Какой прибор используется для измерения электрической мощности — Все об электричестве
Ваттметры можно разделить на три категории — низкочастотные (и постоянного тока), радиочастотные и оптические. Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа фукционального преобразования измерительной информации и ее вывода оператору ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.
Ваттметры низкой частоты и постоянного тока
НЧ-ваттметры используются преимущественно в сетях электропитания промышленной частоты для измерения потребляемой мощности, могут быть однофазные и трехфазные. Отдельную подгруппу составляют варметры — измерители реактивной мощности . Цифровые приборы обычно совмещают возможность измерения активной и реактивной мощности.
- Аналоговые НЧ-ваттметры электродинамческой или ферродинамической системы имеют в измерительном механизме две катушки, одна из которых подключается последовательно нагрузке, другая параллельно. Взаимодействие магнитных полей катушек создает вращающий момент, отклоняющий стрелку прибора, пропорциональный произведению силы тока, напряжения и косинуса или синуса разности фаз (для измерения соответственно активной или реактивной мощности).
- ПРИМЕРЫ: Ц301, Д8002, Д5071
- Цифровые НЧ-ваттметры имеют в качестве входных цепей два датчика — по току и по напряжению, подключаемые соответственно последовательно и параллельно нагрузке, датчики могут быть на основе измерительных трансформаторов , термисторов , термопар и другие. Информация с датчиков через АЦП передается на вычислительное устройство, в котором рассчитываются активная и реактивная мощность, далее итоговая информация выводится на цифровое табло и, при необходимости, на внешние устройства (для хранения, печати данных и т. д.).
- ПРИМЕРЫ: MI 2010А, СР3010, ЩВ02
Ваттметры поглощаемой мощности радиодиапазона
Ваттметры поглощаемой мощности образуют весьма большую и широко используемую подгруппу ваттметров радиодиапазона. Видовое деление этой подгруппы связано в основном с применением различных типов первичных преобразователей (приемных головок).
В серийно выпускаемых ваттметрах используются преобразователи на базе термистора , термопары и пикового детектора ; значительно реже, в экспериментальных работах, применяются датчики, основанные на других принципах — пондемоторном, гальваномагнитном и т.д.
При работе с ваттметрами поглощаемой мощности следует помнить, что из-за неидеального согласования входного сопротивления приемных головок с волновым сопротивлением линии, часть энергии отражается и реально ваттметр измеряет не падающую мощность, а поглощаемую, которая отличается от падающей на величину, равную K P ×P пад, где K P — коэффициент отражения по мощности.
- Термисторные (болометрические) ваттметры состоят из приемного преобразователя на базе термистора (или болометра) и измерительного моста с источником низкочастотного переменного тока для подогрева термистора. Принцип действия термисторного преобразователя состоит в зависимости сопротивления термистора от температуры его нагрева, которая, в свою очередь зависит от рассеиваемой мощности сигнала, подаваемого на него. Измерение осуществляется методом сравнения мощности измеряемого сигнала, рассеиваемой в термисторе и разогревающей его, с мощностью тока низкой частоты, вызывающей такой же нагрев термистора. В процессе измерения полная мощность, рассеиваемая на термисторе (при подаче на него одновременно измеряемого сигнала и тока подогрева) и, соответственно, сопротивление термистора поддерживается одинаковым с помощью измерительного моста, котоорый уравновешивается изменением тока подогрева. В первых моделях термисторных ваттметров уравновешивание осуществлялось вручную, в современных ваттметрах уравновешивание автоматическое, показания выводятся в цифровом виде. К недостаткам термисторных ваттметров относится их малый динамический диапазон — максимальная мощность рассеивания — несколько милливатт, это ограничение преодолевается использованием аттенюаторов , делящих мощность, но вносящих при этом дополнительную погрешность.
- Калориметрические ваттметры отличаются от термисторных тем, что для поглощения измеряемой мощности используется отдельная нагрузка, от которой тепло передается на термисторный преобразователь через рабочую среду — дистиллированную воду или специальную жидкость. Жидкая среда циркулирует со строго заданной скоростью потока, омывая по очереди входную нагрузку, преобразователь и охлаждающий теплообменник.
- ПРИМЕРЫ: М3-13, МК3-68, МК3-70
- Термоэлектрические ваттметры в качестве первичного преобразователя используют термопару (или блок термопар) прямого или косвенного нагрева. При измерении горячий спай термопары нагревается под воздействием подводимой мощности измеряемого сигнала, при этом вырабатывается термо-э.д.с. Измерительная информация в виде сигнала постоянного тока поступает на электронный блок (аналоговый или цифровой), где обрабатывается и поступает на показывающее устройство.
- ПРИМЕРЫ: М3-51, М3-56, М3-93
- Ваттметры с пиковым детектором просты в устройстве, в отличие от других видов ваттметров способны измерять не только мощность непрерывного сигнала, но и пиковую мощность радиоимпульсов, однако, из-за низкой точности измерения в настоящее время применяются редко. По принципу действия такой ваттметр представляет собой выпрямительный вольтметр переменного тока, имеющий на входе нагрузку с сопротивлением, равным волновому сопротивлению кабеля, и с отчетным устройством, проградуированным в значениях мощности.
Ваттметры проходящей мощности радиодиапазона
В ваттметрах проходящей мощности в качестве первичного преобразователя, обычно используется направленный ответвитель — устройство, позволяющее ответвлять от основного тракта передачи очень небольшую долю энергии.
Отведенная часть энергии подается на вторичный преобразователь, например, детекторную или термисторную головку, откуда сигнал измерительной информации подается на функциональный преобразователь и, далее, на показывающее устройство.
На относительно низких частотах (в ДВ и СВ диапазонах), использование направленных ответвителей затруднительно, в этом случае в качестве первичных преобразователей можно использовать датчики силы тока и напряжения в линии, измерительная информация с которых далее обрабатывается в функциональном преобразователе (перемножение значений с учетом разности фаз).
Датчиками могут служить, например, трансформатор напряжения и трансформатор тока . Такой способ измерения используется обычно в специализированных приборах для контроля мощности, выдаваемой в антенну радиопередатчиком. На сверхвысоких частотах, в волноводных трактах, для измерения проходящей мощности может использоваться пондемоторный метод или датчики, встраиваемые в стенку волновода — термисторные, термоэлектрические, гальваномагнитные.
- ПРИМЕРЫ: М2-23, М2-32, NAS
Наименования и обозначения
- Видовые наименования
- Измеритель мощности — другое название ваттметров радио- и оптического диапазонов
- Киловаттметр — прибор для измерения мощности больших значений (единицы сотни киловатт
- Милливаттметр — прибор для измерения мощности малых значений (меньше 1 ватта)
- Варметр — прибор для измерения реактивной мощности
- Ваттварметр— прибор, позволяющий измерять активную и реактивную мощность
- Для обозначения типов электроизмерительных (низкочастотных) ваттметров традиционно используется отраслевая система обозначений, в которой приборы маркируются в зависимости от системы (основного принципа действия)
- Дхх — приборы электродинамической системы
- Цхх — приборы выпрямительной системы
- Фхх, Щхх — приборы электронной системы
- Нхх — самопишущие приборы
- Ваттметры радио- и оптического диапазонов маркируются по ГОСТ 15094
- М1-хх — эталонные ваттметры высокой точности
- М2-хх, РМ2-хх — ваттметры проходящей мощности (радиодиапазона)
- М3-хх, РМ3-хх — ваттметры поглощаемой мощности (радиодиапазона)
- М5-хх — преобразователи приемные (головки) ваттметров
- ОМ3-хх — оптические ваттметры поглощаемой мощности
Основные нормируемые характеристики
- Диапазон измерений
- Допустимая погрешность измерения (для эл.-изм. — класс точности)
- Допустимый КСВн — для ваттметров радиодиапазона
Литература
- Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат,
- Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио,
- Мейзда Ф. Электронные измерительные приборы и методы измерений — М.: Мир,
- Справочник по радиоэлектронным устройствам: В 2-х т.; Под ред. Д. П. Линде — М.: Энергия,
Нормативно-техническая документация
- ГОСТ 8476-78 Ваттметры и варметры. Общие технические условия
- ГОСТ 8476-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 3. Особые требования к ваттметрам и варметрам
- ГОСТ 8.392-80 Государственная система обеспечения единства измерений. Ваттметры СВЧ малой мощности и их первичные измерительные преобразователи диапазона частот 0,03-78, 33 ГГц. Методы и средства поверки
Источник: https://contur-sb.com/kakoy-pribor-ispolzuetsya-dlya-izmereniya-elektricheskoy-moschnosti/
Анализаторы качества электроэнергии
Анализаторы качества электроэнергии – уникальный высокотехнологичный ряд приборов, предназначенных для оптимизации электросетей путем решения проблем, связанных с иррациональным электроснабжением и энергопотреблением.
Простота использования, мощность и мобильность предлагаемых устройств и оборудования позволяют получить моментальный результат измерений непосредственно на месте.
Виды и особенности
Данное оборудование подразделяется на следующие виды:
- передвижное – автомобильные лаборатории, служащие для решения сложных технических задач на удалённых объектах;
- стационарное – непереносное, постоянно установленное в определённом месте для выполнения установленных задач, таких как постоянный мониторинг качества подачи электроэнергии;
- портативное – переносное, обеспечивающее быстрое и лёгкое оперативное использование, например, в проверках – для определения неисправностей звеньев системы распределения электроэнергии.
Области применения
Анализаторы качества электроэнергии помогают оптимизировать качество работы сети путем повышения качественных показателей. Обеспечивают возможность проведения энергетических аудитов, контроль электросети. Позволяют выявлять неисправности, составлять графики сетевой нагрузки, локализовывать и ликвидировать сбои, обнаруживать несовместимость одновременно подключенных приборов, снижать нагрузку на кабели, провода и трансформаторы и т.д.
Использование анализаторов качества электроэнергии даёт возможность вовремя обнаружить и ликвидировать реактивную нагрузку, приводящую к сбоям в работе сетей, приборов и оборудования, а так же неполадки или некорректную работу в звеньях распределительной системы.
Принятые меры дают возможность снизить затраты на энергообеспечение, следовательно, сократить расход электроэнергии при одновременном повышении производительности.
На предприятиях, в зданиях, объектах производства и жилищно-коммунальной сферы становится возможным постоянно поддерживать уровень электроснабжения на высоком качественном и экономическом уровне, оптимизировать электроснабжение и электропотребление.
Данные приборы и оборудование способно в максимально короткие сроки устранять аварии и повреждения в самых сложных энергетических сетях, полностью или локально нарушающие нормальное функционирование объектов.
Уникальность отечественных анализаторов в отличие от приборов зарубежного производства обеспечивается настройкой и ориентировано на стандартные показатели российских электрических сетей.
Как выбрать?
ООО «Техно-АС» предлагает выбор мобильных и портативных анализаторов качества электроэнергии, отвечающих самым современным требованиям и нормам, и рассчитанных на решение сложнейших задач, в том числе в промышленности, энергетике и жилищно-эксплуатационном секторе.
- Автолаборатории. Многофункциональные автономные лаборатории на базе современных легковых, грузовых и грузопассажирских автомобилей российского и зарубежного производства наделены широким функционалом. В зависимости от поставленных задач, условий эксплуатации и бюджета подбирается шасси, соответствующие контрольно-измерительные приборы и дополнительное оборудование. Передвижные автоэлектрораборатории позволяют обеспечить испытание и поиск повреждения кабельных линий, подстанционного оборудования, распределительных устройств и силовых трансформаторов, высоковольтных выключателей и разъединителей, анализ качества электроэнергии и др.
- Портативные анализаторы качества электроэнергии. Работа электроприёмников с нелинейной вольт-амперной характеристикой (приборы бесперебойного питания, информационно-вычислительная техника, люминесцентное и светодиодное освещение, некоторая бытовая техника и т.д.) является источником высших гармоник тока. Создаваемые ими искажения синусоидальной формы кривой напряжения в узлах электросети и несимметричная нагрузка, негативно воздействуя на режимы работы оборудования электросетей, приводят к поломкам, ложным срабатываниям средств защиты и автоматики, дополнительным потерям, а так же повреждению самих электроприёмников и, как следствие – к нарушению технологического процесса производства. Помочь в устранении подобных проблем призваны анализаторы качества электроэнергии – приборы, способные с максимальной быстротой определять и решать локальные проблемы, связанные со снижением эффективности показаний качества электроэнергии, и избегать негативных воздействий в дальнейшем.
Преимущества покупки у нас
Рабочие условия применения Анализаторов качества электроэнергии в части климатических воздействий, равно как и производимые с их использованием способы измерения, регистрации и расчёта показателей качества электроэнергии соответствуют и аттестованы по требованиям ГОСТ России.
Определиться с выбором модели анализатора в зависимости от предполагаемых задач поможет описание функционала конкретных приборов.
Источник: https://www.technoac.ru/product/category/analyzer-quality
В чем измеряется механическая мощность:
Мощностью называется физическая величина, которая показывает, насколько движется энергия внутри электрической цепи конкретного оборудования. Что она собой представляет, в каких единицах выражается, в чем измеряется мощность, какие есть для этого приборы? Об этом и другом далее.
Что это такое
Мощностью называется скалярный вид физической величины, который равен скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.
Мощность
Различается полезная, полная и номинальная в машинном двигателе. Полезная это сила двигателя, за исключением затрат, которые потрачены на работу всех остальных систем. Полная — указанная сила без вычетов, а номинальная — указанная и гарантированная заводом.
Дополнительная информация! Стоит отметить, что также есть мощность звука и взрывного звука. В первом случае это скалярная величина, связанная со звуковыми волнами и звуковой энергией, которая также измеряется в ваттах, а вторая связана с энерговыделением тротиловых разложений.
Основное понятие в учебном пособии
В чем измеряется
Устаревшей измерительной единицей считается лошадиная сила. Отвечая четко на вопрос, в чем измеряется механическая мощность, стоит отметить, что согласно современным международным показателям, единица мощности это ватт. Стоит отметить, что ватт — производная единица, которая связана с другими. Она равна Джоулю в секунду или килограмму, умноженному на метр в квадрате, поделенный на секунду. Также ватт это вольт, умноженный на ампер.
Важно отметить, что ватт делиться на мега, кило и вольт ампер.
Формулы для измерения
Мощность — величина, которая непосредственным образом связана с другими показателями. Так, она прямым образом связана со временем, силой, скоростью, вектором силы и скоростью, модулем силы и скорости, моментом силы и частотой вращения.
Нередко в формулах при вычислении электрической мощностной разновидности задействуется также число Пи, показатель сопротивления, мгновенный ток с напряжением на конкретном участке электрической сети, активная, полная и реактивная сила.
Непосредственным участником в вычислении является амплитуда с угловой скоростью и начальной силой тока с напряжением.
Вам это будет интересно Особенности единицы измерения мощности вольт-ампер
В расчетах гидравлической мощностной разновидности, принимает участие давление и расход жидкости. Нередко берется в расчеты показатель количества оборотов двигателя за конкретный промежуток времени.
Дополнительная информация! Чтобы рассчитать тягу, коэффициент полезного действия с другими рабочими параметрами устройства, изучается температура, сила трения и проводниковое сопротивление с реактивными нагрузками.
Основные формулы для измерения
Приборы для измерения
Чтобы измерить мощность, используется ваттметр, вольтметр, варметр и мультиметр с тестером. Они широко используются в различных сферах энергетики с промышленностью, связью, транспортом, наукой, медициной и бытом.
В быту их используют, чтобы подсчитать потребляемую электрическую энергию и вычислить возможные повреждения диодов.
Стоит отметить, что все существующие приборы для измерения делятся на щитовые с переносными и стационарными, показывающие с регистрирующими, оценивающие и сравнивающие.
Перечисленные приборы подключаются параллельным образом к нагрузке либо источнику электричества. Ваттметры с варметрами отличаются от других тем, что могут определять показатель в электромагнитно сигнале. Делятся на те, что созданы для измерений низких и высоких частот. Что касается вольтметров, они бывают аналоговыми, цифровыми, жиодно-компенсационными, импульсными, фазочувствительными и селективными.
Мультиметры являются комбинированными устройствами. Они, как и вольтметры, делятся на цифровые и аналоговые. Служат как для вычисления напряжения, так и электрической емкости с индуктивностью, температурой, силой тока и сопротивления.
Ваттметр как основной измерительный прибор для электрических приборов
Как измеряют мощность разных видов
Измерение разных мощностных видов происходит по формулам, выведенным с конца прошлого и позапрошлого столетия. Для каждой разновидности есть свое точное алгебраическое правило. Так, измерить механическую можно по первой формуле, а электрическую по второй. Что касается гидравлической, ее можно вычислить по третьему алгебраическому правилу.
Измерение по формулам
Механическая
Механической мощностью является скалярный вид произведения силового вектора на скоростной вектор, при котором движется какой-то объект. Исходя из формулы для вычисления этого показателя, чтобы отыскать его, необходимо знать показатель вектора силы со скоростным вектором, а последний из них равен модулю силы, перемноженному на модуль скорости и векторный угол скорости с силой.
Что касается вычисления тела, которое совершает вращательные движения, можно отметить, что нужно иметь представление о показателе момента силы с угловой скоростью.
Вам это будет интересно Расцветка шин по фазам
Дополнительная информация! Если в задаче эти данные неизвестны, можно двукратное число Пи перемножить на частоту вращения в минуту на момент силы, а затем полученные сведения поделить на 60. Таким образом совершаются вычисления в механике, если нужно понять, какую силу имеет двигатель или прочий силовой агрегат.
Электрическая
Электрической мощностью называется величина, которая показывает, с какой скоростью или преобразованием двигается электрическая энергия. Для изучения мгновенной электрической мощностной характеристики на определенном участке цепи, необходимо знать значение тока и напряжения мгновенного тока и перемножить данные значения.
Чтобы понять, сколько составляет активный, полный, реактивный или мгновенный реактивный мощностный показатель, нужно знать точные цифры амплитуды тока, амплитуды напряжения, угла тока с напряжением, а также угловую скорость и время, поскольку все существующие физические формулы сводятся к этим параметрам. Также в формулах задействуется синус, косинус угла и значение 1/2.
Понятие электрической мощности
Гидравлическая
Гидравлическим мощностным показателем в гидромашине или гидроцилиндре называется произведение машинного перепада давления на жидкостный расход. Как правило, это основная формулировка, взятая из единственной существующей формулы для вычисления.
Обратите внимание! Больше алгебраических и инженерных правил можно найти в прикладной науке о движениях жидкостей и газов, а именно в гидравлике.
Постоянного и переменного тока
Что касается мощности постоянного с переменным током, то чаще всего их причисляют к электрической разновидности. Конкретного понятия для двух разновидностей нет, однако их можно вычислить, исходя из имеющихся алгебраических установок. Так, мощностью постоянного тока является произведение силы тока и постоянного напряжения или же удвоенное значение силы тока на электрическое сопротивление, которое, в свою очередь, вычисляется делением двойного напряжения на обычное сопротивление.
Что касается переменного тока, это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.
Чтобы измерить эти показатели, можно воспользоваться как указанными выше приборами, так и фазометром. Этот прибор служит, чтобы вычислить реактивную разновидность по государственному эталону.
Вам это будет интересно Фен для паянияПонятие переменной мощности тока
В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним.
Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах. Приборами для ее вычисления выступает вольтметр, ваттметр.
Основные формулы для самостоятельного расчета перечислены выше.
Источник: https://rusenergetics.ru/ustroistvo/v-chem-izmeryaetsya-moschnost
Измерение тока. Виды и приборы. Принцип измерений и особенности
Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.
Измерение тока рекомендуется делать в следующих случаях:
- После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
- Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
- При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
- Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
- Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
- Работоспособность теплого пола в квартире также проверяется измерением тока.
Мощность тока
Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.
Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток.
Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера.
Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.
Измерение тока приборами
Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.
- Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.
- Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.
Порядок измерения силы тока мультиметром:
- Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
- Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
- Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
- Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.
- Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
- Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
- Отключить питание цепи и отсоединить мультиметр.
- Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.
Способы измерения тока
Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.
При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.
Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.
Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.
Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто.
Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток.
Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.
Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/izmerenie-toka/
Электроизмерительные приборы и электрические измерения
Для оценки работы электротехнических устройств необходимо измерять такие электрические величины, как ток, напряжение, сопротивление, мощность, энергия. Наиболее предпочтительно пользоваться для этих целей методом непосредственного измерения, когда измеряемая величина определяется путем непосредственного отсчета показания измерительного прибора (измерения напряжения — вольтметром, тока — амперметром, сопротивления — омметром, мощности — ваттметром); такое измерение называется прямым.
Если же измеряемую величину можно найти на основании прямых измерений других величин, с которыми измеряемая связана зависимостью, такое измерение считается косвенным. Косвенным считается измерение, например, сопротивления элемента электрической цепи, когда замерам подвергаются напряжение и сила тока. Совершенно очевидно, что косвенное измерение менее точно, чем прямое.
Любой прибор непосредственного измерения состоит из Двух частей: измерительного механизма, предназначенного для преобразования подводимой к нему электрической энергии в механическую энергию перемещения подвижной части с указателем, и измерительной цепи, предназначенной для преобразования измеряемой электрической величины (напряжения, тока и т. д.
) в пропорциональную ей величину воздействия на измерительный механизм. Один и тот же измерительный механизм в соединении с различными измерительными цепями может использоваться при измерениях различных величин.
Различают несколько систем выполнения измерительных механизмов: магнитоэлектрическая, электромагнитная, электродинамическая, индукционная, электростатическая, тепловая.
Рекламные предложения на основе ваших интересов:
Магнитоэлектрическая система включает постоянный магнит и катушку (рамку). Применяется неподвижный магнит и подвижная катушка (рамка) либо наоборот. Пример механизма с магнитом, расположенным внутри рамки, показан на рис. 2.8. Эта система хороша для гальванометров, а при подвижном магните используется в приборах на щитках транспортных средств.
Электромагнитная система содержит неподвижную катушку, создающую магнитное поле, и подвижный ферромагнитный якорь с указателем, причем катушка выполняется круглой и плоской. Эти приборы требуют защиты от внешнего магнитного поля. Они допускают перегрузки, просты и дешевы в изготовлении. С этой системой изготавливаются амперметры и вольтметры в основном переменного тока.
Электродинамическая система использует принцип взаимодействия проводников с токами, для чего используются неподвижная катушка и внутри нее — подвижная с указателем. Данная система применяется в амперметрах, вольтметрах и ваттметрах.
Индукционная система использует вращающееся магнитное поле, создаваемое двумя электромагнитами переменного тока и воздействующее на подвижный алюминиевый диск. Такая система используется в ваттметрах.
Рис. 2.8. Магнитоэлектрический механизм:
1 — магнит; 2 — рамка со стрелкой; 3 — магни- топровод
Электростатическая система использует электростатические силы взаимодействия заряженных электродов для вращения заряженных подвижных пластин относительно заряженных неподвижных. Система пригодна для вольтметров постоянного и переменного тока при измерениях в цепях высоких напряжений при малой мощности.
Тепловая система использует удлинение металлической нити, нагреваемой током. Приборы с данной системой неустойчивы к перегрузкам, чувствительны к температурам извне. Применяются для измерения токов высокой частоты.
Механическая часть всех приборов имеет много общего. По конструкции отсчетного устройства они разделяются на две группы: со стрелочными и световыми указателями. Общей их особенностью является установка подвижной части на растяжках из упругих лент берил- лиевой и оловянно-цинковой бронзы, на осях из алюминиевой трубки с кольцевыми стальными кернами, устанавливаемых в выточках полудрагоценных камней (корунд, агат и др.), и на подвесе из металлической или кварцевой нити.
Для успокоения подвижной части приборов применяются пружинные, магнитоиндукционные и воздушные успокоители.
Рекламные предложения:
Читать далее: Электрические машины и аппаратура автогрейдера
Категория: — Электрооборудование автогрейдеров
→ Справочник → Статьи → Форум
Источник: http://stroy-technics.ru/article/elektroizmeritelnye-pribory-i-elektricheskie-izmereniya
В чём измеряется электричество?
Международная система единиц подскажет любому человеку, в чём измеряется электроэнергия. Такая информация нужна для того, чтобы правильно и безопасно использовать в домашних условиях электрические бытовые приборы.
Единицы измерения напряжения
Напряжение измеряется в вольтах. Чтобы снабдить электроэнергией частные дома используется однофазная сеть с напряжением 220 Вольт.
Но, существует также и трёхфазная сеть, для которой напряжение равно 380 Вольт. В 1000 Вольтах состоит 1 киловольт. Согласно этому показателю, напряжение 220 и 380 Вольт равно 0,22 и 0,4 киловольт.
Измерение силы тока
Сила тока представляет собой потребляемую нагрузку, которая возникает во время работы бытовых приборов или оборудования. Её измеряют в амперах.
Измерение сопротивления
Сопротивление является важным показателем, который показывает, с каким противодействием материалу проходит электроток. При замере сопротивления специалист сможет сказать, рабочий ли электрический прибор или же он вышел из строя. Сопротивление измеряется в Омах.
Человеческое тело имеет сопротивление от двух до десяти килоОм.
Для оценки сопротивляемости материалов, чтобы в дальнейшем их использовать для производства электротехнических продуктов используется показатель удельного сопротивления проводника. Такой показатель зависит от площади поперечного сечения и длины проводника.
Измерение мощности
Количество электроэнергии, которую потребляют приборы за определённую единицу времени, называют мощностью. Она измеряется в Ваттах, киловаттах, мегаваттах, гигаваттах.
Измерение электроэнергии по счётчику
Чтобы просчитать, сколько электроэнергии потребляет семья за определённый период времени (например, за месяц) устанавливаются электрические счётчики. На больших предприятиях устанавливают счётчики реактивной энергии.
Для определения потребления электроэнергии в квартире или доме используют такое измерение как 1 киловатт за 60 минут. Когда проводится запись потребления электричества важно мощность умножить на время, чтобы правильно измерить электроэнергию.
Теперь вам известно, в чём измеряется электричество. Теперь без труда сможете определить мощность прибора и какое напряжение в розетке, чтобы не вывести его из строя. Благодаря описанным показателям можно избежать серьёзных и опасных ошибок в использовании электрических приборов.
Источник: https://elektrikclub.ru/v-chyom-izmeryaetsya-elektrichestvo/
Измерение электрической мощности и энергии
Довольно часто возникает необходимость измерять мощность, потребляемую из сети, или же генерируемую в сеть. Это необходимо для учета потребляемой или генерируемой энергии, а также для обеспечения нормальной работы энергосистемы (избежание перегрузок). Измерять мощность можно несколькими способами – прямым и косвенным. При прямом измерении применяют ваттметр, а при косвенном амперметр и вольтметр.
Измерение мощности в цепи постоянного тока
Из-за отсутствия реактивной и активной составляющей в цепях постоянного тока для измерения мощности ваттметр применяют очень редко. Как правило, величину потребляемой или отдаваемой энергии измеряют косвенным методом, с помощью последовательно включенного амперметра измеряют ток I в цепи, а с помощью параллельно подключенного вольтметра измеряют напряжение U нагрузки. После чего применив простую формулу P=UI и получают значение мощности.
Чтоб уменьшить погрешность измерений из-за влияний внутренних сопротивлений устройств, приборы могут подключать по различным схемам, а именно при относительно малом сопротивлении нагрузки R применяют такую схему включения:
А при большом значении R такую схему:
Измерение мощности в однофазных цепях переменного тока
Главным отличием цепей переменного тока от сетей постоянного тока, пожалуй, заключается в том, что в переменном напряжении существует несколько мощностей – полная, активная и реактивная. Полную измеряют зачастую тем же косвенным методом с помощью амперметра и вольтметра и значение ее равно S=UI.
Замер же активной P=UIcosφ и реактивной Q=UIsinφ производится прямым методом, с помощью ваттметра. Для измерения ваттметр в цепь подключают по следующей схеме:
Где токовую обмотку необходимо подключить последовательно с нагрузкой Rн, и, соответственно, обмотку напряжения параллельно нагрузке.
Замер реактивной мощности в однофазных сетях не производится. Такие опыты зачастую ставятся только в лабораториях, где ваттметры включают по специальным схемам.
Измерение мощности в трехфазных цепях переменного тока
Как и в однофазных сетях, так же и в трехфазных полную энергию сети можно измерять косвенным методом, то есть с помощью вольтметра и амперметра по схемам показанным выше. Если нагрузка трехфазной цепи будет симметричной, то можно применить такую формулу:
Uл – напряжение линейное, I- фазный ток.
Если же фазная нагрузка не симметрична, то производят суммирование мощностей каждой из фаз:
При измерении активной энергии в четырехпроводной цепи при использовании трех ваттметров, как показано ниже:
Общей энергией потребляемой из сети будет сумма показаний ваттметров:
Не меньшее распространение получил и метод измерения двумя ваттметрами (применим только для трехпроводных цепей):
Сумму их показаний можно выразить следующим выражением:
При симметричной нагрузке применима такая же формула как и для полной энергии:
Где φ – сдвиг между током и напряжением (угол фазового сдвига).
Измерение реактивной составляющей производят по той же схеме (смотри рисунок в)) и в этом случае она будет равна разности алгебраической между показателями приборов:
Если сеть не симметрична, то для измерения реактивной составляющей применяют два или три ваттметра, которые подключают по различным схемам.
Процесс измерения активной и реактивной мощности
Счетчиками индукционными или электронными производят измерения активной мощности цепи переменного напряжения. Они подключаются по тем же схемам что и ваттметры. Учет реактивной энергии в однофазных потребителей в нашей стране не ведется. Ее учет производят в трехфазных цепях крупных промышленных предприятий, потребляющих большие объемы электроэнергии. Счетчики активной энергии имеют маркировку СА, реактивной СР. Также широкое применение получают электронные счетчики электроэнергии.
Источник: https://elenergi.ru/izmerenie-elektricheskoj-moshhnosti-i-energii.html
Методы измерения мощности в электрических цепях
Очень часто при проектировании электрических схем радиолюбители сталкиваются с проблемой измерения мощности, которую потребляют радиокомпоненты. Специалисты в метрологической сфере рекомендуют два метода, позволяющих вычислить и грамотно рассчитать ее значение. В этом случае нужно разобрать подробнее физический смысл величины, а также ее составляющих, от которых она зависит.
Общие сведения
При проектировании устройств нужно уметь правильно рассчитывать мощность электроэнергии электрооборудованием. Это необходимо, прежде всего, для долговечной работы устройства. Если изделие работает на износ, то оно способно выйти из строя сразу или в течение некоторого времени.
Такой вариант считается недопустимым, поскольку существуют виды техники, которые должны работать без отказов (аппарат искусственного дыхания, контроль уровня метана в шахте и так далее), так как от этого зависит человеческая жизнь. К основным характеристикам электрической энергии относятся следующие: мощность, сила тока, напряжение (разность потенциалов) и электропроводимость (сопротивление) материалов.
Мощность потребителя
Мощность не следует путать с электрической энергией. Единицей измерения первой является ватт (Вт), название которой произошло от фамилии известного физика Джеймса Уатта. Физическим смыслом 1 Вт является расход электрической энергии за единицу времени, равной 1 секунде (1 Вт = расход 1 джоуля за 1 секунду).
Существуют производные единицы измерения: милливатт (1 мВт = 0,001 Вт), киловатт (1 кВт = 1000 Вт), мегаватт (1 МВт = 1000 кВт = 1000000 Вт), гигаватт (1 ГВт = 1000 МВт = 1000000 кВт = 1000000000 Вт) и так далее.
Для измерения электрической энергии применяются специальные счетчики, а ее единицей измерения является Вт*ч.
Ватт можно связать с некоторыми физическими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr ) = 1 Н * м / с = 746 л. с. Последнее числовое значение называется электрической лошадиной силой. Ваттметр — измеритель электрической мощности. Однако ее величину можно определить и другим способом. Для этого следует разобрать физические величины, от которых она зависит.
Сила тока
Количество электрического заряда, который проходит через токопроводящий материал за единицу времени, называется силой электрического тока. Сокращенно величину называют силой тока или током.
Она обозначается литерами «I» или «i» и имеет направление (векторная величина). Измеряется ток в амперах (А). Существуют также производные единицы, образованные при помощи приставок: 1 мА = 0,001 А, 1 кА = 1000 А и так далее. Измерить его значение можно амперметром.
Для этого его нужно подключать последовательно в электрическую цепь.
Физическим смыслом тока в 1 А является прохождение электрического заряда в 1 Кл (кулон) за 1 секунду через площадь поперечного сечения S. В 1 кулоне содержится примерно 6,241*10(18) электронов.
Ток в научной интерпретации классифицируется на постоянный и переменный. Первый вид не изменяет своего направления за единицу времени, но его амплитудные значения могут изменяться. Направление и амплитуда переменного тока изменяется по определенному закону (синусоидальный и несинусоидальный). Основным параметром считается его частота. Определяется тип переменного тока с помощью осциллографа.
Электрическое напряжение
Из курса физики известно, что каждое вещество состоит из атомов, которые обладают нейтральным зарядом. Они состоят из субатомных частиц. К ним относятся следующие: протоны, электроны и нейтроны. Первые имеют положительный заряд, вторые — отрицательный, а третьи — не заряжены вообще.
Суммарный заряд протонов компенсирует заряд всех электронов. Однако под действием внешних сил это равенство нарушается, и электрон «вырывается» из атома, который уже обладает положительным зарядом. Он притягивает электрон с соседнего атома, и процесс повторяется до тех пор, пока энергия не будет минимальной (меньше энергии «вырывания» электрона).
При межатомном взаимодействии образуется электромагнитное поле с отрицательной или положительной составляющими. Разность между двумя точками противоположных по знаку составляющих называется электрическим напряжением.
Работа электромагнитного поля по перемещению точечного электрического заряда из точки А в точку В называется разностью потенциалов.
Физический смысл напряжения (U): разность потенциалов в 1 В между двумя точечными зарядами в 1 Кл, на перемещение которых тратится энергия электромагнитного поля, равная 1 Дж.
Единицей измерения является вольт (В). Определить значение разности потенциалов можно с помощью вольтметра, который подключается параллельно. Производными единицами измерения считаются следующие: 1 мВ = 0,001 В, 1 кВ = 1000 В, 1 МВ = 1000 кВ = 1000000 В и так далее.
Сопротивление электрической цепи
Электропроводимость материала зависит от нескольких факторов: электронной конфигурации, типа вещества, геометрических параметров и температуры. Сведения об электронной конфигурации вещества можно получить из периодической таблицы Д. И. Менделеева. Согласно этой информации вещества бывают:
- Проводниками.
- Полупроводниками.
- Диэлектриками.
К первой группе следует отнести все металлы, электролиты (растворы, проводящие ток) и ионизированные газы. Носителями электрического заряда в металлах являются электроны. В растворах их роль выполняют ионы, которые бывают положительными (анионы) и отрицательными (катионы). Свободными носителями заряженных частиц в газах считаются свободные электроны и положительно заряженные ионы.
Полупроводники проводят электричество только при определенных условиях. Например, при воздействии на него внешних сил. Под их действием кулоновские связи электрона с ядром уменьшаются. При этом отрицательно заряженная частица «вырывается».
На ее месте образуется «дырка», обладающая положительным зарядом. Она притягивает соседний электрон, вырывая его с атома. В результате этого осуществляется движение электронов и дырок. Изоляторы или диэлектрики вообще не проводят электричество.
К ним относятся материалы без свободных носителей заряда, а также инертные газы.
В проводниках при повышении температурных показателей происходит рост величины сопротивления. При этом происходит разрушение и искажение кристаллической решетки. Заряженные частицы сталкиваются (взаимодействуют) с атомами и другими частицами материала.
В результате их движение замедляется, но потом снова возобновляется под действием электромагнитного поля. Процесс этого «взаимодействия» называется электрической проводимостью вещества. Однако в полупроводниках при повышении температуры эта величина уменьшается.
К геометрии материалов следует отнести следующие: длину и площадь поперечного сечения.
Сопротивление измеряется в Омах (Ом) при помощи омметра, который подсоединяется параллельно к участку цепи или радиодетали. Существуют производные единицы измерения: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом.
Методы измерения
Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.
При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.
Косвенный способ
Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.
Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:
- Для участка электрической цепи: P = I * I * R = U * U / R.
- Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
- В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).
Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.
Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.
Прямое определение величины
Для определения значения мощности в цепях переменного и постоянного тока применяются ваттметры. В них используются электродинамические или ферроидальные механизмы. Приборы с электродинамическим механизмом выпускаются в виде переносных приборов. Они обладают высоким классом точности. Измерители мощности рекомендуется применять при выполнении точных расчетов для цепей постоянного и переменного тока с частотой до 5 кГц.
Ферродинамические приборы изготавливаются в виде электронных узлов, которые вставляются в измерительные стенды или щитовые. Основное их назначение — контроль приблизительных параметров потребления мощности электрооборудованием. Они обладают низким классом точности и применяются для измерения значений мощности переменного тока. При постоянном токе погрешность увеличивается, поскольку это обусловлено искажением петли гистерезиса ферромагнитных сердечников.
По диапазону частот приборы можно разделить на две группы: низкочастотные и радиочастотные. Ваттметры низких частот применяются в сетях промышленного питания переменного тока. Радиочастотный тип рекомендуется применять для точных измерений при проектировании различной техники. Они делятся на две категории по мощности:
Первый вид подключается в разрыв линии, а второй — в ее конец в качестве нагрузки согласования. Кроме того, приборы для измерения мощности бывают аналоговыми и цифровыми.
При измерении мощности на высоких частотах применяются электронные и термоэлектронные ваттметры. Главным узлом считается микроконтроллер и преобразователь активной мощности. Последний преобразовывает переменный ток в постоянный. После этого происходит перемножение в микроконтроллере силы тока и напряжения. Результатом является сигнал на выходе, который зависит от I и U.
Ваттметр состоит из двух катушек. Первая из них подключается последовательно в цепь нагрузки, а другая (подвижная с резистором) — параллельно. В цифровых моделях роль катушек выполняют датчики тока и напряжения. Прибор имеет две пары зажимов. Одна пара применяется для последовательной цепи, а другая — для параллельной. Для правильного включения ваттметра выполняется обозначение * одной из двух пар зажимов.
Таким образом, для измерения мощности электрического тока применяются два метода. Первый из них является косвенным, а второй — прямым. Последний рекомендуется применять при проектировании сложной техники.
(1 5,00 из 5)
Источник: https://proagregat.com/kipia/metody-izmereniya-moschnosti-v-elektricheskih-tsepyah/
Какой прибор используется для измерения напряжения
Вольтметр (вольт + греч. μετρεω «измеряю») — электроизмерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.
Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.
История [ править | править код ]
Первым в мире вольтметром был «указатель электрической силы» русского физика Г. В. Рихмана (1745). Принцип действия «указателя» используется в современном электростатическом вольтметре.
Классификация [ править | править код ]
- По принципу действия вольтметры разделяются на:
- электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
- электронные — аналоговые и цифровые
Аналоговые электромеханические вольтметры [ править | править код ]
- Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются последовательно включённые добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
- ПРИМЕРЫ: М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
Аналоговые электронные вольтметры общего назначения [ править | править код ]
Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.
Цифровые электронные вольтметры общего назначения [ править | править код ]
Принцип работы вольтметров дискретного действия состоит в преобразовании измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.
Диодно-компенсационные вольтметры переменного тока [ править | править код ]
Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.
- ПРИМЕРЫ: В3-49, В3-63 (используется пробник 20 мм)
В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к применению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.
Импульсные вольтметры [ править | править код ]
Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.
Фазочувствительные вольтметры [ править | править код ]
Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения.
Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения.
Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.
Селективные вольтметры [ править | править код ]
Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.
- ПРИМЕРЫ: В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановольтметр «СМАРТ»
Приборы для измерения напряжения
Первый учёный, который сконструировал и создал достаточно мощную электрическую батарею постоянного тока, был известный итальянский физик Михаило Вольта. Эта батарея получила название «вольтов столб» и состояла из нескольких тысяч кружочков из цинка и меди, которые разделялись пропитанными в соляной кислоте матерчатыми прокладками. Он использовал батареи с большим или меньшим количеством элементов. Маленькие батареи давали слабую искру, большие батареи сильную и яркую.
Источник: https://crast.ru/instrumenty/kakoj-pribor-ispolzuetsja-dlja-izmerenija
Ваттметр для измерения мощности: назначение, типы, подключение, применение
Один из параметров, который характеризует состояние электрической сети – это ее мощность. Она отражает величину работы, выполняемую электрическим током в единицу времени. Мощность устройств, включаемых в электрическую цепь, должна быть в рамках мощности сети. Иначе возможны неприятные сюрпризы – от выхода из строя оборудования до короткого замыкания и пожара.
Измеряют мощность электрического тока специальным прибором – ваттметром. И если в цепи постоянного тока она рассчитывается простым умножением силы тока на напряжение (достаточно наличия вольтметра и амперметра), то в сети переменного тока без измерительного оборудования не обойтись. Также им контролируют режим работы электрического оборудования и учитывают расход энергии.
Применение Ваттметров
Основная область применения – это электроэнергетическая промышленность и машиностроение, мастерские по ремонту электроприборов. Однако достаточно широко используют и бытовые измерители, которые приобретают любители электроники, компьютеров и просто обыватели – для учета и экономии энергопотребления.
Применяют ваттметры для:
Типы ваттметров
Измерению мощности предшествует измерение силы тока и напряжения исследуемого участка цепи.
В зависимости способов измерения, преобразования данных и показа итоговой информации, ваттметры делятся на аналоговые и цифровые.
Аналоговые ваттметры бывают показывающие и самопишущие и отражают активную мощность участка цепи. Табло показывающего прибора имеет полукруглую шкалу и поворачивающуюся стрелку. Деления шкалы отградуированы в соответствии с определенными величинами мощности, измеряемой в ваттах (Вт).
Цифровые ваттметры измеряют как активную, так и реактивную мощность. Кроме того, на дисплей прибора могут выводиться (кроме показания мощности) также и сила тока, напряжение, и расход энергии по времени. Данные измерений можно вывести удаленно на компьютер оператора.
о ваттметре из Китая:
Аналоговые ваттметры
Наиболее распространенными и точными аналоговыми ваттметрами являются приборы электродинамической системы.
Принцип работы основан на взаимодействии двух катушек. Одна из них – неподвижная, имеет толстую обмотку с небольшим числом витков и малое сопротивление. Подключается последовательно с нагрузкой. Вторая катушка – подвижная.
Ее намотка выполнена из тонкого провода и имеет большое количество витков, поэтому и сопротивление у нее высокое.
Подключается она параллельно нагрузке и снабжается еще добавочным сопротивлением (для исключения короткого замыкания между катушками).
При подключении прибора к сети, в катушках образуются магнитные поля. Их взаимодействие создает вращающий момент, который отклоняет подвижную катушку с подсоединенной к ней стрелкой на определенный угол.
Величина угла эквивалентна произведению силы тока и напряжения в данный момент времени.
Цифровые ваттметры
В основе работы цифрового ваттметра лежит предварительное измерение силы тока и напряжения. Для этого на входе устанавливаются: последовательно нагрузке – датчик тока, параллельно – датчик напряжения. Они могут выполняться на базе термисторов, измерительных трансформаторов, термопар и других элементов.
Мгновенные значения полученных величин тока и напряжения посредством аналого-цифрового преобразователя передаются к встроенному микропроцессору. Здесь производятся необходимые вычисления (находится активная и реактивная мощности) и выдаются в виде итоговой информации на дисплей и подключенные внешние устройства.
Рисунок — Схема подключения Ваттметра
Подключение Ваттметра
Ваттметры имеют четыре клеммы (2 входа, 2 выхода) для подключения. Две из них используют при сборе последовательной (токовой) цепи – ее подключают первой, а две – для параллельной (цепи напряжения).
Начало цепи напряжения (вход) подключают к началу токовой цепи (соединить клеммы перемычкой), соединенному с одним зажимом сети. Конец цепи напряжения (выход) соединяют с другим зажимом сети.
Рассмотрим несколько ваттметров разного исполнения и разных производителей:
Многофункциональный цифровой ваттметр СМ3010 класса точности 0,1
Предназначен для измерения активной мощности, тока, напряжения и частоты в цепях постоянного тока и в однофазных цепях переменного тока; для поверки ваттметров, амперметров, вольтметров класса 0,3 и ниже, частотомеров класса 0,01 и ниже.
Пределы измерения тока Iп:
- на постоянном и переменном токе: 0,002-0,005-0,01-0,02-0,05-0,1-0,2-0,5-1-2-5-10 А.
Пределы измерения напряжения Uп:
Источник: https://pue8.ru/elektrotekhnik/812-vattmetry-naznachenie-tipy-podklyuchenie.html
Приборы для измерения параметров электродвигателей (генераторов) AnomAlert
Приборы для измерения параметров электродвигателей (генераторов) AnomAlert (далее приборы) предназначены для проведения одновременных измерений напряжения и силы переменного тока трехфазных электродвигателей или генераторов.
Описание
Принцип действия прибора основан на измерении, обработке и последующем анализе сигналов напряжения и силы переменного тока в трехфазной системе электроснабжения электродвигателя или генератора. Измерения производятся тремя независимыми каналами — для каждой фазы тока и напряжения.
Прибор используется для мониторинга индукционных (асинхронных) и синхронных электродвигателей (генераторов) с переменной или фиксированной скоростью вращения, использующих трехфазный ток.
Прибор состоит из измерительного блока с ЖК дисплеем, который в составе с измерительными кабелями, конвертором и ПК, с установленным на нем программным обеспечением, образует измерительную систему.
Прибор относится к стационарным и, как правило, монтируется в блоке управления электродвигателя (генератора), с последующим пломбированием по месту установки.
Прибор функционирует в режиме реального времени с передачей информации посредством интерфейсов RS-485/RS-422, RS-232, сетевых протоколов TCP/IP и сети Ethernet.
Прибор выпускается в двух исполнениях:
— с линейным приводом для подключения к синхронному двигателю через трансформаторы тока с номинальным значением вторичных токов 1 или 5 А ;
— с инверторным приводом для подключения к индукционному (асинхронному) двигателю посредством датчиков тока с аналоговым выходом 50.. .400 мА.
Программное обеспечение
Внешнее программное обеспечение Anomalert Server, устанавливаемое на персональный компьютер, позволяет сконфигурировать прибор для проведения испытаний, регистрировать, и сохранять результаты измерений, составлять протоколы испытаний электродвигателя и является метрологически значимым.
Встроенное программное обеспечение Anomalert Client является метрологически значимым, поскольку обеспечивает математическую обработку, преобразование поступающих данных с последующим их отображением на экране прибора.
Уровень защиты от непреднамеренных и преднамеренных изменений — «С» в соответствии МИ 3286-2010.
Таблица 1 — Характеристики ПО
Наименование программного обеспечения | Идентифика ционное наименование программного обеспечения | Номер версии (идентификационный номер) программного обеспечения | Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода) | Алгоритм вычисления цифрового идентификатора |
Anomalert Client | AnomAlert.exe |
Источник: https://all-pribors.ru/opisanie/49120-12-anomalert-52035