Какое сопротивление потребителей называют последовательным

Закон ома параллельное и последовательное соединение проводников

Какое сопротивление потребителей называют последовательным

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой.

Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка.

Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Источник: https://vemiru.ru/info/zakon-oma-parallelnoe-i-posledovatelnoe-soedinenie/

Соединения проводников

Какое сопротивление потребителей называют последовательным

Последовательное соединение проводников — это такое соединение, при котором конец предыдущего проводника соединяется с началом только одного — следующего:

При последовательном соединении соротивление равно сумме сопротивлений всех проводников (R = R1 + R2), сила тока остаётся постоянной (I = const) по закону сохранения заряда,а напряжение, как и сопротивление, равно сумме напряжений на каждом участке (U = U1 + U2).

Параллельное соединение проводников

Параллельное соединение проводников — это такое соединение, при котором все проводники подключены между одной и той же парой точек (узлами):

Узел — точка разветвления цепи, в которой соединяются не менее трёх проводников.

Сила тока при параллельном соединении равна сумме сил тока на каждом проводнике (I = I1 + I2), напряжение остаётся постоянным (U = const). А вот с сопротивлением всё не так просто: сопротивление характеризует проводимость (G) проводника, проводимость — величина, обратно пропорциональная сопротивлению (G = 1/R), измеряется в сименсах (1 См = 1 Ом-1) и при параллельном соединении равна сумме проводимостей всех проводников (G = G1 + G2), следовательно 1/R = 1/R1 + 1/R2.

Смешанное соединение проводников

Смешанное соединение проводников — это такое соединение, при котором некоторые проводники соеденины последовательно, а некоторые — параллельно:

Чтобы найти силу тока, напряжение и сопротивление при смешанном соединении, нужно разбить его на простые участки, и найти силу тока, напряжение и сопротивление в них по вышеприведённым правилам, при этом схема упростится и найти в ней необходимые параметры не составит труда:

Чтобы разобраться в некоторых схемах, их проще заменить на эквивалентные:

Точки с равным потенциалом в электрических схемах

Если разность потенциалов между точками равна нулю, то ток по этому участку не идёт. Это наглядно показывает мостик Уитстона:

φc — φd = 0, если φc = φd, это выполняется, когда R1*R4 = R2*R3 (это мы получили по закону Ома для однородного участка цепи). Если это условие выполняется, то по резистору R5 ток не течёт и его можно исключить из схемы:

Источник: http://school56.pips.ru/soedinenie.html

Соединение резисторов — Основы электроники

Какое сопротивление потребителей называют последовательным

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике.
Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов.
Соединение резисторов может производиться последовательно, параллельно и смешанно (то есть и последовательно и параллельно), что показано на рисунке 1.

Рисунок 1. Соединение резисторов.

Последовательное соединение резисторов

Последовательное соединение резисторов это такое соединение, в котором конец одного резистора соединен с началом второго резистора, конец второго резистора с началом третьего и так далее (рисунок 2).

Рисунок 2. Последовательное соединение резисторов.

То есть при последовательном соединении резисторы подключатся друг за другом. При таком соединении через резисторы будет протекать один общий ток.

Следовательно, для последовательного соединения резисторов будет справедливо сказать, что между точками А и Б есть только один единственный путь протекания тока.

Таким образом, чем больше число последовательно соединенных резисторов, тем большее сопротивление они оказывают протеканию тока, то есть общее сопротивление Rобщ возрастает.

Рассчитывается общее сопротивление последовательно соединенных резисторов по следующей формуле:

Rобщ = R1 + R2 + R3++ Rn.

Параллельное соединение резисторов

Параллельное соединение резисторов это соединение, в котором начала всех резисторов соединены в одну общую точку (А), а концы в другую общую точку (Б) (см. рисунок 3).

Рисунок 3. Параллельное соединение резисторов.

При этом по каждому резистору течет свой ток. При параллельном соединении при протекании тока из точки А в точку Б, он имеет несколько путей.

Таким образом, увеличение числа параллельно соединенных резисторов ведет к увеличению путей протекания тока, то есть к уменьшению противодействия протеканию тока.

А это значит, чем большее количество резисторов соединить параллельно, тем меньше станет значение общего сопротивления такого участка цепи (сопротивления между точкой А и Б.)

Общее сопротивление параллельно соединенных резисторов определяется следующим отношением:

1/Rобщ= 1/R1+1/R2+1/R3++1/Rn

Следует отметить, что здесь действует правило «меньше — меньшего». Это означает, что общее сопротивление всегда будет меньше сопротивления любого параллельно включенного резистора.
Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле:

Rобщ= R1*R2/R1+R2

Если имеет место два параллельно соединенных резистора с одинаковыми сопротивлениями, то их общее сопротивление будет равно половине сопротивления одного из них.

Смешанное соединение резисторов

Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением.
На рисунке 4 показан простейший пример смешанного соединения резисторов.

Рисунок 4. Смешанное соединение резисторов.

На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно. Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:1.

Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.2. Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.3. После расчета эквивалентных сопротивлений резисторов перерисовывают схему.

Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.

4. Рассчитывают сопротивления полученной схемы.

Пример расчета участка цепи со смешанным соединением резисторов приведен на рисунке 5.

Рисунок 5. Расчет сопротивления участка цепи при смешанном соединении резисторов.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/soedinenie-rezistorov.html

Последовательное и параллельное соединение проводников | Главный механик

Если подсоединить электрическим проводом полюса источника тока, в проводнике начнется движение электронов по электрической цепи: плюс-минус источника по электрическому проводнику.

Если разорвать провод в нескольких местах и подсоединить в разрыв нагрузку, например, две или три электрические лампочки, то подобное соединение будет называться последовательным. Последовательное соединение – это когда нагрузка включена в один провод, без ответвлений, выход от одной нагрузки является началом для другой.

При такой комбинации напряжение источника будет равняться его сумме на нагрузке. Сила тока распределиться по источникам нагрузки одинаково.
Это отличительная черта данной комбинации.

Рис.1. последовательное соединение нагрузки

Практическое использование

Последовательно проводники соединяются если есть необходимость подключить несколько потребителей одним устройством включения. Классический пример включения гирлянды лампочек выключателем или кнопкой звонка и световой сигнализации. При замыкании контактов включением клавиши выключателя ток одновременно появляется на всех подключенных на этом проводе токоприемников.

Последовательное соединение является слишком прямолинейным и не может соответствовать всем необходимым потребностям. Включение освещения в жилых помещениях может иметь несколько ступеней, от подсветки до яркого верхнего света, раздельное включение в комнатах.

Включение различных нагрузок в производственных помещениях требует смешанного либо параллельной схемы соединения.

Схема последовательного соединения на Рис. 1

Параллельное подключение

Этот вид соединения характерен тем, что вся нагрузка соединяется параллельно друг другу, т.е. начало и окончания проводников всех нагрузок соединены в одну точку. Электроны, двигающиеся по проводнику, доходя до общего соединение разделяются по количеству ветвей.

Проводя параллель с водопроводными трубами, то можно сказать, что от одной общей трубы отходят несколько ответвлений.

Количество воды, попадающие в них зависит от силы потока в основной трубе и диаметра отводов, в нашем случае, количество электронов в проводники от мощности, подключенной к ним нагрузки. Схема подключения на Рис. 2

Практическое применение параллельного соединения

В параллель нагрузка соединяется при необходимости раздельного подключения нескольких потребителей в одном помещении. При бытовой сети 220 В – это могут быть: люстра, телевизор, холодильник, электроплита и многие другие бытовые приборы.
При таком подключение напряжение 220В не делится на количество потребителей , а подключается к источнику напряжения каждый отдельно со своим выключателем.

Рис.2. Параллельное подключение нагрузки

Для понимания проходящих действий с током и напряжением в проводниках при подсоединении нагрузки все процессы обобщены в единые правила, которые получили статус закона и называются Законом последовательного и параллельного соединения проводников.

Одним из основных законов участка цепи является закон Ома. Закон ома для параллельного и последовательного соединения проводников выражает зависимость тока от сопротивления на участке и его напряжения: I=U/R – чем больше сопротивление, тем меньше ток.

закон ома параллельное и последовательное подключения проводников.

При последовательном подключении общее значение тока распределяется по каждому участку: I = I1 = I2;

напряжение распределяться по количеству элементов нагрузки: U = U1 + U2 = I(R1 + R2) = IR; Сопротивление элементов нагрузки в цепи будет просто складываться в общую сумму: R = R1 + R2. Параллельное подключение проводников характеризует цепь, в которой напряжение равно на всех нагрузках: U = U1 = U2.

Количество тока равно сумме потребляемого тока в каждой нагрузки цепи с параллельного расположения I = I1 + I2.

Изучение последовательного и параллельного соединения проводников и понимание законов распределения токов дает необходимую основу для дальнейшего изучения электротехники и применения этих знаний на практике.

Для закрепления материала и лучшего понимания последующего рекомендуется посмотреть видеоурок последовательное и параллельное соединение проводников

Применение изученного материла на практике

Рис. 3 схемы последовательного и параллельного соединения проводников

Первое знакомство с практическим применением этих правил может состояться уже на лабораторной работе по изучению последовательного и параллельного соединения проводников.

Сбор схема состоит из нескольких этапов:
Первый этап – подготовка элементов к сборке схемы, (источник питания, соединительные провода, резьбовые зажимы клемм, источник нагрузки – лампочки).

Второй этап – изучения схемы. На этом этапе нужно чётко представить схему коммутации проводов.

Третий этап: сбор схемы, последовательность подключения для этого – сначала подсоединяются провода к клемме рубильника, затем от клеммы рубильника провод соединяется с минусом 1 нагрузки, затем подсоединяется клеммы плюс 2 нагрузки.
После окончания сборки нагрузки производится подключение источника питания: провод от рубильника подсоединяется к клемме + батареи и – к свободной клемме 2 нагрузки.

Правильность сборки проверяется преподавателем, после чего производится включение рубильника, при этом должны обе лампочки загореться равномерным свечением. Это говорит о том, что напряжение и ток на лампочках одинаковый, схема последовательного подключения собрана правильно.

Подключение источников нагрузки при параллельном подключении: для этого нагрузка соединяется двумя проводами плюс с плюсом минус с минусом, получается своеобразный квадрат. Далее все как в первом варианте. При этом если электрические параметры лампочек разные, то светиться они должны и разной яркостью.

При последовательном подключении:

1. Сила тока в них одинакова.

I = I1 = I2

2. Разность потенциалов каждого участка складывается в общую сумму

U = Uab + Ubc.

3. Сопротивление участка равно сумме сопротивлений каждого проводника.

R = R1 + R2.

4. Напряжение на участке пропорционально его сопротивлению.

U1/U2=R1/R2.

При параллельном подключении:

1. Напряжение на каждой ветви одинаково и равно напряжению на неразветвленной части цепи.

U = U1 = U2;

2. Сила тока каждого участка цепи равна суммарного значения тока каждой ветке участка

I = I1 + I2;

3. Общее сопротивление участка равно сумме величин, обратных сопротивлениям ветвей

1/R = 1/R1 + /1R2 + . . . + 1/Rn.

Из этого вытекает другая формула: R = (R1 х R2) / (R1 + R2).

4. Сила тока на участке пропорциональна его сопротивлению

I1/I2=R2/R1.

Как это будет выглядеть в лабораторной работе? Лабораторная работа :

Практическое подтверждение законов последовательного и параллельного подключения проводников.

Последовательная комбинация сопротивлений

Цель: экспериментально подтвердить теоретические выводы, закрепленные в законах.
Оборудование: батарея источника тока, переменный реостат, два резистора, рубильник включения, кабеля коммутации, которые подключены по схеме на рисунке.

Рис . 4

Результаты измерений и вычислений сводятся таблицы последовательного и параллельной комбинации подключения сопротивлений

Таблица вычислений для последовательной комбинации резисторов

Измерено Вычислено
U1, В U2, В U, В I1, A I2, A R1, Ом R2, Ом R, Ом U1/U2, В R1/R2, Ом
2 2,5 4,5 1 1 1 2 4,5 4,5/2,5 =1,8 4,5/2,5 =1,8

Параллельное включение

Рис. 5

Таблица вычислений для параллельного включения резисторов

Измерено Вычислено
U1, В U2, В U, В I1, A I2, A I, A R1, Ом R2, Ом R, Ом I1/I2, В R1/R2, Ом
2 2 2 1 0,8 1,8 2 2,5 1,11 1,25 1,25

Смешанное включение резисторов

Рис.6. Смешанное комбинации проводников.

Кроме параллельного и последовательного существует смешанное соединение проводников.

Такое сочетание,  понятно из названия –  является совокупностью любых комбинаций в состав которой могут входить единичные резисторы, а также их отдельные составные части составляя сложную схему, чем больше деталей, тем сложнее схема.

Чтобы рассчитать смешанное сочетание необходимо хорошо знать и применять формулы расчета сопротивления при последовательном и параллельном соединении проводников научастке цепи, ничего особенного в расчетах нет, нужно только правильно увидеть и расчленить существующие схемы на элементарные участки.

Рассмотрим пример расчета смешанной комбинации проводников (рис. 6)

Пусть U = 14 В, R1 = 2 Ом, R2 = 3 Ом, R3 = 3 Ом, R4 = 5 Ом, R5 = 2 Ом.

Необходимо найти величину тока цепи и каждого резистора. Показанная на рисунке цепь состоит из двух последовательно соединённых участков ab и bc. Сопротивление участка ab: Rab = (R1 х R2) / (R1 + R2) = (2 · 3) / (2 + 3) = 1,2 Ом. На участке b.c.

четко видно параллельное сочетание: два последовательно включённых резистора R3 и R4 подключены параллельно к резистору R5. Тогда: Rbc = (R3 + R4) х R5 / (R3 + R4) + R5 = (3 + 5) х 2 / (3 + 5) + 2 = 1,6 Ом. Сопротивление цепи: R = Rab + Rbc = 1,2 + 1,6 = 2,8 Ом. Теперь находим силу тока в цепи: I = U R = 14 х 2,8 = 5 A.

Для нахождения тока в каждом резисторе вычислим напряжения на обоих участках:

Uab = I х Rab = 5 · 1,2 = 6 B; Ubc = I х Rbc = 5 · 1,6 = 8 B.

Теперь сложив полученное данные получим напряжение цепи 14 В, именно столько должно быть на последовательном участке.
Оба резистора R1 и R2 находятся под напряжением Uab, поэтому:

I1 = Uab / R1 = 6/ 2 = 3 A;

I2 = Uab R2 = 6 / 3 = 2 A.

(В сумме имеем 5 А, как и должно быть при параллельном сочетании.) Сила тока в резисторах R3 и R4 одинакова, так как они расположены последовательно:

I3 = I4 = Ubc / (R3 + R4) = 8/ (3 + 5) = 1 A. Стало быть, через резистор R5 течёт ток

I5 = I − I3 = 5 − 1 = 4 A

В таком ключе на последовательное и параллельное соединение проводников происходит решение большинства задач.

Более четкое понимание материала и представление о физических процессах, происходящих в цепях постоянного тока при последовательном и параллельном соединении проводников дает презентация, выполненная в программе Power Point.
Выполнение слайдов в программе рекомендуется выполнять, разделив лист на 2 части. В левой части половины листа схемы электрических цепей, во второй – пояснительная часть с примерами расчёта.

Основным материалом для подготовки презентации должны стать учебники физики, в которых есть разделы для изучения последовательного и параллельного соединения проводников – это учебные пособия за 8 и 10 классы, в которых подробно расписана теория и примеры решения задач.

Источник: https://themechanic.ru/posledovatelnoe-i-parallelnoe-soedinenie-provodnikov/

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/posledovatelnoe-i-parallelnoe-soedinenie/

Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. 10 класс. Физика. — Объяснение нового материала

Сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Ома оказался справедливым не только для металлов, но и для растворов электролитов. Сформулированный закон имеет место для так называемого однородного участка цепи – участка, не содержащего источников тока.

Математическая запись закона Ома проста, как и его формулировка, но экспериментально подтвердить эту зависимость очень трудно. Сила тока, протекающая по участку цепи, мала. Поэтому используют достаточно чувствительные приборы. Г. Ом изготовил чувствительный прибор для измерения силы тока, а в качестве источника тока использовал термопару. Действие амперметра и вольтметра основано на применение закона Ома для участка цепи. Угол поворота стрелки прибора пропорционален силе тока.

Из математической записи закона Ома:

можно выразить напряжение :

и сопротивление проводника:

.

Таким образом, закон Ома связывает три параметра, характеризующих постоянный электрический ток, проходящий по проводнику, и позволяет находить любой из них, если известны два других.

Закон Ома имеет границы применимости и выполняется только в том случае, когда при прохождении тока температура заметно не меняется. На вольт–амперной характеристике лампы накаливания видно, что график сильно искривляется при напряжении выше 10В, значит, закон Ома выше этого напряжения применять нельзя.

Также нельзя говорить, что сопротивление проводника зависит от напряжения и силы тока в цепи. Сопротивление участка цепи зависит от свойств проводника: длины, площади поперечного сечения и материала, из которого состоит проводник.

где l-длина проводника, s-его площадь поперечного сечения.

ρ –удельное сопротивление проводника – это физическая величина, характеризующая зависимость сопротивления проводника от материала, из которого он изготовлен.

Удельное сопротивление показывает, каким сопротивлением обладает сделанный из этого вещества проводник длиной 1м и площадью поперечного сечения 1м2 .

Из формулы видно, что единицей измерения в системе СИ является Ом·м. Но так как площадь поперечного сечения проводника достаточно мала, используют единицы измерения

при вычислении площадь поперечного сечения проводника следует выражать в мм2.

В заключении хочется заметить, что Ом начал свои опыты, когда был учителем физики в гимназии. В своих экспериментах Ом брал куски проволоки одинакового диаметра, но разного материала и изменял их длину таким образом, чтобы в цепи сила тока имела одинаковое значение. Находящаяся рядом магнитная стрелка отклонялась при прохождении тока в цепи. Установив связь между напряжением и силой тока, Г. Ом вывел один из основных законов постоянного тока.

Последовательное соединение проводников

Электрические цепи, с которыми приходится иметь дело на практике, обычно состоят не из одного приёмника электрического тока, а из нескольких различных, которые могут быть соединены между собой по-разному. Зная сопротивление каждого и способ их соединения, можно рассчитать общее сопротивление цепи.

На рисунке а изображена цепь последовательного соединения двух электрических ламп, а на рисунке б — схема такого соединения. Если выключать одну лампу, то цепь разомкнётся и другая лампа погаснет.

Рис. Последовательное включение лампочек и источников питания

Мы уже знаем, что при последовательном соединении сила тока в любых частях цепи одна и та же, т. е.

I = I1 = I2

А чему равно сопротивление последовательно соединённых проводников?

Соединяя проводники последовательно, мы как бы увеличиваем длину проводника. Поэтому сопротивление цепи становится больше сопротивления одного проводника.

Последовательное соединение проводников

Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников (или отдельных участков цепи):

R = R1 + R2

Напряжение на концах отдельных участков цепи рассчитывается на основе закона Ома:

U1 = IR1, U2 = IR2.

Из приведённых равенств видно, что напряжение будет большим на проводнике с наибольшим сопротивлением, так как сила тока везде одинакова.

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

U = U1 + U2.

Это равенство вытекает из закона сохранения энергии. Электрическое напряжение на участке цепи измеряется работой электрического тока, совершающейся при прохождении по участку цепи электрического заряда в 1 Кл. Эта работа совершается за счёт энергии электрического поля, и энергия, израсходованная на всём участке цепи, равна сумме энергий, которые расходуются на отдельных проводниках, составляющих участок этой цепи.

Все приведённые закономерности справедливы для любого числа последовательно соединённых проводников.

Пример 1. Два проводника сопротивлением R1 = 2 Ом, R2 = 3 Ом соединены последовательно. Сила тока в цепи I = 1 А. Определить сопротивление цепи, напряжение на каждом проводнике и полное напряжение всего участка цепи.

Запишем условие задачи и решим её.

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

Расчет параметров электрической цепи

при параллельном соединении сопротивлений:

Источник: https://www.kursoteka.ru/course/3296/lesson/11139/unit/27691

Электротехника в сварке

Электрический ток в металлических проводниках представляет собой направленное движение свободных электронов вдоль проводника, включенного в электрическую цепь. Движение электронов в электрической цепи происходит благодаря разности потенциалов на зажимах источника (т.е. его выходного напряжения).

Электрический ток может существовать только в замкнутой электрической цепи, которая должна состоять из:

— источника тока (аккумулятор, генератор, ); — потребителя (лампа накаливания, нагревательные приборы, сварочная дуга и т.д.);

— проводников, соединяющих источник питания с потребителем электрической энергии.

Электрический ток обычно обозначается латинской прописной или строчной буквой I (i).

Единица измерения силы электрического тока – ампер (обозначается А).

Сила тока измеряется при помощи амперметра, который включается в разрыв электрической цепи.

В отличие от электрического тока, напряжение на зажимах источника питания или элементах цепи существует независимо от того, замкнута электрическая цепь или нет.

Напряжение обычно обозначается латинской прописной или строчной буквой U (u).

Единица измерения величины напряжения – вольт (обозначается В).

Величина напряжения измеряется при помощи вольтметра, который подключается параллельно к участку электрической цепи, на котором производится измерение.

Провода и токоприемники, включенные в электрическую цепь, оказывают сопротивление прохождению тока.

Электрическое сопротивление обычно обозначается латинской прописной буквой R.

Единица измерения сопротивления электрической цепи – ом (обозначается Ом).

Величина электрического сопротивления измеряется омметром, который подключается к концам измеряемого участка цепи, при этом по измеряемому участку цепи не должен протекать ток.

Электрическая цепь может быть составлена так, что начало одного сопротивления соединяется с концом другого. Такое соединение называется последовательным.

В электрической цепи с последовательным подключением сопротивлений (потребителей), существуют следующие зависимости.

Общее сопротивление такой цепи равно сумме всех этих отдельных сопротивлений:

R = R1 + R2 + R3

Так как ток проходит последовательно одно за другим все сопротивления, его величина на всех участках цепи одинакова.

Сумма падений напряжений на всех участках электрической цепи равна напряжению на клеммах источника:

Uист = Uab + Ucd

Величина падения напряжения на отдельном участке электрической цепи равна произведению величины тока в цепи на электрическое сопротивление этого участка.

Если в электрической цепи с одной стороны соединены все начала сопротивлений, а с другой – все их концы, то такое соединение называется параллельным.

Общее сопротивление такой цепи меньше сопротивления любой из составляющих ее ветвей.

Для цепи с двумя параллельно подключенными сопротивлениями общее сопротивление вычисляется по формуле:

R=R1 * R2 / (R1 + R2)

Каждое дополнительное сопротивление при параллельном подключении снижает общее сопротивление такой цепи. В балластном реостате используется схема параллельного подключения сопротивлений. Поэтому при включении каждого дополнительного «ножа» общее сопротивление балластного реостата снижается, а ток в цепи возрастает.

На участке цепи с параллельным подключением ток разветвляется, проходя одновременно по всем сопротивлениям:

i = i1 + i2 + i3

Все сопротивления параллельной цепи находятся под одинаковым напряжением:

Uab = U1 = U2 = U3

Постоянный ток

Электрический ток может быть постоянным или переменным.

Постоянный электрический ток протекает по замкнутой цепи всегда только в одном направлении.

Условно принято:

— внутри источника постоянного тока ток направлен от зажима со знаком минус (–) к зажиму со знаком (+);
— во внешней цепи ток направлен от плюса к минусу.

Постоянный ток получают при помощи аккумуляторов, генераторов, выпрямителей.

В соответствии с законом Ома для цепи постоянного тока: сила тока I прямо пропорциональна напряжению U и обратно пропорциональна сопротивлению R:

I = U / R

Таким образом:

— если напряжение в цепи увеличится (уменьшится) в несколько раз, а сопротивление останется неизменным, то во столько же раз увеличится (уменьшится) сила тока;
— если сопротивление в цепи увеличится (уменьшится) в несколько раз, то при постоянном напряжении во столько же раз уменьшится (увеличится) сила тока.

Переменный ток

Переменный ток меняет направление протекания по замкнутой цепи с определенной периодичностью. Переменный электрический ток получают при помощи генераторов переменного тока. Основными параметрами, характеризующими переменный ток являются:

— период — время, за которое происходит полный цикл изменений переменного тока по величине и направлению; измеряется в миллисекундах; — частота — число периодов, совершаемых переменным током в одну секунду; измеряется в герцах (Гц); — амплитуда тока — максимальное значение тока в течение периода, независимо от направления тока; измеряется в амперах (А)

— эффективное значение тока — величина переменного тока, при котором на определенном активном сопротивлении выделяется столько же тепла, как и при такой же величине постоянного тока; измеряется в амперах (А)

В Украине и странах СНГ все электростанции вырабатывают переменный ток стандартной частоты — 50 Гц. Такой переменный ток называют током промышленной частоты.

Трехфазный переменный ток

В промышленности, как правило, используется трехфазный переменный ток. Такой ток получают при помощи трехфазных генераторов переменного тока. Упрощенное устройство трехфазного генератора показано на рисунке ниже.

Фазы трехфазного тока принято обозначать тремя первыми буквами латинского алфавита: A, B и C.

Схематично рисунок выше можно представить так:

В трехфазных цепях переменного тока провода, отмеченные цифрами 1, 2 и 3, объединяют в один провод, называемый нулевым или нейтральным.

В полном виде схема питающей сети трехфазного тока и ее параметры представлены ниже.

Как это видно из рисунка, показанного выше, ротор во время вращения наводит электродвижущую силу (ЭДС) сначала в катушке фазы А, затем в катушке фазы В, а затем в катушке фазы С. Таким образом кривые напряжения на выходных клеммах этих катушек как бы сдвинуты между собой на угол 120º.

Электрическое сопротивление проводников

Сопротивление проводника зависит:

— от длины проводника – с увеличением длины проводника его электрическое сопротивление возрастает; — от площади поперечного сечения проводника – с уменьшением площади поперечного сечения сопротивление увеличивается; — от температуры проводника – с увеличением температуры сопротивление увеличивается;

— от коэффициента удельного сопротивления материала проводника.

Чем больше сопротивление проводника прохождению электрического тока, тем больше энергии теряют свободные электроны, и тем сильнее нагревается проводник (которым обычно является электрический провод).

Для каждой площади сечения провода существует допустимая величина тока. Если сила тока окажется больше этой величины, то провода могут нагреться до высокой температуры, что, в свою очередь, может вызвать воспламенение изоляционного покрытия.

Максимальные допустимые значения силы тока для различных сечений медных изолированных сварочных проводов приведены ниже в таблице:

Поперечное сечение провода, мм2 16 25 35 50 70
Предельно допустимый ток, А 90 125 150 190 240

Запомните! Величина тока в амперах (I), приходящаяся на один квадратный миллиметр площади поперечного сечения провода (S), называется плотностью тока (j):

j (А/мм2) = I (А) / S (мм2)

Энергия и мощность электрического тока

Электрический ток, протекая по проводникам, совершает работу, которая оценивается путем вычисления энергии электрического тока (Q), которая была при этом потрачена. Она равна произведению силы тока (I) на напряжение (U) и на время (t), в течение которого проходит ток:

Q = I * U * t

Способность тока совершать работу оценивается мощностью, которая является энергией, получаемой приемником или отдаваемой источником тока в единицу времени (в 1 секунду) и вычисляется как произведение силы тока (I) на напряжение (U):

P = I * U

Единица измерения мощности ватт (Вт) — работа, совершаемая в электрической цепи при силе тока 1 А и напряжении 1 В в течение 1 с.

В технике мощность измеряется более крупными единицами: киловаттами (кВт) и мегаваттами (МВт): 1 кВт = 1 000 Вт; 1 МВт = 1 000 000 Вт.

Электрическая проводимость веществ

По способности проводить ток твердые вещества делятся на:

— проводники; — изоляторы;

— полупроводники.

Газы, в том числе и воздух при обычных условиях не проводят электрический ток. Газы становятся проводниками электрического тока в том случае, если они ионизированы. Одним из видов прохождения электрического тока через газ является электрический разряд, т.е. электрическая дуга, которая используется при электродуговой сварке.

Источник: https://weldering.com/elektrotehnika-svarke

§ 49. Параллельное соединение проводников

Другой способ соединения проводников, применяемый в практике, называется параллельным соединением. На рисунке 79, а изображено параллельное соединение двух электрических ламп, а на рисунке 79, б — схема этого соединения. Обратите внимание на важные особенности такого соединения.

Рис. 79. Параллельное соединение лампочек

При параллельном соединении все входящие в него проводники одним своим концом присоединяются к одной точке цепи А, а вторым концом к другой точке В (см. рис. 79, б). Поэтому напряжение на участке цепи ЛВ и на концах всех параллельно соединённых проводников одно и то же:

U = U1 = U2.

Очень удобно поэтому применять параллельное соединение потребителей в быту и в технике, так как все потребители в этом случае изготавливаются в расчёте на одинаковое напряжение. Кроме того, при выключении одного потребителя другие продолжают действовать, ток в них не прерывается, так как цепь остаётся замкнутой.

При параллельном соединении ток в точке В (см. рис. 79, б) разветвляется на два тока I1 и I2» сходящиеся вновь в точке А, подобно тому как изображённый на рисунке 80 поток воды в реке распределяется по двум каналам, сходящимся затем вновь.

Рис. 80. Схожесть потока в реке с током в цепи

Поэтому сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединённых проводниках:

I = I1 + I2.

При параллельном соединении как бы увеличивается площадь поперечного сечения проводника. Поэтому общее сопротивление цепи уменьшается и становится меньше сопротивления каждого из проводников, входящих в цепь. Так, например, сопротивление цепи R, состоящей из двух одинаковых ламп, сопротивлением R1 каждая, в два раза меньше сопротивления одной лампы: R = R1 / 2 .

Общее сопротивление цепи при параллельном соединении проводников определяется по формуле

1 / R = 1 / R1 + 1 / R2

В одну и ту же электрическую цепь параллельно могут быть включены самые различные потребители электрической энергии. На рисунке 81 показано параллельное включение электрических ламп, нагревательных приборов и электродвигателя. Такая схема соединения потребителей тока используется, например, в жилых помещениях; в точках а и б провода осветительной сети вводятся в квартиру.

Рис. 81. Параллельное включение в цепь различных потребителей

Потребители, параллельно включаемые в данную сеть, должны быть рассчитаны на одно и то же напряжение, равное напряжению в сети.

Напряжение в сети, используемое у нас для освещения и в бытовых приборах, равно 220 В. Поэтому электрические лампы и различные бытовые электроприборы изготовляют на 220 В.

В практике часто применяется смешанное (последовательное и параллельное) соединение проводников.

Параллельное соединение двух ламп

Зная сопротивления проводников, соединённых параллельно, и напряжение на этом участке цепи, можно определить многие другие электрические величины этой цепи. Для этого нужно использовать формулы: U = U1 = U2 и I = I1 + I2, а также закон Ома для участка цепи.

Пример. В осветительную сеть комнаты включены две электрические лампы, сопротивления которых 200 и 300 Ом. Напряжение в сети 120В. Определить силу тока в каждой лампе, силу тока в подводящих проводах (т. е. силу тока до разветвления), общее сопротивление участка, состоящего из двух ламп. Запишем условие задачи и решим её.

Решив задачу, мы убедились, что общее сопротивление участка цепи R = 120 Ом, состоящего из двух параллельно соединённых проводников сопротивлением R1 = 200 Ом и R2 = 300 Ом, меньше сопротивления каждого проводника.

Вопросы

  1. Какое соединение проводников называют параллельным? Изобразите его на схеме.
  2. Какая из электрических величин одинакова для всех проводников, соединённых параллельно?
  3. Как выражается сила тока в цепи до её разветвления через силы токов в отдельных ветвях разветвления?
  4. Как изменяется общее сопротивление разветвления после увеличения числа проводников в разветвлении?
  5. Какое соединение проводников применяется в жилых помещениях? Какие напряжения используются для бытовых нужд?

Упражнение 33

  1. Два проводника сопротивлением 10 и 15 Ом соединены параллельно и подключены к напряжению 12 В. Определите силу тока в каждом проводнике и силу тока до разветвления.
  2. Почему бытовые приборы в помещении необходимо соединять параллельно?
  3. Три потребителя сопротивлением 20, 40, 24 Ом соединены параллельно. Напряжение на концах этого участка цепи 24 В. Определите силу тока в каждом потребителе, общую силу тока в участке цепи и сопротивление участка цепи.
  4. Два проводника имеют сопротивления 5 Ом и 500 Ом. Почему при последовательном соединении этих проводников их общее сопротивление будет больше 500 Ом, а при параллельном соединении меньше 5 0м?
  5. На рисунке 82 изображена схема смешанного соединения проводников, сопротивления которых: R1 = 4 Ом, R2 = 6 Ом, R3 = 12 Ом, R4 = 2 Ом. Амперметр показывает силу тока 1 А. Определите напряжение между точками В и С и силу тока в каждом проводнике.

Рис.

82

Источник: https://ansevik.ru/fizika_8/49.html

Последовательное и параллельное соединение резисторов

Последовательное соединение – это соединение двух или более резисторов в форме цепи, в которой каждый отдельный резистор соединяется с другим отдельным резистором только в одной точке.

Общее сопротивление Rобщ

При таком соединении, через все резисторы проходит один и тот же электрический ток. Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него. Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается, и оно равно сумме всех сопротивлений.

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности. Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Электрический ток при параллельном соединении

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Какое соединение называется последовательным параллельным и смешанным?

Всем доброго времени суток. В прошлой статье я рассмотрел закон Ома, применительно к электрическим цепям, содержащие источники энергии.

Но в основе анализа и проектирования электронных схем вместе с законом Ома лежат также законы баланса токов, называемым первым законом Кирхгофа, и баланса напряжения на участках цепи, называемым вторым законом Кирхгофа, которые рассмотрим в данной статье.

Но для начала выясним, как соединяются между собой приёмники энергии и какие при этом взаимоотношения между токами, напряжениями и сопротивлениями.

Последовательное соединение приемников энергии

Приемники электрической энергии можно соединить между собой тремя различными способами: последовательно, параллельно или смешано (последовательно — параллельно). Вначале рассмотрим последовательный способ соединения, при котором конец одного приемника соединяют с началом второго приемника, а конец второго приемника – с началом третьего и так далее. На рисунке ниже показано последовательное соединение приемников энергии с их подключением к источнику энергии

Пример последовательного подключения приемников энергии.

В данном случае цепь состоит из трёх последовательных приемников энергии с сопротивлением R1, R2, R3 подсоединенных к источнику энергии с напряжением U. Через цепь протекает электрический ток силой I, то есть, напряжение на каждом сопротивлении будет равняться произведению силы тока и сопротивления

Таким образом, падение напряжения на последовательно соединённых сопротивлениях пропорциональны величинам этих сопротивлений.

Из вышесказанного вытекает правило эквивалентного последовательного сопротивления, которое гласит, что последовательно соединённые сопротивления можно представить эквивалентным последовательным сопротивлением величина, которого равна сумме последовательно соединённых сопротивлений. Это зависимость представлена следующими соотношениями

где R – эквивалентное последовательное сопротивление.

Применение последовательного соединения

Основным назначением последовательного соединения приемников энергии является обеспечение требуемого напряжения меньше, чем напряжение источника энергии. Одними из таких применений является делитель напряжения и потенциометр

Делитель напряжения (слева) и потенциометр (справа).

В качестве делителей напряжения используют последовательно соединённые резисторы, в данном случае R1 и R2, которые делят напряжение источника энергии на две части U1 и U2. Напряжения U1 и U2 можно использовать для работы разных приемников энергии.

Довольно часто используют регулируемый делитель напряжения, в качестве которого применяют переменный резистор R. Суммарное сопротивление, которого делится на две части с помощью подвижного контакта, и таким образом можно плавно изменять напряжение U2 на приемнике энергии.

Параллельное соединение приемников энергии

Ещё одним способом соединения приемников электрической энергии является параллельное соединение, которое характеризуется тем, что к одним и тем же узлам электрической цепи присоединены несколько преемников энергии. Пример такого соединения показан на рисунке ниже

Пример параллельного соединения приемников энергии.

Электрическая цепь на рисунке состоит из трёх параллельных ветвей с сопротивлениями нагрузки R1, R2 и R3. Цепь подключена к источнику энергии с напряжением U, через цепь протекает электрический ток с силой I. Таким образом, через каждую ветвь протекает ток равный отношению напряжения к сопротивлению каждой ветви

Так как все ветви цепи находятся под одним напряжением U, то токи приемников энергии обратно пропорциональны сопротивлениям этих приемников, а следовательно параллельно соединённые приемники энергии можно заметь одним приемником энергии с соответствующим эквивалентным сопротивлением, согласно следующих выражений

Таким образом, при параллельном соединении эквивалентное сопротивление всегда меньше самого малого из параллельно включенных сопротивлений.

Смешанное соединение приемников энергии

Наиболее широко распространено смешанное соединение приемников электрической энергии. Данной соединение представляет собой сочетание последовательно и параллельно соединенных элементов.

Общей формулы для расчёта данного вида соединений не существует, поэтому в каждом отдельном случае необходимо выделять участки цепи, где присутствует только лишь один вид соединения приемников – последовательное или параллельное.

Затем по формулам эквивалентных сопротивлений постепенно упрощать данные участи и в конечном итоге приводить их к простейшему виду с одним сопротивлением, при этом токи и напряжения вычислять по закону Ома. На рисунке ниже представлен пример смешанного соединения приемников энергии

Пример смешанного соединения приемников энергии.

В качестве примера рассчитаем токи и напряжения на всех участках цепи. Для начала определим эквивалентное сопротивление цепи. Выделим два участка с параллельным соединением приемников энергии. Это R1||R2 и R3||R4||R5. Тогда их эквивалентное сопротивление будет иметь вид

В результате получили цепь из двух последовательных приемников энергии R12R345 эквивалентное сопротивление и ток, протекающий через них, составит

Тогда падение напряжения по участкам составит

Тогда токи, протекающие через каждый приемник энергии, составят

Первый закон Кирхгофа

Как я уже упоминал, законы Кирхгофа вместе с законом Ома являются основными при анализе и расчётах электрических цепей. Закон Ома был подробно рассмотрен в двух предыдущих статьях, теперь настала очередь для законов Кирхгофа. Их всего два, первый описывает соотношения токов в электрических цепях, а второй – соотношение ЭДС и напряжениями в контуре. Начнём с первого.

  Соединение выключателя с подсветкой

Первый закон Кирхгофа гласит, что алгебраическая сумма токов в узле равна нулю. Описывается это следующим выражением

где ∑ — обозначает алгебраическую сумму.

Слово «алгебраическая» означает, что токи необходимо брать с учётом знака, то есть направления втекания. Таким образом, всем токам, которые втекают в узел, присваивается положительный знак, а которые вытекают из узла – соответственно отрицательный. Рисунок ниже иллюстрирует первый закон Кирхгофа

Изображение первого закона Кирхгофа.

На рисунке изображен узел, в который со стороны сопротивления R1 втекает ток, а со стороны сопротивлений R2, R3, R4 соответственно вытекает ток, тогда уравнение токов для данного участка цепи будет иметь вид

Первый закон Кирхгофа применяется не только к узлам, но и к любому контуру или части электрической цепи. Например, когда я говорил о параллельном соединении приемников энергии, где сумма токов через R1, R2 и R3 равна втекающему току I.

Второй закон Кирхгофа

Как говорилось выше, второй закон Кирхгофа определяет соотношение между ЭДС и напряжениями в замкнутом контуре и звучит следующим образом: алгебраическая сумма ЭДС в любом контуре цепи равна алгебраической сумме падений напряжений на элементах этого контура. Второй закон Кирхгофа определяется следующим выражением

В качестве примера рассмотрим ниже следующую схему, содержащую некоторый контур

Схема, иллюстрирующая второй закон Кирхгофа.

Для начала необходимо определится с направлением обхода контура. В принципе можно выбрать как по ходу часовой стрелки, так и против хода часовой стрелки. Я выберу первый вариант, то есть элементы будут считаться в следующем порядке E1R1R2R3E2, таким образом, уравнение по второму закону Кирхгофа будет иметь следующий вид

Второй закон Кирхгофа применяется не только к цепям постоянного тока, но и к цепям переменного тока и к нелинейным цепям.
В следующей статье я рассмотрю основные способы расчёта сложных цепей с использованием закона Ома и законов Кирхгофа.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Скажи спасибо автору нажми на кнопку социальной сети

Источник: https://1000eletric.com/kakoe-soedinenie-nazyvaetsya-posledovatelnym-parallelnym-i-smeshannym/

Последовательное и параллельное соединение проводников

Цели урока:

Образовательные:

  • познакомить учащихся с последовательным и параллельным соединениями проводников;
  • познакомить учащихся с закономерностями, существующими в цепи с последовательным и параллельным соединениями проводников;

Развивающие:

  • развивать способности учащихся анализировать, сравнивать, делать выводы.
  • развивать умение решать задачи.

Воспитательные:

  • воспитывать самореализацию у учащихся, взаимопонимание и уверенность в знаниях

Наглядные пособия и оборудование:

  • презентация (приложение);
  • мультимедийный проектор;
  • цепи с последовательно и параллельно соединёнными лампочками.

План урока:

  • Вводная часть. – Сообщение учителя.
  • Актуализация знаний. – Фронтальный опрос.
  • Последовательное и параллельное соединение проводников. – Демонстрация, беседа, презентация,  объяснение нового материала, работа с таблицей.
  • Физкультминутка.
  • Закрепление изученного материала. – Работа с презентацией. Решение задач.
  • Подведение итогов, домашнее задание. – Сообщение учителя.

Актуализация знаний

Вопросы для учащихся находятся на слайдах презентации:

  • Что называется сопротивлением?
  • В чём причина сопротивления?
  • От каких параметров зависит сопротивление проводника?
  • Сформулируйте закон Ома для участка цепи.
  • Силу тока в цепи увеличили в два раза. Как изменилось сопротивление проводника?
  • Напряжение в цепи уменьшили в два раза. Как изменилось сопротивление проводника?
  • Длину проводника уменьшили в три раза. Как изменилось сопротивление проводника?
  • Проволоку согнули пополам. Как изменилось сопротивление проволоки?

Последовательное и параллельное соединения проводников:

На слайде появляется таблица, учащиеся переносят её в тетрадь.

Последовательное соединение Параллельное соединение
Схема
Сила тока
Напряжение
Сопротивление

Обсуждается последовательное соединение проводников.

Последовательное соединение – соединение, при котором конец первого проводника соединяют с началом второго, конец второго – с началом третьего и т.д.

Учитель демонстрирует опыты с цепью с последовательно соединёнными лампочками.

Учащиеся делают выводы:

  • сила тока в цепи при последовательном соединении проводников в любых частях цепи одинакова: I = I1 = I2
  • общее напряжение в цепи равно сумме напряжений на каждом участке: U = U1 + U2

Обсуждается вопрос: Чему рано общее сопротивление цепи при последовательном соединении проводников?

С помощью закономерностей и закона Ома для участка цепи выводится формула для общего сопротивления проводников: R = R1 + R2.

Обсуждается вопрос: Как найти сопротивление n последовательно соединённых одинаковых проводников? R = nR1

Обсуждается параллельное соединение проводников.

Параллельное соединение – соединение, при котором начала всех проводников присоединяются к одной точке цепи, а их концы к другой.

Учитель демонстрирует опыты с цепью с параллельно соединёнными лампочками.

Учащиеся делают выводы:

  • cила тока в неразветвлённой цепи равна сумме токов в разветвлениях: I = I1 + I2
  • yапряжение на каждом из параллельно соединённых проводников одинаково: U = U1 = U2

Обсуждается вопрос: Чему рано общее сопротивление цепи при параллельном соединении проводников?

С помощью закономерностей и закона Ома для участка цепи выводится формула для общего сопротивления проводников:

Обсуждается вопрос: Как найти сопротивление n параллельно соединённых одинаковых проводников?

Преимущества и недостатки соединений.

Пример последовательного соединения: гирлянда.

Пример параллельного соединения: потребители в жилых помещениях.

Преимущества и недостатки соединений:

Последовательное – защита цепей от перегрузок: при увеличении силы тока выходит из строя предохранитель, и цепь автоматически отключается. При выходе из строя одного из элементов соединения отключаются и остальные.

Параллельное– при выходе из строя одного из элементов соединения, остальные действуют. При включении элемента с меньшим возможным напряжением в цепь элемент перегорит.

Учащиеся заполняют таблицу в тетради с помощью учебника и самостоятельно проверяют по слайду презентации:

Закрепление изученного материала

Решение задач на последовательное и параллельное соединения с использованием слайдов презентации .№ 1382,1386 из «Сборника задач по физике 7-9» В.И. Лукашик и др.

Домашнее задание: § 48,49, упр. 22 (1), 23 (1).

Рефлексия

Проведите стрелочки к тем утверждениям, которые соответствуют вашему состоянию в конце урока.

Источник: https://rosuchebnik.ru/material/posledovatelnoe-i-parallelnoe-soedinenie-provodnikov-7825/

Формула сопротивления при параллельном и последовательном соединении

Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением.

В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным.

Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.

Последовательное соединение проводников

В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.

Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.

Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:

  • Сила тока на всех участках цепи будет одинаковой.
  • Общее напряжение цепи составляет сумму напряжений на каждом участке.
  • Общее сопротивление включает в себя сопротивления каждого отдельного проводника.

Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.

Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R – общее сопротивление, R1 – сопротивление одного элемента, а n – количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.

Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является елочная гирлянда, когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.

ЭТО ИНТЕРЕСНО:  Сколько нужно заряжать аккумуляторные батарейки 700
Понравилась статья? Поделиться с друзьями:
Электро Дело
Как найти напряжение через сопротивление

Закрыть
Для любых предложений по сайту: [email protected]