Какое напряжение питания светодиодов

Напряжение светодиодных ламп

Мы привыкли, что лампы накаливания работают от сети с переменным напряжением 220 вольт. Есть, конечно, и другие лампы накаливания, работающие от меньшего напряжения, но и свечение там тоже намного меньше.

Здесь можно наблюдать зависимость — чем меньше напряжение светодиодного освещения, тем меньше света получаем от лампы. Но светодиодные лампы работают совсем по-другому. Для светодиода неважно напряжение, сила свечения зависит только от тока, проходящего через диод.

В этой статье мы рассмотрим на каком напряжении могут работать светодиодные лампы, а также затронем ток светодиодных ламп.

  • Напряжение светодиодных ламп
  • Ток светодиодных ламп
  • Выводы

Я думаю что большинство людей давно закончивших школу и не имеющих дела с электричеством еще тогда забыли чем принципиально отличается ток от напряжения. А это желательно понимать.

Во многих книгах для пояснения разницы между током и напряжением проводится аналогия с водопроводной трубой. Но мне не очень нравится это сравнение. Любой предмет, брошенный из определенной высоты будет падать и в определенный момент достигнет поверхности земли.

Его притягивает гравитация. Так вот напряжение — это сила, которая заставляет двигаться ток, как и гравитация притягивает предметы. А вот сила тока, если продолжить аналогию, это размер предмета, чем больше, тем сильнее ударит.

Гравитация, как и напряжение не убьет если не будет предмета (тока).

А теперь вернемся к светодиодным лампам. Один светодиод или светодиодный чип, это вид полупроводника, который может пропускать ток только в одном направлении. Светодиоды могут работать от напряжения 4-12 Вольт. И даже больше, светодиодам нужно постоянное напряжение для нормальной работы. Но в стандартной электрической сети совсем другие условия.

В светодиодных лампах несколько светодиодов объединяются последовательно в один массив, и все они получают ток светодиодной лампы от общего блока питания. У многих светодиодных ламп, работающих от напряжения сети внутри есть специальное устройство, драйвер, который включает выпрямитель для преобразования переменного тока в постоянный, трансформатор, чтобы снизить очень высокое входящее напряжение, а также, возможно, стабилизационный компонент, чтобы уменьшить колебания тока.

Большинство современных светодиодных ламп, которые предназначены для домашнего использования и промышленности предназначены для напряжения питания 110-220 Вольт. Это достигается путем объединения нескольких чипов, как сказано выше. За остальное понижение напряжения и получение постоянного тока отвечает драйвер, встроенный в каждую лампу.

Но если у такой лампочки нет встроенного драйвера, а вы хотите запустить ее от обычной сети, вам потребуется внешнее устройство, которое будет выполнять те же функции, обеспечит нужное напряжение светодиодных ламп и выпрямит ток светодиодной лампы.

Стандартные настенные адаптеры, рассчитанные для другого оборудования, не подойдут, они не спалят светодиоды, но использовать их не рекомендуется. Они могут вызвать мерцание из-за неправильной светодиодной нагрузки, а также сокращают срок службы лампы. Поэтому нужно использовать драйверы, разработанные только для вашего вида ламп.

В последнее время появились светодиоды, работающие от переменного напряжения. Но так как светодиоды пропускают ток только в одну сторону, по своей природе они все равно остались устройствами, работающими на постоянном токе. В них одна честь диода светится при положительном токе, вторая при отрицательном цикле. Таким образом, мы получаем однородное свечение. Но для таких ламп тоже нужен драйвер, если они не приспособлены для работы от 220 вольт.

Ток светодиодных ламп

Яркость свечения светодиодных ламп зависит от тока, который будет проходить через сам диод. Это позволяет очень легко управлять яркостью таких ламп.

Здесь подходит тот же принцип регулировки яркости что и для обычных ламп накаливания, изменяем силу тока — изменяется яркость.

Но тут возникает одна проблема, в каждой лампе, которая будет работать от сети переменного напряжения встроен драйвер, который будет препятствовать изменению яркости. Поэтому если драйвер не поддерживает такую опцию регулировать яркость нельзя.

Потребление лампой электричества тоже зависит от тока и пропускаемого напряжения. Сила тока, с которой может работать лампа обычно указана на упаковке. Это может быть от 10-100 мА. Если же не указано и вам нужно знать этот параметр, его очень просто рассчитать по формуле:

I=(Р/U)*1000

Здесь I — это сила тока, P — потребляемая мощность и напряжение. Например, лампа на 220 вольт с потребляемой мощностью 12 Ватт будет иметь силу тока 54 мА. Рассчитанная сила тока может быть ниже, чем указанная на упаковке, потому что некоторые производители указывают на упаковке потребляемую мощность не самой лампы, а светодиода. Кроме светодиода, там есть еще резистор и другие компоненты, которым тоже нужно питание.

Выводы

В этой статье мы рассмотрели что такое напряжение светодиодных ламп, а также как влияет сила тока на их работу.

Источник: https://te4h.ru/napryazhenie-svetodiodnyh-lamp

Как подключить светодиод, питание светодиода

Светодиод (LED(light-emitting diode)) как и любой диод может пропускать ток только в одном направлении, поэтому требуется соблюдать полярность его подключения. Ток через светодиод идет от анода(+) к катоду(-), если светодиод ранее нигде не использовался, анод имеет длинный вывод а катод — короткий. Перепутав полярность подключения, светодиод не выйдет из строя, а просто не будет светиться.

Нужно помнить, что важнейшей характеристикой светодиода является максимально допустимая сила тока, превысив которую светодиод выходит из строя. Чтобы защитить от превышения силы тока в цепь включается резистор. Как подобрать сопротивление(резистор) чтобы обеспечить правильное питание светодиода? В этом поможет Закон Ома: V = I * R, из которого следует что R = V / I.

СПРАВКА: Светодиоды работают не в точности согласно Закону Ома, их еще называют «не омические» приборы. Это означает что точно рассчитать величину силы тока, протекающего через светодиод по формуле V=IR нельзя. Однако, в наших целях, чтобы просто защитить светодиод от выхода из строя достаточно приблизительно вычислить величину сопротивленя, что позволяет сделать Закон Ома.

Для непосвященных: не нужно искать светодиоды на 12 Вольт или 9 Вольт, на большинстве указано 2-3,6 Вольта, — это их рабочее напряжение(оно также называется напряжением падения), которого мы добьемся установив резистор. Светодиод должен быть ярким, например вот эти я беру на али:

Хорошо себя зарекомендовали вот эти яркие, удобные для монтажа светодиоды ПИРАНЬЯ Недорогие светодиоды 5мм . Более бюджетный вариант, характеристики чуть слабее.

Напряжение(V) = 9Вольт, Сила тока(I) = 0,025Ампера(25 миллиАмпер), 9/0,025=360Ом Итак нам нужен резистор номиналом приблизительно 360Ом, чтобы держать силу тока, идущего через светодиод меньше максимально допустимой для выбранного светодиода.

Если ровно расчетного номинала найти не удается, то можно взять следующее значение. При увеличении или уменьшении номинала сопротивления в небольших пределах можно регулировать яркость свечения светодиода.

Также можем проверить какой мощности нужен резистор: P = U * I; P = 9 * 0,025 = 0,225 Ватта Поэтому резистор подойдет на 0,25 Вт

Описанный выше способ питания светодиода является самым простым и доступным, однако в некоторых случаях, как например подключение к бортовой сети автомобиля, возможно изменение яркости свечения в зависимости от оборотов двигателя. Такая нестабильная работа не лучшим образом скажется на долговечности службы светодиодов и на их яркости. Эффективно использовать светодиоды с источником нестабильного напряжения можно подключив их при помощи драйвера светодиода.

О драйверах

Драйвер светодиода — источник постоянного стабилизированного тока. Он преобразует энергию питающей сети (например — бытовой электросети 220V 50Hz) в низковольтное напряжение и производит стабилизацию тока. При этом LED-драйвер защищает светодиоды от колебаний напряжения питающей сети, обеспечивая оптимальный режим работы LED-системы и предотвращая выход светодиодов из строя.

Всего одна микросхема LM317(линейный регулятор тока) и один резистор потребуются чтобы собрать драйвер светодиода. Можно взять на али по 69р. за 10шт.:

Линейный регулятор тока LM317

Рассчитать номинал резистора можно по формуле: R = 1,25 / I, где R — номинал резистора (Ом); 1,25 — коэффициент; I — выходная сила тока. Например для светодиода с током 20 мА получим номинал сопротивления в 62 Ома.

О том как запитать светодиод от одной пальчиковой батарейки

Зажечь светодиод от одной пальчиковой батарейки напряжением 1,5 Вольт можно при помощи простой схемы с минимумом деталей:

Такая схема по сути является простейшим светодиодным драйвером.

Необходимые детали:

  • Трансформатор, который изготавливается на ферритовом кольце намоткой провода сечением 0,25 мм, сложенным вдвое, приблизительно 25 витков;
  • Биполярный Н-канальный транзистор;
  • Подстроечный резистор необходим для регулирования номинального рабочего тока преобразователя;
  • Диод шотке с малым падением напряжения;
  • Конденсатор.

Про светодиодные модули

Модули используются для реализации подсветки в автомобильной технике, применяются в декоративной подсветке мебели, в рекламных вывесках. Их легко закреплять благодаря предусмотренным в корпусе отверстиям, и легко соединять между собой в цепи, благодаря наличию выводов.

Водонепроницаемый светодиодный модуль.

Такие модули подойдут для подсветки небольшого пространства, или декоративного украшения например автомобилей. Для полноценного освещения используются мощные светодиоды и светодиодные модули(светодиод или группа светодиодов как со встроенным драйвером, так и без него).

Про светодиодные ленты

Все большее распространение получают светодиодные ленты. Благодаря удобству монтажа. Требуемую длину ленты можно отрезать по меткам, нанесенным через определенное количество светодиодов, и припаять питание, согласно обозначениям на контактных площадках в месте реза. Как правило они имеют хорошую влагозащищенность, либо полную водонепроницаемость, если покрыты прозрачным гибким полимером.

Светодиодная лента (LED-лента)

На таких LED-лентах установлены резисторы на каждую группу светодиодов между метками, и остается только подключить к ним блок питания, например вот такой:

Блок питания для светодиодной ленты
Готовые светодиодные матрицы большой яркости, работающие напрямую от 220 Вольт — удобная штука. Светодиодная матрица на 20 Ватт светит как 100 Ваттная лампа накаливания.

Такие матрицы можно применять как для уличного освещения, конечно помещая их в защитный корпус, так и для дома, там где требуется яркий свет. Не следует забывать, что эти матрицы имеют алюминиевую подложку и для отвода тепла их следует крепить к металлическим частям корпуса.

Источник: http://trudolyb.ru/elektrichestvo/27-pitanie-svetodioda

Схема подключения светодиода

Использование светодиодов для освещения и индикации — это надежное и экономичное решение. Светодиоды имеют очень высокий КПД, надежны,экономичны, безопасны, долговечны в сравнении с лампами накаливания и люминесцентными лампами. В данной статье рассматриваются способы включения светодиодов. Описываются способы питания светодиода от компьютера.

Что такое светодиод и как он работает

Светодиод — это, во-первых, диод. И точно так же как у обычного диода, у светодиода есть два вывода (контакта питания): анод (плюс) и катод (минус). Это связано с тем, что светодиод является полупроводником, то есть, проводит электрический ток только в одну сторону (от анода к катоду), и не проводит в обратную (от катода к аноду).

Итак, для того, чтобы светодиод засветился, надо пропускать через него электрический ток в направлении от анода к катоду. Для этого следует подать на его анод положительное, а на катод — отрицательное напряжение.

Тут и начинается самое неприятное. Оказывается, что светодиод нельзя подключать к источнику питания напрямую, поскольку это приводит к немедленному сгоранию светодиода. Причина сего поведения кроется в следующем. Выражаясь простым бытовым языком, светодиод является очень жадной и неразумной личностью: получив неограниченное питание он начинает потреблять такую мощность, которую физически не способен выдержать.

Как мы все уже догадались, для нормальной работы светодиоду нужен строгий ограничитель. Именно с этой целью последовательно со светодиодом устанавливают резистор, который служит надежным ограничителем тока и мощности. Этот резистор называют ограничительным.

Какие бывают светодиоды

Во-первых, светодиоды можно разделить по цветам: красный, желтый, зеленый, голубой, фиолетовый, белый. Большинство современных светодиодов выполнено из бесцветного прозрачного пластика, поэтому невозможно определить цвет светодиода не включив его.

Во-вторых, светодиоды можно разделить по номинальному току потребления. Широко распространены модели с током потребления 10 миллиампер (мА) и 20 мА. Следует помнить, что светодиод не в состоянии контролировать потребляемый ток. Именно поэтому мы вынуждены использовать ограничительные резисторы.

В-третьих, светодиоды можно разделить по такому параметру, как падение напряжения в открытом состоянии при номинальном токе. Несмотря на то, что про этот параметр нередко забывают — его влияние весьма и весьма значительно. Благодаря этому параметру иногда можно избавиться от ограничительного резистора.

Светодиод(ы) можно подключить к компьютеру разными способами.

Для подключения светодиодов в качестве простого освещения удобно использовать разъемы блока питания, выдающие 5 и 12 вольт. Для подключения светодиодов в качестве светомузыки удобно использовать LPT порт компьютера.

Подключение светодиодов к блоку питания

Блок питания компьютера — это замечательный источник питания для светодиода или линейки из светодиодов, поскольку он вырабатывает стабилизированное напряжение +5 вольт (В) и +12 В.

Итак, разъем имеет четыре контакта, к которым подходят четыре же провода: два из них черные — это «ноль», один красный выдает напряжение +5 вольт, и один желтый выдает +12 вольт.

Рассмотрим схему подключения одного светодиода.

При питании от 5 В последовательно со светодиодом необходимо включить ограничительный резистор номиналом от 100 до 200 Ом.
При питании от 12 В последовательно со светодиодом требуется включить ограничительный резистор номиналом от 400 до 900 Ом.

Рассмотрим схему подключения двух светодиодов.

При питании двух светодиодов от 5 вольт, в схему надо включить резистор до 100 Ом. Некоторые светодиоды в такой схеме будут светиться слишком тускло (даже без резистора).
При питании двух светодиодов от 12 В, в схему надо включить резистор от 250 до 600 Ом.

Рассмотрим схему подключения трех и четырех светодиодов.

При питании трех светодиодов от 12 В, следует использовать резистор номиналом от 100 до 250 Ом.
Некоторые светодиоды в такой схеме включения будут светиться слишком тускло (даже без резистора).

Универсальный принцип расчета ограничительного резистора описан в статье «Методика расчета питания светодиода».

Выше приведены схемы последовательного включения светодиодов. Существуют также способы параллельного включения светодиодов. Обратите внимание, что под параллельным включением подразумевается схема в которой, когда аноды и катоды всех светодиодов непосредственно сходятся в две точки (два пучка).

Такие схемы, как правило, не экономичны и небезопасны, как для блока питания, так и для светодиодов. Кроме того, схемы параллельного включения более сложны в расчетах, требовательны к источнику питания, поэтому мы будем пользоваться ими только в особых случаях. Просто посмотрим как выглядит такая схема.

При паралельном включении светодиодов следует использовать только одинаковые светодиоды, с минимальным разбросом характеристик. Сопротивление ограничительного резистора должно быть рассчитано и подобрано с высокой степенью точности. В случае выхода из строя одного из светодиодов — остальные могут выгореть по очереди друг за другом в считанные минуты.

Рекомендую никогда не использовать эту схему включения светодиодов. Но если все же условия требуют параллельного включения то советую использовать следующий вариант.

ЭТО ИНТЕРЕСНО:  Как проверить светодиод с помощью мультиметра
Такая схема параллельного включения светодиодов практически избавлена от опасности последовательного выгорания светодиодов. В данном случае вместо ограничиельного резистора включено несколько обычных выпрямительных диодов разных марок (НЕ светодиодов).

Благодаря падению напряжения на этих диодах, до светодиодов доходит напряжение уже не 5 Вольт, а значительно меньше. Ограничительные диоды подбираются так, чтобы до светодиодов доходило напряжение равное их падению напряжения в открытом состоянии.

Эта схема используется используется автором для круглосуточного светодиодного освещения квартиры.

Подключение светодиодов к LPT порту

При питании светодиода от LPT порта необходимо последовательно со светодиодом можно включить резистор номиналом до 100 Ом. В большинстве случаев, при питании светодиода от LPT порта резистор бывает не нужен. LPT порт предварительно должен быть переведен в режим EPP. Подробное описание способа подключения светодиодов к LPT порту содержится в статье «LPT порт и 12 светодиодов».

Универсальный принцип расчета ограничительного резистора описан в статье «Универсальная методика рассчета питания светодиодов».

Источник: https://mavius.mavjuz.com/projects/led/

Подключение светодиода к питанию 5 и 12 Вольт: схемы с описанием

С тех пор, как сверхъяркие светодиоды (LED) стали доступны широкому кругу потребителей, к ним сразу проявился большой интерес. На основе LED можно создавать множество интересных светотехнических конструкций. Однако, подключение светодиода к 12 вольтам, принципиально отличается от подключения к 12 вольтам той же лампы накаливания. В этом материале будет подробно рассказано о подключении светоизлучающих диодов к источникам питания, имеющим различное напряжение.

Какие светодиоды подключают к 12 вольтам?

Если коротко ответить на вопрос, вынесенный в качестве подзаголовка, то ответ будет звучать так: никакие! Неспециалисту такой ответ покажется парадоксальным, ведь в продаже имеются светодиоды, которые, как заявляют продавцы, рассчитаны на питание от источника 12 вольт.

Возьмемся утверждать, что на конкретное напряжение могут быть рассчитаны только изделия на основе светодиодов. Говорить о конкретном рабочем напряжении LED не корректно. Это связанно с физическими процессами, протекающими в нем при испускании света.

Главными характеристиками этих процессов являются рабочий ток и максимально допустимый ток прибора. В справочниках и даташитах указывают напряжения на светодиодах при протекании рабочего тока. Эти величины используют для расчетов LED конструкций, а не для выбора источника питания.

Кстати, напряжение в рабочем режиме лежит всего лишь в пределах от 1.5 В до 3.5 В. Величина зависит, в основном, от цвета испускаемого LED. Меньшие напряжения падают на красных светодиодах, большие значения относятся к сверхъярким. Имеющиеся в продаже светоизлучающие диоды на 12 вольт не являются единичными приборами.

Двенадцативольтовые LED это матрицы, состоящие из нескольких светоизлучающих диодов. Матрицы представляют собой светодиодные сборки, собранные из цепочек последовательно подключенных приборов.

В каждой матрице имеется несколько цепочек, которые подключены параллельно между собой. Когда говорят, что светодиод рассчитан на двенадцать вольт, то подразумевают, что падение напряжения на последовательной цепочке из них при протекании рабочего тока составляет примерно 12 В.

Подключение сверхярких и мощных LED к 12В

Сначала рассмотрим способ подключения одного мощного сверхъяркого светодиода к 12 Вольтам. Допустим, в нашем распоряжении имеется прибор, рабочий ток которого 350 мА. При этом падение напряжения на нем в рабочем режиме составляет примерно 3.4 Вольта. Нетрудно подсчитать, что потребляемая мощность такого прибора составляет 1 W.

Понятно, что подключать его напрямую к 12 Вольтам нельзя. Нам придется, каким-то образом, «погасить» часть напряжения. В простейших случаях для этих целей применяются гасящие (токоограничивающие) резисторы. Его соединяют со светодиодом последовательно. Схема питания одного LED показана на фото.

Чтобы рассчитать номинал токоограничивающего резистора пользуются формулой:

R=(Uпит – Uраб)/Iраб.

Вооружившись калькулятором легко подсчитать, что сопротивление будет составлять около 25 Ом. На нем будет рассеиваться мощность, которую рассчитывают по формуле:

P=I2*R.

В нашем примере мощность составит около 3 ватт. Найти сопротивление такой мощности довольно трудно, поэтому в качестве гасящего резистора можно применить два резистора по 100 Ом мощностью 2 Вт, соединенные параллельно.

В принципе на основе этих расчетов уже можно создавать практическую конструкцию. Выполнив подключение светодиода к 12В через выключатель, можно организовать дополнительную подсветку подкапотного пространства автомобиля, багажника или перчаточного бокса.

Мы показали, что создание такой схемы возможно, но применение ее нерационально. Нетрудно заметить, что две трети мощности потребляемой конструкцией приходится на гасящий резистор и, следовательно, тратится впустую. Ниже мы расскажем, как избежать ненужных потерь.

Сколько LED можно подключить к 12В?

Очевидно, что по простейшей схеме к источнику 12 Вольт можно подключить сколько угодно. Главное, чтобы у подключаемого источника питания хватало мощности. Однако мы видели, что при такой схеме подключения много энергии расходуется бесполезно.

Простейшим выходом из этой ситуации является снижение мощности рассеиваемой на токоограничивающем резисторе. Для снижения бесполезно рассеиваемой мощности, несколько светодиодов подключают последовательно и питают через один гасящий резистор. В этом случае падение напряжения на сопротивлении оказывается значительно меньше. Следовательно, существенно снижаются потери энергии. Расчет сопротивления для последовательного подключения светоизлучающих диодов выполняют по формуле:

R=(Uпит – nUраб)/Iраб.

Где n – количество последовательно подключенных LED.

В случае источника 12 Вольт разумно подключать последовательно три светодиода и один гасящий резистор. Падение напряжения на светодиодах не превысит 10.5 Вольта и на долю резистора останется всего 1,5 Вольт.

Такое техническое решение широко применяют, когда количество подключаемых к 12 Вольтам светодиодов кратно трем. Т. е. так можно подключить 6, 9, 12, , 3N LED. Например, так поступают производители светодиодных лент. В них светодиоды сгруппированы по три и питаются через одно общее сопротивление.

Если нужно подключить 4 светодиода к 12 Вольтам, то целесообразно сгруппировать их по 2, и каждую пару питать через токоограничивающий резистор.

Последовательно следует подключать светодиоды с одинаковым рабочим током. Иначе разные приборы будут светить с различной яркостью или будет превышен ток какого-либо LED, и он выйдет из строя.

Что касается подключения светодиодов «рассчитанных на 12 В» то лучше установить их «рабочее напряжение» опытным путем. Для этого их надо подключить к лабораторному блоку питания и, постепенно поднимая напряжение, контролировать потребляемый ток. Напряжение, при котором рабочий ток будет достигнут, можно использовать для расчета токоограничивающего резистора.

Как подключить LED к 3 или 5 вольтам

Большинство маломощных светодиодов нормально работают и от 3 и тем более от 5 вольт. Выполнить для них расчет токоограничивающих сопротивлений можно по приведенной выше формуле.

При изготовлении конструкций с автономными источниками питания, особенно если в них используются сверхъяркие «мощные» LED, такой подход не приемлем. Мощность, рассеиваемая на гасящем резисторе, значительно сокращает время работы устройства.

Поэтому в современных ручных фонарях, работающих от низковольтных батарей применяют электронные преобразователи напряжения – драйверы. Потери в драйверах намного ниже, чем на токоограничивающих резисторах. Сейчас драйверы доступны и их можно легко найти в магазинах.

Имея некоторые познания в электронике и навыки работы с паяльником, простой драйвер можно изготовить самостоятельно. Одна из простых схем преобразователя для мощного светодиода приведена ниже.

Как подключить к 12 вольтам автомобиля

Подключение светодиодов к бортовой сети автомобиля не имеет существенных отличий от подключения к другим источникам питания. Просто не нужно забывать, что аккумуляторная батарея автомобиля в нормальном состоянии выдает не 12 Вольт, а примерно 14 Вольт.

Еще при подключении надо помнить, что не в каждом автомобиле надежно работает система стабилизации напряжения бортовой сети. Поэтому при расчетах гасящих резисторов лучше принимать напряжение питания равным 15 – 17 вольт. Это несколько снизит яркость свечения, но зато значительно продлит срок службы, так как светодиод будут работать в «щадящем» режиме.

о подключении

Перед подключением советуем посмотреть хорошее видео для закрепления полученных знаний. Автор подробно и доступным языком рассказывает, как подключить светодиод к 12 вольтам от блока питания компьютера, как рассчитать резистор и другие нюансы.

Итоги

В заключении можно сказать, что при подключении сверхъярких светодиодах нужно принимать во внимание следующие соображения:

  • важнейшим параметром светодиода является его рабочий ток;
  • на гасящих резисторах бесполезно рассеивается энергия;
  • применяя последовательное подключение можно уменьшить потери, одновременно уменьшив количество и мощность применяемых резисторов;
  • в бортовой сети автомобиля не 12 Вольт, а несколько больше, и для надежной работы подключаемых светоизлучающих диодов нужно обязательно учитывать этот фактор.

Запомнив все вышеперечисленные аспекты подключения, Вы с легкостью запитаете любой светодиод, в любом количестве, от любого источника питания постоянного тока 12 Вольт.

Источник: http://ledno.ru/svetodiody/podklyuchenie-led-12v.html

Правильное питание – залог здоровья светодиодов

Светоизлучающему диоду, как и человеку, необходимо питаться правильно. Только в этом случае он гарантирует многолетнюю и безотказную работу. Светодиоды имеют нелинейную вольтамперную характеристику, схожую с обычным диодом. Поэтому их питание должно осуществляться стабильным током – это один из ключевых принципов. Если его не соблюдать, последствия для светодиодов могут быть самые плачевные.

Чтобы определить, какая схема питания будет оптимальной в том или ином случае, необходимо для начала узнать исходные данные:

  • параметры светодиода, нормируемые производителем;
  • параметры питающей сети (сеть 220 В, аккумулятор, батарейки или что-то другое).

Параметры светодиода

Самые важные параметры –  это номинальный и максимальный ток. При номинальном обычно нормируются световые характеристики – сила света в канделах или световой поток в люменах. Максимальный ток – это предельное значение, при котором можно эксплуатировать данный прибор. Значения этих параметров в современных однокристальных приборах варьируются от нескольких мА до 3 А.

Прямое падение напряжения – напряжение питания светодиодов, которое падает на p-n-переходе при номинальном токе. Его значение пригодиться при расчете выходных параметров источника питания.

Максимальная температура корпуса и p-n-перехода, максимальное обратное напряжение  — параметры тоже важные, но в случаях, когда соблюдаются токовые режимы и схема не предусматривает обратного включения, на них можно не обращать внимания.

Параметры питающей сети

При изготовлении любого устройства своими руками, необходимо определить параметры источника, который будет осуществлять питание светодиодов.

Сеть 220 В, автомобильный аккумулятор на напряжение 12 В или простые батарейки – в любом случае необходимо определить диапазон питающего напряжения, то есть минимальное и максимальное его значение. На сеть 220 В дается (но не всегда соблюдается) допуск ±10%.

Для аккумулятора берется в расчет напряжение при полной зарядке и в разряженном состоянии. С батарейками и так всё понятно.

В случае с автономными источниками питания важно также узнать их емкость и максимальный выходной ток.

Простейшая схема

Пусть стоит задача сделать своими руками примитивный светодиодный фонарик, питающийся от одной батарейки. Возьмем, к примеру, светодиод C503C (CREE) с номинальным током ILED=20 мА и падением напряжения ULED =3,2 В.

В качестве источника питания используем литиевую батарейку на 3,7В (если использовать пальчиковые батарейки, то одной не обойдешься).

Если включать светодиод напрямую, то сила тока через светодиод будет ограничиваться только внутренним сопротивлением батарейки, что в лучшем случае будет приводить к очень быстрому ее разряду, а в худшем к выходу из строя светодиода. Простейшая схема включения показана на рисунке ниже.

Для ограничения тока используется резистор, сопротивление которого определяется по формуле R=(UБ-ULED)/ ILED. В нашем случае сопротивление составит 25 Ом.

При увеличении мощности диода, схема будет усложняться, т.к. при больших токах применять резистор нецелесообразно – слишком большие потери мощности. Если напряжение питания имеет большой диапазон, эта схема тоже не годится, потому что не обеспечивает стабилизацию тока.

Развиваем тему

Питание мощных светодиодов осуществляется с применением стабилизаторов тока – драйверов. Они могут быть выполнены как на основе дискретных компонентов, так и с применением специализированных микросхем. Драйвер можно приобрести в готовом виде, а можно изготовить своими руками – это не сложно, учитывая, что схем и рекомендаций в интернете с избытком.

Еще один важный момент организации питания полупроводниковых источников света: при объединении светодиодов в группы, рекомендуется их последовательное соединение. Это обусловлено тем, что падение напряжения на p-n-переходе имеет определенный разброс от прибора к прибору, и при параллельном включении токи через них будут отличаться.

Питание светодиодов от 220 В сети , организуется с помощью так называемых сетевых драйверов. По сути, это импульсные источники питания для светодиодов, они преобразуют сетевое напряжение в стабильный постоянный ток. Изготавливать такой источник своими руками – довольно сложно, если вы не специалист в этой области, а учитывая широкую номенклатуру, представленную на современном рынке еще и нецелесообразно.

Источник: https://le-diod.ru/podklyuchenie-ustanovka/pitanie-svetodiodov/

Как определить параметры светодиода?

В связи с глобальным развитием технологий широкое применение в электронике получили светодиоды. Они обладают множеством особенностей, из которых можно выделить компактность и яркое свечение. Помимо номинального тока, который является их главным параметром, нужно знать рабочее напряжение светодиодов.

Этот параметр часто используют для проведения расчетов. Если правильно подобрать параметры устройства, можно продлить срок его службы. Напряжение для светодиода является разницей потенциалов на p-n-переходе, что отмечается в паспортных данных прибора.

Бывают случаи, когда нет информации о конкретном изделии, тогда возникает вопрос: «Как определить падение напряжения на светодиоде?».

Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Измерение силы тока светодиода

Тестирование проводится следующим образом:

  • Щупы мультиметра подключаются плюсовым выводом к аноду, а минусовым к катоду.
  • Анодный вывод у светодиода делается длиннее, чем катодный.
  • Прозванивать можно светодиоды, у которых небольшое напряжение питания. Если у них большая мощность, применять такой метод нельзя.

Лучше воспользоваться проверенным способом измерения характеристик устройства. Для этого понадобятся:

  • блок питания, рассчитанный на 12 В;
  • мультиамперметр;
  • постоянные резисторы – 2,2 и 1 кОм, а также 560 Ом;
  • переменный резистор – 470–680 Ом;
  • вольтметр, желательно цифровой;
  • провода для коммутации схемы.

Как и в предыдущем случае, потребуется узнать полярность диода. Если по его выводам непонятно, где «+» и «-», тогда придется к одному из выводов подсоединить резистор 2,2 кОм. После этого нужно подключить светодиод к блоку питания. При его свечении нужно отключить питание и промаркировать нужный выход «+».

Теперь нужно заменить резистор 2,2 кОм на 560 Ом. В эту цепь последовательно подсоединяется переменный резистор, а также миллиамперметр для проведения замера. Вольтметр, у которого разрешение 0,1 В, подключается параллельно светодиоду. После этого необходимо установить максимальное сопротивление у переменного резистора.

Мультиметр для замера силы тока и напряжения светодиода

Можно подсоединить собранную схему к блоку питания, соблюдая полярность. После включения у светодиода будет блеклое свечение. Сопротивление постепенно снижают и следят за вольтметром.

Определенное время напряжение будет расти до 0,5 В, расти будет и ток, что влияет на увеличение яркости светодиода. Необходимо фиксировать показания каждые 0,1 В.

Оптимальный рабочий ток будет достигнут, когда величина напряжения станет расти медленнее силы тока, а яркость перестанет увеличиваться.

ЭТО ИНТЕРЕСНО:  Сколько люмен брать лампу

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Теоретический метод

Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета.

Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода.

Ток, проходящий через светодиод, вызывает слабое свечение кристалла.

Типы и виды светодиодов

В состав этих изделий входят различные полупроводниковые металлы. Этот фактор и влияет на падение напряжения на p-n-переходе.

Чтобы обозначить такие характеристики, независимо от марок и производителей светодиода, их окрашивают в различные цвета. Но стоит знать, что конкретно утверждать, на сколько вольт светодиод, опираясь только на его окраску, будет неверно.

Цвета этих приборов дают приблизительные значения для проведения измерений. Примерные параметры по цветовому признаку приведены в таблице.

Цвет прибора Напряжение, В
Красный 1,63–2,03
Желтый 2,1–2,18
Зеленый 1,9–4,0
Синий 2,48–3,7
Оранжевый 2,03–2,1
Инфракрасный до 1,9
Фиолетовый 2,76–4
Белый 3,5
Ультрафиолетовый 3,1–4,4

Примерные характеристики светодиода можно определить по цвету его корпуса и размерам

На прямое напряжение светодиода не воздействуют габариты или вариации корпуса, однако может проглядываться количество кристаллов, которые излучают свет и соединяются последовательно. Бывают виды элементов SMD, где люминофор прячет цепочку кристаллов.

В корпусе SMD-светодиода последовательно соединяются три кристалла белого цвета. Наиболее часто они применяются в лампах на 220 В китайского производства. Из-за того, что такие светодиоды начинают реагировать только от 9,6 вольт, протестировать их мультиметром не удастся, так как его батарейка питания рассчитана на 9,5 В.

Теоретически можно воспользоваться интернетом, скачав специальную программу datasheet, в поисковике которой вписать известные параметры светодиода, его цвет. Это позволит найти приблизительные характеристики, где падение напряжения и значения тока могут быть неточными.

Практический метод

Проведение тестирования практическим способом позволяет получить наиболее точные значения силы тока и падения напряжения. Рассчитанная таким образом характеристика прибора позволяет безопасно и долговременно использовать его по назначению. Для получения неизвестных параметров потребуется вольтметр, мультиметр, блок питания, рассчитанный на 12 В, резистор от 510 Ом.

Принцип измерений аналогичен описанному выше для тестирования светодиода на номинальный ток. Необходимо собрать схему с резистором и вольтметром, после чего увеличивать постепенно напряжение до начала свечения кристалла. При достижении яркости высшей точки показания замедляют рост. Можно снимать с экрана номинальное напряжение светодиода.

При 1,9 вольт может отсутствовать свечение. В этом случае часто проверяется инфракрасный диод. Чтобы это уточнить, необходимо перевести излучатель в телефонную камеру. Если будет видно на экране белое пятно, то это и есть инфракрасный диод.

Схема проверки падения напряжения на светодиоде

Если нет возможности применить блок питания на постоянные 12 В, можно использовать батарейку «Крона», рассчитанную на 9 вольт.

При отсутствии вышеперечисленных источников питания отлично подойдет стабилизатор сетевого напряжения, который может выдавать необходимое выпрямленное напряжение, только потребуется заново рассчитать номинал сопротивления резистора, задействованного в схеме.

В этом случае также нужно повышать напряжение до засвечивания светодиода. Напряжение, при котором произойдет свечение, и будет номинальным, на которое он рассчитан.

При неизвестных характеристиках светодиода обязательно необходимо рассчитывать его значения номинального тока и падения напряжения, чтобы предотвратить быстрый выход из строя.

Источник: https://lampagid.ru/elektrika/komponenty/tok-i-napryazhenie-svetodioda

Драйвер или блок питания для светодиодов?

Если заглянуть в англо-русский словарь, то можно узнать, что драйвер – это буквально «водитель» (driver – водитель, англ.). Откуда такое странное название и что он водит? Для того чтобы в этом разобраться, немного отвлечемся и поговорим о светодиодах.

Светодиод (led) – полупроводниковый прибор, способный излучать свет под воздействием приложенного к нему напряжения. Причем для правильной работы полупроводника напряжение, обеспечивающее оптимальный ток через кристалл, должно быть постоянным и строго стабилизированным.

Особенно это касается мощных светодиодов, которые крайне критически относятся к всевозможным перепадам и скачкам питающего тока. Стоит питанию диода чуть снизиться, как упадет ток и, как следствие, уменьшится светоотдача.

При малейшем превышении нормальной величины тока полупроводник мгновенно перегревается и сгорает.

Основное назначение драйвера – обеспечить светоизлучающий диод необходимым для его нормальной работы током. Таким образом, led драйвер – это, по сути, блок питания для светодиодов, их «водитель», обеспечивающий длительную и качественную работу полупроводникового осветителя.

Мнение эксперта Алексей Бартош Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Задать вопрос эксперту Ты не встретишь ни одного осветительного прибора, имеющего в своем составе мощный светодиод, который бы не имел драйвера. Поэтому так важно разобраться, какими бывают драйверы, как они работают и какими характеристиками должны обладать.

Виды светодиодных драйверов

Все драйверы для светодиодов можно разделить по принципу стабилизации тока. На сегодняшний день таких принципов два:

Линейный стабилизатор

Предположим, в нашем распоряжении мощный светодиод, который нужно зажечь. Соберем простейшую схему:

Схема, поясняющая линейный принцип регулировки тока

Выставляем резистором R, выполняющим роль ограничителя, нужное значение тока – светодиод горит. Еcли напряжение питания изменилось (к примеру, батарея садится), поворачиваем движок резистора и восстанавливаем необходимый ток. Если увеличилось, то таким же образом ток уменьшаем.

Именно это и делает простейший линейный стабилизатор: следит за током через светодиод и при необходимости «крутит ручку» резистора. Только делает он это очень быстро, успевая реагировать на малейшее отклонение тока от заданной величины.

Конечно, никакой ручки у драйвера нет, ее роль выполняет транзистор, но суть пояснения от этого не меняется.

В чем недостаток линейной схемы стабилизатора тока? Дело в том, что через регулирующий элемент тоже течет ток и бесполезно рассеивает мощность, которая просто греет воздух. Причем чем входное напряжение больше, тем выше потери. Для светодиодов с небольшим рабочим током такая схема годится и успешно используется, но мощные полупроводники линейным драйвером питать себе дороже: драйверы могут съедать больше энергии, чем сам осветитель.

К преимуществам такой схемы питания можно отнести относительную простоту схемотехники и невысокую стоимость драйвера, сочетающуюся с высокой надежностью.

Линейный драйвер для питания светодиода в карманном фонаре

Импульсная стабилизация

Перед нами тот же светодиод, но схему питания соберем несколько иную:

Схема, поясняющая принцип работы широтно-импульсного стабилизатора

Теперь вместо резистора у нас кнопка КН и добавлен накопительный конденсатор С. Подаем напряжение на схему и нажимаем кнопку. Конденсатор начинает заряжаться, и при достижении на нем рабочего напряжения светодиод загорается.

Если продолжать держать кнопку нажатой, то ток превысит допустимую величину, и полупроводник сгорит. Отпускаем кнопку. Конденсатор продолжает питать светодиод и постепенно разряжается.

Как только ток опустится ниже допустимого для светодиода значения, снова нажимаем кнопку, подпитывая конденсатор.

Вот так сидим и периодически жмем кнопку, поддерживая нормальный режим работы светодиода. Чем выше питающее напряжение, тем нажатия будут короче. Чем напряжение ниже, тем кнопку придется держать нажатой дольше. Это и есть принцип широтно-импульсной модуляции. Драйвер следит за током через светодиод и управляет ключом, собранным на транзисторе или тиристоре. Делает он это очень быстро (десятки и даже сотни тысяч нажатий в секунду).

С первого взгляда работа утомительная и сложная, но только не для электронной схемы. Зато КПД импульсного стабилизатора может достигать 95%.

Даже при питании сверхмощных светодиодных прожекторов потери энергии минимальны, а ключевые элементы драйвера не требуют мощных теплоотводов.

Конечно, импульсные стабилизаторы несколько сложнее по конструкции и дороже, но все это окупается высокой производительностью, исключительным качеством стабилизации тока и отличными массогабаритными показателями.

Этот импульсный драйвер способен выдать ток до 3 А безо всяких радиаторов

Как подобрать драйвер для светодиодов

Разобравшись с принципом работы led driver, осталось научиться их правильно выбирать. Если ты не забыл основ электротехники, полученных в школе, то дело это нехитрое. Перечислим основные характеристики преобразователя для светодиодов, которые будут участвовать в выборе:

  • входное напряжение;
  • выходное напряжение;
  • выходной ток;
  • выходная мощность;
  • степень защиты от окружающей среды.

Источник: https://kabel-house.ru/remont/drajver-ili-blok-pitaniya-dlya-svetodiodov/

Какие бывают светодиоды по напряжению?

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.

Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт Часто в руки попадают экземпляры, о которых ничего не известно.

Так как узнать падение напряжения на светодиоде?

Все о светодиодах: напряжение, ток потребления, мощность, светоотдача, и другие характеристики

Давно прошли те времена, когда светодиоды применялись исключительно в качестве световых индикаторов. Сегодня это достойная альтернатива привычным в быту и промышленных условиях лампам накаливания. Благодаря расширяющемуся спектру применения LED-приборов открывается безграничный простор в сфере наполнения искусственным светом улиц и помещений. Сегодня поговорим об этом на beton-area.com.

Разновидности светоизлучающих диодов

В основе работы LED-приборов лежит процесс пропускания фотонов через полупроводниковый кристаллик. Именно от применяемого материала зависит цвет возникающего свечения. Совсем не светофильтры делают свечение красным или синим.

Увеличения интенсивности светового излучения добиваются с помощью специальных присадок или способом создания нескольких слоев — внутрь помещают нитрид алюминия.

Цвет свечения светодиодов зависит от материала кристалла

Светодиоды делят на две группы по способу применения:

  • Индикация и декорация. К этой категории относятся цветные светодиоды. Их помещают в просвечивающийся корпус. Для управления техникой на расстоянии применяют модели с инфракрасными индикаторами.
  • Освещение. В этом случае используют LED-источники белого свечения. Соответственно потребностям подбирают теплые или холодные оттенки.

По способу монтажа выделяют осветительные светодиоды:

  • SMD. При такой модификации кристаллик расположен на специальной подложке, которая помещается в корпус. Контакты соединяются. При поломке одного кристаллика его заменяют, восстанавливая работу всей системы.
  • ОСВ. В таком устройстве множество кристаллов размещены на одной плате. Все они покрытых люминофором. Степень свечения таких ламп высокая, а производство недорогое. Систему придется заменить полностью даже при выходе из строя всего одного светодиода.

Общая характеристика LED-источников

Как выбрать светодиод нужной конфигурации? Для этого важно разобраться в основных характеристиках. Одна из них — ток потребления. Под эту величину подбираются стабилизаторы и ограничители. Для расчетов нужно знать напряжение. Чтобы эффективно заменить LED-источниками лампы накаливания нужно вычислить мощность.

При создании определенного интерьера важно учитывать размер светоизлучающего диода, а также оттенок светового потока. Имея дело с LED-источниками, принято брать во внимание угол свечения. Разобравшись в перечисленных параметрах, можно подобрать наиболее подходящий светодиод.

При выборе светодиодов важно учитывать такие характеристики: сила тока, напряжение, мощность, эффективность, угол свечения, размер устройства

Ток потребления LED

Стабилизаторы тока очень важны в работе светодиодов. Даже небольшое колебание величины тока в большую сторону приведет к изменению излучаемого кристаллами светового оттенка на более холодный и преждевременному выходу осветительного устройства из строя. Значительный скачок электрического тока приводит к мгновенному перегоранию диода.

LED –лампы всегда снабжают стабилизаторами для преобразования тока. Отдельный светоизлучающий диод нужно подключать с применением резистора для ограничения тока.
Для одного кристалла обычно необходим ток в 0,02 А. Для четырех кристаллов потребуется соответственно больший показатель — 0,08 А.

Светодиоды будут долго и слаженно работать только с применением ограничителя тока

Совет! Очень важно правильно подобрать ограничительный резистор для светодиода. Облегчить процедуру поможет специально разработанный калькулятор, находящийся в свободном доступе в интернете.

Напряжение на светодиоде

В случае с LED-источниками, говоря о напряжении, имеют в виду ту величину, которая остается после прохождения тока, так сказать, на выходе. Зная ее, определяют остаточное напряжение на кристалле.
Напряжение у светоизлучающих диодов зависит от материалов, применяемых в качестве полупроводников. Возможно ли определить это самостоятельно?

Приблизительное значение можно установить даже «на глаз». Так, если диод светит желтым или, к примеру, красным цветом — напряжение находится в пределах 1,8-2,4 Вольт. Его величина при синем свечении больше — приблизительно 3 Вольта.

Напряжение при синем свечении — 3 В

Важно! Ток должен соответствовать номинальному напряжению LED-источника. В противном случае часть из них может сгореть или выдавать менее яркое свечение.

Мощность и эффективность светодиодов

Как подобрать диодную замену лампы накаливания, ориентируясь на мощность? Часто можно встретить подробно расписанные таблицы, но все гораздо проще. Необходимо мощность лампы накаливания поделить на 8, и получим необходимую мощность светодиода. Так, вместо лампы мощностью 75 Вт необходимо подобрать светодиодный прибор, мощностью 10 Вт.

Необходимую мощность светодиода определяем делением мощности лампы накаливания на 8

В создании освещения с помощью системы светодиодов необходимо учитывать такой момент, как эффективность. Она рассчитывается путем деления показателя светового потока на мощность. У лампы накаливания он составляет 10-12 лм/Вт, а у светодиодного устройства — 130-140 лм/Вт.

Светоотдача, угол рассеивания

Что касается светоотдачи, то сравнить показатели принципиально разных устройств довольно сложно. Для ориентировки: светодиоды диаметром 5 мм дают световой поток 1-5 лм. Лампа накаливания на 70 Вт дает 750 лм.

Кроме прочего, заботясь об освещенности помещения, важно учитывать угол рассеивания. У светодиодов он может быть от 20 до 120 градусов. Самый яркий свет оказывается в центре угла, а к краям они рассеиваются. Таким образом, светодиоды часто подходят для освещения не целого помещения, а конкретного места. При этом не требуется больших затрат мощности.

Температура свечения светодиодов

На упаковке каждого светодиодного устройства для освещения имеется маркировка (4 цифры), обозначающая температуру свечения. 1800 К — это красный, 3300 К — желтый, а 7500 — синий. Для белого света применяются различные величины в зависимости от оттенка. Самые холодные находятся ближе к значению синего. Цветные светодиоды могут найти применение как декоративные элементы и в качестве приборов для досвечивания растений. А каково применение белых ламп?

  • Теплый свет — для жилых домов, школ и офисов.
  • Нейтральный (дневной) свет — для производственных построек.
  • Холодный свет — наружное освещение и карманные фонарики.

Температура свечения светодиодов

SMD-диоды: сведения, типоразмеры

Аббревиатура SMD применяется для устройств поверхностного монтажа. Диодный чип при их производстве устанавливается на печатную плату. Эти последователи корпусных диодов, которые обошли предшественников по мощности излучаемого света, равномерному отводу тепла и другим характеристикам.

Подбор SMD осуществляют по размеру. Он представлен в виде четырехзначного числа. Например, SMD 3014 — это 3,0 мм × 1,4 мм. Основные параметры каждого из них разнятся. Наиболее популярные: SMD 2835, SMD 5050, SMD 5730.

ЭТО ИНТЕРЕСНО:  Когда нужно включать ближний свет фар

Светодиоды SMD

SMD 2835

Структурной особенностью светодиодного модуля SMD 2835 является прямоугольная форма и, соответственно, достаточно широкая площадь излучения. Она выше, чем у формата 3528, имеющего круглую форму. Высота SMD 2835 — 0,8 мм, а светоотдача — 50 лм.

Светодиод SMD 2835

Светодиоды SMD 2835 характеризуются сверхпрочным корпусом, выдерживающим 240 С. За 3 тысячи часов функционирования происходит всего 5-процентная деградация излучения. Cветодиодный кристалл имеет t- 130 C. Max рабочий ток — 0,18 А. По температуре свечения SMD 2835 выпускается в четырех вариантах: от 4000 К до 7500 К. Для качественного освещения помещения важно знать, что SMD 2835 холодных оттенков светят ярче.

SMD 5050

Конструкция SMD 5050 включает три кристалла одинакового типа. Их параметры аналогичны параметрам предыдущего. Для долгой и слаженной работы поступающий ток должен быть в пределах 0,06 А.

Светодиод SMD 5050

Светоотдача SMD 5050 — 18-21 лм, напряжение — 3-3,3 В, мощность — 0,21 Вт. Цвет свечения не ограничивается оттенками белого. В одном приборе могут сочетаться сразу несколько цветов. SMD 5050 с помощью контроллеров можно настроить на плавное изменение цвета. Регулируется также яркость.

SMD 5730

Размеры корпуса SMD 5730 ясны из цифрового обозначения. Что касается деградации, то она составляет 1 % за 3000 часов. Такой важный во многих случаях показатель, как угол свечения, равен 120 градусам.

Этот тип светодиодов на фоне остальных выгодно отличает:

  • использование новых высококачественных материалов;
  • высокая мощность и эффективность;
  • удлиненный срок службы;
  • устойчивость в условиях сырости, вибрации и нестабильности температуры.

Источник: https://www.beton-area.com/harakteristika-svetodiodov.html

Как подобрать блок питания для светодиодной ленты – База знаний Novolampa

Что такое блок питание и на что следует обратить внимание при его выборе для светодиодной ленты. Основные факторы источника напрядения: рабочее напряжение, мощность, защита от повышенной влажности и пыли и габаритные размеры.

В данной статье рассматриваются основные моменты, на которые следует обращать внимание при выборе блока питания для светодиодной ленты, а также кратко освещаются вопросы о том, что такое PFC и как вычислить диаметр токопроводящей жилы.

Блок питания — это источник напряжения(трансформатор), который преобразует 220В в 12В, 24В или другое необходимое значение рабочего напряжения. Для питания светодиодных лент и модулей чаще всего используются импульсные блоки питания, где в качестве ограничителей тока работают резисторы, в отличие от драйверов, которые представляют собой источники тока, используемые для светодиодов, модулей и ламп, которые не имеют ограничителей тока.

Чтобы подобрать блок питания к выбранной светодиодной ленте нужно обратить внимание на следующие факторы:

  1. Рабочее напряжение светодиодной ленты.
  2. Суммарная мощность светодиодной ленты.
  3. Необходимость защиты корпуса блока питания от воды и пыли.
  4. Габаритные размеры блока питания.

Рассмотрим подробнее каждый фактор.

1. Рабочее напряжение (U)

Рабочее напряжение светодиодной ленты может быть 12 В, 24 В, иногда 36 В, управляемые ленты SPI обычно 5 В. Соответственно оно должно соответствовать выходному напряжению блока питания.

Существуют также блоки питания с возможностью плавной регулировки выходного напряжения, например источники напряжения Arlight серии JTS, такие можно применять в специальных проектах, где требуется нестандартное значение выходного напряжения, а также там, где необходимо скомпенсировать падение напряжения на длинных проводах.

Еще из нестандартных решений можно отметить блоки питания с несколькими каналами, в которых разное выходное напряжение, это может быть полезно, если нужно запитать ленты с разным рабочим напряжением на один источник напряжения.

2. Мощность светодиодной ленты (PСД)

Подбор блока питания по мощности осуществляется по следующему принципу: мощность должна быть равна суммарной мощности светодиодной ленты, умноженной на коэффициент запаса КЗ, равный 25÷30%, если пренебрегать коэффициентом запаса и использовать блок питания на пределе, то он не проработает долго из-за постоянного перегрева элементов.

Суммарная мощность светодиодной ленты вычисляется путем умножения мощности ленты на 1 метр длины PСД на общую длину L.

Таким образом, получаем следующую формулу:

PБП = L*PСД*Kз, где

L — длина ленты (м)

PСД — удельная мощность светодиодной ленты на 1 метр (W/м)

— коэффициент запаса (ед.)

3. Степень защиты корпуса блока питания от проникновения жидкости и пыли (класс защиты IP)

При выборе блока питания следует учитывать условия, в которых он будет находиться, если это обычное сухое жилое помещение, то подойдет блок питания в защитном кожухе с IP20 (защита от проникновения твердых предметов 12,5 мм, защиты от влаги нет).

Зачастую в блоках питания мощность более 250Вт в исполнении «Защитный кожух» IP20-IP40 используется активное охлаждение в виде кулера(вентилятора).

Если Вы планируете рассматривать данные блоки питания, необходимо выбрать конструктив, когда кулер расположен перпендикулярно элементам платы в изделии, следовательно обдув воздуха будет более равномерный (воздух идет вдоль платы), и элементы будут меньше греться.

На неудачных моделях вентиляторы расположены над платой и обдув платы источника напряжения происходит неравномерно.

Блоки питания и комплектующие для лент рекомендуется устанавливать в щитовые.

Установка светодиодной ленты в ванную комнату или помещение с повышенной влажностью требует класса защиты не менее IP65 (пылезащищен, защита от струй воды).

А.  Б. 

(А) Герметичный алюминиевый блок питания IP67 и (Б) блок питания в защитном кожухе IP20.

В условии использования на улице нужно предусматривать степень защиты IP67, такая степень обеспечивает защиту от струй воды под давлением во всех направлениях, возможно даже кратковременное погружение в воду до 1 м. Если необходима работа в погруженном режиме, то тогда используется максимальная защита IP68 или IP69 (при большом давлении воды).

При подборе мощный источников напряжения для светодиодных лент необходимо учитывать, что на блоках питания без защиты от влаги и пыли стоят вентиляторы. Данные вентиляторы сильно шумят при работе и могут создавать дискомфорт. Поэтому в дорогих проектах мы рекомендуем использовать источники напряжения в алюминиевом корпусе с пассивным охлаждением.

4. Габаритные размеры

Также следует обращать внимание на габаритные размеры блоков, в зависимости от того, куда Вы хотите его установить, мощные блоки питания могут достигать достаточно больших размеров, и спрятать такие будет затруднительно, к тому же часто они имеют вентилятор. Поэтому если требуется подключить длинный участок ленты, то можно пересмотреть схему подключения ленты и использовать несколько меньших по мощности блоков.

Также при выборе места установки следует учитывать то, что чем мощнее блок питания, тем больше он нагревается, поэтому рекомендуется обеспечивать достаточно места для теплоотвода, чтобы блок не перегревался.

Пример подбора источника напряжения для светодиодной ленты

Рассмотрим следующий пример: нужно сделать декоративную светодиодную подсветку в ванной комнате по периметру потолка общей длиной 8 м.

Выбираем подходящую светодиодную ленту с защитой IP65, например, лента Arlight RTW 2-5000SE 24V White 2X (5060,300 LED,LUX), мощность 72 Вт на 5 м.

Основные параметры ленты:

Подбираем мощность блока питания:

PБП = 8m*14,4W/m*1,3 = 149,8 W

Округляем в большую сторону и получаем, что нужно взять блок питания мощностью 150 Вт, его выходное напряжение 24 В, защитане менее IP65, например, блок питания ARPV-SS24150 (24V, 6.3A, 150W).

Что такое PFC в характеристиках трансформаторов(блоков питания)?

Иногда в маркировке блока питания можно увидеть буквы PFC, это аббревиатура PowerFactorCorrection или коррекция коэффициента мощности (коррекция реактивной мощности).

Не углубляясь в технические особенности, это означает, что блок питания выполнен в определенном схемотехническом решении, которое позволяет уменьшить потребление реактивной мощности (мощность имеет активную и реактивную составляющие, на показания счетчика обычно влияет только активная составляющая, но на общее потребление энергоресурсов влияют обе составляющие).

Такие блоки питания имеют высокое значение коэффициента эффективной мощности (Λ)>0,9, что позволяет отнести их к блокам питания высокого класса, низкий пусковой ток, они позволяют сократить нагрузки на токопередающие линии, уменьшить требования к толщине подающего питание провода. При большом количестве используемых блоков не требуется применять специальные пусковые автоматы.

Блоки питания с корректором мощности более экологичны, т.к. эффективнее расходуют электроэнергию.

Расчет сечения и диаметра кабеля для исключения падения напряжения(вольтажа):

При использовании светодиодной ленты важно, чтобы свечение было равномерным по всей длине, для этого падения напряжения на конце линии обычно не должно превышать 0.5 В, при условии, что длинные участки ленты запрещается подключать последовательно.

При расположении блока питания в непосредственной близости от ленты, проблемы, как правило, не возникает, но при удаленном расположении блока необходимо увеличивать толщину жилы для компенсации падения напряжения.

Ниже представлен алгоритм вычисления для блока питания(источника напряжения для светодиодных изделий) максимальной выдаваемой мощностью 150 Вт, выдаваемому напряжению 24 В, падение напряжения не более 0.5 В, расстояние от блока до ленты 10м:

Общее сопротивление линии R.

Допустимое падение напряжение делим на максимальный ток, ток вычисляется как мощность/напряжение:

Общее сопротивление линии R = 0,5V / (150W/24V) = 0,08 Om.

Сечение жилы S.

Длину линии умножаем на удельное сопротивление материала (для меди 0,018 Ом*мм2/м), делим на сопротивление R.

Сечение жилы S = (10m*0,018 Om*mm2/m )/ 0,08 Om = 2,25 mm2.

Диаметр жилы D.

Используем формулу площади круга: радиус равен корню из частного площади и Πи.

Диаметр жилы: D= 2 х √(2,25 mm2/ 3,14) = 1,75 mm.

Таким образом, получаем, что для 10 метрового кабеля от блока питания до истока света (led ленты) падение напряжения составит 0,5В при использовании провода сечением 2,25mm2 (что соответствует диаметру 1,7 мм).

Также из приведенных вычислений видно, что компенсировать падение напряжения можно, используя ленту с большим рабочим напряжением, 24 В или 36 В.

Выбор сечения и диаметра кабеля для исключения потерь мощности при нагревании кабеля

Если подключать блок питания и светодиодную ленты на большом расстоянии друг от друга, то необходимо не только исключать падение напряжения питания на соединяющем кабеле, но закладывать потери мощности, которые может создавать данный кабель.

Важно: чем больше сечение кабеля, тем меньше потерь мощности при этом сопровождается. При сложным проектах — необходимо довериться профессионалам для расчета потерь мощности на кабелях. При больших расстояниях подбор максимальной выдаваемой мощности блока питания будет сопровождаться с большим запасом и кабель с большим сечением жилы.

Источник: https://novolampa.ru/baza-znaniy/kak-podobrat-blok-pitaniya-dlya-svetodiodnoy-lenty/

Как определить на сколько вольт светодиод

Существует несколько методов как определить на сколько вольт светодиод. Один из них – довольно простой и не всегда срабатывает. Другой же – требует дополнительно аппаратуры и небольших познаний в электронике. В любом случае, они пользуются популярностью среди обладателей светодиодных лент, фонариков и других приспособлений.

Какими бывают светодиоды

Светодиод имеет массу обозначений (СД, СИД и LED). В основе такого устройства лежит небольшой полупроводниковый кристалл. Когда через него проходит электроток – происходит выброс фотонов, что приводит к свечению. Номинальное напряжение внутри такой конструкции позволяет определить, какой напряжение способен выдержать диод и какое необходимо для его нормальной работы. Используя эти значения, можно узнать на сколько вольт светодиоды в фонарике и в лампе.

Из неорганических полупроводниковых веществ создаются красные и желтые, зеленые и синие – на основе индия-галлия и нитрада. Различаются по сфере применения: для индикации и освещения. Вторые мощные и считаются отдельным осветительным прибором. Первые же используются в различных устройствах удаленного доступа: пульты, мобильные телефоны и другие.Для освещения зачастую используются диоды, светящиеся белый светом. В зависимости от их мощности, подсветка может быть яркой или тусклой.

Используются для домов и квартир, торговых центров и общественных заведений. По цвету их делят на: холодный, теплый и нейтральный оттенок. Классифицируются дополнительно по способу монтажа.

Светодиоды обладают различными параметрами мощности и напряжения. От этого зависит качество освещение, использование дополнительных блоков питания. Если неверно подобрать источник энергии – это может привести к малому эксплуатационному сроку полупроводников и быстрой поломке.

Несколько указанных способов помогут определить напряжение в светодоиодах.

Первый метод: узнать теоретическим способом на сколько вольт рассчитан светодиод

Внешние признаки – отличная возможность, как узнать на сколько вольт бывают светодиоды. В этом случае Вам поможет цвет свечения, форма и размеры полупроводникового прибора. Примеси различных химических элементов дают определенное свечение: начиная от красного и заканчивая желтым. Также существуют прозрачные модели, в которых определить параметры вольтажа можно только с мультиметром.

Для того, чтобы узнать нужный параметр, нужно выполнить такие действия:- Тестер нужно выставить на «Проверка обрыва»;- Используйте щупы, чтобы прикоснуться к выходу светодиода;- Несильное свечение кристалла поможет понять напряжение, которое есть в диодеОкрашены они в разный цвет не случайно – при помощи внешних значений, можно определить примерное значение тока. Утверждать, что эти значения абсолютно верны – не стоит.

Цвета стандартизированы и используются в условиях производства, вне зависимости от марки и производителя. Например, красный обладает напряжение до 2 В, а зеленый до четырех. Благодаря подобным обозначениям, можно не только узнать сколько вольт он потребляет, но и сколько вольт выдержит светодиод.На некоторых моделях Вы сможете рассмотреть количество кристаллов, влияющих на тип самого полупроводникового устройства.

В корпусе СМД расположено несколько полупрозрачных кристаллов, соединяясь – они выдают определенный свет. Часто используются в лампах на 220 В.

Последним, теоретическим способом сколько вольт потребляет светодиод, является программное обеспечение. Вы можете воспользоваться программами, которые содержат в себе целую базу данных. Введя уже известные параметры и цвет, Вы получите приблизительные данные.

Далеко не всегда они верны, поэтому от теории переходим к практике.

Второй метод: практический

Это самый точный, но трудоемкий способ, как узнать на сколько вольт бывают светодиоды. Проведя тестирование, Вы сможете узнать параметры падения напряжения и значение силы тока. Воспользовавшись полученными данными, можно долгое время использовать полупроводник и подобрать для него нужное напряжение.

Для тестирования Вам понадобится:- Вольтметр;- Мультиметр;- Двенадцати ватный блок питания;- Резистор от 510 ОмПринцип действия такой же, как и ранее – необходимо узнать номинальный ток. Соберите небольшую схему с резистором и вольтметром. Напряжение увеличивают до того момента, пока кристалл не загорится достаточно ярким светом. При достижении порогового значения – показания спадают и перестают расти. После этого необходимо снимать показания электрода.

В некоторых случаях свечения может не быть, например, до 2 В. Обнаружить инфракрасный диод можно: излучатель направляется на включенную камеру мобильного телефона. На экране может возникнуть белое пятно, которое и будет инфракрасным диодом.

Схему можно собрать и из подручных средств: вместо блока питания взять обыкновенную батарейку на 9 Вольт, вместо источников питания – стабилизатор сетевого напряжения.

Подобная схема может не выдать номинального значения, но вполне способна показать достаточно примерные. Если характеристики неизвестны, нужно сразу же рассчитать значения светодиода, чтобы предупредить его выход из строя.

Источник: https://ledflux.ru/blog/kak-opredelit-na-skolko-volt-svetodiod/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]