклеиваем клеем.

Присоединяем конденсаторПомещаем во вскрытый кожух

Далее создаем точки соединения штырьковых выводов электродов с проводами, выходящими с преобразующей электронной платы, снятой с энергосберегающей лампы.

Создаем точки соединения штырьковых выводов электродов с проводами

Для этого провода с коммутирующего разъема припаиваем к контактам платы на выходе (на рисунке они находятся слева).

Плату помещаем в защитный корпус.

Зачем это нужно сделать?

Так как элементы на плате находятся под высоким напряжением, в целях электробезопасности нужно закрыть к ним доступ.

Через провода, находящиеся справа на рисунке, в схему подается входное напряжение от сети 220 В.

Для подключения используем вилку и розетку.

Включенная лампа

Включаем созданную конструкцию в сеть. Лампа загорается, светильник работает.

Такие и многие другие самоделки позволяют экономить деньги на покупке товаров, взамен вышедших из строя. При наличии некоторого объема знаний и опыта всегда есть возможность сделать нужные изменения и ремонт светильника своими руками.

Источник: https://lampagid.ru/vidy/lyuminestsentnye/drossel

Подробно о дросселе для люминесцентных ламп

Конструкция люминесцентной лампы такова, что без пускорегулирующего устройства будет очень сложно организовать ее работу. Для этого раньше использовался электромагнитный балласт или ЭмПРА (его основной элемент – дроссель), а сегодня на его смену пришел более совершенный вариант – электронный пускорегулирующий аппарат (ЭПРА). Несмотря на это, сегодня все еще в ходу оба вида приборов.

Где еще применяется?

Дроссель используется все реже, быть может, со временем он выйдет из употребления за ненадобностью. Ведь подключение газоразрядной лампы таким способом является основной сферой применения данного прибора. Дроссель играет решающую роль в работе люминесцентной лампы, так как создает приемлемые условия для работы осветительного прибора данного вида: сдерживает возрастающий ток на определенном уровне, что позволяет поддерживать достаточное значение напряжения на электродах в колбе.

Эта особенность переводит дроссель в разряд балласта. Кроме того, схема подключения люминесцентной лампы содержит еще один элемент – стартер. Он ответственен за размыкание цепи.

Это приводит к возникновению ЭДС самоиндукции в дросселе, что, в свою очередь, способствует повышению напряжения до уровня 700-1000В. Результатом данных процессов является пробой и включение люминесцентной лампы.

Принцип работы и обзор видов

Устройство дросселя для газоразрядных ламп довольно простое: по сути, это катушка индуктивности с ферромагнитным сердечником. Такой прибор используется, только если схема предусматривает подключение лампы с помощью электромагнитного пускорегулирующего аппарата. Электронный ПРА содержит в своей конструкции стабилизатор и преобразователь частоты, эти элементы позволяют зажечь свет, так как реализуют функции дросселя и стартера.

Чтобы ответить на вопрос, зачем нужен дроссель, рекомендуется сначала понять принцип его работы. При включении в цепь происходит сдвиг фаз между основными электрическими параметрами: напряжением и током.

Это отставание определяется такой характеристикой, как cosφ (коэффициент мощности). При определении расчетного значения активной составляющей нагрузки учитывается данная величина. Если показатель коэффициента мощности небольшой, возрастает уровень нагрузки.

Поэтому в схему включают еще и конденсатор с компенсационной функцией.

Используя данный элемент (3-5 мкФ) при подключении люминесцентных ламп, мощность которых достигает 36 Вт, можно добиться увеличения cosφ до 0,85. Минимальный предел мощности люминесцентных ламп в данном случае – 18 W. Емкость конденсатора для источников света 18 W и 36 W может быть одинаковой. Уровень выдерживаемой дросселем нагрузки должен соответствовать мощности источника света.

Различают несколько исполнений таких приборов, каждое из которых отличается по величине потери мощности:

  • D (обычный);
  • В (пониженный);
  • С (самый низкий).

Принцип действия дросселя предполагает расход части мощности не по прямому назначению, а на нагрев прибора. Полезная работа при этом не выполняется, а значит, уровень потерь определяет эффективность функционирования: чем выше эта величина, тем больше греется дроссель для подключения люминесцентной лампы.

Основные плюсы

Несмотря на то, что сегодня популярность ЭмПРА заметно снизилась, такие приборы все равно используются. Это обусловлено рядом преимуществ:

  • обеспечение безопасной работы люминесцентной лампы, для чего нужен еще и стартер;
  • возможность сдерживать ток на определенном уровне;
  • частичная стабилизация светового потока, но принцип работы ЭмПРА таков, что полностью убрать мерцание газоразрядных ламп невозможно;
  • доступная цена.

Именно благодаря последнему фактору из вышеназванных, пускорегулирующее устройство электромагнитного типа с дросселем сегодня еще используется. Кроме того, эти приборы отличаются простотой монтажа и несложной эксплуатацией.

Если есть проблемы в работе ламп, подключенных через дроссель (например, они не включаются), проверяется схема на предмет ошибок и качество соединения (подключение, обрывы проводов).

В случае, когда видимых причин нет, следует проверить исправность дросселя. Сделать это можно, подключив рабочую лампу накаливания. При обрыве источник света не горит, при витковом замыкании – светит в полную силу. Нормальный режим работы – вполнакала.

Варианты включения люминесцентных источников света

Схема подключения ламп данного вида через стартер и дроссель выглядит следующим образом:

Схема подключения к питанию

Можно выбрать вариант с компенсационным конденсатором или без него, все зависит от коэффициента мощности. От того, какой тип стартера используется, будет зависеть количество подключаемых последовательно ламп:

Принято считать, что без ПРА невозможно включить газоразрядный осветительный прибор. Это не совсем так. Если изменить схему, то бездроссельное подключение выполнить вполне реально. Чтобы обеспечить нормальные условия работы люминесцентного источника света, напряжение сети должно быть удвоенным и выпрямленным, для чего в схему вводится выпрямитель. А вместо балласта используется миниатюрная лампа накаливания, резистор или конденсатор для этой цели не подходит.

Непосредственно, схема подключения через источник света с нитью накаливания и выпрямителем:

Таким образом, газоразрядные лампы, в частности, люминесцентные исполнения, будут работать, если предусмотреть для них пускорегулирующее устройство. В зависимости от его типа (электронный или электромагнитный вариант) можно обеспечить разный уровень эффективности освещения. ЭмПРА включает в себя дроссель и стартер.

Первый из элементов создает нормальные условия для функционирования источника света (сдерживает рабочий ток на определенном уровне), поэтому считается, что без него освещение работать не будет. Но альтернатива есть – схема питания без дросселя, но с удвоенным напряжением источника питания.

(1 5,00 из 5)

Источник: http://proosveschenie.ru/proizvodstvennye-pomeshheniya/podrobno-o-vybore-drosselya-dlya-lyuminescentnykh-lamp.html

Для чего нужен дроссель для ламп дневного света, ДРЛ, ДНаТ ?

Газоразрядные источники света уверенно завоевали свою потребительскую нишу благодаря мощному свечению, экономности, долгому сроку службы и простоте использования.

Существует много разновидностей данного типа электроосветительных приборов:

  • Люминесцентные лампы дневного и ультрафиолетового света;
  • Дуговая ртутная люминесцентная лампа (ДРЛ), и её разновидности (ДРИ, ДРИЗ, ДРШ, ДРТ);
  • Дуговая натриевая трубчатая лампа ДНаТ, и ее модификации: ДНаС, ДНаЗ, ДНаМТ.

Данные осветительные электроприборы отличаются по принципу действия, использованию материалов и химических элементов, внутреннему давлению, светимости, спектру, яркости и мощности. Общим признаком газоразрядных ламп является непостоянство сопротивления (соответственно тока) при запуске и работе.

дросселя для ламп

Поэтому, для ограничения рабочего тока данных источников света применяют балласт (пускорегулирующий аппарат, ПРА), который может быть электронным (ЭПРА), или электромагнитным (ЭмПРА), выполненным в виде дросселя (катушки индуктивности).

Изменчивое сопротивление газоразрядных ламп

Вначале нужно более подробно рассмотреть, зачем для газоразрядных ламп дневного света нужен дроссель. Независимо от типа подобных осветительных электроприборов, в момент запуска они обладают очень большим сопротивлением.

схема подключения лампы дневного света

При розжиге лампы происходит электрический пробой в атмосфере инертных газов, насыщенных парами ртути или натрия, и других добавочных элементов, после чего возникает тлеющий или дуговой разряд.

Сопротивление ионизированного вследствие разряда газа уменьшается в десятки раз, соответственно возрастает протекающий в нём ток. Если данный ток не ограничить, то чрезмерное тепловыделение в доли секунд перегреет находящиеся внутри газы, и выведет электроосветительный прибор из строя, или даже приведёт к взрыву лампу дневного света (ДРЛ, ДНаТ). Чтобы этого не случалось, последовательно в цепь подключения добавляют сопротивление.

Применение активного сопротивления крайне нецелесообразно, ввиду больших потерь электроэнергии на тепловыделение. Поэтому используют электронную схему или дроссель. В идеале, дроссель не имеет активного сопротивления, поэтому он мощности не потребляет, накапливая и отдавая энергию в цепь.

Физические характеристики катушки индуктивности

При неизменной частоте сети, питающей лампы дневного света, реактивное сопротивление подключённого последовательно дросселя зависит от его индуктивности, которое измеряется в международных физических единицах Генри (Гн). Через индуктивность 1 Гн, при напряжении в 1 В, в первую секунду протекает ток 1А.

Дроссель и ИЗУ

Индуктивность обмотки дросселя зависит от квадрата числа количества витков, конструкции и поперечного сечения сердечника магнитопровода, а также от его качества и электромагнитного насыщения.

Поскольку витки обмотки обладают также активным сопротивлением, которое зависит от поперечного сечения обмоточного провода, то при расчёте дросселей для ДРЛ, ДНаТ, или люминесцентных ламп дневного света учитывается их мощность, от которой зависит рабочий ток. Соответственно, габариты дросселя напрямую зависят от мощности подключаемой газоразрядной лампы.

Схемы подключения дросселя и газоразрядных источников света

Наиболее простой является схема подключения дросселя для ДРЛ лампы, в которой для запуска конструктивно предусмотрены дополнительные электроды, с помощью которых создается предварительная ионизация газа, необходимая для возникновения тлеющего разряда, переходящего в электрическую дугу.

В данном случае индуктивное сопротивление служит для ограничения рабочего тока ДРЛ лампы.

Дроссель для люминесцентных ламп также подключается последовательно с катодами, но в данной схеме используется также такое свойство катушек индуктивности, как самоиндукция – возникновение большого импульса напряжения при разрыве цепи на контактах стартера, который используется для нагрева нитей накала.

Лампа ДНаТ, в отличие от других источников дневного света, имеющих люминесцентное покрытие внутри колбы, благодаря парам натрия, испускает излучение в видимом спектре, из-за чего повышается КПД электроосветительного прибора.

Конструктивно светящаяся керамическая трубка данной лампы отличается от аналогичной в ДРЛ, что требует дополнительного импульса для розжига дуги.

ИЗУ

Поэтому дроссель для ДНаТ подключается вместе с импульсным зажигающим устройством (ИЗУ).

схема подключения ДНаТ

Компенсирующий конденсатор

Во всех схемах присутствует подключённый параллельно конденсатор, который служит для компенсации реактивных потерь на дросселе, уменьшая общее энергопотребление. В таблице указаны рекомендуемые номиналы компенсирующих конденсаторов относительно мощности некоторых видов ламп.

Конденсаторы не должны быть электролитическими, рассчитанными на напряжение не менее 400В. Нужно помнить, что увеличение выше емкости выше указанных параметров не приведёт к уменьшению потерь энергии, но может вызвать резонанс в образующемся автоколебательном контуре, что приведёт к импульсам напряжения и миганию лампы.

Уменьшение емкости не даст ожидаемой компенсации реактивных потерь и экономии электроэнергии.

Внешний вид ЭмПРА

Конструктивно дроссели очень похожи на трансформаторы, к тому же, они могут иметь выводов больше двух, что делает затруднительной визуальную идентификацию устройства без наличия обозначения на его корпусе.

Фактически, трансформатор, с используемой одной обмоткой является дросселем. Чтобы проверить тип устройства, нужно воспользоваться мультиметром – если выводы являются ответвлениями одной обмотки, то все они должны прозваниваться с разными показаниями сопротивления.

Часто равнозначные обмотки трансформатора включаются последовательно во входную и выходную цепь питания лампы дневного света или ДРЛ, ДНаТ, выполняя функции дросселя.

При прозвонке такого дросселя сопротивление обмоток должно быть одинаково. Проверить ЭмПРА на наличие межвиткового замыкания можно только с помощью мультиметра, имеющего возможность измерения индуктивности.

В разобранном виде ЭмПРА

Если измеренная индуктивность меньше чем паспортное значение, то внутри обмотки имеется межвитковое замыкание. Использовать такой ЭмПРА нельзя, так как уменьшенная индуктивность обладает меньшим реактивным сопротивлением, что неминуемо приведёт к выходу из строя любую из подключённых ламп дневного света, будь-то люминесцентная, ДРЛ, ДНаТ и т.д.

Источник: http://infoelectrik.ru/sistema-osveshheniya/drossel-dlya-lamp.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как правильно заряжать новый литий ионный аккумулятор

Закрыть