Светодиоды: подробно простым языком
Светодиод — диод с простым P-N переходом, главной особенностью которого является то, что он испускает свет, когда через него проходит ток. Используется во многих цифровых дисплеях, а также в других типах индикаторных устройств.
Светодиод Обратите внимание на основы электричества и на приборы электроники.
Принцип работы светодиода
Основные рабочие характеристики любого светоизлучающего диода сходны с характеристиками обычного диода. Когда подается напряжение, то электроны двигаются от материала N-типа через P-N переход и соединяются с отверстиями в материале P-типа. В обычных диодах энергия, которая возникает в результате соединения электронов с отверстиями, выделяется в виде тепла. Однако, когда речь идет о светодиодах, то энергия в них выделяется в первую очередь в виде света.
Схема светодиода
Светодиоды могут изготавливаться таким образом, что будут испускать красный, зеленый, голубой, инфракрасный или ультрафиолетовый свет. Это достигается путем изменения количества и типа материалов, которые используются в качестве присадки. Яркость света также может изменяться, что осуществляется с помощью управления количеством тока, проходящего через светодиод. Однако, как и любой другой диод, СИД имеет предельные значения тока, которые он может выдержать.
Где используются светодиоды
Одной из основных областей применения светодиодов является использование их в качестве сигнальных лампочек. Например, этот прибор может использоваться для того, чтобы проконтролировать идет ли по цепи ток или она обесточена.
Цепь с сигнальной лампочкой представляет собой ряд приборов, последовательно соединенных между собой: светодиод, резистор, выключатель и источник постоянного тока.
Схема типичной цепи с сигнальной лампочкой
Когда выключатель цепи с сигнальной лампочкой замкнут, то напряжение прямого смещения от источника тока подается на светодиод (который разработан таким образом, чтобы срабатывать только, когда имеется прямое смещение).
Электроны, которые прорываются через P-N переход, соединяются с отверстиями, в результате чего энергия высвобождается в виде света.
Резистор, установленный в этой цепи, ограничивает протекание тока по ней, с тем, чтобы защитить светодиод от повреждений, которые может вызвать чрезмерный ток.
Светодиоды могут также использоваться в цифровых дисплеях, например, в наручных часах или калькуляторах.
С помощью высвечивания различных комбинаций из семи элементов на дисплее можно отображать любую цифру от нуля до девяти.
Цифровой дисплей на калькуляторе из семи элементов
Каждый светодиод соединен последовательно с резистором и выключателем, где каждый выключатель представляет собой внешнюю управляющую цепь. Выключатели имеют обозначения от А до G, чтобы соответствовать элементам дисплея.
Семь последовательных проводов соединены параллельно с источником постоянного тока. Для того, чтобы подать питание на какой-либо светодиод, замыкается соответствующий выключатель.
Каждый последовательно включенный в цепь резистор ограничивает ток, проходящий по проводу, и, тем самым, предотвращает повреждение светодиодов от чрезмерно большого тока.
Схема внешней цепи управления для цифрового дисплея калькулятора
Цифры появляются на цифровом дисплее в результате различных сочетаний семи выключателей. Например, если выключатели А и В замкнуты, то соответствующие элементы на дисплее загорятся и образуют цифру 1. Подобным же образом цифра 2 может быть образована с помощью выключателей A, C, D, F и G, которые будут замкнуты одновременно.
Замыкая соответствующие выключатели в определенных комбинациях, на дисплее можно получать цифры от 0 до 9. Если элементы расположить несколько иным образом, то на дисплее можно получить знак плюса, минуса, десятичные точки или же буквы алфавита.
Светодиоды могут использоваться даже для обеспечения искусственного освещения для роста растений. Основными преимуществами светодиодов в этом случае являются: низкое потребление электричества и тепловыделения, а также возможность настройки необходимого спектра излучения.
Источник: https://kipiavp.ru/pribori/svetodiod.html
Напряжение светодиодных ламп
Мы привыкли, что лампы накаливания работают от сети с переменным напряжением 220 вольт. Есть, конечно, и другие лампы накаливания, работающие от меньшего напряжения, но и свечение там тоже намного меньше.
Здесь можно наблюдать зависимость — чем меньше напряжение светодиодного освещения, тем меньше света получаем от лампы. Но светодиодные лампы работают совсем по-другому. Для светодиода неважно напряжение, сила свечения зависит только от тока, проходящего через диод.
В этой статье мы рассмотрим на каком напряжении могут работать светодиодные лампы, а также затронем ток светодиодных ламп.
- Напряжение светодиодных ламп
- Ток светодиодных ламп
- Выводы
Я думаю что большинство людей давно закончивших школу и не имеющих дела с электричеством еще тогда забыли чем принципиально отличается ток от напряжения. А это желательно понимать.
Во многих книгах для пояснения разницы между током и напряжением проводится аналогия с водопроводной трубой. Но мне не очень нравится это сравнение. Любой предмет, брошенный из определенной высоты будет падать и в определенный момент достигнет поверхности земли.
Его притягивает гравитация. Так вот напряжение — это сила, которая заставляет двигаться ток, как и гравитация притягивает предметы. А вот сила тока, если продолжить аналогию, это размер предмета, чем больше, тем сильнее ударит.
Гравитация, как и напряжение не убьет если не будет предмета (тока).
А теперь вернемся к светодиодным лампам. Один светодиод или светодиодный чип, это вид полупроводника, который может пропускать ток только в одном направлении. Светодиоды могут работать от напряжения 4-12 Вольт. И даже больше, светодиодам нужно постоянное напряжение для нормальной работы. Но в стандартной электрической сети совсем другие условия.
В светодиодных лампах несколько светодиодов объединяются последовательно в один массив, и все они получают ток светодиодной лампы от общего блока питания. У многих светодиодных ламп, работающих от напряжения сети внутри есть специальное устройство, драйвер, который включает выпрямитель для преобразования переменного тока в постоянный, трансформатор, чтобы снизить очень высокое входящее напряжение, а также, возможно, стабилизационный компонент, чтобы уменьшить колебания тока.
Большинство современных светодиодных ламп, которые предназначены для домашнего использования и промышленности предназначены для напряжения питания 110-220 Вольт. Это достигается путем объединения нескольких чипов, как сказано выше. За остальное понижение напряжения и получение постоянного тока отвечает драйвер, встроенный в каждую лампу.
Но если у такой лампочки нет встроенного драйвера, а вы хотите запустить ее от обычной сети, вам потребуется внешнее устройство, которое будет выполнять те же функции, обеспечит нужное напряжение светодиодных ламп и выпрямит ток светодиодной лампы.
Стандартные настенные адаптеры, рассчитанные для другого оборудования, не подойдут, они не спалят светодиоды, но использовать их не рекомендуется. Они могут вызвать мерцание из-за неправильной светодиодной нагрузки, а также сокращают срок службы лампы. Поэтому нужно использовать драйверы, разработанные только для вашего вида ламп.
В последнее время появились светодиоды, работающие от переменного напряжения. Но так как светодиоды пропускают ток только в одну сторону, по своей природе они все равно остались устройствами, работающими на постоянном токе. В них одна честь диода светится при положительном токе, вторая при отрицательном цикле. Таким образом, мы получаем однородное свечение. Но для таких ламп тоже нужен драйвер, если они не приспособлены для работы от 220 вольт.
Ток светодиодных ламп
Яркость свечения светодиодных ламп зависит от тока, который будет проходить через сам диод. Это позволяет очень легко управлять яркостью таких ламп.
Здесь подходит тот же принцип регулировки яркости что и для обычных ламп накаливания, изменяем силу тока — изменяется яркость.
Но тут возникает одна проблема, в каждой лампе, которая будет работать от сети переменного напряжения встроен драйвер, который будет препятствовать изменению яркости. Поэтому если драйвер не поддерживает такую опцию регулировать яркость нельзя.
Потребление лампой электричества тоже зависит от тока и пропускаемого напряжения. Сила тока, с которой может работать лампа обычно указана на упаковке. Это может быть от 10-100 мА. Если же не указано и вам нужно знать этот параметр, его очень просто рассчитать по формуле:
I=(Р/U)*1000
Здесь I — это сила тока, P — потребляемая мощность и напряжение. Например, лампа на 220 вольт с потребляемой мощностью 12 Ватт будет иметь силу тока 54 мА. Рассчитанная сила тока может быть ниже, чем указанная на упаковке, потому что некоторые производители указывают на упаковке потребляемую мощность не самой лампы, а светодиода. Кроме светодиода, там есть еще резистор и другие компоненты, которым тоже нужно питание.
Выводы
В этой статье мы рассмотрели что такое напряжение светодиодных ламп, а также как влияет сила тока на их работу.
Источник: https://te4h.ru/napryazhenie-svetodiodnyh-lamp
Питание светодиодов, блок питания для светодиодов
Постоянные читатели часто интересуются, как правильно сделать питание для светодиодов, чтобы срок службы был максимален. Особенно это актуально для led неизвестного производства с плохими техническими характеристиками или завышенными.
По внешнему виду и параметрам невозможно определить качество. Частенько приходится рассказывать как рассчитать блок питания для светодиодов, какой лучше купить или сделать своими руками. В основном рекомендую купить готовый, любая схема после сборки требует проверки и настройки.
- 1. Основные типы
- 2. Как сделать расчёт
- 3. Калькулятор для расчёта
- 4. Подключение в автомобиле
- 5. Напряжения питания светодиодов
- 6. Подключение от 12В
- 7. Подключение от 1,5В
- 8. Как рассчитать драйвер
- 9. Низковольтное от 9В до 50В
- 10. Встроенный драйвер, хит 2016
- 11. Характеристики
Основные типы
Светодиод – это полупроводниковый электронный элемент, с низким внутренним сопротивлением. Если подать на него стабилизированное напряжение, например 3V, через него пойдёт большой ток, например 4 Ампера, вместо требуемого 1А. Мощность на нём составит 12W, у него сгорят тонкие проводники, которыми подключен кристалл. Проводники отлично видно на цветных и RGB диодах, потому что на них нет жёлтого люминофора.
Если блок питания для светодиодов 12V со стабилизированным напряжением, то для ограничения тока последовательно устанавливают резистор. Недостатком такого подключения будет более высокое потребление энергии, резистор тоже потребляет некоторую энергию. Для светодиодных аккумуляторных фонарей на 1,5В применять такую схему нерационально. Количество вольт на батарейке быстро снижается, соответственно будет падать яркость. И без повышения минимум до 3В диод не заработает.
Этих недостатков лишены специализированные светодиодные драйвера на ШИМ контроллерах. При изменениях напряжения ток остаётся постоянным.
Как сделать расчёт
Чтобы рассчитать блок питания для светодиодов необходимо учитывать 2 основных параметра:
- номинальная потребляемая мощность или желаемая;
- напряжение падения.
Суммарное энергопотреблением подключаемой электрической цепи не должно превышать мощности блока.
Падения напряжения зависит от того, какой свет излучает лед чип. Я рекомендую покупать фирменные LED, типа Bridgelux, разброс параметров у них минимальный. Они гарантированно держат заявленные характеристики и имеют запас по ним.
Если покупаете на китайском базаре, типа Aliexpress, то не надейтесь на чудо, в 90% вас обманут и пришлют барахло с параметрами в 2-5 раз хуже. Это многократно проверяли мои коллеги, которые заказывали недорогие LED 5730 иногда по 10 раз. Получали они SMD5730 на 0,1W, вместо 0,5W.
Это определяли по вольтамперной-характеристике.
Пример различной яркости кристаллов
К тому же у дешевых разброс параметров очень большой. Что бы это определить в домашних условиях своими руками, подключите их последовательно 5-10 штук. Регулирую количество вольт, добейтесь чтобы они слегка светились. Вы увидите, что часть светит ярче, часть едва заметно. Поэтому некоторые в номинальном рабочем режиме будут греться сильнее, другие меньше. Мощность будет на них разная, поэтому самые нагруженные выйдут из строя раньше остальных.
Калькулятор для расчёта
Для удобства читателей опубликовал онлайн калькулятор для расчёта резистора для светодиодов при подключении к стабильному напряжению.
Калькулятор учитывает 4 параметра:
- количество вольт на выходе;
- снижение напряжения на одном LED;
- номинальный рабочий ток;
- количество LED в цепи.
Подключение в автомобиле
..
При заведенном двигателе бывает в среднем 13,5В — 14,5В, при заглушенном12В — 12,5В. Особые требования при включении в автомобильный прикуриватель или бортовую сеть. Кратковременные скачки могут быть до 30В. Если у вас используется токоограничивающее сопротивление, то сила тока возрастает прямо пропорционально повышению напряжению питания светодиодов. По этой причине лучше ставить стабилизатор на микросхеме.
Недостатком использования светодиодных драйверов в авто может быть появление помех на радио в УКВ диапазоне. ШИМ контроллер работает на высоких частотах и будет давать помехи на ваш радиоприёмник. Можно попробовать заменить на другой или линейный типа стабилизатор тока LM317 для светодиодов. Иногда помогает экранирование металлом и размещение подальше от головного устройства авто.
Напряжения питания светодиодов
Из таблиц видно, для маломощных на 1W, 3W этот показатель 2В для красного, желтого цвета, оранжевого. Для белого , синего, зелёного он от 3,2В до 3,4В. Для мощных от 7В до 34В. Эти циферки придется использовать для расчётов.
Подключение от 12В
Одно из самых распространенных напряжений это 12 Вольт, они присутствуют в бытовой технике, в автомобиле и автомобильной электронике. Используя 12V можно полноценно подключить 3 лед диода. Примером служит светодиодная лента на 12V, в которой 3 штуки и резистор подключены последовательно.
Пример на диоде 1W, его номинальный ток 300мА.
- Если на одном LED падает 3,2В, то для 3шт получится 9,6В;
- на резисторе будет 12В – 9,6В = 2,4В;
- 2,4 / 0,3 = 8 Ом номинал нужного сопротивления;
- 2,4 * 0,3 = 0,72W будет рассеиваться на резисторе;
- 1W + 1W + 1W + 0,72 = 3,72W полное энергопотребление всей цепи.
Аналогичным образом можно вычислить и для другого количества элементов в цепи.
Подключение от 1,5В
Источник: http://led-obzor.ru/pitanie-svetodiodov-blok-pitaniya-dlya-svetodiodov
Как определить на сколько вольт светодиод
Существует несколько методов как определить на сколько вольт светодиод. Один из них – довольно простой и не всегда срабатывает. Другой же – требует дополнительно аппаратуры и небольших познаний в электронике. В любом случае, они пользуются популярностью среди обладателей светодиодных лент, фонариков и других приспособлений.
Какими бывают светодиоды
Светодиод имеет массу обозначений (СД, СИД и LED). В основе такого устройства лежит небольшой полупроводниковый кристалл. Когда через него проходит электроток – происходит выброс фотонов, что приводит к свечению. Номинальное напряжение внутри такой конструкции позволяет определить, какой напряжение способен выдержать диод и какое необходимо для его нормальной работы. Используя эти значения, можно узнать на сколько вольт светодиоды в фонарике и в лампе.
Из неорганических полупроводниковых веществ создаются красные и желтые, зеленые и синие – на основе индия-галлия и нитрада. Различаются по сфере применения: для индикации и освещения. Вторые мощные и считаются отдельным осветительным прибором. Первые же используются в различных устройствах удаленного доступа: пульты, мобильные телефоны и другие.Для освещения зачастую используются диоды, светящиеся белый светом. В зависимости от их мощности, подсветка может быть яркой или тусклой.
Используются для домов и квартир, торговых центров и общественных заведений. По цвету их делят на: холодный, теплый и нейтральный оттенок. Классифицируются дополнительно по способу монтажа.
Светодиоды обладают различными параметрами мощности и напряжения. От этого зависит качество освещение, использование дополнительных блоков питания. Если неверно подобрать источник энергии – это может привести к малому эксплуатационному сроку полупроводников и быстрой поломке.
Несколько указанных способов помогут определить напряжение в светодоиодах.
Первый метод: узнать теоретическим способом на сколько вольт рассчитан светодиод
Внешние признаки – отличная возможность, как узнать на сколько вольт бывают светодиоды. В этом случае Вам поможет цвет свечения, форма и размеры полупроводникового прибора. Примеси различных химических элементов дают определенное свечение: начиная от красного и заканчивая желтым. Также существуют прозрачные модели, в которых определить параметры вольтажа можно только с мультиметром.
Для того, чтобы узнать нужный параметр, нужно выполнить такие действия:- Тестер нужно выставить на «Проверка обрыва»;- Используйте щупы, чтобы прикоснуться к выходу светодиода;- Несильное свечение кристалла поможет понять напряжение, которое есть в диодеОкрашены они в разный цвет не случайно – при помощи внешних значений, можно определить примерное значение тока. Утверждать, что эти значения абсолютно верны – не стоит.
Цвета стандартизированы и используются в условиях производства, вне зависимости от марки и производителя. Например, красный обладает напряжение до 2 В, а зеленый до четырех. Благодаря подобным обозначениям, можно не только узнать сколько вольт он потребляет, но и сколько вольт выдержит светодиод.На некоторых моделях Вы сможете рассмотреть количество кристаллов, влияющих на тип самого полупроводникового устройства.
В корпусе СМД расположено несколько полупрозрачных кристаллов, соединяясь – они выдают определенный свет. Часто используются в лампах на 220 В.
Последним, теоретическим способом сколько вольт потребляет светодиод, является программное обеспечение. Вы можете воспользоваться программами, которые содержат в себе целую базу данных. Введя уже известные параметры и цвет, Вы получите приблизительные данные.
Далеко не всегда они верны, поэтому от теории переходим к практике.
Второй метод: практический
Это самый точный, но трудоемкий способ, как узнать на сколько вольт бывают светодиоды. Проведя тестирование, Вы сможете узнать параметры падения напряжения и значение силы тока. Воспользовавшись полученными данными, можно долгое время использовать полупроводник и подобрать для него нужное напряжение.
Для тестирования Вам понадобится:- Вольтметр;- Мультиметр;- Двенадцати ватный блок питания;- Резистор от 510 ОмПринцип действия такой же, как и ранее – необходимо узнать номинальный ток. Соберите небольшую схему с резистором и вольтметром. Напряжение увеличивают до того момента, пока кристалл не загорится достаточно ярким светом. При достижении порогового значения – показания спадают и перестают расти. После этого необходимо снимать показания электрода.
В некоторых случаях свечения может не быть, например, до 2 В. Обнаружить инфракрасный диод можно: излучатель направляется на включенную камеру мобильного телефона. На экране может возникнуть белое пятно, которое и будет инфракрасным диодом.
Схему можно собрать и из подручных средств: вместо блока питания взять обыкновенную батарейку на 9 Вольт, вместо источников питания – стабилизатор сетевого напряжения.
Подобная схема может не выдать номинального значения, но вполне способна показать достаточно примерные. Если характеристики неизвестны, нужно сразу же рассчитать значения светодиода, чтобы предупредить его выход из строя.
Источник: https://ledflux.ru/blog/kak-opredelit-na-skolko-volt-svetodiod/
Светодиоды – как работает, полярность, расчет резистора
Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.
Устройство светодиода
Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.
Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.
Светодиод состоит из нескольких частей:
- анод, по которому подается положительная полуволна на кристалл;
- катод, по которому подается отрицательная полуволна на кристалл;
- отражатель;
- кристалл полупроводника;
- рассеиватель.
Эти элементы есть в любом светодиоде, вне зависимости от его модели.
Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.
Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.
Цвета светодиодов
Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.
Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.
RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.
Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.
Принцип работы светодиодов
Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.
При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.
Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:
- ширина запрещенной зоны должна быть близка к энергии кванта света;
- полупроводниковый кристалл должен иметь минимум дефектов.
Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.
Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).
Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.
Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.
Виды светодиодов, классификация
По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.
По типу исполнения выделяют:
- Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.Dip светодиоды
- Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.
- Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.Smd
- Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров. Cob
- Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
- Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.Filament
- Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
- В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.
Светодиоды могут быть:
- мигающими – используются для привлечения внимания;
- многоцветными мигающими;
- трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
- RGB;
- монохромными.
Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.
Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).
По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.
Полярность светодиодов
Полярность светодиодов
При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.
Полярность моно определить несколькими способами:
- Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
- При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
- При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
- По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.
Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.
Расчет сопротивления для светодиода
Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.
Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.
Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.
Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.
Когда нужно использовать токоограничивающий резистор:
- когда вопрос эффективности схемы не является основным – например, индикация;
- лабораторные исследования.
В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.
Онлайн – сервисы и калькуляторы для расчета резистора:
Источник: https://arduinomaster.ru/datchiki-arduino/printsip-raboty-i-vidy-svetodiodov/
Доработка схем светодиодных ламп
Доработка светодиодных лампочек
Сегодняшняя статья – первая в этом году, и первая в Конкурсе статей 2019 года. Но не первая – у её Автора, Алексея Филиппова, который неоднократно публиковался на СамЭлектрик.ру.
На этот раз Алексей расскажет про устройство и электрические схемы светодиодных ламп, и расскажет про 4 простых способа доработки схем светодиодных ламп.
Идеи, изложенные в статье – его собственные. Только идея с уменьшением тока светодиодов не новая, остальное он сам придумал, сам опробовал и применил.
Я лишь буду, как обычно, в цитатах вставлять некоторые комментарии и ссылки.
Итак, слово Автору.
4 простых доработки светодиодных ламп
Речь пойдёт про современные светодиодные лампочки, которые теперь стали более доступны. Идеи доработки LED ламп, изложенные в статье, пригодятся заядлым самодельщикам. В начале рассмотрим конструкцию, позже доработки.
Современная конструкция ламп получилась в результате эволюции проб конструкторов сделать лампочку доступной и максимально эффективной и сейчас эта конструкция наиболее часто встречается.
Сравнение принципов построения схем светодиодных ламп
Чаще всего встречается неизолированный драйвер, его схему делают на импульсном понижающем преобразователе.
Применение такого драйвера в светодиодной лампочке имеет ряд преимуществ, по сравнению с другими схемами:
- хорошая стабильность выходного тока в широком диапазоне питающего напряжения, полное отсутствие пульсаций, по сравнению со схемой на конденсаторном балласте.
- более высокий КПД по сравнению с изолированным и с линейным драйвером. Выходное напряжение такого драйвера гораздо выше, чем у изолированных драйверов. Для получения заданной мощности, применяются светодиоды с несколькими кристаллами в одном корпусе, что позволяет поднять напряжение и снизить ток в цепи, КПД повышается за счет снижения потерь в цепи питания.
- меньшие размеры и стоимость по сравнению с изолированным драйвером, так как дроссель получается меньше, чем трансформатор для такой же мощности. Из за особенности схемы, дросселю не нужно переваривать всю мощность, в отличии от трансформатора в изолированном драйвере, меньше нужно материала, для его изготовления.
Сравнение внешнего вида драйверов светодиодных ламп
Будьте осторожны при работе с такими драйверами, чтобы не получить удар током!
Фото платы изолированного драйвера с обратной стороны:
Изолированный драйвер для светодиодов с разделительным трансформатором
Разбираем светодиодную лампочку
Корпус ламп делают из композитного материала, который служит теплоотводом для светодиодов. Разбираются лампочки разных производителей довольно просто. Рассеиватель держится по периметру на защелках и силиконе. Поддеваем ножом и подрезаем герметик по кругу, колпак рассеивателя снимается с некоторым усилием.
Разборка светодиодной лампы
Плата с диодами может быть запрессована или прикручена винтами, контакты могут быть припаяны или съемными. С прикрученной платой всё просто, а вот с запрессованной придётся повозится. Мне обычно удается подковырнуть плату плоской отвёрткой, но каждый раз, у разных производителей это не всегда удаётся совсем без повреждений корпуса, иногда откалывается кусок пластика, который затем можно приклеить обратно, если есть необходимость.
После снятия платы со светодиодами не нужно сразу пытаться извлечь драйвер, это не получится. Будут мешать провода, идущие от цоколя лампы.
Драйвер внутри светодиодной лампы
На заводе сборка происходила в другом порядке, чем мы пытаемся разобрать. Необходимо поддеть и вытащить центральный контакт цоколя лампы, так один вывод освободится, а второй можно отпаять или отрезать от самой платы, а потом при сборке его придётся удлинить.
Смотрим, как устроена LED лампочка
Теперь можно рассмотреть все детали лампы и из чего она устроена. Разработчики ламп заложили определенные характеристики в конструкцию лампы, а именно ток через светодиоды, который обусловлен несколькими требованиям, такими как температурный режим, яркость и мощность потребления, срок службы лампочки и соотношение цены и всех этих характеристик.
Теорию мирового заговора производителей, по которой производители заинтересованы делать не надёжные вещи, мы рассматривать не будем, моё мнение что это миф, всё диктует маркетинг и потребители, а производители делают то что у них заказывают, то что хорошо продаётся, значит всегда ищут середину между надежностью и ценой. В наших реалиях обычно более дешёвые товары выигрывает по продажам, в итоге имеем то что имеем.
Выход из строя лампочки в большинстве случаев происходит из-за обрыва в цепи светодиодов.
Неисправная лампа – на сгоревшем светодиоде, который обрывает цепь, можно видеть черную точку.
При эксплуатации, после включения лампочки, происходит нагрев кристаллов светодиодов и термическое расширение. Токопроводящие выводы от кристаллов делают в виде тонких нитей из золота, так как золото очень пластичный металл и хорошо переносит деформации не разрушаясь.
Коэффициент расширения у кристаллов и остальных материалов конструкции светодиода не одинаков, со временем от включений и выключений лампочки, термическая деформация разрушает вывод кристалла светодиода или место его крепления, цепь разрывается и лампа выходит из строя.
Я подробно рассказываю об этом в статьях про устройство светодиодных прожекторов и ремонт прожекторов.
К слову, для меньшего воздействия температуры на линейные размеры, хорошее решение делать светодиоды с несколькими более мелкими кристаллами, чем с одним большим такой же общей площади, и за одно это позволяет поднять напряжение питания светодиода при последовательном включении кристаллов внутри одного корпуса светодиода.
Светодиод для лампы с тремя кристаллами, работающими в облегченном режиме
Доработка лампы для увеличения срока службы
Первая доработка заключается в снижении тока через светодиоды, что позволяет значительно продлить срок службы лампы, яркость свечения при этом неизбежно снижается. Снижение яркости при снижении тока через светодиоды происходит не линейно, с некоторым отставанием, так что снижением тока достигается дополнительное повышение КПД светодиода, что в свою очередь еще больше снижает температуру кристаллов, такой доработкой убиваем двух зайцев.
Для наглядности КПД светодиода и потерь в виде тепла, дан график зависимости тока через светодиод и яркости свечения, где показана нелинейная зависимость.
Зависимость яркости светодиода от прямого тока с учетом тепловых потерь
Обычно это легко сделать без схем и даташитов на микросхему драйвера. Нужно найти на плате резистор или пару резисторов включенную в параллель с сопротивлением в несколько Ом – это датчик тока который нас интересует. Такой резистор – датчик тока, есть абсолютно во всех схемах драйверов, как в импульсных, так и в линейных, и везде сопротивление датчика единицы Ом.
Первая переделка схемы драйвера LED лампы
Резистор нужно заменить на резистор бОльшего сопротивления или отпаять один из двух резисторов. Ток через светодиоды снижается пропорционально увеличению сопротивления резистора датчика тока.
Доработка схемы – показан резистор обратной связи
Даже незначительное снижение тока через светодиоды и мощности лампы существенно продлевает срок службы, так как температура самого кристалла светодиода снижается гораздо в большей степени, чем температура наружного корпуса лампы из за теплового сопротивления переходов кристалл-подложка-припой-проводник платы и т.д., и уменьшается тепловое расширение разрушающее место крепления проводника к кристаллу.
Возьмем случай для наглядности как тепло передается от кристалла в окружающую среду: допустим линия электропередач где нибудь либо очень длинная, либо сечение проводов маленькое, при включении приборов разной мощности происходит заметная “просадка” напряжения , чем выше мощность потребителя, тем больше просадка напряжения (потери).
Читайте статьи про потери напряжения при постоянном токе и про потери в кабельной линии.
Так и с теплом у светодиодов, при одном и том же тепловом сопротивлении, при меньшей мощности на кристалле, тепло лучше передаётся на корпус и в окружающий воздух (меньше “просадка”).
Более дорогие лампы отличаются большим количеством светодиодов на меньшем токе и заниженной мощности, чем у более дешёвых ламп, светоотдача люмен/вт у них больше и режим светодиодов более щадящий. На фото ниже лампочка с заявленной светоотдачей около 108 Лм/вт, тогда как обычно это не более 100 лм/вт.
Светодиодная лампочка с большей светоотдачей
Я обычно занижаю мощность на 20-30%, но делаю это на новой лампе, пока золотые проводники еще крепкие.
Та же лампа, со вскрытой колбой
Делал занижение мощности когда проводил ремонт светодиодной лампы, но тут для надёжного результата нужно снижать ток через светодиоды как минимум на 50%, так как все светодиоды из одной партии и работали в одинаковых условиях, раз один сгорел, то остальные будут один за одним все потихоньку выходить из строя, лампа долго после ремонта не проработает без занижения мощности, если конечно не заменить сразу все диоды на новые, но это не всегда приемлемо.
Плавное увеличение яркости при включении
Вторая доработка позволяет включать лампу плавно, например для применения в спальне.
Для этого нужно включить позистор (терморезистор с положительной температурной зависимостью, или термистор PTC) параллельно всем или большей части светодиодов.
Доработка светодиодной лампы для плавного включения яркости
Работает схема просто: Пока позистор холодный, его сопротивление минимально и ток течет через часть светодиодов и позистор и постепенно разогревает его. По мере прогрева, сопротивление плавно нарастает и плавно включает в цепь остальные светодиоды – яркость плавно нарастает.
Доработка светодиодной лампы позистором
Доработка светодиодной лампы термистором для плавного розжига
Драйвер для последовательно включенных светодиодов, который используется в люстре, и его схему я подробно рассмотрел в статье Почему перестали гореть светодиоды в люстре.
Позистор нужен с холодным сопротивлением 330-470 Ом, его маркировка wmz11a, такие есть в продаже или их можно добыть из энергосберегающей лампы мощностью 32 вт, в менее мощных КЛЛ, позистор с холодным сопротивлением 1 кОм и более, что не очень подходит для нашей доработки, разве что взять их несколько штук и соединить параллельно, но я этот способ не пробовал.
Позистор (терморезистор), который входит в схему КЛЛ
Источник: https://samelectric.ru/lamp-osveshhenie/peredelka-shemy-svetodiodnyh-lamp.html
Схемы подключения светодиодов к 220в и 12в — LED Свет
04.03.2019
Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В.
Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение.
Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.
Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.
Типы схем
Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:
В первом варианте применяется специализированный источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.
Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.
Калькулятор учитывает 4 параметра:
- снижение напряжения на одном LED;
- номинальный рабочий ток;
- количество LED в цепи;
- количество вольт на выходе блока питания.
Разница кристаллов
Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления.
Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и затем понижаем напряжение до тех пор, когда они будут едва светиться.
Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.
Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены. Так же будет повышенный нагрев, усиленная деградация, ниже надежность.
Обозначение на схеме
Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.
Подключение светодиода к сети 220в, схема
Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.
Схема драйвера для светодиодов бывает двух видов:
- простая на гасящем конденсаторе;
- полноценная с использованием микросхем стабилизатора;
Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется.
Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают.
Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.
Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была не с питанием.
Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера.
Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока.
Единственное нельзя превышать указанную мощность.
Подключение к постоянному напряжению
Далее будут рассмотрены схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный полярным напряжением на выходе. Несколько примеров:
- 3,7В – аккумуляторы от телефонов;
- 5В – зарядные устройства с USB;
- 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
- 19В – блоки от ноутбуков, нетбуков, моноблоков.
Самый простой низковольтный драйвер
Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.
Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.
Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.
Драйвера с питанием от 5В до 30В
Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.
В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.
Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.
Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.
Включение 1 диода
Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.
Параллельное подключение
При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность.
Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся.
На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.
Рациональность применений каждого способа рассчитывают исходя из требований к изделию.
Последовательное подключение
Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.
Такое соединение применяют в любой светотехнике:
- светодиодные лампах для дома;
- led светильники;
- новогодние гирлянды на 220В;
- светодиодные ленты на 220.
В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.
Подключение RGB LED
Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.
Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.
Включение COB диодов
Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.
Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.
Подключение SMD5050 на 3 кристалла
От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.
При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.
При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.
Светодиодная лента 12В SMD5630
Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.
Светодиодная лента RGB 12В SMD5050
В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.
Download WordPress ThemesDownload Best WordPress Themes Free DownloadFree Download WordPress ThemesDownload Premium WordPress Themes Freelynda course free downloadFree Download WordPress Themesudemy paid course free download
Источник: https://svet100led.ru/harakteristiki/shemy-podklyucheniya-svetodiodov-k-220v-i-12v.html
Светодиод: это, принцип работы, виды устройства, как работают сверхяркие, как устроен, из чего состоит, от чего зависит яркость свечения
Первые светодиоды (СД, СИД, LED) разработали в начале шестидесятых годов на смену миниатюрным лампам накаливания. Это были красные лампы с очень слабым свечением и применялись как индикаторы включения в различных приборах.
В начале девяностых, был создан синий светодиод, следом появились зеленые, желтые и белые. Сейчас светодиод один из наиболее широко востребованных осветительных элементов. Это световое устройство в пластиковом литом корпусе (разного цвета) с двумя выводами со впаянным кристаллом.
Корпус выполняет две функции – является линзой и защитным покрытием. Питание светодиода обеспечивается током, для чего в цоколь встроен преобразователь напряжения. Яркость свечения пропорциональна напряжению.
Устройство элемента
Светодиод состоит из следующих частей:
- основание;
- линза;
- катод (-);
- анод (+);
- кристалл (полупроводниковый чип);
- отражатель (рассеиватель).
В основании закреплены катод и анод, сверху все устройство герметично закрыто линзой (колбой). На катоде закреплен кристалл. На контактах установлены проводники, подсоединенные к кристаллу p-n-переходом (соединительная проволока, объединяющая два проводника с разными типами проводимости).
Теплоотвод необходим для поддержания стабильной работы светодиода. В индикаторных светодиодах тепло не накапливается за счет невысокой мощности. Для осветительных – основание напрямую припаивается к поверхности для обеспечения теплоотвода.
Принцип работы диодов для чайников
Чтобы понять, как работает светодиод, нужно знать, что такое p-n-переход. Это область, в которой соприкасаются полупроводники p и n типа, в результате чего один тип проводимости переходит к другому. N тип содержит электроны проводимости как носители заряда. Полупроводник p типа носитель положительного заряда (дырки).
Анод (p типа) является положительным электродом, катод (n типа) это отрицательный электрод. Внешняя поверхность катода и анода содержит контактные металлические площадки с припаянными выводами. Когда к аноду подается положительный заряд электричества, а к катоду отрицательный, то на р-n переходе между кристаллом катодом начинает течь ток.
Если включение прямое, то электроны из n и области и дырки из p-области устремятся навстречу друг другу. В процессе легирования (обмена электронами) на границе дырочно – электронного перехода произойдет их обмен. Если отрицательное напряжение подается со стороны материала n-типа, то происходит прямое смещение. При рекомбинации (обмене) выделяется энергия в виде фотонов.
Чтобы поток фотонов преобразовать в видимый свет, материал подбирают так, что длина волны фотонов находится в пределах видимой области цветового спектра длиной волны от 700 до 400 нм.
Чтобы упрастить работу с диодными осветительными приборами или, например, гирляндами, узнайте как проверить светодиод мультиметром.
Принцип работы светодиода
Виды
Существующие на сегодняшний день светодиоды бывают следующих видов:
- индикаторные – с маленькой мощностью, для подсветки в приборах;
- осветительные – с большой мощностью, уровень освещенности соответствует обычным (люминесцентным и вольфрамовым) источникам света.
По типу соединения индикаторные делятся на:
- тройные AIGaAs (алюминий – галлий – мышьяк) – оранжевый и желтый свет в областях видимого цветового спектра;
- тройные GaAsP (галлий – мышьяк – фосфор) – желто-зеленый и красный свет в областях видимого спектра;
- двойные GaP (галлий – фосфор) – оранжевый и зеленый свет в областях видимого спектра.
Светодиодные элементы различаются по типу корпуса:
- DIP – оснащены встроенной оптической системой из линзы, кристалла и парой контактов. Устаревшая модель самой низкой мощности, используются для подсветки игрушек, световых табло;
- Superflux или «пиранья» – аналогичные DIP, оснащены четырьмя контактами, лучше крепятся и меньше нагреваются за счет радиатора для светодиода. Используются для подсветки в автомобилях;
- SMD – наиболее распространенный тип для множества источников света. Представляют собой чип (кристалл), смонтированный непосредственно на поверхности платы;
- COB – усовершенствованные светодиоды SMD. Оснащены несколькими кристаллами (чипами), установленными на одну плату. Монтируются на керамические и алюминиевые основания.
Фото лампы с новыми типами светодиодов SMD
Более совершенные модели СОВ все же не всегда могут заменить SMD светодиоды.
Основные технические характеристики
Диодные лампы характеризуются следующими основными параметрами:
- яркость (интенсивность светового потока);
- напряжение (тип используемого напряжения);
- сила тока;
- длина волны и цветовая характеристика.
Сравнение конструктивных особенностей обычных и мощных диодов
Яркость
Яркость воспринимается зрительными ощущениями, поскольку освещённость предмета на сетчатке глаза пропорциональна его яркости. Складывается она из нескольких параметров. называется Световой поток это количество световой энергии. Единица измерения люмен.
Единицей силы света является один люмен на стерадиан, также измеряемый в канделах: 1 cd. Измеряется яркость в милликанделах. Различают яркие (20 – 50 мкд.) и сверх яркие (20000 мкд. и выше) светодиоды белого свечения. Светодиодная яркость пропорциональна величине протекающего через него тока, т. е. чем выше напряжение, тем больше яркость.
Рекомендуем Вам также более подробно прочитать про возможности и область применения диммеров.
Напряжение
Напряжение, необходимое для работы светодиода, это не напряжение питания, а величина падения напряжения на светодиоде. Колебания напряжения питания вызывает перегорание светодиода. Напряжение напрямую зависит от цвета.
Для нормальной работы при подключении светодиода необходимо правильно отследить ток, а не напряжение.
Сила тока
Работает светодиод на постоянном или пульсирующем токе. Поднимая или снижая интенсивность можно варьировать яркость свечения. Рабочий ток индикаторных светодиодов 20 – 40 мА. Сила тока осветительных элементов составляет от 20 мА. СОВ (на 4 чипа), например, рассчитаны на 80 мА. Одноваттные светодиоды потребляют приблизительно 300-400 мА.
Длина волны и цветовая характеристика
Излучаемый диодом цвет зависит от длины волны светового излучения. Измеряется она нанометрами (0.000000001 метра). Монохроматическое (одночастотное) излучение связано с длиной волны, перемещающейся внутри. Границы длины волны соотносятся с основными цветами определенным образом.
Цвет излучения светодиода меняется при внесении в полупроводниковый материал активных веществ. Для получения светодиодов красного цвета в качестве полупроводников используется алюминий индий – галлий (AllnGaP), для цветов сине – голубого и зеленого спектра – индий – нитрид галлия (InGaN).Чтобы получить, например, белый свет, кристалл синего светодиода покрывают тонким слоем люминофора, который излучает жёлтый и красный свет под действием синего спектра.
В результате смешивания цветов получается белый свет. Белые светодиоды определяются цветовой температурой, измеряемой в К.
Рекомендуем Вам также ознакомиться с тем, как работает датчик движения.
Лампы с диодами могут быть разных цветов
Светодиодная плата
Плата предназначена для крепления светодиодов в любом необходимом количестве и положении. Форма платы бывает:
- прямоугольная;
- линейка;
- круглая;
- квадратная;
- звездчатая
- произвольная.
Светодиодная плата изготавливается из диэлектрического материала. Основной функцией ее является теплоотвод.
Виды плат:
- металлические (односторонние, двухсторонние и многослойные);
- изолированные металлические подложки (односторонние, двухсторонние и многослойные, жестко – гибкие).
Платы, изготовленные из алюминия, не нуждаются в вентиляторах для принудительного охлаждения. Все элементы конструкции обретают более продолжительный срок службы за счет отсутствия перегрева.
Дополнительную информацию об история возникновения и принципах функционирования светодиодных элементов смотрите на видео:
Светодиоды это один из новейших источников освещения, имеет широкий спектр применения и большие перспективы. Благодаря соотношению всех параметров светодиодный тип освещения может стать ведущим среди множества осветительных приборов и разнообразных источников света.
Источник: https://finelighting.ru/svetilniki/lampy/svetodiodnye/vidy-principy-raboty.html
Заказать этот номер
2011№1
Электрической лампочке как осветительному прибору уже немногим более 100 лет. За это время ее конструкция и принцип действия многократно менялись, и лишь назначение оставалось прежним. В середине XX века лампу накаливания потеснила люминесцентная лампа, обладающая большей эффективностью и долговечностью. А в начале XXI в.
появилась так называемая светодиодная лампа. Необходимо отметить, что под этим названием в действительности скрывается довольно сложная система, состоящая из нескольких элементов, среди которых основными являются: блок питания, светодиодная матрица, система охлаждения и оптическая система.
В статье затрагиваются вопросы, связанные с проектированием блока питания для светодиодных ламп.
Типичная схема блока питания светодиодной лампы показана на рис. 1.
Сетевое переменное напряжение проходит через фильтр электромагнитных помех (ЭМП) на выпрямитель. Затем выпрямленное напряжение проходит через ступень коррекции коэффициента мощности (ККМ) и питает, собственно, импульсный стабилизатор тока, к выходу которого подключены светодиоды.
Фильтр ЭМП
Входной помехоподавляющий фильтр обладает свойством двунаправленного помехо-подавления, то есть предотвращает проникновение высокочастотных импульсных помех как из сети в блок питания, так и наоборот — из блока питания в сеть. Помехи в сети появляются, например, при подключении к ней мощных нагрузок.
Помехи в блоке питания обусловлены, прежде всего, импульсным режимом работы транзистора, резонансом в силовых цепях блока в моменты коммутации и работой выпрямителя.
Электромагнитные помехи, созда ваемые импульсным блоком питания, подразделяются на два типа: симметричная (помеха измеряется между двумя полюсами шин питания) и синфазная (напряжение между каждым проводом питания и землей).
Для подавления симметричной помехи применяется фильтр со сдвоенным дросселем и двумя конденсаторами, шунтирующими шины питания (рис. 2). Конденсатор С1 представляет собой очень большое сопротивление для питающего тока сетевой частоты (50 Гц), и поэтому этот ток через конденсатор С1 не ответвляется.
Для импульсного высокочастотного тока помехи этот конденсатор, напротив, имеет очень малое сопротивление, и поэтому большая часть тока помехи замыкается через него. Однако, как показывает практика, этого не всегда достаточно. Поэтому далее включается двухобмоточный дроссель Т1 (нейтрализующий трансформатор), обмотки которого имеют одинаковое число витков и намотаны на одном сердечнике согласно.
Из этого следует, что полезный ток сетевой частоты, протекающий по обмоткам I и II в противоположных направлениях, будет создавать в сердечнике Т1 два равных встречно-направленных магнитных потока, взаимно компенсирующих друг друга. Поэтому независимо от величины потребляемого от сети тока сердечник Т1 не будет намагничиваться, а значит, индуктивность обеих обмоток будет максимальна.
Основное назначение конденсатора С4 — фильтрация помех, создаваемых диодным мостом. Дело в том, что процесс восстановления обратного сопротивления диодов при переключении не является мгновенным, и при смене полярности приложенного напряжения через диоды протекают импульсные обратные токи, обусловленные рассасыванием избыточных носителей. Эти импульсные токи и являются помехами, генерируемыми сетевым выпрямителем.
Конденсатор С4, включенный в диагональ диодного моста, замыкает через себя токи этих импульсных помех, препятствуя их проникновению в питающую сеть и нагрузку блока питания. Также, если есть провод заземления, то конденсаторы C2 и C3 позволяют подавить синфазную помеху.
Выпрямитель
Выпрямитель выполняется по схеме диодного моста. Если вместо обыкновенных установить в мост так называемые «быстрые диоды», то уровень помех, создаваемых выпрямителем, значительно уменьшится.
Также при разработке лампы следует учесть, что диоды выпрямителя испытывают значительную нагрузку импульсным током заряда конденсатора С5 при включении.
Например, диодный мост DB107 (номинальный ток 1 А) выдерживает импульс тока с амплитудой, в 50 раз превышающей номинальный ток в одном цикле или полуволне сетевого напряжения. Зависимость количества возможных циклов от амплитуды импульса тока показана на рис. 3.
Поэтому в цепь заряда C5 необходимо включить термистор. Этот элемент имеет сопротивление порядка нескольких Ом во время заряда конденсатора и, следовательно, ограничивает импульсный ток через диодный мост.
С другой стороны, через одну-две секунды проходящий через термистор ток разогревает его и приводит к снижению сопротивления. Таким образом, в штатном режиме сопротивление термистора стремится к нулю.
График тока в цепи «диодный мост — конденсатор» с термистором (пунктир) и без термистора (сплошная линия) показан на рис. 4
Расчет сопротивления термистора производится следующим образом. Во-первых, по закону Ома выбирается минимальное сопротивление при температуре 25 °С.
где Vin — входное переменное напряжение, Imax — максимальный допустимый ток диодного моста в одном цикле.
Затем определяется максимальная энергия, которую должен поглотить термистор в момент включения:
где С — емкость входного конденсатора, U — выпрямленное напряжение (1,414 × Vin).
Еще одним важным параметром, который стоит принимать во внимание (особенно для светодиодных ламп, где рабочая температура весьма высока), является срок жизни электролитического конденсатора. Как правило, конденсаторы снабжаются информацией о максимальной рабочей температуре.
Срок жизни или, другими словами, срок, за который емкость конденсатора снизится в два раза, при этой температуре колеблется от 2 до 7 тыс. ч. В сравнении со светодиодами, которые имеют срок жизни 50-100 тыс. ч, это очень мало.
Однако производители конденсаторов утверждают, что со снижением температуры на каждые 10 градусов относительно максимальной срок жизни увеличивается в два раза. Поэтому входную емкость необходимо выбирать с учетом окружающей температуры конденсаторов.
ККМ
Несмотря на то, что выпрямитель является чуть ли не самым простым элементом схемы блока питания, физические процессы, происходящие в его нелинейных элементах (диодах), создают эффект реактивной мощности, которую потребляет лампа. Коэффициентом мощности называется отношение активной (полезной) мощности к суммарной (активная + реактивная). У резистивной нагрузки КМ = 1, т. е.
реактивная составляющая равна 0. Активная мощность полностью потребляется нагрузкой и совершает полезную работу. Реактивная же сперва запасается, а затем снова возвращается в сеть. В этой ситуации в сети текут большие токи, чем требовалось бы для данной нагрузки. Таким образом, главная задача ступени ККМ — сократить величину реактивной составляющей мощности до минимума.
Разберемся теперь в предпосылках ее появления в источнике питания.
На рис. 5 показаны графики тока и напряжения, которые потребляет от сети обычный нагруженный выпрямитель с конденсатором значительной емкости.
В такой схеме ток потребляется короткими импульсами в моменты, когда мгновенное значение напряжения в питающей сети максимально. В промежутках нагрузка питается напряжением, запасенным в конденсаторе, и напряжение на нем постепенно падает.
Так происходит до тех пор, пока мгновенное значение сетевого напряжения не превысит снова напряжение, оставшееся на конденсаторе. В этот момент открываются диоды выпрямительного моста, и происходит короткий бросок тока подзарядки.
Такой режим работы порождает нежелательную реактивную мощность, которая, не выполняя полезной работы, разогревает питающие сети. Однако причины ее появления на первый взгляд неочевидны. Попробуем в них разобраться.
Рассмотрим передачу энергии от источника к нагрузке через некоторую поверхность S. Форма напряжения задается источником, форма тока — реакцией нагрузки. Ток и напряжение могут быть представлены рядами Фурье. Мгновенная мощность, которая является, очевидно, произведением рядов тока и напряжения, может принимать как положительные, так и отрицательные значения. То есть энергия может течь через поверхность в обоих направлениях.
В случае, когда ток и напряжение не имеют общих гармоник, мощности, передаваемые в обоих направлениях через поверхность S, равны. Другими словами, нагрузка потребляет столько же, сколько и отдает, мощность является чисто реактивной и полезная работа в нагрузке не совершается.
Если же гармоники тока и напряжения полностью совпадают по частоте, то вся энергия источника передается в нагрузку и совершает полезную работу.
При разложении в ряд Фурье импульсного тока видно, что кроме гармоники частотой 50 Гц, на которой, собственно, и передается полезная энергия, в спектре тока присутствуют гармоники 100, 150 Гц и так далее, практически до бесконечности. Для повышения КМ их следует подавить.
Для импульсных стабилизаторов без ККМ значение коэффициента мощности, как правило, колеблется около значения 0,6. Простейшим ККМ является так называемая схема Valley Filler, которая фактически просто расширяет импульсы тока, приближая, таким образом, их форму к синусоидальной, и, следовательно, сокращает количество гармоник тока и увеличивает КМ. Схема такого устройства изображена на рис. 6. Как правило, с этой схемой удается достичь значений КМ 0,7-0,75.
В первый момент времени конденсаторы заряжаются до пика сетевого напряжения — 310 В. Однако благодаря диоду D6 ток разряда через них не потечет, пока мгновенное значение сетевого напряжения не упадет до 155 В. Все это время нагрузка питается сетевым напряжением, за счет чего и удается расширить импульсы тока.
После этого открываются диоды D5 и D7, позволяя включенным параллельно конденсаторам разряжаться через нагрузку. Далее цикл снова повторяется. Иногда вводится резистор R1 небольшого сопротивления, чтобы еще больше растянуть время заряда конденсаторов и увеличить значение КМ. Форма напряжения и тока в схеме с таким ККМ показана на рис. 7.
Однако следует помнить, что в данной схеме пульсации напряжения достигают амплитуды 150 В!
Еще одной разновидностью ККМ является активный ККМ. Он представляет собой повышающий импульсный преобразователь, причем скважность импульсов на его выходе зависит от мгновенного значения питающего напряжения.
На его вход подается пульсирующее напряжение непосредственно с диодного моста (без входного конденсатора). Пульсации в выходном напряжении отсутствуют — в отличие от предыдущей схемы. Применение такого ККМ требуется, если мощность лампы превышает 25 Вт.
Форма тока на его входе обычно близка к синусоидальной, а КМ стремится к 1.
Источник: https://www.led-e.ru/articles/led-supply/2011_1_30.php