Какой ток вырабатывают солнечные батареи

Сколько энергии дает солнечная батарея

Какой ток вырабатывают солнечные батареи

21 сентября 2018

Солнечная батарея – это ряд солнечных модулей, которые преобразуют солнечную энергию в электричество и при помощи электродов передают его дальше, в другие преобразовательные устройства. Последние нужны для того, чтобы сделать из постоянного тока переменный, который способны воспринимать бытовые электроприборы. Постоянный ток получается, когда солнечную энергию воспринимают фотоэлементы и энергию фотонов преобразуют в электрический ток.

От того, сколько фотонов попадет на фотоэлемент, зависит, сколько энергии дает солнечная батарея. По этой причине, на производительность батареи влияет не только материал фотоэлемента, но и количество солнечных дней в году, угол падения солнечных лучей на батарею и другие факторы, не зависящие от человека.

Аспекты, влияющие на то, сколько энергии вырабатывает солнечная батарея

Прежде всего, производительность солнечных панелей зависит от материала изготовления и технологии производства. Из тех, что представлены на рынке, Вы можете найти батареи с производительностью от 5 до 22%. Все солнечные батареи разделяют на кремниевые и пленочные.

Производительность модулей на основе кремния:

  • Монокристаллические кремниевые панели – до 22%.
  • Поликристаллические панели – до 18%.
  • Аморфные (гибкие) – до 5%.

Производительность пленочных модулей:

  • На основе кадмий теллурида – до 12%.
  • На основе селенида мели-индия-галлия – до 20%.
  • На полимерной основе – до 5%.

Существуют так же смешанные типы панелей, которые преимуществами одного вида позволяют перекрыть недостатки другого, благодаря чему повышается КПД модуля.

Так же на то, сколько энергии дает солнечная батарея влияет количество ясных дней в году. Известно, что если солнце в Вашем регионе появляется на целый день меньше чем в 200 днях в году, то установка и использование солнечных батарей едва ли будет выгодной.

Кроме того, на КПД панелей влияет так же и температура нагрева батареи. Так, при нагревании на 1̊С производительность падает на 0,5%, соответственно, при нагреве на 10̊ С мы имеем в половину уменьшенный КПД. Чтобы предотвратить такие неприятности устанавливают системы охлаждения, так же требующие расход энергии.

Для сохранения высоких показателей производительности в течение дня устанавливают системы слежения за движением солнца, которые помогают сохранять прямой угол падения лучей на солнечные панели. Но эти системы стоят достаточно дорого, не говоря о самих батареях, поэтому не всем по карману устанавливать их для обеспечения энергией своего дома.

Сколько энергии вырабатывает солнечная батарея, зависит так же от суммарной площади установленных модулей, потому что каждый фотоэлемент может принять ограниченное количество солнечной энергии.

Как рассчитать, сколько энергии дает солнечная батарея для Вашего дома?

Опираясь на вышеизложенные моменты, которые стоит учесть при покупке солнечных панелей, мы можем вывести простую формулу, по которой можем высчитать, какое количество энергии будет выдавать один модуль.

Допустим, Вы выбрали один из самых производительных модулей площадью в 2 м2. Количество солнечной энергии в обычный солнечный день равно примерно 1000 Ватт на м2. В итоге мы получаем такую формулу: солнечная энергия (1000 Вт/м2) × производительность (20%) × площадь модуля (2 м2) = мощность (400 Вт).

Если Вы хотите высчитать, сколько воспринимается батареей солнечной энергии в вечернее время суток и в облачный день, Вы можете воспользоваться следующей формулой: количество солнечной энергии в ясный день × синус угла солнечных лучей и поверхности панели × процент преобразуемой энергии в пасмурный день = сколько солнечной энергии в итоге преобразует батарея. Для примера допустим, что вечером угол падения лучей равен 30̊. Получаем следующий расчет: 1000 Вт/м2 × sin30̊ × 60% = 300 Вт/м2, и последнее число используем как основу расчета мощности.

Источник: https://altenergiya.ru/sun/skolko-energii-daet-solnechnaya-batareya.html

Солнечные батареи на даче

Какой ток вырабатывают солнечные батареи

Что делать, если на даче по какой-то причине нет электричества? Можно, конечно, приспособиться и к такой жизни, наслаждаясь проверенными временем технологиями: для освещения пользоваться свечами и керосиновой лампой, для хранения продуктов выкопать погреб, воду носить ведрами и греть на огне, от телевизора отказаться и т.д. Однако такой «отдых» вряд ли будет по-настоящему комфортным: рано или поздно все равно придется искать способы получения электричества с помощью альтернативных источников энергии.

Чаще всего об этом задумываются в следующих случаях:

  • нет возможности подключить дачный или загородный дом к электросети;
  • подключение к электросети стоит неоправданно дорого;
  • на подстанции постоянно происходят аварии, из-за которых подолгу не бывает света;
  • участку выделена слишком малая мощность и ее постоянно не хватает (обычно это случается в садовых товариществах со старыми электросетями);
  • хочется сэкономить на чрезмерно высоких счетах за электричество.

Самый простой и доступный из альтернативных источников энергии – солнечные батареи.

Фотоэлементы на основе кремния, соединенные в электрическую цепь для преобразования энергии солнечного света в электроэнергию, были изобретены в США и начали использоваться на американских и советских космических спутниках еще в 1958 году.

В наше время на них работает портативная техника (калькуляторы, термометры, фонарики), космические аппараты, электромобили и яхты, даже разрабатывается самолет, который будет летать за счет энергии, полученной от солнечных батарей.

Во многих странах созданы крупные солнечные электростанции, а правительство Франции планирует уложить 1 000 км автодорог со встроенными солнечными панелями, чтобы каждый километр такого покрытия обеспечивал электроэнергией 5 000 человек (без учета отопления).

Солнечные батареи нашли применение даже в медицине: в Южной Корее крошечные фотоэлементы вживляют в кожу пациента для бесперебойной работы имплантированных приборов, например, кардиостимулятора.

Такой длительный опыт и широкое применение солнечных батарей свидетельствует о надежности, экономичности и высокой эффективности этой технологии.

В этой статье я расскажу о собственном опыте использования солнечных батарей на даче. Прежде всего необходимо заметить, что для обеспечения потребностей небольшого дачного дома в электроэнергии требуется собрать целую мини-электростанцию, в которую, кроме самих солнечных батарей, входят аккумуляторы для накопления заряда, контроллер для управления системой и инвертор для преобразования постоянного тока в переменный.

По теме:
Может ли дача стать домом?

:

Солнечные батареи для дачи

На российском рынке представлены солнечные батареи (солнечные панели) отечественного, европейского и китайского производства. На нашей даче установлены отечественные солнечные панели — мы купили их непосредственно у производителя в Зеленограде.

В Москве работает несколько специализированных фирм, которые предлагают как отдельные элементы для самостоятельной установки солнечной мини-электростанции, так и полный комплект необходимого оборудования с доставкой и установкой под ключ.

Специалисты этих компаний дают профессиональные советы и консультации, просчитывают для каждого клиента необходимую мощность и состав системы.

Солнечные батареи имеют неограниченный срок службы. Они вырабатывают постоянный ток напряжением 12В. В зависимости от размера панели бывают разной мощности. Чтобы собрать автономную солнечную мини-электростанцию, нужно приобрести несколько солнечных батарей.

Точное количество батарей (точнее, их необходимая мощность) высчитывается, исходя из необходимого вам потенциального расхода электроэнергии. В летние солнечные дни эффективность работы панелей максимальная. В пасмурную погоду панели тоже вырабатывают электроэнергию, но в меньшем количестве.

Это надо учитывать при расчете мощности системы, если вы планируете пользоваться ей не только в летнее время, но и зимой.

Аккумуляторы глубокого разряда

Электрическая энергия, которую вырабатывают солнечные панели, накапливается в аккумуляторах.

Для эффективной работы системы лучше всего использовать специальные гелевые аккумуляторы глубокого разряда, которые не требуют специального обслуживания, герметичны и безопасны при установке внутри дома.

Для небольшого дачного домика с минимальным потреблением электроэнергии требуется как минимум 3-4 аккумулятора емкостью по 100-120 А*ч каждый. Они надежны, долговечны и выдерживают много циклов заряда и глубокого разряда.

Контроллер заряда аккумуляторов

Между солнечными панелями, вырабатывающими электроэнергию, и аккумуляторными батареями, которые эту энергию накапливают, устанавливается контроллер. Контроллеры различаются по техническим характеристикам и стоимости.

Как ни странно, это самый главный элемент управления солнечной мини-электростанцией: контроллер защищает аккумуляторы от полного разряда и от перезаряда, которые для них очень опасны. В случае недопустимо низкого разряда аккумуляторов контроллер отключает нагрузку.

В том случае, когда аккумуляторы полностью заряжены, контроллер не дает энергии от солнечных батарей поступать в аккумуляторы.

Инвертор

Солнечные батареи вырабатывают постоянный ток напряжением 12В, в то время как большая часть электроприборов работает от переменного тока напряжением 220В.

Поэтому в систему солнечной мини-электростанции включают инвертор, который преобразует постоянный ток 12В в переменный ток 220В. Лучше всего использовать более дорогие инверторы, которые выдают ток так называемой чистой синусоиды («чистый синус»).

Более дешевые инверторы, вырабатывающие ток модифицированной синусоиды, для некоторой техники могут не подойти.

По теме:
Украшаем забор на даче: 30 идей

Потребители электроэнергии

Как правило, во всех солнечных мини-электростанциях устанавливаются отдельные розетки для приборов (потребителей), работающих от постоянного (12В) и переменного тока (220В).

От постоянного тока могут работать энергосберегающие осветительные приборы, водяные насосы, холодильники и даже телевизоры. Вся остальная техника требует переменного тока напряжением 220В.

По возможности выбирайте оборудование, которое потребляет как можно меньше электроэнергии, – на современном рынке бытовой техники существует огромный выбор таких энергосберегающих устройств.

Собственный опыт и впечатления

На нашей даче небольшая система из солнечных батарей успешно проработала несколько лет, пока не появилась возможность подключиться к общей электросети. Конечно же, когда после установки солнечных батарей мы смогли включить нормальный свет, холодильник, насос для воды, антенну и телевизор, это было просто чудо.

Однако за системой необходимо постоянно следить и поддерживать ее в правильном, работоспособном состоянии. Например, контакты на месте соединения проводов от солнечных панелей с контроллером заряда периодически окисляются и перестают качественно проводить заряд. Поэтому их необходимо периодически зачищать и подключать заново.

Если этого не делать, то заряд от батарей поступает в аккумуляторы не полностью, мини-электростанция накапливает меньший запас электричества, чем рассчитывалось, и при включении обычной (рассчитанной для нее) нагрузки уже не справляется: скорость разряда становится быстрее скорости заряда.

Кроме того, если система бюджетная и не очень мощная, необходимо очень четко понимать, какие электроприборы можно включать одновременно, а какие – нет.

Пока у нас с мужем была возможность часто ездить на дачу и следить за солнечными батареями, все хорошо работало и никаких проблем не возникало. Но когда обязанность поддерживать систему в рабочем состоянии легла на плечи наших пожилых родителей, начались проблемы с ее функционированием, потому что у них не хватало знаний и опыта. В итоге было принято решение воспользоваться появившейся возможностью подключиться к обычной электросети, чтобы не нагружать их лишними заботами.

Основываясь на нашем опыте, я могу сказать, что собрать достаточно бюджетную автономную мини-электростанцию на солнечных батареях вполне реально. И она действительно будет надежно и эффективно работать, обеспечивая основные потребности небольшого дачного домика. Однако для поддержания ее в хорошем состоянии нужно тщательно изучить вопрос и периодически проводить ее диагностику и профилактику.

:

Источник: https://kvartblog.ru/blog/solnechnye-batarei-na-dache/

Расчет мощности солнечных батарей для дома

Какой ток вырабатывают солнечные батареи

Если вы решили сэкономить на расходах электроэнергии и установить собственную солнечную электростанцию в доме или на даче, тогда необходимо начать с расчетов показателей как потребления энергии, так и мощности солнечных панелей.

Это самый важный и трудоемкий процесс, который станет залогом правильной работы солнечной системы и выработки нужного количества тока для обеспечения всех потребностей.

Кроме того, рассчитанные показатели смогут послужить основой для увеличения эффективности или экономии энергии.

Показатель мощности солнечной батареи

Если посмотреть описание разных моделей солнечных батарей, то можно обратить внимание, что показателем измерения выступает номинальная мощность (Вт). Этот показатель и будет служить главным критерием для оценки мощности солнечной батареи.

Номинальная мощность указывается из расчета, что на 1 кв. метр панели будет поступать 1 кВт солнечной энергии.

То есть вы сможете рассчитывать на такой показатель мощности батареи, если в месте, где расположена солнечная система, температура не менее 25 градусов, ориентация модулей на юг с учетом угла наклона и отсутствует затемнение.

Зачем нужен расчет мощности солнечных батарей

Сегодня на рынке представлено огромное количество солнечных батарей, они отличаются не только производителем и ценой, но и своими техническими характеристиками. Мощность – это главный показатель, от которого необходимо отталкиваться, если вы хотите получить выгоду от установки солнечной системы.

Важно понимать, что неправильно произведенный расчет или и вовсе отсутствие каких-либо анализов по планируемой мощности могут привести к неудовлетворению ваших электрических потребностей в доме, тогда придется использовать дополнительное питание от сети либо ограничивать себя в электроприборах.

В итоге сложная задумка с солнечными батареями теряет весь смысл.

Порядок расчета

Чтобы рассчитать необходимую мощность батареи, которая покроет ваши затраты электроэнергии, нужно провести ряд действий, основанных на точных расчетах.

Определение потребляемой энергии

Начинать надо в первую очередь с расчета необходимой энергии для обеспечения вашего дома. Сделать это можно двумя способами: первый – посмотреть на счетчике, сколько электроэнергии вы расходуете за месяц или в сутки, а второй – сделать более детальный расчет.

Чтобы произвести второй вариант расчета, нужно взять бумагу с ручкой и составить список всех электроприборов, которые имеются у вас в доме.

Количество потребляемой энергии каждым устройством нужно умножить на количество часов работы, а после все полученные показатели сложить и получить общий расход, который должны покрывать солнечные батареи.

Ниже приведены приблизительные значения самых часто используемых электроприборов в любом доме.

Электроприбор Ватт Сколько часов работы в сутки Вт/час
Холодильник 250 24 6000
Компьютер 100 4 400
Стиральная машина 500 1 500
Электрочайник 1000 0.3 300
Телевизор 150 6 900
Радиоприемник 4 2 8
Экономлампа 1 20 6 120
Экономлампа 2 15 4 60
Экономлампа 3 10 2 20

Если вы не знаете потребление электроэнергии того или иного прибора, то для точности расчетов лучше посмотреть это значение в технической документации или на сайте производителя.

Просуммировав последнюю колонку в таблице, вы сможете посчитать суточный расход электроэнергии. Однако здесь не все так просто. Это не будет конечная цифра для выбора мощности солнечной батареи и их количества. Дополнительно нужно будет прибавить около 30% потребляемой энергии на обслуживание обязательных устройств для работы солнечной системы – аккумулятора и инвертора.

Кроме того, солнечными батареями генерируется постоянный ток, который впоследствии при помощи инвертора перерабатывается на переменный с повышением напряжения для обслуживания дома (220В), где еще теряется около 20%. И еще нужно прибавить около 10%, которые пойдут на пусковую мощность электроприборов.

ЭТО ИНТЕРЕСНО:  Как снять показания счетчика электроэнергии Меркурий

Так как при запуске техника первые несколько минут потребляет в 3, а то и в 5 раз больше заявленной энергии.

Уровень инсоляции

Суть солнечных батарей заключается в выработке энергии за счет воздействия лучей солнца на фотоэлементы со специальным составом. Чем больше солнечная радиация, тем выше производительность панелей.

Максимальная эффективность зафиксирована при попадании лучей на поверхность пластин под углом 90 градусов, то есть перпендикулярно. Соответственно ночью энергия не вырабатывается, а используется та, которая накопилась в аккумуляторе за дневное время.

Поэтому очень важно правильно установить солнечную панель и рассчитать ее работоспособность в зависимости от климата того или иного региона.

Во время пасмурной погоды, а также захода солнца, уровень выработки энергии солнечной системы падает на 20-30%.

Уровень солнечной инсоляции – это еще один немаловажный показатель, который необходимо учитывать при определении мощности солнечной батареи. В каждом регионе он разный и дает четкое понятие, сколько количества солнечного тепла приходится на единицу площади панели.

Если вы проживаете в регионе с небольшим уровнем инсоляции, тогда вам нужно будет приобретать либо более мощное устройство, либо в большем количестве для полного обеспечения дома электроэнергией. Рассчитывать самостоятельно показатель инсоляции не нужно. Его значение представлено в специальных справочниках, которые можно найти без проблем в интернете.

Подобная информация также представлена на метеорологических сайтах. Указанная информация может быть представлена как за год, так и отдельно по месяцам (для крупных городов).

Выбор мощности панелей

В зависимости от рассчитанного количества потребляемой энергии количество солнечных батарей может быть разным. Также следует учитывать, какие задачи возложены на батарею – полная продуктивность или использование ее в качестве дополнительного источника питания, если в вашем доме часто бывают перебои. Если вы хотите покрыть все электрорасходы в доме, тогда придется хорошо потратиться и приобретать устройства с высокой мощностью и продуктивностью.

Мощность панели напрямую будет зависеть от количества потребляемой энергии как электроприборами в доме, так и техническими устройствами, которые являются обязательными для работы солнечной станции. Здесь нельзя не учесть и количество солнечных дней в месяце, уровень инсоляции, частоту смены угла наклона.

Максимальная производительность панели наблюдается не более 7 часов в сутки и то при условии, что небо чистое, а ночью и вовсе не будет никакой выработки, соответственно, при соотнесении расходуемой энергии с мощностью батареи нельзя приравнивать эти два показателя. Мощность должна быть на 30-40% больше.

Для примера можно взять батарею с указанной мощностью в 1кВт. Это значение нужно умножить на количество часов работы панели с максимальной производительностью, приплюсовать дополнительные расходы на снабжение инвертора и аккумулятора, а также то время в сутках, когда солнечный свет отсутствует. В результате вы сможете получить выработку одной батареи. Если показатель слишком маленький, тогда нужно присмотреться к батареям с более высокой мощностью, однако и цена их будет выше.

Расчет мощности солнечных батарей

Расчет количества панелей

Итак, мы определились, что мощность панелей измеряется в Вт. Чтобы произвести расчет, нам понадобятся все ранее полученные значения, а именно:

  • Количество потребляемой электроэнергии.
  • Уровень инсоляции в вашем регионе.
  • Мощность одной батареи.

Формула для расчета выглядит следующим образом:

W = k*Pw*E/1000, где

к – фиксированное значение/коэффициент 0,5 в летний период и 0,7 в зимний.

Рw – мощность.

Е – значение инсоляции за выбранный период.

Итак, представим, что вы просчитали суточное потребление энергии, которое равно 5600 Вт. Скорректируем это значение на 30% с учетом потребностей инвертора, аккумулятора и преобразования энергии. В результате получается 5600*1,3=7280Вт, можно округлить до 7300 Вт. Теперь посмотрим показатель солнечной радиации для конкретного города, например, он равняется 0,79 для зимы и 4,5 для лета. Стандартная мощность составляет 260Вт.

W зимой = 0,7*260*0,79=143Втч.

W летом = 0,5*260*4,5=585Втч.

Теперь делим общую потребность в электроэнергии на выработку солнечной батареи. Зимой, чтобы обеспечить весь дом электричеством, понадобится примерно 51 панель, а летом 13 штук мощностью в 260Вт и напряжением 24В. Так как полученное значение достаточно велико и для размещения 50 панелей понадобится большая площадь, целесообразнее купить панели с более высоким напряжением и мощностью.

Как увеличить эффективность работы солнечных батарей

Первый шаг, который пытается сделать любой владелец солнечных батарей с целью увеличить эффективность выработки электроэнергии – это заменить обычные электроприборы на экономные. Но, перед тем как это сделать, ознакомьтесь с основными рекомендациями специалистов, которые помогут повысить КПД батареи.

  • Следите, чтобы не происходило затемнения солнечного оборудования.
  • Придерживайтесь правил монтажа, от которых зависит производительность солнечных батарей.
  • Очищайте панели от грязи, пыли и наледи.
  • Старайтесь регулярно менять угол наклона панелей, чтобы солнечные лучи попадали перпендикулярно, в зависимости от месяца и времени года.
  • Используйте электроприборы классов А, А++, А+++.
  • Выбирайте правильные крепления для солнечных батарей.

Выполнять все предложенные рекомендации необходимо в комплексе. Если, к примеру, вы будете регулярно менять угол наклона панелей, но при этом забываете их очищать от грязи, то результат от ваших действий не появится. Солнечные батареи прослужат вам долго и бесперебойно при соблюдении правил эксплуатации, которые рекомендованы производителем. Если у вас возникли сложности при расчете, то вы всегда можете обратиться за помощью к специалисту по данным вопросам.

Источник: https://www.termico-solar.com/moshhnost-solnechnyh-batarej/

В поле света: фермерские угодья смогут вырабатывать энергию

Российские сельскохозяйственные поля оснастят солнечными панелями. Это позволит производить энергию, не выделяя специальный участок под электростанцию.

Идею планируется реализовать с помощью установки батарей на специальных мачтах — они не будут мешать выращиванию растений и проезду техники, при этом давая возможность получать 1,5 МВт энергии с 1 га земли.

Этого будет достаточно для полного самообеспечения фермерских хозяйств электричеством и продажи ее излишков в общую сеть — при условии принятия соответствующих поправок в законодательство. Однако, по мнению экспертов, установка солнечных батарей прямо на территории полей может усложнить уход за оборудованием.

Урожай с неба

Идея российских инженеров состоит в размещении на сельскохозяйственных полях специальных шестиметровых мачт с таким расчетом, чтобы они не мешали выращиванию растений и проезду техники. Далее на них будут устанавливаться солнечные панели, способные эффективно вырабатывать электроэнергию.

Как рассказали создатели проекта, используемые батареи работают на основе технологии PERC, которая позволяет добиться КПД ячеек в 21,5% при мощности солнечного модуля от 300 до 375 Вт. Таким образом, совокупная установленная мощность для 1 га земли составит около 1,5 МВт, отметил представитель разработчика Илья Лихов. По его словам, этого будет достаточно для полного удовлетворения потребностей хозяйств в электроэнергии.

Интерес вызывает и конфигурация батарей: они представляют собой безрамочные солнечные панели, состоящие из двух слоев стекла, между которыми находятся генерирующие элементы. Благодаря такой конструкции они могут пропускать часть солнечного света, который проходит через промежутки между солнечными ячейками. В конечном счете это позволяет создать легкое затенение, которое обеспечивает защиту растений от выгорания при сохранении доступа к свету.

Кроме того, установка большого количества панелей мешает распространению ветра и способствует повышению влажности, что помогает увеличить плодородность земли.

Помимо мачт и батарей для создания полноценной электростанции необходим инвертор (он переводит постоянный ток от солнечных элементов в переменный), а в некоторых случаях еще и аккумуляторные батареи, которые позволяют сохранить энергию для последующего использования (например, в ночное время).

Гарантия на батареи составляет 30 лет при сроке службы около полувека. При этом инверторы и аккумуляторы необходимо менять каждые 15–20 лет.

Специалисты уже приступили к реализации первого проекта строительства новой солнечной электростанции в Краснодарском крае — местного сельхозпроизводителя планируется оснастить системой батарей суммарной мощностью в 200 КВт.

Битва за гектары

Традиционно под станцию в 1 МВт требуется 2–3 га земли, отметил генеральный директор АО «Белгородский институт альтернативной энергетики» Владимир Бредихин. Решение использовать солнечные панели на основе технологии PERC с довольно высоким КПД должно уменьшить срок окупаемости солнечных электростанций и повысить привлекательность технологии для потребителей.

Однако некоторые эксперты выразили сомнение в целесообразности установки солнечных батарей прямо на территории сельскохозяйственных полей, поскольку это может усложнить уход за оборудованием.

— Во время вспашки, культивирования, уборки урожая и других сельскохозяйственных работ, в ходе которых используется техника, будет происходить сильное запыление панелей, что неизбежно приведет к снижению эффективности их работы, — считает заведующая кафедрой «Электрические станции, сети и системы электроснабжения» Южно-Уральского государственного университета Ирина Кирпичникова. — В результате поверхность батарей нужно будет регулярно чистить, что может стать достаточно сложной задачей, учитывая высоту их расположения.

По расчетам специалистов, срок строительства одной солнечной станции (в зависимости от размера участка) составит от одной недели до месяца — без учета времени на доставку оборудования. При этом ее цена для удаленных регионов во множестве случаев не превысит стоимости подключения к электрической сети или установки автономного дизельного генератора сопоставимой мощности, обещают разработчики.

Частная электростанция

Доступность солнечной электростанции можно повысить также благодаря отказу от использования дорогостоящих аккумуляторов (обычно на них уходит половина стоимости системы), наладив поставку излишков вырабатываемой энергии в общую сеть. Однако пока эту возможность нельзя реализовать из-за отсутствия необходимой законодательной базы.

— Судя по характеристикам проекта, при установке новой электростанции мы могли бы получать со своих 2 га 3 МВт электроэнергии, однако для растениеводства такие мощности излишни, — отметил глава одного из хозяйств станицы Казанская (Кавказский район Краснодарского края) Виктор Коломийцев.

— Думаю, более актуально это будет для хозяйств, которые совмещают выращивание растений с птицеводством и содержанием скота, поскольку это требует больших затрат электричества.

Также установка большого количества батарей может быть интересна, если появится возможность продавать излишки энергии в общую сеть, как это делают фермеры в Германии и Франции.

Как писали «Известия», в прошлом году Минэнерго разработало законопроект о частной «зеленой» микрогенерации. Согласно предложениям ведомства, монтировать солнечные панели и ветряные установки смогут только собственники домов.

Энергию с них они будут продавать так называемым гарантирующим поставщикам — это основные энергосбытовые компании регионов. Таких поставщиков обяжут заключать с жителями договоры купли-продажи электричества. В документе сказано, что таким образом они возместят теряющуюся при передаче по сетям энергию.

По оценкам экспертов, создание таких частных электростанций окупится как минимум за пять лет в Южном федеральном округе, где пасмурных дней меньше, и за 7–8 лет в регионах Поволжья и Сибири.

По мнению аналитиков, процесс развития возобновляемых источников энергии в России во многом будет зависеть от дальнейшего удешевления оборудования и темпов роста цен на электричество. Законопроект о частной «зеленой» микрогенерации в конце прошлого года был направлен в Госдуму, в первом чтении он пока не рассматривался.

Источник: https://iz.ru/896620/aleksandr-bulanov/v-pole-sveta-fermerskie-ugodia-smogut-vyrabatyvat-energiiu

Использование энергии солнца в хозяйстве

Одной из лучших отраслей возобновляемых источников энергии является солнечная энергетика. В европейских странах и в Америке данную технологию широко используют.

На рынке нашей страны солнечные батареи появились относительно недавно, при этом спрос на них продолжает расти с каждым днем. Эти батареи можно установить в частный дом или на дачу, а некоторые ставят их в квартиру или офис.

 Сегодня на рынке представлен широкий ассортимент различных устройств. Давайте рассмотрим основные моменты, на которые стоит обратить внимание при покупке солнечной батареи.

Многие могут вспомнить школьную программу, когда на уроках физики учитель говорил о том, что под воздействием световой энергии часть приборов способна вырабатывать электрический ток. Данный процесс получил название фотоэффект. Постоянный ток образуется в результате того, что электроны получают дополнительную энергию, когда происходит их соскок с орбиты. Однако для покупателя теория не совсем интересна.

Все солнечные батареи работают именно по принципу, описанному выше. Площадь модуля начинает сбор солнечной энергии с дальнейшей ее переработкой в электрическую. В результате человек может использовать энергию в своих целях. Наиболее дешевым веществом, которое способно производить энергию является кремний. Именно его применяют для изготовления большей части солнечных панелей.

Виды

Существует два основных типа солнечных батарей, которые различаются по строению фотоэлементов. У каждого из них есть свои достоинства и недостатки.

  • Поликристалические солнечные модули ФСМ – у данного типа кристаллы имеют разную ориентацию. В результате производительность будет немного ниже. Но при разном направлении появляется возможность улавливать рассеянный свет. Именно поэтому батареи отлично работают в любую погоду.
  • Монокристалические солнечные модули ФСМ – в этом случае все кристаллы будут повернуты в одну сторону. Именно этот тип стали использовать в больших масштабах. Структура позволяет улавливать солнечный свет и при светлой погоде они вырабатывают на 20-25 процентов больше энергии. Однако при облаках их производительность резко снижается.

Выбрав тип модуля необходимо разобраться с дальнейшими действиями. Поскольку с его помощью будет вырабатываться постоянный ток, а для техники потребуется переменный. Поэтому придется приобрести сразу несколько устройств:

С помощью батареи вы сможете собирать солнечную энергию и получать постоянный ток. Инвертор преобразует ток в переменный, а за работой всей сети следит контролер. А вот покупка аккумулятора не является обязательной, но пригодится для обеспечения автономной работы.

Расчет мощности

Не стоит забывать и о том, что батарея должна вырабатывать мощность, которая сможет обеспечить все ваши приборы питанием. Лучшим вариантом считается предоставить данный расчет специалистам с большим опытом. Сам же расчет выполняется следующим образом:

  1. Учитывается количество энергии, которое потребляется за сутки. Сюда необходимо внести все приборы, которые должны быть обеспечены электричеством.

  2. Полученное значение можете смело умножать на два. Именно это число будет оптимальным размером мощности для вашего здания.

Вы можете обратиться к специалистам компании СВиПС и они помогут правильно рассчитать, именно на Ваш объект, необходимое количество солнечных модулей, аккумуляторных батарей и подберут для Вас инвертор оптимальной мощности, с учетом установленного оборудования в вашем доме или на производстве.

Источник: https://svips.ru/a223421-ispolzovanie-energii-solntsa.html

Расчёт солнечных батарей

Приветствую вас на сайте е-ветерок.ру, сегодня я хочу вам рассказывать о том сколько нужно солнечных батарей для дома или дачи, частного дома и пр. В этой статье не будет формул и сложных вычислений, я попробую донести всё простыми словами, понятными для любого человека. Статья обещает быть не маленькой, но я думаю вы не зря потратите своё время, оставляйте комментарии под статьёй.

Самое главное чтобы определится с количеством солнечных батарей надо понимать на что они способны, сколько энергии может дать одна солнечная панель, чтобы определить нужное количество. А также нужно понимать что кроме самих панелей понадобятся аккумуляторы, контроллер заряда, и преобразователь напряжения (инвертор).

Расчёт мощности солнечных батарей

Чтобы рассчитать необходимую мощность солнечных батарей нужно знать сколько энергии вы потребляете. Например если ваше потребление энергии составляет 100кВт*ч в месяц (показания можно посмотреть по счётчику электроэнергии), то соответственно вам нужно чтобы солнечные панели вырабатывали такое количество энергии. Сами солнечные батареи вырабатывают солнечную энергию только в светлое время суток.

ЭТО ИНТЕРЕСНО:  Какая мощность разряда молнии

И выдают свою паспортную мощность только при наличие чистого неба и падении солнечных лучей под прямым углом. При падении солнца под углами мощность и выработка электроэнергии заметно падает, и чем острее угол падения солнечных лучей тем падение мощности больше. В пасмурную погоду мощность солнечных батарей падает в 15-20 раз, даже при лёгких облачках и дымке мощность солнечных батарей падает в 2-3 раза, и это всё надо учитывать.

При расчёте лучше брать рабочее время, при котором солнечные батареи работают почти на всю мощность, равным 7 часов, это с 9 утра до 4 часов вечера. Панели конечно летом будут работать от рассвета до заката, но утром и вечером выработка будет совсем небольшая, по объёму всего 20-30% от общей дневной выработки, а 70% энергии будет вырабатываться в интервале с 9 до 16 часов.

Таким образом массив панелей мощностью 1кВт (1000ватт) за летний солнечный день выдаст за период с 9-ти до 16-ти часов 7 кВт*ч электроэнергии, и 210кВт*ч в месяц. Плюс ещё 3кВт (30%) за утро и вечер, но пускай это будет запасом так-как возможна переменная облачность. И панели у нас установлены стационарно, и угол падения солнечных лучей изменяется, от этого естественно панели не будут выдавать свою мощность на 100%.

Я думаю понятно что если массив панелей будет на 2кВт, то выработка энергии будет 420кВт*ч в месяц. А если будет одна панелька на 100 ватт, то в день она будет давать всего 700 ватт*ч энергии, а в месяц 21кВт.

Неплохо иметь 210кВт*ч в месяц с массива мощностью всего 1кВт, но здесь не всё так просто

Во-первых не бывает такого что все 30 дней в месяце солнечные, поэтому надо посмотреть архив погоды по региону и узнать сколько примерно пасмурных дней по месяцам. В итоге наверно 5-6 дней точно будут пасмурные, когда солнечные панели и половины электроэнергии не будут вырабатывать. Значит можно смело вычеркнуть 4 дня, и получится уже не 210кВт*ч, а 186кВт*ч

Так-же нужно понимать что весной и осенью световой день короче и облачных дней значительно больше, поэтому если вы хотите пользоваться солнечной энергией с марта по октябрь, то нужно увеличить массив солнечных батарей на 30-50% в зависимости от конкретного региона.

Но это ещё не всё, также есть серьёзные потери в аккумуляторах, и в преобразователей (инверторе), которые тоже надо учитывать, об этом далее.

Про зиму я пока говорить не буду так-как это время совсем плачевное по выработке электроэнергии, и тут когда неделями нет солнца, уже никакой массив солнечных батарей не поможет, и нужно будет или питаться от сети в такие периоды, или ставить бензогенератор. Хорошо помогает также установка ветрогенератора, зимой он становится основным источником выработки электроэнергии, но если конечно в вашем регионе ветренные зимы, и ветрогенератор достаточной мощности.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей

Самый минимальный запас ёмкости аккумуляторов, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100%. Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%. По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД.

Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%.

Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%, чтобы компенсировать эти потери.

Но и это ещё не все потери. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись.

PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности.

А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20%.

Расчёт солнечных батарей для частного дома или дачи

Если вы не знаете ваше потребление и только планируете скажем запитать дачу от солнечных батарей, то потребление считается достаточно просто. Например у вас на даче будет работать холодильник, который по паспорту потребляет 370кВт*ч в год, значит в месяц он будет потреблять всего 30.8кВт *ч энергии, а в день 1.02кВт*ч.

Также свет, например лампочки у вас энергосберегающие скажем по 12 ватт каждая, их 5 штук и светят они в среднем по 5 часов в сутки. Это значит что в сутки ваш свет будет потреблять 12*5*5=300 ватт*ч энергии, а за месяц «нагорит» 9кВт*ч.

Также можно почитать потребление насоса, телевизора и всего другого что у вас есть, сложить всё и получится ваше суточное потребление энергии, а там умножить на месяц и получится некая примерная цифра. Например у вас получилось в месяц 70кВт*ч энергии, прибавляем 40% энергии, которая будет теряться в АКБ, инверторе и пр. Значит нам нужно чтобы солнечные панели вырабатывали примерно 100кВт*ч. Это значит 100:30:7=0,476кВт.

Получается нужен массив батарей мощностью 0,5кВт. Но такого массива батарей будет хватать только летом, даже весной и осенью при пасмурных днях будут перебои с электричеством, поэтому надо увеличивать массив батарей в два раза.

В итоге вышеизложенного в вкратце расчёт количества солнечных батарей выглядит так:

  • принять что солнечные батареи летом работают всего 7 часов с почти максимальной мощностью
  • посчитать своё потребление электроэнергии в сутки
  • Разделить на 7 и получится нужная мощность массива солнечных батарей
  • прибавить 40% на потери в АКБ и инверторе
  • прибавить ещё 20% если у вас будет PWM контроллер, если MPPT то не нужно
  • Пример: Потребление частного дом 300кВт*ч в месяц, разделим на 30 дней = 7кВт, разделим 10кВт на 7 часов, получится 1,42кВт. Прибавим к этой цифре 40% потерь на АКБ и в инверторе, 1,42+0,568=1988ватт. В итоге для питания частного дома в летнее время нужен массив в 2кВт.

    Но чтобы даже весной и осенью получать достаточно энергии лучше увеличить массив на 50%, то-есть ещё плюс 1кВт. А зимой в продолжительные пасмурные периоды использовать или бензогенератор, или установить ветрогенератор мощностью не менее 2кВт.

    Более конкретно можно рассчитать основываясь на данных архива погоды по региону.

    Стоимость солнечных батарей и аккумуляторов

    Цены на солнечные батареи и оборудование сейчас достаточно разнятся, одна и также продукция может по цене в разы отличаться у разных продавцов, поэтому ищите дешевле, и у проверенных временем продавцов. Цены на солнечные батареи сейчас в среднем 70 рублей за ватт, то-есть массив батарей в 1кВт обойдётся примерно в 70т.руб, но чем больше партия тем больше скидки и дешевле доставка.

    Качественные специализированные аккумуляторы стоят дорого, аккумулятор 12в 200Ач обойдётся в среднем в 15-20т.рублей. Я использую вот такие акб, про них написано в этой статье Аккумуляторы для солнечных батарей Автомобильные в два раза дешевле, но их надо ставить в два раза больше чтобы они прослужили хотябы лет пять. А так-же автомобильные АКБ нельзя ставить в жилых помещениях так-как они не герметичны.

    Специализированные при разряде не блолее 50% прослужат 6-10 лет, и они герметичные, ничего не выделяют. Можно купить и дешевле если брать крупную партию, обычно продавцы дают приличные скидки.

    Остальное оборудование наверно индивидуально, инверторы бывают разные, и по мощности, и по форме синусоиды, и по цене. Так-же и контроллеры заряда могут быть как дорогие со всеми функциями, в том числе с о связью с ПК и удалённым доступом через интернет.

    Источник: http://e-veterok.ru/095-solnehnye-batarei-vraschyot.php

    О контроллерах солнечных батарей

    Контроллер солнечной батареи (или солнечный зарядный контроллер) по своему назначению аналогичен реле зарядки в автомобиле. Он регулирует напряжение и ток идущий от солнечных батарей к аккумуляторам.

    Большинство солнечных модулей с номинальным напряжением 12 Вольт фактически могут выдавать от 16 до 20 Вольт, поэтому при использовании таких панелей без контроллера, аккумуляторы будут быстро выведены из строя повышенным напряжением («перезаряд»).

    Продление срока службы аккумуляторов — важнейшая задача, которая решается путем использования контроллера.

    Еще одна важная функция контроллера солнечной батареи — предотвращение возникновения обратного тока.

    Ночью, когда солнечные панели не вырабатывают электричество, может возникнуть ток от аккумулятора через солнечные батареи, который будет опустошать аккумуляторы и расходовать запасенную за световой день энергию.

    Контроллер заряда определяет, что от солнечных панелей не поступает энергия и отключает солнечные батареи от аккумуляторов, тем самым останавливая обратный ток и предотвращая их разряд.

    Заметим, что в общем случае, в контроллере нет необходимости при использовании солнечных батарей небольшой мощности, например, от 1 до 5 Ватт.

    Простейший контроллер солнечной батареи всего лишь измеряет напряжение на клеммах аккумулятора и размыкает цепь, останавливая зарядку, когда напряжение батареи достигает заданной величины. Самые старые контроллеры представляют собой обычное и привычное по автомобилю реле.

    ШИМ — контроллеры

    Следующим поколением контроллеров являются устройства использующие метод ШИМ (PWM), что расшифровывается как широтно-импульсная модуляция. ШИМ эффективно используется как один из методов регулирования тока зарядки.

    Вместо постоянного тока с выхода контроллера, посылается серия коротких импульсов — «вспышек» на аккумулятор.

    В перерывах между импульсами контроллер проверяет состояние аккумулятора, чтобы определить, как часто посылать импульсы, какой продолжительности они должны быть и перенастраивается после каждой проверки.

    Ясно, что при полностью заряженной аккумуляторной батарее без нагрузки, это будут короткие импульсы с большими интервалами между ними — до нескольких секунд (режим поддержки). При разряженном аккумуляторе импульсы будут практически непрерывными, или даже контроллер перейдет в непрерывный режим подачи тока (режим наполнения).

    Такой тип контроллера позволяет эффективно зарядить аккумулятор с наименьшим для него ущербом, таким образом, продлевается срок службы аккумулятора. Также ШИМ контроллер способен обеспечить поддержание аккумуляторов в полностью заряженном состоянии сколь угодно долго. ШИМ-контроллер устроен сложнее, чем реле, но за счет отстутствия в нем механических частей более надежен.

    MPPT -контроллеры

    Контроллер с функцией отслеживания точки максимальной мощности (или с функцией MPPT, MPPT-контроллер) это высокоэффективный преобразователь постоянного тока, который отслеживает точку оптимальной электрической нагрузки для фотоэлектрических элементов, и, исходя из состояния заряда аккумулятора, преобразует напряжение и ток на выходе с контроллера.

    Контроллеры солнечных батарей с функцией MPPT способны преобразовывать избыточное напряжение в силу тока. Это дает им следующие преимущества.

    Большая часть солнечных систем использует 12 вольтные аккумуляторы. Солнечные же панели способны выдавать куда большие напряжения, чем необходимо для простой зарядки аккумуляторных батарей. Таким образом, преобразование избыточного напряжения в силу тока позволяет сохранить оптимальный режим заряда и уменьшить потери. За счет этого солнечная система функционирует в оптимальном режиме и с наименьшими потерями в течение всего времени.

    С другой стороны, функция MPPT позволяет уменьшить потери в проводах. Больший ток в проводах приводит к большим потерям за счет сопротивления (как известно, потери пропорциональны квадрату силы тока). За счет высокого напряжения от солнечных панелей до контроллера солнечных батарей, потери в проводах значительно снижаются. Затем MPPT контроллер преобразует избыточное напряжение в силу тока.

    MPPT контроллеры дороже ШИМ контроллеров, однако они оправдывают свою стоимость. Если есть возможность — используйте солнечные контролллеры с функцией MPPT. Считается, что при суммарной мощности солнечных модулей от 200-300 Вт MPPT-контроллеры более эффективны, чем ШИМ.

    Источник: http://zelenergo.ru/stati/o-kontrollerah-solnechnyh-batarey/

    Как работает солнечная батарея — бесплатное электричество для вашего дома

    Когда деньги, вложенные в батареи, окупятся, электричество в доме будет действительно бесплатным

    Заинтересованы в бесплатной электроэнергии на дачном участке или в загородном доме? Я расскажу про принцип действия и про устройство солнечной батареи, а вы сможете решить, подходит ли такое устройство для того, чтобы сделать дом или дачу энергонезависимыми.

    Что такое солнечные батареи и как они работают

    Солнечная батарея (СБ) — это устройство, позволяющее преобразовать световую энергию солнечных лучей в электрический ток. В основе приборов применяются фотоэлементы — полупроводниковые фотоэлектрические преобразователи.

    Пример того, как небольшой поселок можно сделать энергонезависимым

    Современные модификации солнечных батарей различаются такими параметрами, как производимая мощность и габариты. Поэтому эти устройства с одинаковым успехом применяются в самых разных конструкциях, начиная с портативных калькуляторов и оканчивая солнечными электростанциями.

    На схеме показано, из чего состоит наиболее распространённая батарея солнечного света

    При сборке фотоэлемента на пластину монокристаллического кремния с шириной запрещенной зоны 5 эВ наносится слой фосфора и бора. В слое кремния с добавками фосфора (катод) возникают свободные электроны. В слое кремния с бором (анод) образуются отсутствующие электроны, так называемые «дырки».

    На схеме показан принцип работы кремниевого фотоэлемента, начиная с воздействия света на поверхность и оканчивая отведением тока

    ЭТО ИНТЕРЕСНО:  Как правильно выбрать автоматический выключатель

    Когда на поверхность фотоэлемента попадает квант света, происходит движение частиц из одного слоя в другой. За счет движения частиц, высвобождается определенное количество энергии, то есть создается разность потенциалов, которую определяет интенсивность света.

    Медные дорожки нескольких пластин параллельно спаиваются друг с другом

    Для того чтобы высвобожденную энергию вывести с каждой отдельно взятой пластины, на поверхность фотоэлектрических преобразователей нанесены металлизированные дорожки.

    Мощность собранной батареи определяется ее площадью. То есть, чем больше отдельных пластин будет закреплено на панели, тем больше электричества будет выработано.

    Разновидности преобразующих панелей и их устройство

    Иллюстрации Классификация по типу солнечных элементов
    Панели с кремниевыми фотоэлементами. СБ с кремниевыми фотоэлементами это самый распространенный тип панелей (около 85% от всего объёма производимых солнечных батарей).С развитием технологий, цена таких производственных процессов, как выращивание кремния и нанесение легирующего покрытия снижается. Более того, кремний — это самый распространенный элемент в составе земной коры.Именно поэтому будущее солнечной энергетики в ближайшие 50 лет будут определять кремниевые СБ.Недостаток кремниевых СБ — это низкий коэффициент светопоглощения из-за того, что кремний не прямозонный полупроводник. В итоге фотоэлементы производятся с увеличенной толщиной, что негативно сказывается на весе устройства.
    Тонкопленочные панели. Такие СБ характеризуются более высоким коэффициентом светопреобразования, в сравнении с кремниевыми аналогами.Применение прямозонных полупроводников в качестве фотоэлементов, позволяет вырабатывать оптимальное количество энергии при толщине СБ в пару микрон. Панели с такими фотоэлементами немного весят и могут устанавливаться своими руками на крыши жилых домов, на крыши автомобилей и т.п.Существенное преимущество тонкопленочных СБ — способность эффективно работать даже в облачный день.
    Концентраторные модули. Это самые дорогие, но и самые эффективные СБ (эффективность светопреобразования около 44%).В конструкции этих фотоэлементов применены полупроводники нескольких типов, расположенные слоями в определённом порядке. Например, распространённый вариант: Ge — полупроводник подложка, GaAs — средний слой и GaInP — верхний слой.За счет особого расположения полупроводников обеспечивается эффективное усвоение солнечной энергии, как в ясную, так и в облачную погоду. Сборка СБ на основе концентраторных модулей технически сложна, а потому цена устройств высокая.
    Органические батареи. Эти панели пока что отсутствуют в продаже. Фотоэлементы в составе панелей работают по принципу фотосинтеза растений. Для этого поверхность фотоэлементов покрыта слоем светочувствительной краски.На фото — модель дерева с листьями из органических батарей.
    Иллюстрации Классификация кремниевых фотоэлементов в соответствии с типом кристалла.
    Фотоэлектрические преобразователи из монокристаллического кремния (КПД 15-20%). Основа фотоэлемента — чистый кремниевый монокристалл, выращенный из кремниевого расплава.Готовые монокристаллы имеют форму стержня, которому придается форма куба. Куб нарезается на пластины с толщиной 180 Мк.Нарезанные пластины очищаются и армируются защитным покрытием. Поверхность подвергается металлизации, после чего на нее наносится антирефлексионное покрытие.
    Фотоэлектрические преобразователи из поликристаллического кремния (КПД 10-15%). Поликристаллический кремний выращивается из остывшего кремниевого расплава.Из-за низкой температуры расплава процесс формирования стержней протекает медленно. Тем не менее, инструкция их производства проще формирования монокристаллов.
    Фотоэлектрические преобразователи из аморфного кремния (КПД 8-10%). Производство аморфного кремния выполняется по технологии испарительной фазы, а именно, кремниевая пленка крепится на несущем материале и армируется защитным покрытием.Преимущества технологии — малая себестоимость и возможность изготавливать панели большой площади.Недостаток фотоэлементов из аморфного кремния — малый эксплуатационный ресурс из-за ускоренной деградации.

    Эффективное расположение

    Чтобы эксплуатация батарей была наиболее эффективной, устройство должно вырабатывать электричество наибольшее количество времени в течение светового дня. Добиться максимальной эффективности использования можно за счет правильного расположения плоскости относительно траектории прохождения солнца.

    Иллюстрации Популярные способы расположения
    Статичное расположение. Солнечная панель располагается с небольшим наклоном в восточном направлении. В итоге солнечный свет будет попадать на фотоэлементы большую часть дня.
    Изменяемое расположение. Увеличение эффективности энергопреобразования возможно за счет установки панели фотоэлементов на подвижной конструкции.Благодаря такому решению плоскость, в зависимости от положения солнца, будет менять угол наклона. Впрочем, такое решение применяется нечасто, так как из-за монтажа и эксплуатации электропривода увеличивается цена системы в целом.

    Интеграция солнечных батарей в электрическую сеть

    Солнечная батарея (СБ) вырабатывает электрический ток, но для того чтобы постоянное напряжение применить в быту, его нужно трансформировать в переменный ток и пустить в сеть или аккумулировать для последующего применения.

    На фото показан автомобильный инвертор, преобразующий постоянный ток (12 В) в переменный ток с параметрами бытовой электросети (50 Гц, 220 В)

    Для трансформирования постоянного напряжения в переменное, применяется специальное оборудование — инвертор. На вход устройства подаётся постоянное напряжение, а на выходе получается переменный ток с требуемой частотной характеристикой и необходимой мощностью.

    Аккумуляторы для бытовой солнечной электростанции — для удобства монтажа по бокам предусмотрены кронштейны для стойки

    Для накопления электроэнергии применяются свинцово-кислотные аккумуляторы. Обратите внимание на то, что солнечные панели комплектуются специальными аккумуляторами, которые по рабочим параметрам и по конструкции отличаются от обычных автомобильных аккумуляторов.

    Подведем итоги

    Теперь вы знаете, как работают солнечные батареи и как они устроены. Интересующие подробности можно найти, посмотрев видео в этой статье. Если остались вопросы, их можно задать в комментариях.

    Источник: https://otoplenie-gid.ru/istochnik-nagreva/solnechnoe/817-kak-rabotaet-solnechnaya-batareya

    Солнечные батареи зимой

    Солнечные батареи могут быть великолепной частью вашего дома. Они определённо позволяют экономить вам деньги в течение длительного срока и постоянно могут снижать ваши счета за электроэнергию. Мы все знаем, что солнечные батареи преобразуют энергию Солнца, однако зимой солнечных дней в России немного, поэтому закономерно возникает вопрос: сколько энергии выработают солнечные батареи или коллекторы зимой?

    Нужно понимать, что влияние низких температур на фотоэлектрические батареи и на солнечные тепловые коллекторы разное.

    Солнечным фотоэлектрическим батареям нужен свет, а не тепло

    Многие думают, что в жаркий солнечный день солнечные батареи вырабатывают больше энергии, чем в морозный солнечный день. Это не так. Для выработки электричества солнечных батареям нужен свет, а вот температура наоборот снижает их эффективность.

    Поэтому яркое солнце и низкая температура — идеальные условия для солнечных батарей. Конечно, в пасмурную погоду панели будут вырабатывать меньше света чем обычно, но в целом редко бывают случаи, когда в правильно рассчитанной системе аккумуляторная батарея на протяжении дня не успевает заряжаться.

    Зато в солнечную морозную погоду батареи будут очень эффективны. 

    Чем ниже солнце над горизонтом, тем меньше энергии достигает солнечных панелей, т.к. солнечным лучам нужно пройти толщу атмосферы. Зимой Солнце всегда низко, а дни короче, поэтому энергии от него можно получить гораздо меньше, чем летом.

     Зимой очень важен уровень наклона солнечных батарей. Часто выставляется универсальный угол, на целый год. Про исследование влияния угла наклона на эффективность работы солнечных батарей см.

    статью «Оптимальный угол установки солнечной батареи для максимальной выработки энергии в северных широтах«

    Продуктивность солнечных панелей зимой может падать от 2 до 8 раз в зависимости от региона, чем южнее, тем продуктивность выше. Поэтому чем больше площадь самих батарей, тем больше энергии они смогут собирать. Если летом для работы холодильника, компьютера и освещения дома нужен 1 кВт энергии (это 4 панели по 250 ватт), то зимой для надежности лучше запастись 2 кВт.

    Насколько меньше? Расчёты показывают, что система, ориентированная строго на юг и производящая около 300 кВт*ч в июне и июле, будет производить около 50-60 кВт*ч в декабре и январе, т.е. примерно в 5-6 раз меньше, чем летом. Это при условии, что солнечные панели очищены от снега.

    Если ваши панели будут занесены снегом, то солнечная батарея вообще не будет вырабатывать электроэнергию. Для более точной оценки выработки энергии солнечной фотоэлектрической системы при разных углах наклона можно использовать калькулятор PVWatts на сайте NREL.

    Калькулятор хорош тем, что рассчитывает выработку энергии с учетом потерь на загрязнение модулей, их нагрев, потерь в проводах, инверторе и проч.

    Ниже пример расчёта для Самары для солнечной электростанции мощностью 1 кВт.

    Пример расчета выработки энергии для солнечной фотоэлектрической станции мощностью 1 кВт, при угле наклона панелей 38 градусов, потерях в системе 15% и стоимости электроэнергии 5 руб/кВт*ч.

    Работают ли солнечные коллекторы зимой?

    Мы выше показали, что фотоэлектрические батареи будут производить энергию и зимой, хотя и намного меньше, чем летом. А будут ли солнечные коллекторы греть зимой воду?

    Ожидаемо, что зимой мы сможем получить от солнечных коллекторов гораздо меньше тепловой энергии, чем летом. И это связано не только с меньшим приходом солнечной энергии, а также и с тем, что зимой больше потери тепла как в самом коллекторе, так и в трубах, соединяющих их с баком-аккумулятором. 

    Вакуумные солнечные коллекторы в среднем могут производить до 60% тепловой энергии, которая требуется вам для горячего водоснабжения.

    Можно получить около 90% требуемого для ГВС количества  энергии в летние месяцы, и около 25% — зимой.

    Для плоских солнечных коллекторов цифра летом будет примерно такая же, но вот зимой доля энергии для ГВС от Солнца будет гораздо меньше, и связано это с бОльшими теплопотерями плоских коллекторов при низких температурах воздуха.

    Для солнечных коллекторов важно следить, чтобы трубки, по которым проходит жидкость зимой не замерзала. Хотя номинально они могут нагревать воду и при -30 градусах до 10-15 градусов и дальнейший нагрев делают уже другие приборы.

    Для работы в круглогодичном режиме для минимизации потерь тепла в элементах системы нужно устанавливать сплит системы с размещением бака-аккумулятора в доме. Тогда потери будут только в трубопроводах, расположенных снаружи; их нужно максимально утеплить, чтобы тепло, выработанное солнечным коллектором, дошло до бака-теплоаккумулятора.

    Теплопотери через солнечный коллектор и трубопроводы — не единственная проблема при работе солнечных коллекторов зимой.

    В сильные морозы теплоноситель (обычно специальный «солнечный» на основе пропиленгликоля) может загустеть до такой степени, что циркуляционный насос не сможет продавить его по трубам.

    В нашей практике даже были случаи, когда на морозе в солнечную погоду вакуумные коллекторы закипали из-за того, что насос не мог прокачать загустевший в трубах теплоноситель. Это нужно учитывать при проектировании и эксплуатации солнечной системы теплоснабжения.

    В отличие от фотоэлектрических панелей, которые на морозе работают лучше, а тепловых потерь на пути от панелей до инвертора практически нет, у солнечных тепловых систем есть потери энергии, причем они тем больше, чем холоднее.

    Можно ли оптимизировать солнечные панели для работы зимой?

    Зимой оптимальный угол наклона к горизонту как солнечных батарей, так и солнечных коллекторов будет больше, из-за того, что Солнце зимой более низко над горизонтом. Для того, чтобы получать максимальное количество энергии и зимой, нужно менять угол наклона солнечных батарей или коллекторов. В нашем ассортименте есть специальные монтажные конструкции для солнечных батарей, которые позволяют менять угол наклона в пределах 15-30 или 30-60 градусов.

    Еще больше энергии можно получить при помощи трекеров, которые следят за ходом Солнца в течение дня. Однако, большинство систем установлены с фиксированным углом наклона (особенно это относится к солнечным коллекторам, т.к. у них сложнее менять угол наклона из-за трубопроводов).

    Значения углов наклона для максимальной выработки энергии в различные сезоны года и в среднем за год рассматривается в статьях  Угол наклона и направление и Натурные испытания оптимального угла установки СБ.

    Калькулятор PVWATTS также дает интересные результаты для различных углов наклона. Считается, что оптимально устанавливать солнечные панели под углом, равным широте местности.

    Действительно, для более равномерного распределения выработки энергии при не очень большом снижении годовой выработки этот угол является оптимальным.

    Если же нужно получить максимальную генерацию энергии в течение года, то угол наклона должен быть примерно «широта местности — 15 градусов«. То есть для Московской области угол наклона для максимальной выработки равен 38-42 градуса.

    Влияние снега на работу солнечных батарей

    Проблемы, которые может причинить снег солнечным батареям, обычно минимальны. Однако, нужно обратить внимание на следующие моменты, если в вашем регионе снежные зимы и у вас на крыше установлены солнечные батареи:

    Чистка солнечных батарей от снега — при правильной установке занимает не больше времени, чем расчистка от снега дорожек

    1. Все солнечные панели рассчитаны выдерживать определенный вес, и снеговая нагрузка обычно гораздо меньше максимально допустимой.

      Все солнечные панели тестируются под давлением на производстве, чтобы быть уверенным в их сроке службе и качестве. Посмотрите на характеристики солнечной панели, обычно в спецификации указывается максимальный вес, который может выдержать солнечная панель.

    2. Если снег закрывает солнечные панели, они не могут производить электричество — но для решения этой проблемы достаточно почистить солнечную батарею специальным оборудованием. Солнечным панелям нужен солнечный свет, чтобы производить электроэнергию.

      В большинстве случаев солнечные панели устанавливаются под определенным углом, который обеспечивает естественный сход снега с солнечных панелей. Вы можете ускорить этот процесс при помощи ручной очистки снега специальными щетками, которые не повреждают и не царапают солнечные панели.

    3. Морозная солнечная погода повышает выработку энергии солнечными батареями.

        Пока светит солнце на панели, они вырабатывают электроэнергию, зимой даже лучше, чем летом. Это значит, за 1 час солнечной погоды ваши солнечные панели зимой выработают больше энергии, чем за тот же час, но летом. Общее количество энергии, конечно же, будет меньше, потому что зимой день намного короче, чем летом, и солнечных дней меньше. 

    Можно ли надеяться на солнечные батареи зимой?

    К сожалению, солнечные батареи и коллекторы не смогут обеспечить вас достаточным количеством энергии в зимнее время. Но некоторые системы работают на удивление эффективно и зимой.

    Не надо надеяться на то, что солнечные батареи или коллекторы обеспечат ваши потребности в горячей воде или отоплении, но они помогут существенно сэкономить вам на счетах за электричество. Настолько, что ваша система окупится менее, чем за 10 лет.

    А если вы не подключены к электросетям и используете генератор для получения электричества, то фотоэлектрическая система окупится за срок от нескольких месяцев до 2-3 лет в зависимости от стоимости топлива и ваших затрат на капитальный ремонт или замену топливного генератора.

    Даже с учетом того, что зимой на большей части России приход солнечной радиации снижается, вложения в солнечную энергосистему продолжает оставаться доходным. Более того, есть регионы, где приход солнечной радиации зимой даже больше, чем летом (например, Дальний Восток). В любом случае, солнечные батареи позволяют экономить на платежах за электроэнергию круглый год. 

    Эта статья прочитана 20575 раз(а)!

    Продолжить чтение

    • Фотоэлектрические комплекты
    • Солнечные электростанции для домов

    Источник: https://www.solarhome.ru/basics/solar/solar-winter.htm

    Понравилась статья? Поделиться с друзьями:
    Электро Дело
    В чем разница между тиристором и Симистором

    Закрыть