Вольтметры и амперметры
Физика > Вольтметры и амперметры
Изучите показания, схемы и сопротивление вольтметра и амперметра в цепи – устройства измерения напряжения и тока: рисунки, цифровой вольтметр и амперметр.
Вольтметры и амперметры в цепи используют для вычисления напряжения и тока.
Задача обучения
- Сравнить подключение цепей амперметра и вольтметра.
Основные пункты
- Вольтметр – устройство, с чьей помощью удается вычислить разность электрических потенциалов между двумя точками в электрической цепи.
- Амперметр – устройство для вычисления тока в цепи.
- Вольтметр связывается с устройством параллельно, а амперметр – последовательно.
- В основе большинства аналоговых счетчиков лежит гальванометр – измеряет ток при помощи движения или отклонения иглы. На прогиб влияет магнитная сила, воздействующая на токопроводящую проволоку.
Термины
- Шунтирующее сопротивление – небольшое сопротивление (R), расположенное параллельно гальванометру (G) для изготовления амперметра.
- Гальванометр – аналоговый измерительный прибор (G), который для вычисления тока использует отклонение иглы.
- Вольтметры и амперметры вычисляют напряжение и ток в цепи.
Вольтметры
Вольтметр – устройство для вычисления разницы в электрическом потенциале между двумя точками в электрической цепи. Аналоговый вольтметр смещает указатель по шкале пропорционально напряжению в цепи, в цифровом присутствует цифровой дисплей. Любое измерение вольтметра, которое можно трансформировать в напряжение, будет отображаться на счетчике. Здесь зафиксируется давление, температура и поток.
Демонстрационный прибор, используемый на уроках по физике
Чтобы вольтметр смог вычислить напряжение, он должен подключаться параллельно. Это важно, так как параллельные объекты ощущают единое различие потенциалов. Ниже представлена схема вольтметра и показания.
(а) – Чтобы вычислить отличие потенциалов в этом потоке, вольтметр (V) расположен параллельно по отношению к источнику напряжения или любому из резисторов. Отметьте, что напряжение клеммы вычисляется между точками а и b. Нельзя подключить вольтметр через ЭДС без добавления внутреннего сопротивления. (b) – Применение цифрового вольтметра
Амперметры
Амперметр измеряет электрический ток, а его наименование происходит из единицы измерения – Ампер. Чтобы прибор смог определить ток, его нужно присоединить последовательно. Это важно, так как объекты в последовательной цепи ощущают единый ток. Они не должны подключаться к источнику напряжения – амперметры функционируют при минимальной нагрузке. Можете рассмотреть схему амперметра.
Амперметр установлен в последовательной связи для определения тока. Весь ток в цепи проходит сквозь счетчик. Если амперметр находится между точками d и e или f и a, то приобретет такое же значение
Гальванометры (аналоговые счетчики)
Аналоговые счетчики располагают иглами, которые поворачиваются, чтобы отмечать на шкале цифры. Это и отличает их от цифровых приборов, выводящих цифровые символы прямо на экран. В центре большинства аналоговых приборов находится гальванометр (G). Ток проходит сквозь него и приводит к пропорциональному перемещению (отклонение иглы).
Гальванометр характеризуется сопротивлением и текущей чувствительностью. Последнее – ток, осуществляющий значительное отклонение иглы гальванометра (максимальный ток). К примеру, гальванометр, чья токовая чувствительность составляет 50 мкА достигает максимального прогиба в 50 мкА.
Если подобный прибор обладает сопротивлением в 20 Ом, то только напряжение V = IR = (50 мкА) (25 Ом) = 1.25 мВ создает полномасштабное считывание. Объединив с ним резисторы, можно рассматривать его в качестве вольтметра или амперметра.
Гальванометры в качестве вольтметров
Катушка гальванометра способена функционировать как вольтметр, когда расположена в последовательной связи с серьезным сопротивлением (R). Это значение вычисляется максимальным напряжением. Допустим, вам нужно, чтобы 10В создавало полномасштабное отклонение вольтметра, вмещающего гальванометр с 25 Ом и чувствительностью 50 мкА. Полное сопротивление:
Rполное = R + r = V/I = 10В/50мкA = 200кОм,
или
R = Rполное — R = 200кОм – 25 ОМ ≈ 200кОм (R настолько велико, что сопротивление гальванометра почти незначительное).
Заметьте, что приложенные 5В создают отклонение в половину шкалы, отправляя ток всего в 25 мкА сквозь счетчик, так как показание вольтметра располагается пропорционально. В случае с другими диапазонами, напряжение устанавливают последовательно с гальванометром.
Гальванометр в качестве амперметра
Гальванометр можно использовать как амперметр, если прибор установлен в параллельной связи с небольшим сопротивлением, именующимся шунтирующим. Дело в том, что сопротивления шунта маленькое, из-за чего амперметр может вычислять ток намного четче.
Допустим, нам нужен амперметр, фиксирующий полномасштабное отклонение для 1 А и содержит тот же гальванометр на 25 Ом с чувствительностью 50 мкА. Так как R и r параллельны, напряжение на них одинаково.
IR = IGr
Так что: IR = IG/I = R/r.
Решая для R и отмечая, что IG составляет 50 мкА, а I – 0.999950 А, получим:
Источник: https://v-kosmose.com/fizika/voltmetryi-i-ampermetryi/
Амперметры и вольтметры щитовые VOLTPRIME
Амперметры и вольтметры щитовые «VOLTPRIME» (далее по тексту — амперметры и вольтметры) предназначены для измерений силы переменного тока, напряжения переменного тока в электрических цепях.
Описание
Амперметры и вольтметры относятся к аналоговым показывающим приборам непосредственного или трансформаторного включения.
Принцип действия амперметров и вольтметров электромагнитной системы основан на взаимодействии магнитного поля неподвижной катушки, обтекаемой измеряемым током, с подвижным сердечником из ферромагнитного материала.
Сердечник укреплен на одной оси со стрелкой указателя. При протекании измеряемого тока по неподвижной катушке действуют силы, образующие вращательный момент, который поворачивает подвижную часть — сердечник вместе с осью относительно неподвижной.
При этом угол отклонения стрелочного указателя пропорционален силе тока.
Амперметры и вольтметры щитовые «VOLTPRIME» выпускаются в следующих модификациях: А72 — амперметры, В72 — вольтметры.
Амперметры подключаются в цепь последовательно, вольтметры — параллельно. Для измерений значения силы тока переменного тока свыше 50 А амперметры подключаются в цепь через измерительные трансформаторы тока с номинальным значением вторичного тока 5 А и классом точности 0,5.
Конструктивно амперметры и вольтметры выполнены в диэлектрических пластиковых корпусах. Амперметры и вольтметры используются в закрытых помещениях, электрощитковом оборудовании, на промышленных предприятиях, в общественных и жилых зданиях.
Общий вид амперметров и вольтметров представлен на рисунке 1.
а) модификация А72
б) модификация В72
Рисунок 1 — Общий вид амперметров и вольтметров
Пломбирование амперметров и вольтметров не предусмотрено.
Диапазоны измерений силы переменного тока частотой от 45 до 65 Гц амперметров, А:
— непосредственного включения
— трансформаторного включения с номинальным значением тока вторичной обмотки 5 А
от 0 | до | 5 | ||
от 0 до 20; | от | до | 30; | |
от 0 до 40; | от | до | 50; | |
от 0 до 75; | от | до | 80; | |
от 0 до 100; | от | до | 125; | |
от 0 до 150; | от | до | 200; | |
от 0 до 250; | от | до | 300; | |
от 0 до 400; | от | до | 500; | |
от 0 до 600; | от | до | 800; | |
от 0 до 1000; | от | до | 1500; | |
от 0 до 2000; | от | до | 2500; | |
от 0 до 3000; | от | до | 4000; | |
от 0 до 5000; | от | до | 6000 |
Диапазон измерений напряжения переменного тока частотой от 45 до 65 Гц вольтметров (непосредственного включения), В_
от 0 до 500
от 45 до 65
400
600
1,5
±1,5
±1,5
±3
±1,5
Частота измеряемой величины переменного тока, Гц
Номинальное рабочее напряжение для амперметров, В, не более
Номинальное рабочее напряжение для вольтметров, В, не более
Класс точности
Пределы допускаемой основной приведенной (к верхней границе диапазона) погрешности измерений силы и напряжения переменного тока, %_
Пределы допускаемой дополнительной приведенной (к верхней границе диапазона) погрешности измерений силы и напряжения переменного тока, вызванной отклонением положения амперметра или вольтметра от нормального (вертикального) положения в любом направлении на ±5°, %_
Пределы допускаемой дополнительной приведенной (к верхней границе диапазона) погрешности измерений силы и напряжения переменного тока, вызванной влиянием внешнего однородного постоянного магнитного поля, %
Пределы допускаемой дополнительной приведенной (к верхней границе диапазона) погрешности измерений силы и напряжения переменного тока, вызванной отклонением температуры окружающего воздуха от нормальных условий в диапазоне от +5 до +35 оС, %
Пределы допускаемой дополнительной приведенной (к верхней границе диапазона) погрешности измерений силы и напряжения переменного тока, вызванной повышенной относительной влажностью воздуха 95 % при температуре +35 оС, %_
Наименование характеристики | Значение |
Пределы допускаемой дополнительной приведенной (к верхней границе диапазона) погрешности измерений силы и напряжения переменного тока, вызванной изменением температуры окружающего воздуха на каждые 10 °С в диапазоне от -25 до +5 оС не включительно и свыше +35 до +40 оС, % | ±0,8 |
Таблица 2 — Основные технические характеристики амперметров и вольтметров
Наименование характеристики | Значение |
Габаритные размеры (длинахвысотахширина), мм, не более | 72x72x65 |
Масса, кг, не более | 0,2 |
Сопротивление изоляции, МОм, не менее: | |
— при нормальных условиях | 40 |
— в условиях с повышенной относительной влажности | |
воздуха 95 % | 2 |
Нормальные условия измерений: | |
— температура окружающего воздуха, °С | от +15 до +25 |
— относительная влажность воздуха, % | от 30 до 80 |
Рабочие условия измерений: | |
— температура окружающего воздуха, °С | от -25 до +40 |
— относительная влажность воздуха, % | до 90 |
— положение монтажной плоскости, о | от -5 до +5 |
Средняя наработка на отказ, ч | 50000 |
Средний срок службы, лет, не менее | 12 |
Знак утверждения типа
наносится на корпус амперметров и вольтметров в виде наклейки и типографским способом на титульный лист руководства по эксплуатации и паспорта.
Комплектность
Таблица 3 — Комплектность амперметров и вольтметров
Наименование | Обозначение | Количество |
Амперметр или вольтметр щитовой «V OLTPRIME» | А72 или В72 | 1 шт. |
Крепежные фиксаторы | — | 2 шт. |
Руководство по эксплуатации | — | 1 экз. |
Паспорт | — | 1 экз. |
Поверка
осуществляется по документу ГОСТ 8.497-83 «ГСИ. Амперметры, вольтметры, ваттметры, варметры. Методика поверки».
Основное средство поверки:
-установка поверочная универсальная «УППУ-МЭ» (регистрационный номер в Федеральном информационном фонде № 57346-14).
Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.
Знак поверки наносится на свидетельство о поверке и (или) в паспорт.
Нормативные документы
ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия
ГОСТ 30012.1-2002 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 1. Определения и основные требования, общие для всех частей
ГОСТ 8711-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам
ТУ 26.51.43-002-43887309-2019 Амперметры и вольтметры щитовые «VOLTPRIME». Технические условия
Источник: https://all-pribors.ru/opisanie/76759-19-voltprime
Устройство автомобилей
Для контроля системы электроснабжения, обеспечивающей заряд аккумуляторной батареи и питание потребителей, на автомобилях применяются амперметры и вольтметры.
Как и следует из названия приборов, амперметры предназначены для измерения силы тока зарядки от генераторной установки при работающем двигателе, а вольтметры показывают текущее напряжение в бортовой сети между отрицательными и положительными выводами источников тока.
По этой причине амперметр дает больше информации о состоянии генераторной установки автомобиля, а вольтметр, в общем случае, позволяет оценить состояние аккумуляторной батареи по напряжению в бортовой сети.
Некоторые автолюбители устанавливают на панель приборов и амперметр и вольтметр, чтобы иметь полную информацию о работе генератора и аккумуляторной батареи, но в промышленном автомобилестроении такие приборы применяются раздельно – или вольтметр, или амперметр.
Более того, многие современные легковые автомобили, водители которых, зачастую, имеют низкую квалификацию в области автоэлектрики, вообще лишены этих приборов, а контроль зарядного тока осуществляется по контрольной лампе, которая гаснет после пуска двигателя.
Конструкторы считают, что данной информации достаточно для того, чтобы оценить состояние электрической сети автомобиля, а водитель не перегружен излишней информацией от панели проборов.
Кроме того, бортовой компьютер, который становится неотъемлемой частью любого современного автомобиля, способен подсказать водителю о возникновении аварийной ситуации в какой-либо цепи, а система предохранителей спасет бортовую электросеть от повреждения, даже если водитель не успел во время оценить опасность ситуации.
***
Автомобильные амперметры
Амперметры включаются последовательно между генератором и аккумуляторной батареей, и измеряют силу зарядного или разрядного тока. Автомобильные амперметры относятся к электромеханическим приборам электромагнитной или магнитоэлектрических систем.
Электромагнитный амперметр (рис. 1) состоит из основания 4, постоянного магнита 3, латунной шины 1, якоря 5 и стрелки 2.
При разомкнутой электрической цепи якорь со стрелкой под действием магнитного поля постоянного магнита удерживается в среднем положении на нуле.
При прохождении тока через латунную шину создается магнитное поле, под действием которого намагниченный якорь со стрелкой поворачивается в ту или другую сторону в зависимости от направления тока, показывая зарядку или разрядку аккумуляторной батареи.
Рис. 1. Электромагнитный амперметр: 1 — латунная шина; 2 — стрелка; 3 — магнит; 4 — основание; 5 — якорь | Рис. 2. Амперметр магнитоэлектрической системы: 1, 5 — магниты; 2 — катушка индуктивности; 3 — резистор; 4 — стрелка |
На автомобилях с задним расположением двигателя и с генераторными установками большой мощности для уменьшения длины провода большого сечения применяют магнитоэлектрические амперметры с подвижным постоянным магнитом (рис. 2), подвижная система которых включает постоянный магнит 1 и стрелку 4, находящиеся на одной оси.
Постоянный магнит размещен внутри неподвижной катушки 2 индуктивности, подключенной к резистору 3, по которому протекает измеряемый ток. Противодействующий момент создается неподвижным постоянным магнитом 5.
Угол поворота постоянного магнита, а, следовательно, и стрелки зависит от величины и направления тока, протекающего по резистору 3.
***
На некоторых моделях автомобилей (например, ВАЗ-2105, -2108, -2109 и др.) для контроля уровня напряжения в бортовой сети применяется вольтметр.
Вольтметр (рис. 3) представляет собой магнитоэлектрический прибор с противодействующим магнитом и является магнитоэлектрическим логометром.
На пластмассовом корпусе 4, точно таком же, как и у других логометрических приборов, намотаны под углом 90˚ две катушки индуктивности W1 и W2, которые соединены между собой последовательно.
Свободный конец катушки W1 служит положительным выводом вольтметра. Свободный конец катушки W2 соединен с отрицательным выводом через добавочный резистор R.
Результирующий магнитный поток прибора создается магнитным полем, возникающим в катушках индуктивности при протекании по ним тока, и магнитным полем постоянного магнита 2, установленного на экране 3.
Рис. 3. Автомобильные вольтметры: а – принципиальное устройство; б – аналоговый прибор, в – цифровой прибор: 1 и 2 — постоянные магниты; 3 — экран; 4 — каркас; 5 — стрелка; 6 — ограничитель; 7 — прорезь; W1, W2 — катушки индуктивности
Постоянный магнит служит также для регулировки прибора и имеет для этого возможность осевого перемещения. Подвижная система прибора состоит из постоянного магнита 1, закрепленного на оси вместе со стрелкой 5 и ограничителем 6. Прорезь 7, в которую входит конец ограничителя, определяет возможный угол поворота подвижной системы. Когда вольтметр отключен, подвижная система под действием магнита 2 устанавливается в крайнее левое положение.
На отечественных автомобилях ВАЗ-2105, -2104 с напряжением бортовой сети 12 В используются вольтметры типа 12.3812, которые измеряют напряжение в интервале 816 В. На автомобилях с бортовой сетью 24 В (МАЗ, БелАЗ, ЗиЛ) применяются вольтметры 11.3812, предназначенные для измерения напряжения в интервале 1632 В.
Для удобства визуального контроля показаний вольтметров их шкалы обычно разделены на цветные зоны (рис. 3, б). Так, шкала прибора 12.3812 разделена на следующие зоны:
- 811 В — красный цвет (низкое напряжение в сети из-за отсутствие зарядного тока);
- 1112 В – белый или желтый цвет (низкий заряд аккумуляторной батареи);
- 1215 В – зеленый цвет (нормально заряженная аккумуляторная батарея и нормальная работа генераторной установки);
- 1516 В – красный цвет (ненормальная работа генераторной установки или регулятора тока либо напряжения зарядки).
Соответственно шкала вольтметра для бортовой сети 24 В имеет аналогичное деление на цветные сектора с определенными интервалами напряжения.
Разные диапазоны измерения приборов достигаются использованием различных по сопротивлению добавочных резисторов.
Современные автомобили все чаще оборудуются цифровыми приборами, в том числе и для контроля состояния бортовой сети (рис. 3, в). Такие приборы отличаются высокой точностью текущих показаний, удобнее для визуального контроля, а также придают панели приборов современный вид.
***
Спидометры и тахометры
Дистанционное образование
- Группа ТО-81
- Группа М-81
- Группа ТО-71
Олимпиады и тесты
Источник: http://k-a-t.ru/mdk.01.01_elektro/66-pribory_zaryadka/index.shtml
Амперметр — измеряем ток: назначение, схемы подключения, типы
Амперметр – это электроизмерительный прибор, предназначенный для фиксации силы постоянного либо переменного тока, протекающего в цепи — то есть устройство для измерения тока.
Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток. Так как ток, который он измеряет зависит от сопротивления элементов цепи, то сопротивление амперметра должно быть максимально низким (очень маленьким).
Это позволяет уменьшить влияние устройства для измерения тока на измеряемую цепь и повысить их точность.
Шкалу прибора градуируют в мкА, мА, А и кА, и в зависимости от требуемой точности и пределов измерения выбирают подходящий прибор. Увеличение измеряемой силы тока добиваются путем включения в цепь шунтов, трансформаторов тока, магнитных усилителей. Это позволяет увеличить предел измеряемой величины тока.
Схемы подключения амперметра
Рисунок — Схема прямого включения амперметра
Рисунок — Схема косвенного включения амперметра через шунт и трансформатор тока
Сфера применения амперметров
Приборы для измерения тока нашли применение в различных сферах. Их активно используют на крупных предприятиях, связанных с генерацией и распределением электрической, тепловой энергии. Также их используют в:
— электролабораториях;
— автомобилестроении;
— точных науках;
— строительстве.
Но не только средние и крупные предприятия используют этот прибор: они востребованы и среди обычных людей. Практически любой опытный автоэлектрик имеет в арсенале подобное устройство, позволяющее проводить замеры показателей электропотребления приборов, узлов автомобилей и пр.
Типы амперметров
Исходя из вида отсчетного устройства амперметры делятся на приборы с:
— со стрелочным указателем;
— со световым указателем;
— с пишущим устройством;
— электронные устройства.
По принципу действия амперметры разделяются на:
1. Электромагнитные – предназначены для использования в цепях постоянного, переменного тока. Обычно используются в привычных электроустановках переменного тока с частотой 50 Гц.
2. Магнитоэлектрические — предназначены для фиксации силы тока малых значений постоянного тока. Они имеют магнитоэлектрическое измерительное устройство и шкалу с проградуированными делениями.
3. Термоэлектрические приборы предназначены для измерения силы тока в цепях высоких частот. В состав таких приборов входят магнитоэлектрический механизм, выполненный в виде проводника, к которому приваривается термопара. Протекающий по проводку ток вызывает его нагрев, который фиксируется термопарой. Формирующееся излучение своим влиянием вызывает отклонение рамки на угол, который пропорционален силе тока.
4. Ферродинамические приборы — состоят из замкнутого магнитопровода, выполненного из ферромагнитного материала, сердечника и неподвижной катушки. Характеризуются высокой точностью измерения, надёжностью конструкции и низкой чувствительностью к воздействию электромагнитных полей.
5. Электродинамические устройства предназначены для замеров величины силы тока в цепях постоянного / переменного токов повышенных частот (до 200 Гц). Они чувствительны к перегрузкам и внешним электромагнитным полям. Но из-за высокой точности замеров их используют в роли контрольных приборов для поверки действующих амперметров.
6. Цифровые амперметры – современная модель приборов, сочетающая преимущества аналоговых приборов. На сегодня такие устройства завоевывали лидирующие позиции. Это объясняется удобством в работе, легкостью использования, небольшими размерами и высокой точностью получаемых результатов измерений. Кроме того, цифровые приборы можно использовать в разнообразных условиях: он не боится тряски, вибрации и пр. воздействий.
Рассмотрим несколько амперметров разных производителей и разных типов:
1. Амперметры Ам-2 DigiTOP
Технические характеристики:
— Количество входов 1
— Измеряемый переменный ток 1 50 А
— Погрешность измерения 1%
— Дискретность индикации 0,1 А
— напряжение питания -100-400 В, 50 (+1) Гц Габаритные размеры 90x51x64 мм
Работоспособность и долговечность бытовой электротехники зависят от качества получаемой электроэнергии. Как правило, к выходу из строя электронной техники, будь то холодильники, телевизоры или стиральные машины, приводит повышение напряжения выше допустимых пределов. Наиболее опасно длительное повышение напряжения выше допустимой отметки. При этом выходят из строя блоки питания электронной техники, перегреваются обмотки электродвигателей, нередко происходит возгорание.
2. Амперметр лабораторный Э537
Данный прибор (амперметр Э537) предназначается для точного измерения силы тока в цепях переменного и постоянного тока.
Класс точности 0,5.
Диапазоны измерения 0,5 / 1 A;
Масса 1,2 кг.
Технические характеристики амперметра Э537:
Конечное значение диапазона измерений 0,5 А/1 А
Класс точности 0,5
Область нормальных частот (Гц) 45 — 100 Гц
Область рабочих частот (Гц) 100 — 1500 Гц
Габаритные размеры 140 х 195 х 105 мм
3. Амперметр СА3020
Цифровое устройство амперметр базовой модели выпускается в нескольких типовых модификациях в зависимости от базового значения параметров замеряемого тока. При заказе данной модели цифрового амперметра, требуется заявить, с каким базовым параметром силы тока Вам придётся работать: 1 А, 2 А или 5 А.
Базовые параметры замеряемого тока, Iн-1 Ампер (СА3020-1), 2 Ампер (СА3020-2) или 5 Ампер (СА3020-5);
Границы замеряемых токов от 0,01 Iн до 1,5 Iн;
Диапазон частот по замеряемым токам от 45 до 850 Герц;
Границы базовой допускаемой существующей погрешности ±0,2% к оптимальному значению параметров замеряемой силы тока;
напряжение по питанию — сеть переменного тока напряжением (85-260) Вольт и частотой (47-65) Герц или постоянное напряжение (120 — 300) Вольт;
Потребляемая устройством мощность не больше чем 4 ВА;
Размерные габариты 144x72x190 мм;
Масса не больше чем 0,55 кг;
Мощность, потребляемая измерительной цепью амперметров серии 3020, не превышает: для СА3020-1 – 0,12 ВA; для СА3020-2 – 0,25 ВA; для СА3020-5 – 0,6 ВA.
Источник: https://pue8.ru/elektrotekhnik/813-ampermetr-naznachenie-skhemy-podklyucheniya-primenenie-tipy.html
Разница между амперметром и вольтметром
Электрический ток обладает разными характеристиками, для измерения которых используются соответствующие приборы. Поговорим подробней об этих устройствах, а точнее, выясним, чем отличается амперметр от вольтметра.
статьи
Амперметром называют прибор, позволяющий зафиксировать параметры силы тока.
Амперметр
Вольтметр – устройство для получения показателей напряжения тока.
Вольтметр
Вольтметр
Сравнение
Итак, каждый вид оборудования предназначен для проведения конкретных измерительных действий. Причем по названиям устройств понятно, какие именно характеристики тока они фиксируют: в амперах выражается его сила, в вольтах – напряжение. Надо сказать, оба прибора (если рассматривать их стрелочные варианты) используют в работе один и тот же принцип. Показания на табло появляются при взаимодействии электрического поля и созданного магнитного поля.
Но есть и детали, составляющие отличие амперметра от вольтметра.Они связаны с тем внутренним сопротивлением, которое имеется в каждом случае. У амперметра оно является предельно низким. Для обеспечения этого условия предусмотрен резистор, относительно такого прибора называемый «шунтом». Указанный элемент устроен так, что забирает на себя нагрузку от электричества, обеспечивая наиболее точное измерение амперметром силы тока.
У вольтметра, наоборот, внутреннее сопротивление, за которое отвечает резистор, максимально повышено, что необходимо для замеров напряжения без существенного искажения действительных значений.
Еще один ответ на вопрос, в чем разница между амперметром и вольтметром, можно получить, рассмотрев способ подключения того и другого устройства к электрической цепи. Так, амперметр работает при последовательном подсоединении. Причем не следует допускать прямого контакта подобного оборудования с источником питания или выводами тока. Результатом этого становится короткое замыкание или поломка измерительного приспособления.
В случае с вольтметром описанный контакт допустим. Прибору этого типа в электротехнике соответствует параллельный способ подключения к участку цепи, выбранному для осуществления измерительных операций.
Таблица
Амперметр | Вольтметр |
Фиксирует силу тока | Измеряет напряжение |
Минимальное внутреннее сопротивление | Высокое внутреннее сопротивление |
Подключается последовательным способом | Подсоединяется параллельно цепи |
Недопустим контакт с источником питания | Может подключаться непосредственно к источнику тока |
Источник: https://thedifference.ru/chem-otlichaetsya-ampermetr-ot-voltmetra/
Амперметр и вольтметр М1620
Под заказ
Амперметр и вольтметр М1620 представляют собой комбинированный измерительный прибор, который используют для контроля и замера параметров тока в электрических цепях. Предложенное устройство может измерять силу тока и напряжение в цепи, а также неэлектрические параметры, если их можно преобразовать в сигнал постоянного тока либо напряжения.
Устройство этого типа широко используется в энергетическом секторе, разных отраслях промышленности, а также предприятиями, которые специализируются на ремонте и техническом обслуживании различной бытовой и промышленной техники.
Эксплуатационные условия
Амперметры и вольтметры предложенного типа рассчитаны для использования в помещениях, где температурный режим соблюдается в пределах от -400С до +500С. Показатель относительной влажности среды может достигать до 100% при температуре не выше 500С.
Особенности исполнений и использования
Представленные вольтметры и амперметры являются измерительными системами магнитоэлектрического типа. Они владеют униполярной конструкцией и производятся в корпусах, отличающихся брызгозащищенным исполнением, и предназначены для утопленного монтажа.
В своей конструкции амперметр и вольтметр М1620 имеет измерительный механизм, который помещен в пластиковый корпус. Корпус владеет двумя отсеками для размещения в них измерительной системы и электрических схем.
В переднем отсеке располагается измерительный магнитоэлектрический узел, который закрывается алюминиевым наличником с предварительно установленным стеклом для смотрового окна. В центральной части окна расположен корректор со специальной прокладкой-уплотнителем.
Под стеклом зафиксирована измерительная шкала, производимая из термоустойчивой пластмассы. Задний отсек рассчитан для установки электрических схем, к нему крепится пластиковый цоколь.
Технические характеристики
Поддерживаемый диапазон измерений напряжения: | от 10 В до 1,5 кВ |
Возможный диапазон измерений тока: | от 0,25 А до 7,5 кА |
Точность приборов: | 1,5 |
Длина/угол шкалы: | 18 см / 2300 |
Промежуток установки показаний: | 3 сек |
Диапазон рабочих температур и поддерживаемая влажность среды: | -400С .+550С, до 100% при Т=+500С |
Защищенность корпуса от влаги и пыли: | IP 54 |
Периодичность поверок: | через 2 года |
Габаритные размеры: | 12х12х12,6 см |
Вес приборов: | не больше 1,2 кг |
При обращении к менеджеру наши заказчики всегда могут согласовать в индивидуальном порядке:
- условия оплаты;
- специальные цены;
- ускорение сроков изготовление/поставки продукции;
- пожелания личного характера;
- особенности заказа продукции;
- заказчик всегда может запросить техническую документацию для ознакомления;
- системы защиты проекта.
Условия доставки
Доставка продукции осуществляется всеми современными транспортными компаниями. Стоимость доставки имеет прямую зависимость от сроков доставки (быстрее — дороже). Мы доверяем нашу продукцию:
- Деловые линии
- ПЭК
- Пони-экспресс
- DHL
- DPD
- КИТ
- ЖелДорЭкспедиция
- СПСР
- СДЭК
- Энергия
- Авиадоставка
- Также существует возможность самовывоза.
Источник: https://belsudosnab.ru/ampermetr-i-voltmetr-m1620
Цифровые модульные вольтметры и амперметры
Амперметр — это прибор для измерения силы тока в электрической цепи. Любой амперметр рассчитан на измерение токов определенной величины. В электронике в основном оперируют микроАмперметрами (мкА), миллиАмперметрами (мА), а такжке Амперметрами (А). Следовательно в зависимости от измеряемого тока приборы делятся на амперметры (РА1), миллиамперметры (РА2) и макроамперметры (РА3), которые обозначаются на принципиальных схемах следующим образом:
Аналоговый амперметр (стрелочный)
Амперметры этого типа имеют магнитноэлектрическую систему. Они состоят из катушки тонкой проволоки, которая может вращаться между полюсами постоянного магнита. При пропускании тока через катушку, она стремиться установиться по полю под действием вращающего момента, величина которого пропорциональна току.
В свою очередь повороту катушки препятствует специальная пружина, упругий момент которой пропорционален углу закручивания. При равновесии эти моменты будут равны, и стрелка покажет значение, пропорциональное протекающему через нее току. Иногда, для того, чтобы увеличить предел измерения, параллельно амперметру ставят резистор (шунт — шунтирующий резистор) определенной величины, рассчитанной заранее.
Так как амперметр для проведения измерений включается в разрыв цепи, то необходимо стремиться к тому, чтобы его внутреннее сопротивление протекающему току было минимальным. В противном случае, для электрической цепи амперметр будет представлять резистор. (Чем больше сопротивление резистора, тем меньший ток через него проходит).
Таким образом, при включении амперметра в цепь, мы понижаем ток в этой цепи, но измерительная техника разрабатывается с учетом этих особенностей и показания амперметра корректны.
Аналоговые амперметры до сих пор находят своё применение.
схема:
Плюсы:
- не требуется независимое питание, т.е. питание от замеряемой цепи
- удобны при отображении информации, на многих присутсвует возможность коррекции
Минусы:
- большая инертность (стрелкам прибора требуется некоторое время, чтобы прийти в устойчивое состояние), в современных аналоговых приборах этот недостаток проявляется слабо,но он есть.
Цифровой амперметр
Цифровой амперметр состоит из аналого-цифрового преобразователя (АЦП) и преобразует силу тока в цифровые данные, которые потом отображаются на ЖК-дисплее.
Цифровые амперметры лишены инертности, и выдача результатов измерений зависит от частоты процессора, который выдает результаты на дисплей. В дорогих цифровых амперметрах он может выдать до 1000 и более результатов в секудну.
Также цифровые амперметры требуют меньше габаритов для установки, модульные корпуса для установки на din-рейку. Минусы — это то, что для измерения им требуется собственный источник питания, который питает все внутренние узлы и микросхемы прибора.
Есть и такие цифровые амперметры, которые используют питание измеряемой цепи, но они редко используются в виду своей дороговизны.
Амперметры делятся на амперметры для измерения силы тока постоянного напряжения и для измерения силы тока переменного напряжения.
на сайте vserele.ru можно посмотреть следующие модели:
Амперметр цифровой А-05 для измерения величины тока в цепях переменного тока с частотой 50 Гц.
Амперметр цифровой А-05 (DC) для измерения силы постоянного тока с наружным шунтом 75мВ.
Цифровой вольтметр
Вольтметр — это прибор, предназначенный для определения напряжения в электрических цепях.
По виду измеряемой величины цифровые вольтметры делятся на: вольтметры постоянного тока, переменного тока (средневыпрямленного или среднего квадратического значения), импульсные вольтметры — для измерения параметров видео- и радиоимпульсных сигналов и универсальные вольтметры, предназначенные для измерения напряжения постоянного и переменного тока, а также ряда других электрических и неэлектрических величин (сопротивления, температуры и прочее).
Принцип работы цифровых измерительных приборов основан на дискретном и цифровом представлении непрерывных измеряемых величин. Более подробно с устройством и работой цифрового вольтметра можно ознакомиться из лекции «Электромагнитные измерения.Цифровые вольтметры. «
В электронике в основном оперируют Вольтметрами (В), миллиВольтметрами (мВ), а такжке микроВольтметрами (мкВ). Следовательно в зависимости от измеряемого тока приборы делятся на вольтметры (РV1), милливольтметры (РV2) и макровольтметры (РV3), которые обозначаются на принципиальных схемах следующим образом:
Иногда рядом с изображением вольтметра также указывается максимальная величина напряжения, которую способен измерить вольтметр. (для стрелочных приборов)
Кроме этого, рядом с выводами вольтметра могут быть знаки полярности подключения его в схему для измерения постоянного напряжения.
схема:
на сайте vserele.ru можно посмотреть следующие модели:
Вольтметр цифровой V–03 используется для измерений величины напряжения в однофазной и трехфазной цепях переменного тока с частотой 50 Гц.
Вольтметр цифровой V-03 (DC) предназначен для контроля постоянного и переменного однофазного (50Гц) напряжения в диапазоне 150-300В.
Источник: http://vserele.ru/article/cifrovye-modulnye-voltmetry-ampermetry
Амперметры. Виды и работа. Устройство и применение. Особенности
Чтобы измерить силу тока в некоторой электрической цепи, существуют приборы, называемые амперметры. Они включаются в цепь по последовательной схеме. Внутреннее сопротивление амперметров очень мало, поэтому такое измерительное устройство не влияет на параметры электрического тока измеряемой цепи. Единицей измерения силы тока является ампер.
Шкалы приборов могут градуироваться в различных долях ампера: микроамперах, миллиамперах и т.д. Соответственно такие приборы называют микроамперметрами, миллиамперметрами и т.д. Чтобы расширить пределы измерений, амперметры включают в цепь с применением трансформатора, либо в параллели с шунтом. В этом случае только небольшая часть тока будет протекать через амперметр, а основная часть тока пойдет через шунт.
Для крепления шунта к амперметру применяются специальные гайки. Запрещается подключать шунт к амперметру при включенном питании электрической сети. Полярность прибора при подключении также имеет большое значение. Если перепутать полярность, то стрелка прибора будет уходить в другую сторону, а цифровой амперметр, покажет отрицательную величину.
Виды амперметров
Точность показаний прибора зависит от принципа действия и вида устройства.
Первый вид в свою очередь делится на следующие устройства:
- Магнитоэлектрические.
- Электромагнитные.
- Электродинамические.
- Ферродинамические.
По виду измеряемого тока амперметры делятся:
- Для переменного тока.
- Для постоянного тока.
Существуют и другие специализированные приборы для измерения тока, которые применяются в узконаправленных областях, и не распространены так широко, как перечисленные выше.
Магнитоэлектрические амперметры
Принцип действия такого вида прибора основывается на взаимодействии магнитного поля магнита и подвижной катушки, находящейся в корпусе прибора.
Достоинствами такого амперметра является низкое потребление электроэнергии при функционировании, высокая чувствительность и точность измерений. Все магнитоэлектрические амперметры оснащены равномерной градуировкой шкалы измерений. Это позволяет произвести измерения с высокой точностью.
К недостаткам магнитоэлектрического амперметра относится его сложность внутренней конструкции, наличие движущейся катушки. Такой прибор не является универсальным, так как он действует только для постоянного тока.
Несмотря на недостатки, магнитоэлектрический вид прибора широко применяется в различных областях промышленности, в лабораторных условиях.
Электромагнитные
Амперметры с электромагнитным принципом работы не имеют в своем устройстве движущейся катушки, в отличие от магнитоэлектрических моделей. Устройство их значительно проще. В корпусе находится специальное устройство и один или несколько сердечников, которые установлены на оси.
Электромагнитный амперметр имеет меньшую чувствительность, по сравнению с магнитоэлектрическим прибором. А значит, точность его измерений будет ниже. Преимуществами таких приборов является универсальность работы. Это означает, что они могут измерять силу тока как в цепи постоянного, так и переменного тока. Это значительно расширяет его сферу применения.
Электродинамические
Метод работы таких приборов заключается во взаимодействии электрических полей токов, которые проходят по электромагнитным катушкам. Конструкция прибора состоит из подвижной и неподвижной катушки. Универсальная работа на любом виде тока является основным достоинством электродинамических амперметров.
Из недостатков стоит выделить большую чувствительность, так как они реагируют даже на незначительные магнитные поля, расположенные в непосредственной близости к ним. Подобные поля способны создавать для электродинамических приборов большие помехи, поэтому такие амперметры применяют только в защищенном экраном месте.
Ферродинамические
Такие приборы, обладают наибольшей эффективностью и точностью измерений. Магнитные поля, расположенные рядом с прибором, не оказывают на него заметного влияния, поэтому нет необходимости в установке дополнительных защитных экранов.
Конструкция такого амперметра включает в себя замкнутый ферримагнитный провод, а также сердечник и неподвижную катушку. Такое устройство позволяет повысить надежность работы прибора. Поэтому ферродинамические виды амперметров чаще всего используются в военной промышленности и оборонных учреждениях. К его преимуществам также можно отнести удобство и простоту пользования, точность всех измерений, по сравнению с ранее рассмотренными видами приборов.
Цифровые
Кроме рассмотренных приборов, существует цифровой вид амперметров. В настоящее время они все шире используются в различных сферах производства, а также в бытовых условиях. Такая популярность цифровых приборов связана с удобством пользования, небольшими размерами и точными измерениями. Вес прибора также очень незначительный.
Цифровые модификации используют в различных условиях, он невосприимчив к вибрациям, в отличие от механических аналоговых приборов.
Цифровые приборы, не боятся незначительных механических ударов, которые возможны от работающего рядом оборудования. Расположение в вертикальной или горизонтальной плоскости прибора не имеет влияния на его работоспособность, так же как изменение температуры и давления. Поэтому такой прибор применяют в условиях внешней среды.
Измерение переменного и постоянного тока
Все рассмотренные приборы способны измерять постоянный ток. Однако иногда требуется измерить силу переменного тока. Если у вас для этого нет отдельного амперметра, то можно собрать элементарную схему.
Существуют и специальные приборы, измеряющие переменный ток. Оптимальным выбором прибора будет мультиметр, в котором имеется возможность измерения переменного тока.
Чтобы выполнить правильное измерение, необходимо определить вид тока, то есть, переменный ток в сети, или постоянный. В противном случае измерение будет ошибочным.
Общий принцип действия амперметра
Если рассматривать классический принцип работы амперметра, то его действие заключается в следующем.
На оси кронштейна вместе с постоянным магнитом расположен стальной якорь с закрепленной на нем стрелкой. Воздействуя на якорь, постоянный магнит передает ему магнитные свойства. В этом случае позиция якоря находится вдоль силовых линий, проходящих вдоль магнита.
Такая позиция якоря определяет нулевое расположение стрелки по градуированной шкале. При протекании тока от генератора или другого источника по шине, возле нее возникает магнитный поток. Силовые линии этого потока в точке расположения якоря направлены под прямым углом к силовым линиям магнита.
Магнитный поток, образованный электрическим током, действует на якорь, который стремится повернуться на 90 градусов. В этом ему мешает магнитный поток, образованный в постоянном магните. Сила взаимодействия двух потоков зависит от направления и величины электрического тока, протекающего по шине. На эту величину и происходит отклонение стрелки прибора от нуля.
Сфера применения
Цифровые и аналоговые амперметры, используются в различных отраслях промышленности и народного хозяйства. Особенно широко они применяются в энергетической отрасли промышленности, радиоэлектронике, электротехнике. Также их могут использовать в строительстве, в автомобильном и другом транспорте, в научных целях.
В бытовых условиях прибор также часто используется обычными людьми. Амперметр полезно иметь с собой в автомобиле, на случай выявления неисправностей электрооборудования в пути.
Аналоговые приборы до сих пор также применяются в различных областях жизни. Их преимуществом является то, что для работы не требуется подключение питания, так как они пользуются электричеством от измеряемой цепи. Также их удобство состоит в отображении данных.
Многим людям привычнее смотреть за стрелкой. Некоторые устройства оснащены регулировочным винтом, который позволяет точно настроить стрелку на нулевое значение.
Инертность работы прибора отрицательно влияет на его применяемость, так как для стрелки необходимо время для нахождения устойчивой позиции.
Как выбрать
Для более точных измерений следует выбирать прибор сопротивлением до 0,5 Ом. Лучше, если зажимы контактов будут покрыты специальным антикоррозийным слоем.
Корпус должен быть качественного изготовления, без повреждений, желательно герметичного исполнения, для предотвращения проникновения влаги. Это продлит его срок службы и повысит точность показаний.
Наиболее удобный вид амперметра – это цифровой. Хотя в настоящее время более популярными являются мультиметры, в состав которых также входит функция измерения тока.
Запрещается подключение амперметра в сеть напрямую без нагрузки, во избежание выхода его из строя. При измерениях нельзя прикасаться к неизолированным токоведущим элементам прибора, так как возможен удар электрическим током. При работе с амперметром следует соблюдать осторожность и внимательность.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/ampermetry/
Цифровые амперметры AMP, вольтметры VLT и частотометры FRE, монтаж на DIN-рейке
- 6 августа 2009 г. в 13:08
- 1359
Амперметры измеряют в амперах ток, проходящий по электрической цепи. Вольтметры измеряют в вольтах разность потенциалов (напряжение) электрической цепи. Частотомер измеряет в герцах частоту электрической цепи с напряжением от 20 до 600 В переменного тока.
Амперметр 10 А с прямым подключением
- Нижний предел измерений: 4 % номинального тока.
- Потребление измерительного входа: 1 ВА.
Многодиапазонный амперметр
- Номинальный ток:
- при прямом подключении: 5 А;
- при использовании ТТ (не входит в комплект поставки) с настройкой параметров на передней панели амперметра: 10, 15, 20, 25, 40, 50, 60, 100, 150, 200, 250, 400, 500, 600, 800, 1000, 1500, 2000, 2500, 4000, 5000 A.
- Нижний предел измерений: 4% номинального тока.
- Потребление измерительного входа: 0,55 ВА.
Вольтметр
- Прямое измерение: 0 — 600 В.
- Входное сопротивление: 2 МОм.
- Нижний предел измерений: 4 % номинального тока.
Частотомер
- Нижний предел измерений: 20 Гц.
- Верхний предел измерений: 100 Гц.
- Индикация полной шкалы: 99,9 Гц.
Производитель
Шнейдер Электрик, ЗАО
Компания Schneider Electric является мировым экспертом в управлении электроэнергией. Подразделения компании успешно работают более чем в 100 странах. Schneider Electric предлагает интегрированные энергоэффективные решения для энергетики и инфраструктуры, промышленных предприятий, объектов гражданского и жилищного строительства, а также центров обработки данных.
Более 130 000 сотрудников компании, оборот которой достиг в 2011 году 22,4 миллиарда евро, активно работают над тем, чтобы энергия стала безопасной, надежной и эффективной. Девиз компании: «Познайте возможности вашей энергии!». ЗАО «Шнейдер Электрик» имеет коммерческие представительства в 19 крупнейших городах России с головным офисом в Москве.
Производственная база Schneider Electric в России представлена тремя действующими заводами и тремя логистическими центрами. Имеется собственный Научно-технический центр.
Смотрите также компании в каталоге, рубрика «Приборы для измерения электрических параметров»
Источник: https://www.elec.ru/library/manuals/cifrovye-ampermetry-amp-voltmetry-vlt.html
Шунт
В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt – в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).
По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!
Как работает шунт
Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.
Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.
Помните Закон Ома для участка электрической цепи? Вот, собственно и он:
где
U – напряжение
I – сила тока
R – сопротивление
Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:
Значит, исходя из формулы
получаем формулу:
и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.
Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).
Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.
Виды шунтов
Промышленные амперметры выглядят вот так:
На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).
На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.
А вот, собственно, и промышленные шунты:
Те, которые справа внизу могут пропускать через себя силу тока до килоАмпера и больше.
К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать шунт с амперметром вот по такой схеме:
В некоторых амперметрах этот шунт встраивается прямо в корпус самого прибора.
Работа шунта на практическом примере
В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:
Сзади можно прочитать его маркировку:
Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.
0,5 – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).
Итак, у нас имеется простая автомобильная лампочка накаливания на 12 Вольт:
Выставляем на Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.
Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:
И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.
Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс
Вспоминаем, что показывал наш блок питания?
Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).
Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится ” голь на выдумку хитра”
Где купить шунт
Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке:
Источник: https://www.ruselectronic.com/shunt-dlya-ampermetra/
7. Измерение тока, напряжения
7.1 Измерение тока
Для измерения тока используют амперметры (миллиамперметры, микроамперметры). У этих приборов на шкале имеются соответствующие обозначения: А (mA, A). Для измерения небольших токов используют гальванометры. В отличие от других приборов на шкале гальванометра нет обозначения, какой это прибор.
Для расширения пределов шкалы гальванометра или амперметра используют шунт. Это провод или лента, присоединяемые к прибору параллельно (рис. 11.7, а). Большая часть тока направляется через шунт, меньшая – через прибор. Для снижения чувствительности в nраз сопротивление шунта должно быть в (n – 1) раз меньше сопротивления прибора.
7.2 Измерение напряжения
Для измерения напряжения в электрических цепях служат вольтметры и милливольтметры. Для использования чувствительного прибора в качестве вольтметра используют добавочный резистор, присоединяемый к прибору последовательно (рис. 11.7 б). При этом большая часть измеряемого напряжения должна приходиться на этот резистор. Для расширения пределов прибора в nраз резистор должен иметь сопротивление в (n – 1) раз больше сопротивления прибора.
Применение шунтов и дополнительных сопротивлений дает возможность изготавливать серийно всего один чувствительный прибор (микроамперметр, гальванометр), делая его с помощью этих приспособлений амперметром или вольтметром с разными пределами шкал, т.е. можно получить многопредельные электроизмерительные приборы. Если в прибор вмонтированы выпрямитель, а также необходимые детали для омметра, то прибор называется комбинированным. Переносной комбинированный прибор называют тестером.
Порядок выполнения работы
-
Ознакомитесь с электроизмерительными приборами, полученными у преподавателя.
-
Начертите схемы включения в электрическую цепь данных приборов.
-
Внесите в таблицу 11.4 все обозначения, имеющиеся на шкалах приборов, и расшифруйте их (см. в краткой теории).
-
Заполните остальные графы таблицы 11.4.
-
Объясните, как работают приборы данных системы.
Таблица 11.4–Электроизмерительная аппаратура
Прибор | Система прибора | Уравнение шкалы | Обозначения на шкале и их расшифровка | Пределы измерения | Цена деления | Чувствительность | Погрешности измерения | Достоинства и недостатки прибора |
Контрольные вопросы
-
Что такое измерение? Что понимают под прямыми и косвенными измерениями?
-
Основные и производные единицы измерения?
-
Что такое электроизмерительный прибор? Примеры.
-
Что такое погрешность? Перечислите погрешности измерений и измерительных приборов.
-
Погрешности единичного измерения и эксперимента, состоящего из нескольких опытов.
-
Приведенная погрешность прибора. Как ее определить?
-
Как по шкале прибора определить максимальную погрешность прибора?
-
Чувствительность электроизмерительного прибора
-
Класс точности. Что означает и как обозначен на шкале?
-
Что такое шкала измерительного прибора? Какие по виду бывают шкалы измерительных приборов?
-
Что такое многопредельный прибор?
-
Что такое цена деления прибора?
-
Как определяется необходимая шкала у многопредельного прибора?
-
Чем объясняется, что деления шкалы некоторых систем приборов неодинаковы (неравномерные шкалы)? Как конструктивно избегают этот недостаток?
-
Как из гальванометра сделать амперметр и вольтметр?
-
Особенности, недостатки и достоинства приборов магнитоэлектрической (электромагнитной, электродинамической и т.д.) системы?
-
Приборы какой системы обладают наибольшей чувствительностью и точностью?
-
Действие приборов какой системы не зависит от величины тока?
-
Приборы какой системы применяются как контрольно-измерительные?
-
Почему тепловые приборы больше подходят к работе в качестве амперметров, чем вольтметров?
-
Приборы каких систем имеют линейную (квадратичную) шкалу?
-
Какие приборы используют для измерения тока (напряжения)? К каким системам могут принадлежать эти приборы?
-
В каком случае прибор называется комбинированным?
-
Измерительные приборы каких систем используются в цепях постоянного тока?
-
Приборы какой системы предназначены для измерения электрических величин только в цепях переменного тока? Какие особенности работы таких приборов?
-
Приборы какой системы позволяют измерять параметры в цепях и переменного и постоянного тока?
-
Выведите уравнение шкалы для приборов магнитоэлектрической (электромагнитной, электродинамической и т.д.) систем.
-
В каких цепях, и для каких целей применяют выпрямляющий вентиль (детектор)?
-
Какую систему и почему называют — «с плоской катушкой»? Чем отличаются обмотки катушек амперметров и вольтметров данной системы?
-
Принцип работы счетчика электроэнергии.
-
Гальванометры. Для измерения каких физических величин их используют?
-
Что такое шунт и добавочное сопротивления? Для каких целей и как они включаются в электрическую цепь?
-
Группы и категории приборов по техническим условиям.
-
Варианты маркировки приборов по типам.
Источник: https://studfile.net/preview/1669523/page:5/