Что такое ток короткого замыкания

Как рассчитать однофазный ток короткого замыкания?

Что такое ток короткого замыкания

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

У меня на сайте есть статья про короткое замыкание и его последствия. Я в ней приводил случаи из своей практики.

Так вот чтобы минимизировать последствия от подобных аварий и инцидентов, необходимо правильно выбирать электрооборудование. Но чтобы его правильно выбрать, нужно уметь  рассчитывать токикороткого замыкания.

В сегодняшней статье я покажу Вам как можно самостоятельно рассчитать ток короткого замыкания, или сокращенно ток к.з., на реальном примере.

Я понимаю, что многим из Вас нет необходимости производить расчеты, т.к. обычно этим занимаются, либо проектанты в организациях (фирмах), имеющих лицензию, либо студенты, которые пишут очередной курсовой или дипломный проект. Особенно понимаю последних, т.к.

сам будучи студентом (в далеком двух тысячном году), очень жалел, что в сети не было подобных сайтов. Также данная публикация будет полезна энергетикам и электрикам для поднятия уровня саморазвития, или чтобы освежить в памяти когда-то прошедший материал.

Кстати, я уже приводил пример расчета защиты асинхронного двигателя. Кому интересно, то переходите по ссылочке и читайте.

Итак, перейдем к делу. Несколько дней назад у нас на предприятии случился пожар на кабельной трассе около цеховой сборки №10. Выгорел практически полностью кабельный лоток со всеми там идущими силовыми и контрольными кабелями. Вот фото с места происшествия.

Сильно вдаваться в «разбор полетов» я не буду, но у моего руководства возник вопрос о срабатывании вводного автоматического выключателя и соответствие его номинального тока для защищаемой линии. Простыми словами скажу, что их интересовала величина тока короткого замыкания в конце вводной силовой кабельной линии, т.е. в том месте, где случился пожар.

Естественно, что никакой проектной документации у цеховых электриков по расчетам токов к.з. на эту линию не нашлось, и мне пришлось самому производить весь расчет, который я выкладываю в общий доступ.

Сбор данных для расчета токов короткого замыкания

Силовая сборка №10, около которой случился пожар, питается через автоматический выключатель А3144 600 (А) медным кабелем СБГ (3х150) от понижающего трансформатора №1 10/0,5 (кВ) мощностью 1000 (кВА).

В скобках около марки кабеля указано количество жил и их сечение (как рассчитать сечение кабеля). 

Не удивляйтесь, у нас на предприятии еще много действующих подстанций с изолированной нейтралью на 500 (В) и даже на 220 (В).

Скоро буду писать статью о том, как в сеть 220 (В) и 500 (В) с изолированной нейтралью установить счетчик. Не пропустите выход новой статьи — подпишитесь на получение новостей.

Понижающий трансформатор 10/0,5 (кВ) питается силовым кабелем ААШв (3х35) с высоковольтной распределительной подстанции № 20.

Некоторые уточнения для расчета тока короткого замыкания

Несколько слов хотелось бы сказать про сам процесс короткого замыкания. Во время короткого замыкания в цепи возникают переходные процессы, связанные с наличием в ней индуктивностей, препятствующих резкому изменению тока. В связи с этим ток к.з. во время переходного процесса можно разделить на 2 составляющие:

  • периодическая (появляется в начальный момент и не снижается, пока электроустановка не отключится от защиты)
  • апериодическая (появляется в начальный момент и быстро снижается до нуля после завершения переходного процесса)

Ток к.з. я буду расчитывать по РД 153-34.0-20.527-98.

В этом нормативном документе сказано, что расчет тока короткого замыкания допускается проводить приближенно, но при условии, что погрешность расчетов не составит больше 10%.

Расчет токов короткого замыкания я буду проводить в относительных единицах. Значения элементов схемы приближенно приведу к базисным условиям с учетом коэффициента трансформации силового трансформатора.

Цель — это проверить вводной автоматический выключатель А3144 с номинальным током 600 (А) на коммутационную способность. Для этого мне нужно определить ток трехфазного и двухфазного короткого замыкания в конце силовой кабельной линии.

Пример расчета токов короткого замыкания

Принимаем за основную ступень напряжение 10,5 (кВ) и задаемся базисной мощностью энергосистемы:

  • базисная мощность энергосистемы Sб = 100 (МВА)
  • базисное напряжение Uб1 = 10,5 (кВ)
  • ток короткого замыкания на сборных шинах подстанции №20 (по проекту) Iкз = 9,037 (кА)

Составляем расчетную схему электроснабжения.

На этой схеме указываем все элементы электрической цепи и их параметры. Также не забываем указать точку, в которой нам нужно найти ток короткого замыкания. На рисунке выше я ее забыл указать, поэтому объясню словами. Она находится сразу же после низковольтного кабеля СБГ (3х150) перед сборкой №10.

Затем составим схему замещения, заменив все элементы вышеприведенной схемы на активные и реактивные сопротивления.

При расчете периодической составляющей тока короткого замыкания допускается активное сопротивление кабельных и воздушных линий не учитывать. Для более точного расчета активное сопротивление на кабельных линиях я учту. 

Зная, базисные мощности и напряжения, найдем базисные токи для каждой ступени трансформации:

Теперь нам нужно найти реактивное и активное сопротивление каждого элемента цепи в относительных единицах и вычислить общее эквивалентное сопротивление схемы замещения от источника питания (энергосистемы) до точки к.з. (выделена красной стрелкой).

Определим реактивное сопротивление эквивалентного источника (системы):

Определим реактивное сопротивление кабельной линии 10 (кВ):

  • Хо — удельное индуктивное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 10 (кВ):

  • Rо — удельное активное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим реактивное сопротивление двухобмоточного трансформатора 10/0,5 (кВ):

  • uк% — напряжение короткого замыкания трансформатора 10/0,5 (кВ) мощностью 1000 (кВА), берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 27.6

Активным сопротивлением трансформатора я пренебрегаю, т.к. оно несоизмеримо мало по отношению к реактивному. 

Определим реактивное сопротивление кабельной линии 0,5 (кВ):

  • Хо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 0,5 (кВ):

  • Rо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим общее эквивалентное сопротивление от источника питания (энергосистемы) до точки к.з.:

Найдем периодическую составляющую тока трехфазного короткого замыкания:

Найдем периодическую составляющую тока двухфазного короткого замыкания:

Результаты расчета токов короткого замыкания

Итак, мы рассчитали ток двухфазного короткого замыкания в конце силовой кабельной линии напряжением 500 (В). Он составляет 10,766 (кА).

Вводной автоматический выключатель А3144 имеет номинальный ток 600 (А). Уставка электромагнитного расцепителя у него выставлена на 6000 (А) или 6 (кА). Поэтому можно сделать вывод, что при коротком замыкании в конце вводной кабельной линии (в моем примере по причине пожара) автомат уверенно сработал и отключил поврежденный участок цепи.

Еще полученные значения трехфазного и двухфазного токов можно применить для выбора уставок релейной защиты и автоматики.

В этой статье я не выполнил расчет на ударный ток при к.з. 

Источник: https://1000eletric.com/kak-rasschitat-odnofaznyy-tok-korotkogo-zamykaniya/

Короткое замыкание. Токи короткого замыкания

Что такое ток короткого замыкания

Что называется коротким замыканием (КЗ)? Короткое замыкание — это соединение токоведущих частей разных фаз или потенциалов между собой или на корпус оборудования, соединенный с землей, в сетях электроснабжения или в электроприемниках.

Почему происходит короткое замыкание (кз)?

  • ухудшение сопротивления изоляции во влажной или химически активной среде;
  • при недопустимом перегреве изоляции;
  • механические воздействия;
  • ошибочные воздействия персонала при обслуживании и ремонте и т. д.

При коротком замыкании путь тока укорачивается

Как видно из самого названия процесса, при КЗ путь тока укорачивается, т. е. он идет, минуя сопротивление нагрузки, поэтому он может увеличиться до недопустимых величин, если напряжение не отключится под действием электрической зашиты.

Но напряжение может не отключиться и при наличии защиты, если КЗ случилось в удаленной точке, и из-за большого сопротивления до места КЗ ток недостаточен для срабатывания защиты. Но этот ток может быть достаточным для возгорания проводов, что может привести к пожару.

Чтобы быть уверенными в безопасности Вашей электропроводки, обязательно проконсультируйтесь с мастером электриком в Королеве или вызовите электрика в Мытищи. Мастер проведет ремонтные и электромонтажные работы, чтобы предотвратить возможность короткого замыкания.

Токи короткого замыкания: необходим точный расчет

Отсюда возникает необходимость расчета тока короткого замыкания — тока КЗ. Величина токов КЗ может меняться, если к сети электроснабжения вашего дома присоединяются другие электроприемники в более удаленных местах. В таких случаях снова производится расчет тока КЗ в месте установки новых электроприемников.

Токи КЗ производят также электродинамическое действие на аппараты и проводники, когда их детали могут деформироваться под действием механических сил, возникающих при больших токах.

Помощь в расчете токов короткого замыкания вам может оказать наш инженер электрик в Пушкино. И если у вас квартира, дом, офис или производственное помещение в Ивантеевке, то закажите у нас вызов электрика в Ивантеевке, чтобы провести диагностику электропроводки для предотвращения короткого замыкания.

При коротком замыкании происходит перегрев аппаратов и проводов

Термическое действие токов КЗ заключается в перегреве аппаратов и проводов. Поэтому при выборе аппаратов их нужно проверять по условиям КЗ, с тем чтобы они выдержали токи КЗ в месте их установки.

Как известно, наряду с сетями с глухозаземленной нейтралью существуют сети с изолированной нейтралью. Рассмотрим характерные отличия этих сетей при КЗ.

Однофазные короткие замыкания

На практике в большинстве случаев происходят однофазные короткие замыкания.

В сетях с изолированной нейтралью при соединении одной фазы с землей режим не является коротким замыканием и бесперебойность электроснабжения не нарушается, но он должен быть отключен, так как соответствует аварийному состоянию.

При замыкании одной фазы на землю в данной сети напряжения на двух других фазах повышаются в 1,73 раза, а напряжение на нулевой точке становится равным фазному напряжению относительно земли.

В сетях с глухозаземленной нейтралью при соединении провода с землей сгорает предохранитель или срабатывает автоматический выключатель, при этом электроснабжение нарушается, а при сгорании предохранителя могут повредиться обмотки двигателей при работе на двух фазах.

Если в любой части электропроводки или электроприбора (лампочки, утюга и т. д.) нарушится изоляция и фазный провод коснется нулевого, произойдет короткое замыкание

Поскольку между замкнувшимися проводами нет никакой нагрузки, иначе говоря, электрическое сопротивление места контакта практически равно нулю, ток через контакт начнет расти до тех пор, пока не расплавятся провода, что, в частности, может привести к пожару. Для защиты от короткого замыкания и служат предохранители.

Простой (в виде «пробки») предохранитель — это включенная в фазный провод легкоплавкая вставка, которая при росте тока сгорит и разомкнет цепь задолго до того, как произойдут более серьезные неприятности. Конструктивно предохранитель выполнен так, что эта микрокатастрофа не приводит к порче предохранительной колодки.

Пожертвовавшую собой маленькую героиню выбрасывают и заменяют следующей.

Защита от токов короткого замыкания

Как мы выяснили, токи КЗ весьма опасны, прежде всего с точки зрения пожарной безопасности. Поэтому необходимо построить защиту от токов короткого замыкания, то есть установить в щите автоматические выключатели.

Автоматические предохранители устроены так, что в случае короткого замыкания рост тока КЗ приводит к срабатыванию электромагнитного расцепителя мгновенного действия, который разъединяет электрическую цепь без ущерба для себя.

Для того, чтобы после устранения короткого замыкания снова включить электричество, необходимо просто нажать на белую кнопку (красная служит для выключения) или перекинуть вверх опустившийся при срабатывании предохранителя рычажок.

Правила монтажа электропроводки предусматривают расчет нагрузки и токов, идущих через автоматы защиты. Понятно, что предохранитель должен срабатывать при значениях тока, выбранных с солидным запасом. Иначе случайные небольшие колебания напряжения в сети (а следовательно, и тока) будут приводить к постоянному ложному срабатыванию защиты. С другой стороны, запас не должен быть и слишком велик, чтобы действия тока не причинило вреда сети раньше, чем произойдет отсечка.

Автоматический предохранитель защищает внутреннюю и внешнюю сеть

Заметим, что автоматические предохранители, установленные в начале каждой домовой линии (рабочей группы), защищают от короткого замыкания не только домовую сеть, но и наружную.

В самом деле, если бы их не было, то аварийное короткое замыкание привело бы к выходу из строя трансформаторной подстанции, а вернее, электрического силового щита более высокого уровня, так что электричества лишилось бы значительное количество пользователей, да и без вызова аварийной службы было бы не обойтись.

А при наличии «автомата» достаточно включить его после срабатывания (удалив, конечно, причину короткого замыкания). Становится понятна и необходимость нескольких линий в доме: если одна линия вылетела, в запасе есть другие.

Кстати, отсюда вывод: удобно, если от каждой рабочей группы питается лампочка аварийного освещения в районе счетчика или аварийная розетка, в которую можно включить переносную лампу.

Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, Королевский электрик в Сергиевом Посаде.

Источник: http://elektrik-korolev.ru/kz.html

Короткое замыкание

Что такое ток короткого замыкания

Короткое замыкание (КЗ, англ. short curcuit) — незапланированное  соединение точек цепи с различными потенциалами друг с другом или с другими электрическими цепями через пренебрежимо малое сопротивление. При этом образуется сверхток, значения которого на порядки превышают предусмотренные нормальными условиями работы.

Определение КЗ из “Элементарного учебника физики” Ландсберга

В результате короткого замыкания выходит из строя электрооборудование, происходят возгорания. О самых разрушительных последствиях коротких замыканий мы регулярно узнаем из новостных рубрик «Чрезвычайные происшествия». Что же именно происходит при КЗ? В результате чего они появляются? Какими могут быть последствия? Давайте рассмотрим подробнее эти и другие вопросы в приведенной ниже статье.

Как образуется короткое замыкание

Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле:

где

I – сила тока в цепи, А

U – напряжение, В

R – сопротивление, Ом

Давайте рассмотрим вот такую схему

Если мы подключим настольную лампу EL к источнику тока Bat и замкнем ключ SA, то вольфрамовая нить лампы начнет разогреваться под тепловым воздействием тока. В этом случае значительная часть электрической энергии преобразуется в световую и тепловую.

А теперь покончим с лирическими отступлениями и замкнем два провода, которые идут на лампочку, через толстый провод AВ

Что будет дальше, если мы замкнем контакты ключа SA?

В результате ток пойдет по укороченному пути, минуя нагрузку. Короткий путь в данном случае и есть провод AB. Сопротивление провода АВ близко к нулю. В результате наша схема преобразуется в делитель тока.

Согласно правилу делителя тока, если нагрузки соединены параллельно, то через нагрузку с меньшим сопротивлением побежит большая сила тока, а через нагрузку с большим значением сопротивления – меньшая сила тока.

Так как провод АВ обладает почти нулевым сопротивлением, то через него потечет большая сила тока, согласно опять же закону Ома:

Как я уже сказал, в режиме КЗ сила тока достигает критических значений, превышающих допустимые для данной цепи.

Закон Джоуля-Ленца

Согласно закону Джоуля-Ленца, тепловое действие тока прямо пропорционально квадрату силы тока на данном участке электрической цепи

где

Q – это количество теплоты, которое выделяется на сопротивлении нагрузки Rн . Выражается в Джоулях. 1 Джоуль = 1 Ватт х секунда.

I – сила тока в этой цепи, А

Rн – сопротивление нагрузки, Ом

t – период времени, в течение которого происходит выделение теплоты на нагрузке Rн , секунды

Это означает, что на проводе AB будет выделяться бешеное количество теплоты. Провод резко нагреется от температуры, а потом и сгорит. Все зависит от мощности источника питания.

То есть, если ток при коротком замыкании возрастет в 20 раз, то количество выделяющейся при этом теплоты — примерно в 400 раз! Вот почему бывшая еще мгновение назад мирной электроэнергия превращается в настоящее стихийное бедствие: горит проводка, расплавленный металл проводов поджигает находящиеся рядом предметы, возникают пожары. 

Существуют еще запланированные  и контролируемые КЗ, а также специальное замыкающее оборудование. Например, сварочные аппараты работают как раз на контролируемом КЗ, где требуется большая сила тока для плавки металла.

ЭТО ИНТЕРЕСНО:  Сколько вольт выдает зарядное устройство для авто

Основные причины короткого замыкания

Все многообразие причин возникновения коротких замыканий можно свести к следующим:

  • Нарушение изоляции
  • Внешние воздействия
  • Перегрузка сети

Нарушение изоляции вызывается как естественным износом, так и внешним вмешательством. Естественное старение элементов электросети ускоряется за счет длительного теплового воздействия тока (тепловое старение изоляции), агрессивных химических сред.

Внешние воздействия могут быть вызваны грызунами, насекомыми и другими животными. Сюда же относится и человеческий фактор. Это может быть “кривой” электромонтаж, либо несоблюдение техники электробезопасности.

Намного чаще короткое замыкание вызывается перегрузкой сети из-за подключения большого количества потребителей тока.

Так, если совокупная мощность одновременно включенных в бытовую сеть электроприборов превышает допустимую нагрузку на проводку, с большой вероятностью произойдет короткое замыкание, так как сила тока в такой цепи начинает превышать допустимое значение.

Такое явление можно часто наблюдать в домах со старой проводкой, где провода чаще всего алюминиевые и не рассчитаны на современные мощные электроприборы.

Ток короткого замыкания

Сверхток, образующийся в результате КЗ, называется током короткого замыкания. Как только произошло короткое замыкание в цепи, ток короткого замыкания достигает максимальных значений. После того, как провода начнут греться и плавиться, ток короткого замыкания идет на спад, так как сопротивление проводов в при нагреве возрастает.

Для источников ЭДС ток короткого замыкания может быть вычислен по формуле

где

Iкз – это ток короткого замыкания, А

E – ЭДС источника питания, В

Rвнутр. – внутреннее сопротивление источника ЭДС, Ом

Более подробно про ЭДС и внутреннее сопротивление читайте здесь.

Ниже на рисунке как раз изображен такой источник ЭДС  в виде автомобильного аккумулятора с замкнутыми клеммами

Внутреннее сопротивление автомобильного аккумулятора может достигать значений в доли Ома. Теперь представьте, какой ток короткого замыкания  будет течь через проводник, если закоротить им клеммы аккумулятора. Внутреннее сопротивление аккумулятора зависит от многих факторов. Возьмем среднее значение Rвнутр = 0,1 Ом. Тогда ток короткого замыкания будет равен Iкз =E/Rвнутр. = 12/0,1=120 Ампер. Это очень большое значение.

В цепи постоянного тока

В этом случае КЗ бывает, как правило, между напряжением питания, которое чаще всего обозначается как “+”, и общим проводом схемы, который соединяют с “-“. Последствия такого КЗ зависят от мощности источника питания постоянного тока.

Если в автомобиле голый плюсовой провод заденет корпус автомобиля, который соединяется с “минусом” аккумулятора, то провода начнут плавится и гореть как спички, при условии если не сработает предохранитель, либо вместо него уже стоит “жучок” – самопальный предохранитель.

Ниже на фото вы можете увидеть результат такого КЗ.

В цепи переменного тока

Трехфазное замыкание

Это когда три фазных провода коротнули между собой.

Трехфазное на землю

Здесь все три фазы соединены между собой, да еще и замкнуты на землю

Двухфазное

В этом случае любые две фазы замкнуты между собой

Двухфазное на землю

Любые две фазы замкнуты между собой, да еще и замкнуты на землю

Однофазное на землю

Однофазное на ноль

Эти две ситуации чаще всего бывают в ваших квартирах и домах, так как к простым потребителям идет два провода: фаза и ноль.

В трехфазных сетях наиболее часто происходит однофазное замыкание на землю –  60-70% всех коротких замыканий. Двухфазные КЗ составляют 20-25%. Двойное замыкание фаз на землю происходит в электросетях с изолированной нейтралью и составляет 10-15% всех случаев. До 3-5% занимают трехфазные КЗ, при которых происходит нарушение изоляции между всеми тремя фазами.

В электрических двигателях короткое замыкание чаще всего возникает между обмотками двигателя и его корпусом.

Последствия короткого замыкания

Во время КЗ температура в зоне контакта возрастает до нескольких тысяч градусов. Помимо воспламенения изоляции, расплавления и механических повреждений выключателей и розеток и возгорания проводки, следствием замыкания может стать выход из строя компьютерного и телекоммуникационного оборудования и линий связи, которые находятся рядом, вследствие сильного электромагнитного воздействия.

Но падение напряжения и выход из строя оборудования — не самое опасное последствие. Нередко короткие замыкания становятся причиной разрушительных пожаров, зачастую с человеческими жертвами и огромными экономическими потерями.

Из-за удаленности и большого сопротивления до места замыкания защитное оборудование может не сработать. Бывают ситуации, когда ток недостаточен для срабатывания защиты и отключения напряжения, но в месте КЗ его вполне хватает для расплавления проводов и возникновения источников возгорания. Поэтому, токи коротких замыканий очень важны для расчетов аварийных режимов работы.

Меры, исключающие короткое замыкание

Еще на заре развития электротехники появились плавкие предохранители. Принцип действия подобной защиты очень прост: под влиянием теплового действия тока предохранитель разрушается, тем самым размыкая цепь. Предохранители наиболее часто используются в бытовых электросетях и бытовых электроприборах, электрическом оборудовании транспортных средств и промышленном электрооборудовании до 1000 В. Встречаются они и в цепях с высоковольтным оборудованием.

Вот такие предохранители используются в цепях с малыми токами

вот такие плавкие предохранители вы можете увидеть в автомобилях

А вот эти большие предохранители используются в промышленности, и они уже рассчитаны на очень большие значения токов

Более сложную конструкцию имеют автоматические выключатели, оснащенные электромагнитными и/или тепловыми датчиками. Ниже на фото однофазный автоматический выключатель, а справа – трехфазный

Их принцип действия основан на размыкании цепи при превышении допустимых значений силы тока.

В быту мы чаще всего сталкиваемся со следующими устройствами защиты электросети:

  • Плавкие предохранители (применяются в том числе в бытовых электроприборах).
  • Автоматические выключатели.
  • Стабилизаторы напряжения.
  • Устройства дифференциального тока.

Все вышеперечисленное защитное оборудование относится к устройствам вторичной защиты, действующим по инерционному принципу. На вводе бытовых электросетей наиболее часто устанавливаются автоматические защитные устройства, действующие по адаптивному принципу. Такие устройства можно увидеть возле счетчиков электроэнергии квартир, коттеджей, офисов.

В высоковольтных сетях защита чаще обеспечивается:

  • Устройствами релейной защиты и другим отключающим оборудованием.
  • Понижающими трансформаторами.
  • Распараллеливанием цепей.
  • Токоограничивающими реакторами.

Большинства коротких замыканий можно избежать, если устранить основные причины их возникновения: своевременно ремонтировать или заменять изношенное оборудование, исключить вредные воздействия человека. Не допускать неправильных действий при монтажных и ремонтных работах, соблюдать СНИПы и правила техники безопасности.

Источник: https://www.ruselectronic.com/korotkoje-zamykanije/

Что такое короткое замыкание: определение, объяснение для «чайников»

Мы часто слышим «Произошло короткое замыкание», «В цепи коротнуло». Сразу понятно, что случилось что-то незапланированное и нехорошее. Но почему замыкание именно короткое, а не длинное? Покончим с неопределенностью и разберемся, что именно происходит при коротком замыкании в электрической цепи.

Что такое короткое замыкание (КЗ)

Электрический скат плавает в океане и не устраивает КЗ, вполне обходясь без знания закона Ома. Нам же для понимания природы и причин короткого замыкания этот закон просто необходим. Так что, если вы еще не успели, читаем про закон Ома, силу тока, напряжение, сопротивление и прочие прекрасные физические понятия.

Теперь, когда вы все это знаете, можно привести определение короткого замыкания из физики и электротехники:

Короткое замыкание – это соединение двух точек электрической цепи с различными потенциалами, не предусмотренное нормальным режимом работы цепи и приводящее к критичному росту силы тока в месте соединения.

КЗ приводит к образованию разрушительных токов, превышающих допустимые величины, выходу приборов из строя и повреждениям проводки. Почему это происходит? Детально разберем, что творится в цепи при коротком замыкании.

Возьмем самую простую цепь. В ней есть источник тока, сопротивление и провода. Причем, сопротивлением проводов можно пренебречь. Такой схемы вполне достаточно для понимания сути КЗ.

Простейшая электрическая цепь

В замкнутой цепи действует закон Ома: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Иначе говоря, чем меньше сопротивление, тем больше сила тока.

Точнее, для нашей цепи закон Ома запишется в следующем виде:

Здесь r – внутреннее сопротивление источника тока, а греческая буква эпсилон обозначает ЭДС источника.

Что понимают под силой тока короткого замыкания? Если сопротивления R в нашей цепи не будет, или оно будет очень маленьким, то сила тока увеличится, и в цепи потечет ток короткого замыкания:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Виды коротких замыканий и их причины

В быту короткие замыкания бывают:

  • однофазные – когда фазный провод замыкается на ноль. Такие КЗ случаются чаще всего;
  • двухфазные – когда одна фаза замыкается на другую;
  • трехфазные – когда замыкаются сразу три фазы. Это самый проблемный вид КЗ.

Например, утром в воскресенье ваш сосед за стенкой соединяет фазу и ноль в розетке, включив в нее перфоратор. Это значит, что цепь замыкается, и ток идет через нагрузку, то есть через включенный в розетку прибор.

Если же сосед соединит провода фазы и нуля в розетке без подключения нагрузки, то в цепи возникнет КЗ, но вы сможете поспать подольше.

Тем, кто не знает, для лучшего понимания полезно будет почитать, что такое фаза и ноль в электричестве.

Короткое замыкание называют коротким, так как ток при таком замыкании цепи как бы идет по короткому пути, минуя нагрузку. Контролируемое или длинное замыкание – это обычное, привычное всем включение приборов в розетку.

Защита от короткого замыкания

Сначала о том, какие последствия может вызвать КЗ:

  1. Поражение человека электрическим током и выделяющимся теплом.
  2. Пожар.
  3. Выход из строя приборов.
  4. Отключение электричества и отсутствие интернета дома. Как следствие — вынужденная необходимость читать книги и ужинать при свечах.

КЗ — возможная причина пожара

Как видите, короткое замыкание – враг и вредитель, с которым нужно бороться. Какие есть способы защиты от короткого замыкания?

Почти все они основаны на том, чтобы быстро разомкнуть цепь при обнаружении КЗ. Это можно сделать с помощью разных аппаратов защиты от короткого замыкания.

Почти во всех современных электроприборах есть плавкие предохранители. Большой ток просто расплавляет предохранитель, и цепь разрывается.

В квартирах используются автоматы защиты от короткого замыкания. Это автоматические выключатели, рассчитанные на определенный рабочий ток. При повышении силы тока автомат срабатывает, разрывая цепь.

Для защиты промышленных электродвигателей от коротких замыканий используются специальные реле.

Автомат защиты от КЗ

Теперь вы можете легко дать определение короткому замыканию, заодно знаете про закон Ома, а также фазу и ноль в электричестве. Желаем всем не устраивать коротких замыканий! А если у вас в голове «замкнуло» и совершенно нет сил на какую-то работу, наш студенческий сервис всегда поможет с ней справиться.

А напоследок видео о том, как НЕ НУЖНО обращаться с электрическим током.


Источник: https://zaochnik.ru/blog/chto-takoe-korotkoe-zamykanie-opredelenie-obyasnenie-dlya-chajnikov/

Определить ток короткого замыкания источника тока, если при внешнем сопротивлении

Определить ток короткого замыкания источника тока, если при внешнем сопротивлении 50 Ом ток в цепи 0,2 А, а при сопротивлении 110 Ом ток – 0,1 А.

Задача №7.2.11 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(R_1=50\) Ом, \(I_1=0,2\) А, \(R_2=110\) Ом, \(I_2=0,1\) А, \(I_{кз}-?\)

Решение задачи:

Запишем три раза закон Ома для полной цепи – для случая, когда внешнее сопротивление цепи равно \(R_1\), когда внешнее сопротивление цепи равно \(R_2\), и когда в цепи течет ток короткого замыкания (то есть когда внешнее сопротивление цепи равно нулю).

\[\left\{ \begin{gathered} {I_1} = \frac{{\rm E}}{{{R_1} + r}} \;\;\;\;(1)\hfill \\ {I_2} = \frac{{\rm E}}{{{R_2} + r}} \;\;\;\;(2)\hfill \\ {I_{кз}} = \frac{{\rm E}}{r} \hfill \;\;\;\;(3)\\

\end{gathered} \right.\]

Поделим уравнение (1) на уравнение (2), тогда получим:

\[\frac{{{I_1}}}{{{I_2}}} = \frac{{{R_2} + r}}{{{R_1} + r}}\]

Перемножим “крест-накрест”:

\[{I_1}\left( {{R_1} + r} \right) = {I_2}\left( {{R_2} + r} \right)\]

Раскроем скобки:

\[{I_1}{R_1} + {I_1}r = {I_2}{R_2} + {I_2}r\]

Все члены с \(r\) перенесем в левую сторону, остальные – в правую:

\[{I_1}r – {I_2}r = {I_2}{R_2} – {I_1}{R_1}\]

Вынесем в левой части внутреннее сопротивление \(r\) за скобки, чтобы в дальнейшем выразить его:

\[r\left( {{I_1} – {I_2}} \right) = {I_2}{R_2} – {I_1}{R_1}\]

\[r = \frac{{{I_2}{R_2} – {I_1}{R_1}}}{{{I_1} – {I_2}}}\;\;\;\;(4)\]

Из формулы (3) видно, что для расчета тока короткого замыкания нам нужно еще знать ЭДС источника \(\rm E\). Его можно выразить из формул (1) или (2):

\[{\rm E} = {I_1}\left( {{R_1} + r} \right)\;\;\;\;(5)\]

В итоге, сначала по формуле (4) произведем расчет внутреннего сопротивления, далее по формуле (5) найдем значение ЭДС, а потом уже по формуле (3) найдем искомый ток короткого замыкания.

\[r = \frac{{0,1 \cdot 110 – 0,2 \cdot 50}}{{0,2 – 0,1}} = 10\;Ом\]

\[{\rm E} = 0,2 \cdot \left( {50 + 10} \right) = 12\;В\]

\[{I_{кз}} = \frac{{12}}{{10}} = 1,2\;А = 1200\;мА\]

Ответ: 1200 мА

Источник: http://easyfizika.ru/zadachi/postoyannyj-tok/opredelit-tok-korotkogo-zamykaniya-istochnika-toka-esli-pri-vneshnem-soprotivlenii/

Токи короткого замыкания что это такое — советы электрика — Electro Genius

В этой статье рассмотрим главную головную боль любого электрика – короткое замыкание. При этом поясним, что такое ток короткого замыкания и развеем миф о том, что такое напряжение короткого замыкания, заодно обсудив, что коротыш (он же КЗ ) значит для электросети.

Но сначала немного физики, что поможет вспомнить о том, что электричество – это передача электронами заряда от одной точки в другую. Последовательный и упорядоченный процесс.

Но иногда в эту строгую последовательность вмешивается авария, и вот тут-то приходится вспомнить эти два слова «короткое замыкание».

Почему замыкание короткое, и кто в этом виноват?

Любая схема электрической цепи представляет собой «плюс» и «минус», как в любой батарейке. Если между ними поместить лампочку, она при замыкании цепи начнёт гореть. Правильно собранная цепь позволить гореть лампочке довольно долго, что успешно демонстрирует любой фонарик.

Но давайте посмотрим, что случится, если мы просто соединим «плюс» и «минус» батарейки. Без лампочки и вообще без какого бы то ни было сопротивления. Да, в этой модели мы получим замыкание электропроводки в чистом виде.

Провод между контактами батарейки нагреется, заряд почти мгновенно истощится и через пару секунд эта батарейка не зажжет ни одну лампочку. Вся энергия батарейки уйдёт на максимальный подъём силы тока короткого замыкания, разогрев провода и полное истощение ресурса.

Такой опыт безопасен для экспериментатора, поскольку токи невелики.

Однако примерно то же самое произойдет, если в розетку сунуть ножницы, чтобы понять что случится. Ток, обнаружив самый короткий путь (ножницы) устремится в розетке именно через этот короткий путь от «плюса» к «минусу» ( от фазы к нулю ), забыв про остальные пути, на которых его ожидает сопротивление цепи.

Отсюда и название этой неприятности – «короткое замыкание». Фактически, КЗ – это возможность для тока максимально быстро и с максимальным эффектом достигнуть от «плюса» «минуса».

Ток при этом становится неразборчивым в средствах, на чем и построена защита от замыкания, и основные правила того, как избежать этой напасти.

Итак, короткое замыкание – это аварийная ситуация в электрической сети, где прохождение тока получает наиболее короткий и прямой путь для ликвидации потенциала (разности потенциала между «плюсом» и «минусом»), приводя к лавинообразному росту силы тока и сильному разогреву участка цепи, в котором произошло КЗ.

Отметим, что перманентное (непрерывное КЗ) имеет место и в сетях, в которых использованы силовые провода с недостаточным уровнем изоляции (низкое сопротивление изоляции), многочисленными лишними коммутациями (скрутки в распредкоробках, в линиях и пр.), а также во влажных зонах.

Выходит, что виноват в коротком замыкании кто угодно, но не электрик, который делал проводку? Не совсем так.

Именно электрик обязан, прокладывая линию или, включая оконечное (проходное) устройство, обеспечить невозможность короткого замыкания. Иначе любая защита от короткого замыкания будет ни к чему.

Чаще всего защита не справляется именно в щитках, собранных с нарушениями, что приводит к катастрофическим последствиям:

Немного подробнее о причинах короткого замыкания

  1. Неправильно заизолированные провода или физическое перемещение контактов в оконечных устройствах (сдвиг, поворот, иные действия способные соединить два провода).
  2. Повреждение изоляции кабелей при прокладке (в том числе скрытых) силовых линий или при работах по ремонту и отделке помещений.
  3. Использование в работе неисправных приборов (от патрона к лампе до клеммника и розетки), в которых есть прямая возможность возникновения короткого замыкания.
  4. Игнорирование замыканий электропроводки при работах (самая частая ошибка начинающих электриков), поскольку эффект КЗ не повторяется.
  5. «Плавающие», «спорадические» неисправности проводки, которым не уделено достаточно внимания из-за редких проявлений.
ЭТО ИНТЕРЕСНО:  Что в начале гром или молния

Это список наиболее частых причин коротких замыканий, выхода из строя квартирных и домашних электросетей, а также пожаров, которые сложно тушить по причине постоянной подпитки огня со стороны горящих кабелей. Очевидно, что такие неприятности не нужны никому.

Ещё несколько слов о физике короткого замыкания

Вернёмся за парту, и вспомним, что при прохождении тока можно наблюдать, как падает сила тока при возрастании сопротивления проводника. Это тот самый фактор, благодаря которому ток короткого замыкания значительно превышает допустимые параметры. Так и работает защита от замыкания – отслеживает внезапные скачки силы тока, обесточивая «подозрительную» линию.

Не все вспомнят, что при снятии сопротивления в проводнике, также изменится ещё один параметр. Мы говорим о том, что напряжение короткого замыкания станет совсем уж подозрительным.

А при наличии индуктивного фактора (например, человек с феном упал в ванну с водой) и вовсе нелинейным и не синусоидальным. При этом непосредственно короткого замыкания может и не быть, но защита от короткого замыкания работает и в этом случае – это автоматы отключения УЗО.

Устройство защитного отключения, принцип действия которого исключает реагирование на изменение только силы тока.

Что оценивают защитные устройства, и что мы должны знать о КЗ, если не хотим, чтобы нас спасали только автоматические выключатели ?

  • Любая электросеть имеет точки нестабильности. Это контакты, клеммы, выключатели света и прочие автоматические выключатели, работающие на основе программ (например, датчик отслеживания освещённости). Каждая из этих точек потенциальный источник КЗ. Именно им электрик обязан уделить максимальное внимание при работах и монтаже;
  • Наличие заземления в сети. Вы удивитесь, но замыкание на землю (ноль) это наиболее безопасное КЗ. Да, оно тоже доставит много хлопот и неприятностей, но, по крайней мере, никого не убьет. Кроме того, заземление приборов позволяет оценить наличие пробоя изоляции и утечки ДО того, как короткое замыкание случится.

Заземлять в обязательном порядке необходимо микроволновую печь, посудомоечную и стиральную машины, морозильную камеру и духовой электрический шкаф. Посмотрите на заднюю панель микроволновки. Вы увидите прикрученный медный контакт. Это – заземление. Не стоит рассчитывать на вилку с контактами «ноль».

Найдите специалиста, который заземлит эту печь. Такой же контакт Вы обнаружите на задней стенке электрического духового шкафа. На морозильной камере этот контакт будет, скорее всего, в зоне змеевика-охладителя. Это делается не просто так, поэтому не думайте, что вилка способна Вас защитить.

Найдите способ такую технику «занулить» по-настоящему!

Кроме перечисленного, автоматы ещё определяют постоянный «баланс сети», отслеживая перегрузки и пиковые перепады как токов короткого замыкания (или близких по значению), так и напряжений.

О том, что произойдет при КЗ в таком месте ниже.

Процесс возникновения короткого замыкания. Время отключения, развитие процесса, последствия

Несмотря на кажущуюся «мгновенность», процесс короткого замыкания имеет хорошо описанные стадии при возникновении.

  • Возникновение несанкционированного мостика между двумя проводниками;
  • Пробой током «барьера изоляции» и возникновение новой, короткой, цепи в электрической схеме;
  • Перенаправление энергии, и возникновение тока короткого замыкания в новом участке;
  • Резкий рост силы тока, падение напряжения и быстрый разогрев нового участка «сопротивления» – проводов, в которых происходит короткое замыкание;
  • Расплавление проводов (нагрев не останавливается сам, и температуры нагрева существенно превышают температуры плавления сплавов и металлов) с одновременным возгоранием изоляции;
  • Срабатывание автоматов защиты, пытающихся обесточить проблемную зону;
  • Снятие напряжение и обесточивание линии;
  • Продолжающийся нагрев повреждённого участка сети (даже после обесточивания, поскольку нагрев значительно более длительный процесс) с возгоранием изоляции или проводов, если защита от замыкания не работала как надо;
  • Выход из строя участка сети, в котором произошло КЗ.

Всё это занимает примерно 2-4 секунды. Достаточное время для того, чтобы провод разогрелся до 1100 градусов и изоляция вспыхнула как спичка.

Предотвратить короткое замыкание в этом случае не получится, только минимизировать урон.

Несмотря на время, даже при визуальном наблюдении процесса замыкания электропроводки, возникновения КЗ, Вы просто не успеете ничего сделать. Поэтому несколько рекомендаций о том, как избежать такой беды

Если не можешь предотвратить – возглавь!

Эта фраза великого политического деятеля как нельзя лучше описывает ситуацию с электросетью, которой мы доверяем многое. И свою жизнь, и комфорт и почти всё имущество. Поэтому не будет лишним список простых рекомендаций.

Проверку новых электросетей и коммуникаций проводите с избыточными токами, моделируя перегрузку. Такое испытание надо проводить со специалистом, самостоятельно делать это опасно.

Не пренебрегайте замером сопротивления изоляции в готовой сети. Да, это стоит денег и занимает время, но такой замер исключит замыкание на землю, свойственное длинным кабелям, а также покажет наиболее опасные участки, которые возможно правильнее будет заменить.

На изображении видно, что дуга (пробой) может происходить и без физического контакта проводников.

Именно поэтому, собирая розетки и выключатели, зачищайте изоляцию проводов только на участке, полностью убираемом в клемму! Не допускайте даже нескольких миллиметров оголённых проводов, иначе может случиться то, что на фото – электрическая дуга внутри прибора. Напомним, что при таком происшествии защита от короткого замыкания почти гарантированно опоздает с отключением линии!

Непродуманное наращивание и добавление линий без мер защиты – прямая дорога к замыканию и пожару. Это хороший пример того, что никогда нельзя делать:

Источник: https://orenburgelectro.ru/montazh/toki-korotkogo-zamykaniya-chto-eto-takoe-sovety-elektrika.html

Ток короткого замыкания: определение и причины

Несмотря на свою очевидную пользу, электрическая энергия, в определенных условиях, представляет серьезную опасность.

Среди всех негативных факторов, более всего оказывает отрицательное воздействие ток короткого замыкания, способный нанести вред не только приборам, бытовой технике, оборудованию, но и обслуживающему персоналу.

КЗ возникает в результате электрического взаимодействия разных фаз друг с другом или с землей. В точках соприкосновения в цепи наблюдается резкий рост силы тока, многократно превышающий предельно допустимые значения. В результате, возникает аварийная ситуация.

Понятие короткого замыкания

Короткое замыкание – КЗ возникает при незапланированном электрическом контакте между точками цепи с разными потенциалами, не предусмотренном нормативными правилами эксплуатации. Зону контакта отличает низкое сопротивление, что приводит к резкому росту силы тока, превышающему номинальное значение.

В качестве наглядного примера можно взять обычную лампочку на 100 Вт, подключенную к напряжению 220В. Для того чтобы сравнить токи в нормальном и аварийном режиме, необходимо воспользоваться законом Ома. При этом, сопротивление источника тока и проводников не учитывается при расчетах.

Сила тока в нормальном рабочем режиме составит I = P/U = 100/220 равно около 0,45А. Далее рассчитывается сопротивление нагрузки: R = U/I = 220/0,45 = около 489 Ом.

Когда появляется ток короткого замыкания, формула показывает, что параметры цепи существенно изменяются. Замыкание между двумя точками осуществляется проводником, сопротивление которого составляет 0,01 Ом. Известно, что ТКЗ всегда выбирает путь с минимальным сопротивлением.

С связи с этим, произойдет резкое увеличение силы тока: I = U/R = 220/0,01 = 22000A. Поэтому данное явление и получило свое название, поскольку ток КЗ идет по наиболее минимальному пути, минуя нагрузку.

Такое высокое значение получается лишь теоретически, на самом же деле такого роста не произойдет из-за падения напряжения у потребителя.

Таким образом, отвечая на вопрос, что такое короткое замыкание по-простому, можно отметить, что в этом случае положительный и отрицательный проводники создают для тока самый короткий путь, сопротивление начинает стремиться к нулю. Физика утверждает, что без сопротивления схема перестает нормально функционировать, работа источника напряжения сбивается и происходит замыкание с образованием разрушительного тока.

Электрический ток — сила тока

Причины опасной ситуации

Аварийная ситуация и короткое замыкание цепи не может возникнуть просто так.

В каждом конкретном случае имеются определенные причины и негативные факторы:

  • Высокий уровень напряжения при замыкании. Обычно возникает в результате резкого скачка, при котором наблюдается превышение всех допустимых норм. Вероятность пробоя изоляции или всей схемы становится очень высокой. Повышаются токовые утечки с одновременным повышением температуры дуги. При коротком замыкании большое напряжение всегда создает кратковременный дуговой разряд.
  • Старые изношенные слои изоляционного покрытия. Подобные ситуации чаще всего встречаются, когда замена проводки не проводилась в течение длительного времени. Слабая изоляция оказывается наиболее подверженной электрическому пробою, чему причина – выработка своего ресурса.
  • Внешние механические воздействия. Защитная оболочка проводников постепенно перетирается, а изоляционное покрытие оказывается нарушенным. Жилы проводов также подвержены повреждениям, вызывающим не только КЗ, но и возгорания.
  • В электрическую цепь иногда попадают посторонние предметы – пыль, мусор и т.д. Попадая на проводник, они создают собственную дополнительную цепочку, способную вызвать ток короткого замыкания источника.
  • Удары молний, создающие высокое напряжение, легко пробивающее всю электрическую схему или изоляцию проводников.

Разновидности коротких замыканий

В зависимости от конкретных обстоятельств и компонентов, участвующих в этом процессе, все аварийные ситуации подобного рода условно разделяются на следующие виды коротких замыканий:

  • Трехфазное (№ 1 на рисунке). В этом случае между собой контактируют все три фазы, без каких-либо перекосов. Распределение токов происходит симметрично, поэтому силу тока и ЭДС КЗ рассчитать достаточно легко. Главную опасность такого замыкания составляют тепловые и электродинамические воздействия, существенно превышающие такие же факторы в других случаях. Дополнительное замыкание на землю не оказывает какого-либо влияния на общий процесс, что характерно для подобной ситуации.
  • Двухфазное (№ 2). Подобное замыкание, как и все остальные называется несимметричным из-за происходящих процессов. В результате, они сопровождаются обязательным перекосом напряжения. В кабельных ЛЭП двухфазных процесс может легко превратиться в трехфазный. Это случается из-за высокой температуры в точке замыкания, под действием которой разрушается изоляция токоведущих частей.
  • Две фазы замыкаются с землей (№ 3). Ситуация характерна для систем, имеющих заземленную нейтраль.
  • Одна фаза замыкается на землю (№ 4). Считается наиболее частым коротким замыканием, встречающимся на жилых и промышленных объектах.
  • Замыкание двух фаз на землю (№ 5). Каждая из них замыкается по-отдельности, не контактируя между собой. Обычно такое положение приобретает схема, где имеется заземленная нейтраль.

Какой ток в розетке – переменный или постоянный

Опасность и последствия

Практически все короткие замыкания приводят к негативным последствиям различной степени тяжести. Если кратко, то наибольшую опасность представляет возможное возгорание, нередко переходящее в полноценный пожар. В аварийной ситуации сила тока значительно увеличивается, а в проводниках в большом количестве выделяется теплота, оказывающая разрушающее действие на изоляцию.

В большинстве случаев, особенно в быту, при возникновении дугового КЗ между проводниками и местом замыкания образуется электрический разряд большой мощности, способный легко воспламенить находящиеся рядом предметы. Резкое выделение тока и тепла представляет особую опасность для людей, проживающих в доме, и обслуживающего персонала предприятий.

Аварийные ситуации с замыканиями называются просадочными из-за значительных понижений напряжения в данной сети. Особенно большие просадки образуются непосредственно в месте КЗ. Подобные скачки отрицательно влияют на электроприборы и оборудование, особенно с электрическими двигателями. Чувствительные устройства нередко попадают под воздействие сильных электромагнитных волн.

Предотвратить разрушительные последствия, определяемые термином коротких замыканий, вполне возможно при помощи различных защитных средств. Они определяются еще на стадии проектирования в индивидуальном порядке для каждой электроустановки.

Защитные и профилактические мероприятия

Полностью защититься от КЗ практически невозможно, поскольку во многих случаях оно происходит под влиянием случайных факторов. Поэтому основная роль отводится профилактическим мероприятиям, от чего зависит снижение вероятности аварийных ситуаций.

В обязательном порядке планируется и выполняется следующее:

  • Контроль и определение состояния изоляционного слоя токоведущих частей электроустановок или ЛЭП. В помещениях производственного назначения изоляция проводов проходит испытание 1 раз в 3 года или чаще. Домашние сети нормируются сроками максимальной эксплуатации. Например, скрытая проводка из медного провода может эксплуатироваться в течение 40 лет.
  • Перед тем как найти скрытую проводку перед сверлением стен, необходимо заранее свериться со схемой или проектом электрических сетей. Это существенно снизит вероятность повреждений, хотя более точные результаты можно получить только с помощью специального поискового прибора.
  • Выходя из дома следует отключать все электроприборы, особенно мощное оборудование – нагреватели, электроплиты, посудомоечные машины и т.д.
  • В помещениях, где есть признаки повышенной влажности, количество электрических устройств должно быть минимальным. Допускается эксплуатация приборов только с соответствующим классом защиты.
  • Не должна подключаться к сети поврежденная электротехника.
  • Не выходить за рамки установленных норм потребления электроэнергии.

В чем измеряется работа тока

Большое значение имеет использование защитных средств в электрической цепи – автоматов или плавких предохранителей. Они устанавливаются на вводе и на всех внутренних линиях проводки. В случае короткого замыкания произойдет срабатывание и сеть окажется обесточенной. Отработанные предохранители заменяются аналогичными устройствами того же типа. Элементы с меньшими номиналами приведут к ложным срабатываниям, а превышение допустимых токов вызовет повреждение оборудования и проводов.

Как использовать короткое замыкание

КЗ может не только наносить вред, но в чем-то – приносить ощутимую пользу в работе. Если говорить простым языком, то типичным примером такого использования служит дуговая сварка. Принцип действия сварочной аппаратуры заключается во взаимном контакте стержня-электрода и поверхности свариваемого металла.

Свойства КЗ обеспечивают нагрев поверхности до температуры плавления, после чего образуется сварочный шов из сплава металлов, обеспечивающий высокую прочность соединения. С технической точки зрения происходит замыкание сварочного электрода и контура заземления.

Работа сварочного аппарата в режиме электродвижущей силы КЗ происходит в течение короткого времени. В момент соприкосновения электрода с металлом появляется ток короткого замыкания с нестандартным зарядом и высокой ЭДС, сопровождающийся выделением большого количества тепла. Этой теплоты вполне достаточно, чтобы расплавить металл и образовать сварочный шов.

Кроме того, режимы КЗ используются в промышленной автоматике, некоторых видах электроники, в электродинамических датчиках сейсмических приемников и индукционных виброметров.

Источник: https://electric-220.ru/news/tok_korotkogo_zamykanija/2019-08-14-1731

сила тока короткого замыкания

В электрике есть два вида неисправностей:

  1. Тока нет там, где он должен быть — это называется разрыв
  2. Ток есть там, где его быть не должно — это называется короткое замыкание.

Сегодня мы поговорим как раз о токе короткого замыкания. Любую электрическую цепс можно представить себе, как Источник тока и сопротивление нагрузки, по которой течет ток.

Ток в нормальной цепи без короткого замыкания

Однако, если появится какой-то проводящий элемент, который замкнет собой контур с входным напряжением, то картина будет следующей.

Схема цепи с коротким замыканием

В указанной цепи произошло короткое замыкание. На практике это может быть любая проволока или неосторожно засунутая отвертка, которая создала контур короткого замыкания. Особенность этой ситуации в том, что сопротивление этих проводов Rкз ничтожно мало по сравнению с сопротивлением нагрузки Rн. Что приводит к тому, что ток устремляется туда.

Опасность этого явления в том, что из-за очень низкого сопротивления, ток будет очень высоким. Рассмотрим конкретный пример — ваша Rн — это обычный фен мощностью 1 кВт. Т.е. при Действующем напряжении сети 220 В у него ток будет около 4 А и тогда мы можем понять, что наше Rн около 54 Ом.

Если же туда попадет провод, у которого сопротивление, скажем 0,054 Ом (вполне реальная цифра), то ток от 4 сразу может скакнуть до 4кА, а провод будет нагреваться уже в не в 1000, а 1000000 раз больше.

На практике это приводит к тому, что провод мгновенно нагревается до температуры плавления и перегорает. Однако, если он достаточно толстый, и расплавляется не очень быстро, то он может успечь поджечь горючие элементы, если они окажутся рядом.

В целом, это все, что вам необходимо знать про короткое замыкание )) Ниже теоретические выкладки, читать которые не обязательно.

В разговорной речи электриков это частно называется «коротнуло», «замкнуло», «закоротило» и т.д. На практике все эти слова означают, что произошло короткое замыкание электрической цепи. Т.е.

проводники с разными потенциалами соединились и по сути произошла нештатная ситуация, при которой нормальное функционирование электрического устройства невозможно.

В точке контакта происходит резкое падение сопротивления, что приводит к скачкообразному увеличению силы тока, которое влечет за собой тяжелые последствия.

Общее понятие короткого замыкания и его связь с силой тока

Любое подключение устройства потребления электроэнергии можно считать коротким замыканием. При этом само изделие является сопротивлением и всю нагрузку принимает на себя. Таким образом осуществляется штатная работа электроприбора.

ЭТО ИНТЕРЕСНО:  Как правильно подключить пленочный теплый пол

Но если сопротивление по какой-либо причине будет уменьшаться (стремиться к нулю), то сила тока будет возрастать.

Из школьной программы всем известен закон Ома, который определяет взаимосвязь ЭДС (электродвижущей силы или напряжения), величиной тока и сопротивлением.

Сила тока при коротком замыкании участка цепи

Формула, по которой можно вычислить силу тока при коротком замыкании имеет следующий вид:

I=U/R,

  • -I – величина тока (его сила);
  • U – разность потенциалов (напряжение сети);
  • R – электрическое сопротивление.

Это упрощенная формула и она верна для участка цепи. При этом подразумевается, что проводники однородные, а в цепи присутствует резистор (сопротивление), но не принимается во внимание сам источник тока.

Формула для измерения силы тока короткого замыкания:

Iкз = E/r.

Для полной сети формула будет иметь несколько усложненный вид, но в нашем случае для понимания сущности короткого замыкания в электрической цепи и его влияния на нее, это не принципиально.

Возвращаясь к формуле можно заметить, что при уменьшении сопротивления, сила тока будет возрастать. Казалось бы, что в этом нет ни чего страшного, если б в свое время Джоуль и Ленц не вывели закон, названный их именем.

На основе своих опытов они пришли к заключению что при протекании электрического тока по проводнику выделяется тепло. Причем эта связь имеет не только количественную, но и временную характеристику.

Кратко суть закона состоит в следующем – чем выше сила тока, тем большее количество тепла будет выделяться за единицу времени.

Сила тока при коротком замыкании источника питания

Любой источник тока, такой как батарея или аккумулятор состоит из отрицательного (анода) и положительного (катода) контакта разделенных жидким или твердым электролитом. Под действием химической реакции происходит формирование электрического заряда, который при замыкании на устройство потребления обеспечивает его функционирование. В упрощенном варианте батарею можно рассматривать как участок цепи для которого будут действовать вышеприведенные правила.

Причиной замыкания электродов по короткому пути, как правило, является нарушение изоляционного слоя. При этом сила тока многократно возрастает с выделением тепла, что приводит к перегреву и разрушению источника электроэнергии. При использовании жидкого электролита, как например, в большинстве автомобильных аккумуляторов. Это может привести к закипанию жидкости и разрушению корпуса.

Последствия короткого замыкания в электрической цепи

Вследствие многократного увеличения силы тока при коротком замыкании выделяется больше количество тепла. Отдельные виды изоляции могут не выдержать такой температурный режим. Как правило, происходит ее возгорание, что является частой причиной пожаров. Также при высокой температуре в точке замыкания проводников может происходить их механическое разрушение, что приведет к нарушению электроснабжения потребителей.

В отдельных случаях при коротком замыкании возникают электромагнитные колебания деструктивного характера, влияющие на работу аппаратуры связи и других устройств чувствительных к его воздействию.

Но несмотря на преобладание негативной составляющей в ситуациях, когда происходит короткое замыкание электрической цепи, это явление с успехом применяется в различных сферах промышленности. Типичным примером использования тепла, которое выделяется при замыкании токопроводящих элементов является точечная сварка металлов.

В точке контакта происходит кратковременное увеличение силы тока, в следствии чего металл достигает расплавленного состояния и детали надежно соединяются. Так же эффект КЗ используется в системах безопасности обслуживания электрических сетей. Когда в цепь преднамеренно включаются специальные предохранители с плавкими вставками. Только в данной ситуации защита направленна на нештатное увеличение напряжения в сети.

Источник: http://podvi.ru/elektrotexnika/cila-toka-korotkogo-zamykaniya.html

Расчет токов короткого замыкания

Короткое замыкание между проводниками является опаснейшим явлением, как в электрической сети частного домовладения, так и в сложных разводках подстанций и питающих цепей мощного производственного оборудования. Короткое замыкание может стать причиной пожара и выхода из строя дорогостоящих электроприборов, поэтому расчёт токов короткого замыкания, является обязательным этапом перед осуществлением прокладки кабелей для различных потребителей электричества.

Кто занимается вычислением КЗ

Расчёт КЗ, производится квалифицированными специалистами, которые не только производят необходимые вычисления, но и несут ответственность за дальнейшую эксплуатацию электрического оборудования.

Домашние электрики также могут осуществить данные вычисления, но только при наличии начальных знаний о природе электричества, свойствах проводников и о роли диэлектриков, в их надёжной изоляции друг от друга.

При этом, полученный результат значения короткого замыкания, перед проведением электротехнических работ, необходимо перепроверить самостоятельно, либо воспользоваться услугами специализированных фирм, которые осуществляют данные вычисления на платной основе.

Как рассчитать ток короткого замыкания используя специальные формулы, будет подробно описано далее.

Особенности расчёта

Расчёт токов трёхфазного оборудования производится с применением специальных формул.

Если расчёт тока трёхфазного короткого замыкания, необходимо сделать для электрических сетей напряжением до 1000 В, то необходимо учитывать следующие нюансы при проведении расчётов:

  1. Трёхфазная система должна считаться симметричной.
  2. Питание трансформатора принимается за неизменяемую величину, равную его номинальному значению.
  3. Момент возникновения КЗ принято считать при максимальном значении силы тока.
  4. ЭДС источников питания, удалённых на значительное расстояния от участка электрической сети, где происходит КЗ.

Также при вычислении параметров КЗ необходимо правильно посчитать результирующее сопротивление проводника, но делать это необходимо через приведение единого значения мощности.

Если производить расчёт сопротивления стандартными формулами известными из курса физики, то можно допустить ошибки, по причине неодинакового номинального напряжения в момент возникновения короткого замыкания для различных участков электрической цепи. Выбор такой базисной мощности позволяет значительно упростить расчёты, и значительно повысить их точность.

Напряжение, при вычислении тока короткого замыкания также принято выбирать не исходя из номинального значения, а с превышением данного показателя на 5%. Например для электрической сети 380 В, базисное напряжение для расчёта токов короткого замыкания составит 0,4 кВ.

Для сети переменного тока наприряжением 220 В, базисное напряжение будет равно 231 В.

Формулы вычисления трёхфазного замыкания

Расчёт токов коротких замыканий в электроэнергетических системах трёхфазного электричества производится с учётом особенности возникновения данного процесса.

Из-за проявления индуктивности проводника, в котором происходит короткое замыкание, сила КЗ изменяется не мгновенно, а происходит нарастание данной величины по определённым законам. Чтобы методика расчёта токов короткого замыкания позволила произвести высокоточные вычисления, необходимо высчитать все основные величины вносимые в расчётные формулы.

Часто для этой цели требуется воспользоваться дополнительными формулами или специальным программным обеспечением. Современные возможности вычислительной техники, позволяют осуществлять сложнейшие операций в считанные секунды.

Методы расчёта токов короткого замыкания могут быть расширены применением специального программного обеспечения. В данном случае, может быть использована компьютерная программа, которая может быть написана любым квалифицированным программистом.

Если вычисление параметров КЗ в трёхфазной сети осуществляется вручную, то в для получения точного результата этого значения применяется формула:

где:

Хвн — сопротивление между точкой короткого замыкания и шинами.Хсист — сопротивление всей системы по отношению к шинам источника.

Uс — напряжение на шинах системы.

Если какой-либо показатель отсутствует при проведении расчётов, то его можно высчитать применив для этого дополнительные формулы, или следует применить специальные программы для компьютера.

В том случае, когда расчёт КЗ, необходимо произвести для сложной разветвлённой сети, производится преобразование схемы замещения. Для максимально упрощения вычислений схема представляется с одним сопротивлением и источником электричества.

Для упрощения схемы необходимо:

  1. Сложить все показатели параллельно подключённого сопротивления электрических цепей.
  2. Сложить последовательно подключённые сопротивления.
  3. Вычислить результирующее сопротивлению, путём сложения всех параллельно и последовательно подключённых сопротивлений.

Расчёт однофазной сети

Расчет токов коротких замыканий в электроэнергетических системах однофазного напряжения допускает проведение упрощённых вычислений. Обычно, электроприборы тока однофазного не потребляют много электричества, и для надёжной защиты квартиры или дома от возникновения короткого замыкания, достаточно установить автоматический выключатель рассчитанный на величину срабатывания, равную 25 А.

Если требуется осуществить приблизительный расчёт однофазного короткого замыкания, то его производят по формуле:

гдеUf — напряжение фазы.Zt — сопротивление трансформатора, при возникновении КЗ.Zc — сопротивление между фазным и нулевым проводником.

Ik — однофазный ток короткого замыкания.

Вычисление параметров КЗ в однофазной цепи с использованием данной формулы производится с погрешностью до 10%, но в большинстве случаев этого достаточно для осуществления правильной защиты электрической сети.

Основным затруднением для получения данных рассчитанных по этой формуле, является сложность в получении значения Zc.

Если параметры проводника известны и переходные сопротивления также определены, то сопротивление между фазным и нулевым проводником рассчитывается по формуле:

где:rf — активное сопротивление фазного провода, Ом;rn — активное сопротивление нулевого провода, Ом;ra — суммарное активное сопротивление контактов цепи фаза-нуль, Ом;xf» — внутреннее индуктивное сопротивление фазного провода, Ом;xn» — внутреннее индуктивное сопротивление нулевого провода, Ом;

x’ — внешнее индуктивное сопротивление цепи фаза-нуль, Ом.

Таким образом подставляя известные значения в формулы приведённые выше, легко найдём ток короткого замыкания для однофазной сети.

Вычисление параметров КЗ в однофазной сети осуществляется в такой последовательности:

  1. Выяснится параметры питающего трансформатора или реактора.
  2. Определяются параметры используемого проводника.
  3. Если электрическая схема слишком разветвлена, то её следует упростить.
  4. Определяется полное сопротивление можду «фазой» и «0».
  5. Вычисляется полное сопротивление трансформатора или реактора, если данное значение нельзя получить из документации к источнику питания.
  6. Значения подставляются в формулу.

Если вся последовательность действий была проведена верно, то таким образом можно рассчитать силу тока при возникновении КЗ в однофазной сети.

Вычисление КЗ по паспортным данным

Значительно упрощается задача по расчёту КЗ, если имеются паспортные данные реактора или трансформатора. В этом случае достаточно номинальные значения электричества и напряжения подставить в расчётные формулы, чтобы получить значение тока КЗ.

Сила и мощность КЗ могут быть определены по следующим формулам:

В данной формуле значение Iном равно номинальному току электрического трансформатора или реактора.

Определение тока КЗ в сети неограниченной мощности

Если необходимо рассчитать КЗ в системе, где мощность источника электричества несоизмеримо выше суммарной мощности потребителей электричества, то величину напряжения можно условно считать неизменной.

В таких условиях мощность электричества будет равна бесконечности, а сопротивление проводника — нулю. Данные условия могут быть применены только к таким расчётным условиям, когда точка короткого замыкания удалена на значительное расстояние от источника электричества, а результирующее сопротивление цепи в десятки раз превышает сопротивление системы.

Для электрической сети неограниченной мощности сила электрической напряжённости рассчитывается по формуле:

Ik=Ib/Xрезгде:Ik — сила тока короткого замыкания;Ib — базисный ток;

Хрез — результирующее напряжения сети.

Подставив значение в формулу можно получить значение параметров КЗ в сети неограниченной мощности.

Руководящие указания по расчёту токов короткого замыкания, изложенные в данной статье, содержат основные принципы, по которым определяется сила тока в проводнике в момент образования этого опасного явления.

Если возникает сложность в проведении данных расчётов самостоятельно, то можно воспользоваться услугами профессиональных инженеров-электриков, которые проведут все необходимые вычисления.

Расчёт токов короткого замыкания и выбор электрооборудования по совету профессионалов позволит гарантировать бесперебойное и безопасное использование электрических сетей в частном доме или на производстве.

Предыдущая новость Следующая новость

Источник: https://evosnab.ru/elektrotehnika/kz/raschet-tokov-korotkogo-zamykanija

Что такое короткое замыкание по-простому

КОРОТКОЕ ЗАМЫКАНИЕ – это электрическое соединение разных фаз или потенциалов электроустановки между собой или с землей, не предусмотренное в нормальном режиме работы, при котором в проводниках, в месте контакта, резко возрастает сила тока, превышая максимально допустимые величины.

Если же говорить простым языком, короткое замыкание – этолюбое незапланированное, нештатное соединение электрических проводников с разным потенциалом, например, фазы и ноля, при котором образуются разрушительные токи.

Как вы заметили, акцент на том, что короткое замыкание в электрической цепи — это именно незапланированный, не предусмотренный процесс, сделан не зря, ведь, по большому счету, контролируемое замыкание (некоторые еще назывыают его по-аналогии длинным) запускает электроприборы. Все они включаются в розетку, и, так или иначе, фазный провод, посредством электроприбора соединяется с нулевым, но короткого замыкания при этом не происходит, давайте разберемся почему.

Для того чтобы понять почему происходит короткое замыкание, нужно вспомнить закон Ома для участка цепи – «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке», формула при этом следующая:

I=U/R

 где I – сила тока, U – напряжение на участке цепи, R – сопротивление.

Любой электроприбор в квартире, включающийся в розетку, это активное сопротивление (R – в формуле), напряжение в бытовой электросети вам должно быть известно – 220В-230 В и оно практически не меняется. Соответственно, чем выше сопротивление электроприбора (или материала, проводника и т.д.) включаемого в сеть, тем меньше величина тока, так, как зависимость между этими величинами обратно пропорциональная.

Теперь представьте, что мы включаем в сеть электроприбор практически без сопротивления, допустим его величина R=0.05 Ом, считаем, что тогда будет с силой тока по закону Ома.

I=220В(U)/0,05(Ом)=4400А

В результате получается очень высокий ток, для сравнения стандартная электрическая розетка в нашей квартире, выдерживает лишь ток 10-16А, а у нас по расчетам 4,4 кА.

Современные медные провода, используемые в проводке, имеют настолько хорошие показатели электрической проводимости, что их сопротивление, при относительно небольшой длине, можно принять за ноль. Соответственно, прямое соединение фазного и нулевого провода, можно сравнить, с подключением к сети электроприбора, с очень низким сопротивлением. Чаще всего, в бытовых условиях, мы сталкиваемся именно с таким типом короткого замыкания.

Конечно, это очень грубый пример, в реальных условиях, при расчете силы тока при коротком замыкании, учитывать приходится гораздо больше показателей, таких как: сопротивление всей линии проводов, идущих к вам, соединений, дополнительного оборудования сети и даже дуги образующейся при коротком замыкании, а также некоторых других.Поэтому, чаще всего, сопротивление будет выше тех 0,05 Ом, что мы взяли в расчете, но общий принцип возникновения КЗ и его разрушительных эффектов понятен.

Почему короткое замыкание так называется

Подключая какую-то нагрузку к сети, например, утюг, телевизор или любой другой электроприбор, мы создаём сопротивление для протекания электрического тока.

Если же мы умышленно или случайно соединим, например, фазу и ноль напрямую, без нагрузки, мы, в каком-то смысле, укорачиваем путь, делаем его коротким.

Поэтому, короткое замыкание и называют коротким, подразумевая движение электронов по кротчайшему пути, без сопротивления.

Чем опасно короткое замыкание

Самая значительная опасность при коротком замыкании – это большая вероятность возникновения пожара.

При значительном увеличении силы тока, которое происходит при КЗ, выделяется большое количество теплоты в проводниках, что вызывает разрушение изоляции и возгорание.
Кроме того, в быту, чаще всего происходит дуговое короткое замыкание, при котором, между проводниками в месте КЗ, возникает мощнейший электрический разряд, который нередко воспламеняет окружающие предметы.

Так же не стоит забывать про опасность поражения электрическим током или резким выделением тепла человека, которая так же достаточно высока.

Из менее опасных последствий, происходящих при КЗ, стоит отменить значительное снижение напряжения в электрической сети особенно в месте его возникновения, что негативно влияет на различные электроприборы, в частности оснащенные двигателями. Также, не стоит забывать про сильное электромагнитное воздействие на чувствительное к этому оборудование.

Как видите, последствия от возникновения короткого замыкания могут быть очень серьезными, поэтому, при проектировании любой электроустановки и монтаже электропроводки, необходимо предусмотреть защиту от короткого замыкания.

Причины короткого замыкания

Чаще всего в бытовых условиях квартиры или частного дома, короткое замыкание возникает по нескольким причинам, основные из которых:

— в следствии нарушения изоляции электрических проводов или мест их соединений. Факторов приводящих к этому достаточно много, здесь и банальное старение материалов, и механическое повреждение, и даже загрязнения изоляторов.

— из-за случайного или преднамеренного соединения проводников с различным потенциалом, чаще всего фазного и нулевого. Это может быть вызвано ошибками при работе с электропроводкой под напряжением, неисправностью электроприборов, случайным попаданием проводников на контактные группы и т.д.

Поэтому, очень важно ответственно относится как к монтажу электроустановки, так и к её эксплуатации и обслуживанию.

Будьте аккуратны и осмотрительны при обращении с электрическими приборами и оборудованием, не включайте их в сеть если они повреждены или открыты. Не хватайтесь за электрические провода, если точно не знаете, что они не под напряжением.

Ну и как всегда, если у вас есть что добавить, вы нашли неточности или ошибки – обязательно пишите в комментариях к статье, кроме того задавайте свои вопросы, делитесь полезным опытом.

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/163-chto-takoe-korotkoe-zamykanie-po-prostomu

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как расшифровать маркировку аккумулятора

Закрыть