Сколько необходимо солнечных батарей для дома

Выбор и расчет солнечных панелей для дома

Сколько необходимо солнечных батарей для дома

Правильно выбранные характеристики и место размещения фотоэлектрических модулей первоочередно влияют на эффективность домашней электростанции. Первое, на чем стоит акцентировать внимание при выборе — это тип кристаллов.

Монокристаллические панели обладают большим КПД, но работают только, когда солнечные лучи попадают под прямым углом 90°, что подходит для экваториальных широт. Второй вариант — поставить на поворотные трекеры, регулирующие угол наклона к Солнцу. При недостаточной или неправильной освещенности высокая вероятность, что вырабатываемого тока не хватит для включения инвертора.

Применяются в основном в промышленных СЭС, где важна максимальная выработка электричества на ограниченной территории.

В домашних электростанциях более распространенные поликристаллические модули. Отлично работают под любым наклоном к Солнцу, производят электричество даже из отраженного света. У них меньше порог автоматического запуска.

Поликристаллические панели дешевле в среднем на 2-3% монокристаллических. Хоть и разница цен между ними не существенна, для широт Украины вторые все же будут выгоднее

Бренд — не менее важный критерий выбора. Лучше выбирать из «Tier1» — ТОП-10 мировых производителей. Все 10 компаний реализуют полный цикл производства солнечных батарей и обеспечивают контроль качества на каждом этапе.

Согласно стандартам Tier1, за первый год эксплуатации фотомодуль не должен потерять больше 0,8% мощности, а за первые 25 лет — больше 20%. Фактически же у отдельных брендов Tier1 батареи сохраняют 80% номинала на протяжении 30 лет службы.

У менее рейтинговых компаний этот показатель не такой высокий, и соответственно больше процент потерь, а это не выработанная и не проданная энергия. Со временем недовыработка электричества будет расти, а с ней и потеря дохода. Если для Вас важно, чтобы батарея долго и качественно работала, то лучше выбирайте Tier1.

Определившись с брендом, посчитайте мощность Вашего проекта, но помните, что она ограничена.

Чем обусловлена мощность солнечной электростанции

Здесь играет важную роль ограничение электроснабжения на домохозяйство и площадь кровли. Дело в том, что каждом доме и квартире ограничена нагрузка на сеть. Обычно это 5-10 кВт. Это вызвано тем, что отдельный участок улицы или квартал обслуживает собственный распределительный энергоузел, рассчитанный на определенную суммарную максимальную нагрузку.

Выработанное по «зеленому тарифу» электричество прежде всего идет на снабжение домашней сети, и его количество не должно превышать ограничение по электропотреблению. Например, если РЭС отвели Вам только 7 кВт, мощность домашней СЭС не должна превышать этот показатель.

Больше просто не разрешат установить. Аварии, скорее всего, не случится но возникнут другие сложности со стороны энергопоставляющей компании, потому максимально допустимая выработка ограничивается инвертором. Он не пропустит в сеть больше номинала.

Для увеличения максимальной нагрузки Вам придется договариваться с РЭС, чтобы те провели на Ваш участок дополнительную линию с другого распределительного узла (при наличии технической возможности, конечно) и, скорее всего, за это придется доплачивать.

Мощность системы определяется номиналом инвертора, а не суммарной мощностью фотомодулей. Например, с тем же ограничением Вам никто не запрещает поставить 7кВт инвертор и панели на 10 кВт. В таком случае будет считаться, что мощность системы 7кВт.

В украинских широтах солнечные батареи почти никогда не работают на максимум, разве что посреди ясного дня летом. Обычно это 30-50% от номинала. Читайте про производительность тут.

Например, если у Вас стоит станция на 7 кВт. В сеть поступает в среднем 2-3 кВт в час. Если расширить мощность до 10 кВт, средняя выработка составит 4-5 кВт. С другой стороны, посреди ясного летнего дня будет производиться 8 кВт, а то и всех 9 кВт. При этом в сеть поступит только 7 кВт. В украинских широтах такая аномально высокая выработка вероятна несколько дней в году по 2-3 часа в сутки.

Инвертор «срежет» мощность выше своего номинала. В таких условия кратковременно будут небольшие потери, но в перспективе Вы продадите в энергосистему (или энергоснабжающей организации) до 40% больше электричества.

Зная ограничение электроснабжения, несложно посчитать, сколько модулей Вам понадобится.

Расчет мощности домашней СЭС

Все панели, из которых собирается массив, стандартизированы по габаритам и номиналу. При 260-290 Вт мощности, их площадь варьируется около 1,5 — 1,7 м2.

Маломощные фотомодули делаются из производственного брака, потому их сложнее купить. Если Вы встретите номиналы 50Вт, 100Вт или 150Вт, помните, что их качество скорее всего ниже стандарта, даже у топовых производителей.

Средний пример станции на 8кВт

Для расчетов возьмем стандарт класса Tier1. Для 8кВт станции, Вам понадобятся панели в количестве:

8000 Вт / 275 Вт/шт ≈ 29,09 шт

При округлении в большую сторону получится 30шт. Фактическая мощность станции составит:

275Вт/шт. × 30 шт. = 8 250 Вт.

Учитывая, что даже летом она будет работать на 50-60% от номинала, разница — не критичная.

Рассчитаем площадь кровли под электростанцию:

1,63 м2/шт. × 30 шт. = 48,9 м2.

Такая относительно небольшая конструкция легко разместится на любой крыше. А теперь рассчитаем максимально допустимый вариант.

Максимальный пример на 30кВт

По условиям зеленого тарифа, мощность домашней СЭС не должна превышать 30кВт. Чтобы соорудить такую станцию понадобится тех же панелей, что и в предыдущем примере:

30 000 Вт / 275 Вт/шт. = 109 шт.

Для их размещения необходима площадь:

1,63 м2/шт. × 109 шт. = 177,67 м2.

Важно понимать, что в расчетах отображена полезная площадь крыши. Даже если у Вас она намного больше, не факт, что ее хватит для размещения всех модулей.

Здесь важно не только количество квадратных метров, а и технические параметры: высота, форма, наклон. Не забывайте и о том, что это почти 2 тонны веса. Не каждая кровля выдержит такую гигантскую и увесистую конструкцию.

Какая должна быть крыша для СЭС?

При планировании, помимо габаритов кровли, учитывайте ее форму и угол наклона. Так как Украина находится в северном полушарии, больше всего света получает южная сторона. На ней и размещайте фотоэлектрические модули. Больше об этом читайте в статье про эффективность солнечных панелей.

Идеи для размещения фотомодулей

При наземной установке нужно в обязательном порядке обладать значительными площадями. Мы этот вариант пока рассматривать будем позже, а сейчас рассмотрим более практичные решения.

Если одной крыши мало — перенесите часть электростанции на другие объекты, например, тот же гараж или хозяйственные постройки. Правда для этого понадобится инвертор на два MPPT выхода (минимум).

Это хороший вариант при близком расположении от дома, так как в батареях вырабатывается постоянный ток, и с увеличением длины кабеля увеличиваются потери электричества. Потому, крайне желательно все размещать компактно.

При нехватке нескольких квадратных метров, соорудите дополнительный навес (если это возможно). Так Вы не нарушите эстетику дома и решите вопрос недостающей площади.

Простые и популярные решения

Самый простой вариант — соорудить отдельный навес, состоящий из нескольких опор и крыши из панелей, а пространство под ним использовать в качестве паркинга или других целей.

На фото пример того, как «выкрутиться из ситуации», если крыша дома не подходит для размещения.

Из-за того, что наклоны обеих участков отличаются — понадобится инвертор на 2 MPPT трекера.

Вот еще несколько примеров практического использования полезной площади:

Веранда с крыльцом суммарной мощностью около 7 кВт.

Функциональный навес для автомобиля — 2,5 кВт.

Панели на фасаде

Размещение панелей на фасаде здания целесообразно только при отсутствии иных вариантов, как на этом фото, где крыша повернута не в солнечную сторону, а свободного места для строительства площадей попросту нет.

Единственный недостаток: из-за такого наклона эффективность летом уменьшится, зато зимой, когда Солнце низко, она будет лучше, чем на крыше.

При планировании старайтесь не допускать таких ошибок, как на фото, где антенна кидает тень прямо на панель.

Благодаря таким идеям, Вы не ограничены в планировании мощности СЭС, за исключением рамок самого «зеленого тарифа».

Так, еще на этапе планирования Вы рассчитаете удобный наклон и размещение навеса, оптимально спроектируете его площадь.

Источник: https://axiomplus.com.ua/news/vybor-i-raschet-solnechnyh-panelej/

Расчет себестоимости производства солнечной электроэнергии для собственных нужд домохозяйства в центре Европы

Сколько необходимо солнечных батарей для дома

Как ответ на комментарии к цене электричества в Германии и резонному вопросу «Так доколе народ будет это терпеть?» я решил привести свой расчет в данной статье.

Вступление

Данный расчет я делаю уже второй раз. Первый делал пару лет назад, и следующий буду делать как только появятся обновленные данные.

Он не рассчитывает на объективность, а служит только для ответа на вопрос «Есть ли смысл?» Задача рассчитать себестоимость солнечной электроэнергии, выработанной у себя дома с учетом сегодняшних цен на оборудование и текущие сроки эксплуатации и без учета различных субсидий, «зеленых тарифов» и прочей фигни, так это все равно рано или поздно отменят, а Солнце — оно постоянно.

Полученную цифру можно будет сравнить с текущей ценой электроэнергии в данном регионе и понять будут ли окупаться инвестиции в собственный ВИЭ. Я специально учитываю только основное оборудование и не учитываю стоимость монтажных работ, проводки и т.д, так как это не должно сильно влиять, но усложняет расчет.

Начальные условия

Для расчетов возьмем такие начальные условия.

  • Пусть у нас будет дом где-то в центре Европы, например под Мюнхеном. Это необходимо для определения инсоляции и соответственно необходимой площади солнечных батарей.
  • У нас есть достаточно большая площадь для установки батарей, направленная на юг.
  • Годовое потребление нашего домохозяйства пусть будет 4000 кВт*ч. Пусть оно будет равномерно распределено по месяцам. Т.е. месячное потребление составит 4000 / 12 = 333 кВт*ч.

Расчет оборудования и его стоимости

Первый дисклеймер — сразу скажу, расчет будет делаться для «честной» системы, в которой пик потребления может не совпадать с пиком производства, и поэтому система будет состоять из солнечных батарей + аккумуляторов + инвертора. Это на мой взгляд единственный вариант системы, позволяющий в лучшем случае полную автономность и независимость от сетевых тарифов. В худшем случае вы будете изредка подсасывать электричество из сети.

Примерная схема данного решения приведена на рисунке внизу. В общих словах это работает так: солнечные панели подключены к домашней сети переменного тока через инвертор. Батареи тоже подключены к этой же сети через свой инвертор. Домашняя сеть также соединена с обычной сетью. Умный менеджмент контролирует работу инверторов таким образом, чтобы всегда максимально использовался потенциал солнечных батарей. Т.е.

если энергии солнца достаточно для питания всех домашних устройств, избыток энергии забирается батареей из домашней сети и она заряжается. Когда же солнце исчезает, домашняя сеть начинает питаться от батареи, разряжая ее. Только в том случае, когда батарея полностью разряжена и солнца нет, дом начинает забирать электричество из сети. Второй дисклеймер — так как погода непостоянна, мы говорим о средне статистических цифрах.

В реальности может месяц идти дождь и тогда все расчеты не имеют никакого значения.

Солнечные батареи

Итак начнем с солнечных батарей. Нам надо узнать сколько их нужно, чтобы обеспечить нашу потребность в электричестве в худшем случае. Мы знаем две цифры — необходимое количество электричества — 4000 кВтч/год и местоположение — г. Мюнхен.

Расчет инсоляции

По местоположению нам надо получить среднее количество солнечной радиации на квадратный метр. Оно считается в кВтч/м2/день. То есть сколько энергии получает от солнца каждый квадратный метр поверхности за один день. Для расчета используем вот этот калькулятор, который даст нам статистику по месяцам с учетом облачных дней, туманов и т.д.

Так как нам надо наше электричество и зимой, когда солнце светит мало, нас интересует месяц с самой низкой инсоляцией — декабрь или январь. Это даст нам наихудший вариант для расчетов. Можно считать для плоской поверхности и потом находить оптимальный угол солнечных батарей, но калькулятор сделает это за нас, поэтому сразу кликаем на оптимальный наклон для зимы (27 градусов) и получаем заветные цифры: Т.

е минимальная инсоляция у нас будет в декабре и составлять 1.51 кВтч/м2/день. Мало? Но не забываем, что это в день. А в месяц наберется 1.51*30,5= 46кВтч/м2.

Определение количества панелей

Чтобы перевести полученную цифру в электричество, нам надо: а) Определиться с типом солнечных панелей и их КПД б) Определиться с количеством солнечных панелей

По а) я не долго думая выбрал вот эти.

Почему их? Не знаю, наверное потому, что мы на Хабре и для нас важно наличие технических данных, даташитов и прочих пруфов. По ссылке все это присутствует. В чем прикол в солнечно-батарейном строении? В том, что производители всех солнечных батарей уже в названии модели приводят заветную цифру — выработку при номинальной инсоляции в 1000Вт/м2. В данном случае она равна 330Вт и одной этой цифрой привязывает и КПД и площадь. Площадь этой солнечной панели стандартная – 1,6м. Значит ее КПД будет 330/(1000*1,6)=20,6%, что соответствует даташиту. И прикол получается, что умножив 330Вт на 1.51 — среднюю инсоляцию в декабре, мы получим 498Вт*ч — именно столько электричества выработает нам одна такая панель в Мюнхене зимой в день, настроенная на зимний угол. Это важная цифра для дальнейших расчетов. По б) необходимое количество панелей определяем так. Так как нам калькулятор выдал генерацию в день, то и потребление надо пересчитать на дни. Т.е. делим 4000 кВтч на 365 и получаем 10,96 кВтч/день. Зная, что одна панель нам выдаст 498 Вт*ч легко определить, что нам понадобится 10,96/0,498= 22 панели. Много это или мало — каждый решает сам. Тут есть такие нюансы:

  • эти панели должны быть установлены строго на юг под углом 27 градусов. То есть если брать плоскую крышу, реально занимаемая площадь панелями будет больше. Гораздо больше.
  • если же крыша имеет скат, но не направлена строго на юг, производительность батарей будет меньше.
  • Следует учитывать, что 22 панели понадобятся в случае, если мы хотим даже в декабре получать всю потребляемую электроэнергию от солнца. Если же мы смягчим это условие, например решив, что в ноябре, декабре и январе мы можем подсасывать из сети, то минимальная инсоляция у нас уже будет 2.59 (в Октябре) и общее количество необходимых панелей уменьшится до 10,96/(2,59*0,330)= 13. Т.е почти в 2 раза меньше.

Мы еще вернемся к вопросу выбора количества панелей, когда будем считать себестоимость. Хотя нет, наверное. Давайте сразу определимся здесь.

Цена вопроса

Итак идем на сайты по продажам солнечных батарей и гуглим нашу панель VBHN330SA16. У меня получились цены от 250 до 280 евро за одну панель. Т.е 22 панели обойдутся нам в 22*270(среднее)= 5 940 Евро. Теперь, внимание! Так как это не ноунейм мы читаем даташит и видим, что Панасоник дает гарантию на панели в 25 лет. При этом он гарантирует, что панели деградируют не более, чем на 10% за это время.

Беря этот срок за срок жизни и считая, что через 25 лет мы выбрасываем эти панели, нетрудно расчитать и себестоимость киловаттчаса при условии, что мы будем отбирать только наши 4000кВтч в год. За 25 лет мы снимем 100 000 кВтч(100МВтч). Делим 5 940 евро на 100000, получаем 0,0594 евро/кВтч или грубо говоря 6 евроцентов за кВтч. Напоминаю, что это только составляющая от солнечных батарей.

ЭТО ИНТЕРЕСНО:  Сколько весит батарейка ааа

И это только в том случае, если мы будем запасать все вырабатываемое электричество где-то и потом использовать (в декабре, конечно).

Солнечный Инвертор

Идем дальше — инвертор. Тут я немного плаваю, поэтому прошу в комментариях подсказать, если неправильно посчитал.

Выбор

Если считать, что нам в день надо потребить не менее 10кВтч, я думаю, что пиковая мощность должна быть где-то киловатта в 4-5. Может где-то есть данные о пиковой инсоляции в полдень в декабре, чтобы посчитать хватит его или нет.

Себестоимость за кВтч

Итоговая себестоимость солнечного электричества у нас оказалась равна:

  • Солнечные батареи: 0,06
  • Инвертор: 0,01
  • Аккумуляторы: 0,36

Всего: 0,43 евро. Из этой суммы львиная доля приходится на аккумуляторы, и в основном из-за возможно малого срока службы — всего 10 лет. Но будем надеяться, что это скоро изменится в лучшую сторону. Возможна экономия за счет того, чтобы солнечные панели подключались напрямую к Powerwall через DC/DC преобразователь.

Так можно сэкономить на одном инверторе. Но это в итоге будет опять же пара центов в стоимости киловатт-часа. Интересно, что стоимость солнечных батарей в итоговой себестоимости оказалась достаточно низкой — в основном благодаря долгому сроку службы. Поэтому тут экономить на железе не имеет смысла, а лучше вложиться в надежную технику, чтобы избежать дорогостоящих замен батарей на высоте. Ну и варьировать количеством панелей можно без особого влияния на итоговую цену электричества.

Кредит

Так как денег на такие инвестиции у нас обычно нет в наличии, и мы хотим платить за наше электричество желательно небольшим ежемесячным платежом, надо брать кредит. Итак мне нужно 43 тыс евро разовых инвестиций на оборудование. Точнее не так. Мне нужно 7000 евро на солнечные батареи на 25 лет и 14400 за два Powerwallа на 10 лет, так как Powerwallов нам нужно сперва только 2 шт.

ОК, я иду в ближайший банк и беру два кредита под 2% — например вот тут.

Забиваем указанные суммы в Darlehen-калькулятор и получаем ежемесячные платежи в 29,67 и 132,50 евро в месяц или суммарно 162,17*12=1946 евро в год — вот цена нашего дармового электричества с учетом кредита и выплачивания ежемесячных сумм вместо одноразовых инвестиций. В результате электричество дорожает с 43 до 49 центов или на 14%.

Итоговый дисклеймер

  • Если сравнить полученную цену с ценой электричества из розетки в Германии в 0,30 евро, то можно предположить, что данный проект пока не окупается. Но, стоит учесть, что если статистика покажет, что Powerwall может прожить те же 25 лет без замены, то общая стоимость солнечного кВтч снизится до 0,21-0,22 евро (0,25 с учетом кредита), что может стать уже гораздо интересней. Поэтому я принципиально считаю, что 30 центов — это психологический барьер, выше которого народ начнет серьезно задумываться о том, чтобы переходить на локальную генерацию в данном регионе. И этот барьер снижается, так как батареи дешевеют, а электромобили появляются.
  • Так как погода непостоянна, все это всего лишь статистика. Можно поиметь всего два солнечных дня в декабре и придется сосать электричество из сети или подключать другие варианты генерации (дизель, или брать из своего электромобиля).
  • Поэтому сеть нужна по-любому, но из нее надо будет сосать достаточно маленькую мощность.
  • Понятно, что летом у нас будет гораздо большая выработка электричества, чем зимой — примерно в 2,7 раза, или почти 30кВтч/день при потреблении в 11кВтч/день. Т.е. летом надо максимизировать потребление, так как оно фактически бесплатное — кондиционеры можно не выключать. И вообще, чем больше вы сможете расходовать электричества летом, тем дешевле оно будет. Т.е всякие бойлеры и прочее надо переводить на электричество тоже.
  • И вообще летом за неделю будет набегать лишнего электричества почти на один «бак» для Теслы Модел С, поэтому электромобиль — это маст хэв в таком случае. На халяву рассекать.
  • Ну и есть такое преимущество — если свет везде отключат, у вас он все равно останется. В Германии, конечно, не принципиально, но все же.
  • Существует мнение, что солнечная электростанция на крыше поднимает стоимость дома. То есть инвестиции окупаются еще и за счет этого.

Короче преимуществ ИМХО больше, чем недостатков.

В комментариях предлагаю обсудить именно статью, дисклеймеры, нюансы и возможности получения лучших цифр, уточненных данных, для другой территории и т.д. Зеленую энергетику же вообще предлагаю обсуждать в уже упомянутой в начале статье.

Спасибо, что прочитали эту статью.

Источник: https://habr.com/ru/post/482876/

Расчёт солнечных батарей

Сколько необходимо солнечных батарей для дома

Приветствую вас на сайте е-ветерок.ру, сегодня я хочу вам рассказывать о том сколько нужно солнечных батарей для дома или дачи, частного дома и пр. В этой статье не будет формул и сложных вычислений, я попробую донести всё простыми словами, понятными для любого человека. Статья обещает быть не маленькой, но я думаю вы не зря потратите своё время, оставляйте комментарии под статьёй.

Самое главное чтобы определится с количеством солнечных батарей надо понимать на что они способны, сколько энергии может дать одна солнечная панель, чтобы определить нужное количество. А также нужно понимать что кроме самих панелей понадобятся аккумуляторы, контроллер заряда, и преобразователь напряжения (инвертор).

Расчёт мощности солнечных батарей

Чтобы рассчитать необходимую мощность солнечных батарей нужно знать сколько энергии вы потребляете. Например если ваше потребление энергии составляет 100кВт*ч в месяц (показания можно посмотреть по счётчику электроэнергии), то соответственно вам нужно чтобы солнечные панели вырабатывали такое количество энергии. Сами солнечные батареи вырабатывают солнечную энергию только в светлое время суток.

И выдают свою паспортную мощность только при наличие чистого неба и падении солнечных лучей под прямым углом. При падении солнца под углами мощность и выработка электроэнергии заметно падает, и чем острее угол падения солнечных лучей тем падение мощности больше. В пасмурную погоду мощность солнечных батарей падает в 15-20 раз, даже при лёгких облачках и дымке мощность солнечных батарей падает в 2-3 раза, и это всё надо учитывать.

При расчёте лучше брать рабочее время, при котором солнечные батареи работают почти на всю мощность, равным 7 часов, это с 9 утра до 4 часов вечера. Панели конечно летом будут работать от рассвета до заката, но утром и вечером выработка будет совсем небольшая, по объёму всего 20-30% от общей дневной выработки, а 70% энергии будет вырабатываться в интервале с 9 до 16 часов.

Таким образом массив панелей мощностью 1кВт (1000ватт) за летний солнечный день выдаст за период с 9-ти до 16-ти часов 7 кВт*ч электроэнергии, и 210кВт*ч в месяц. Плюс ещё 3кВт (30%) за утро и вечер, но пускай это будет запасом так-как возможна переменная облачность. И панели у нас установлены стационарно, и угол падения солнечных лучей изменяется, от этого естественно панели не будут выдавать свою мощность на 100%.

Я думаю понятно что если массив панелей будет на 2кВт, то выработка энергии будет 420кВт*ч в месяц. А если будет одна панелька на 100 ватт, то в день она будет давать всего 700 ватт*ч энергии, а в месяц 21кВт.

Неплохо иметь 210кВт*ч в месяц с массива мощностью всего 1кВт, но здесь не всё так просто

Во-первых не бывает такого что все 30 дней в месяце солнечные, поэтому надо посмотреть архив погоды по региону и узнать сколько примерно пасмурных дней по месяцам. В итоге наверно 5-6 дней точно будут пасмурные, когда солнечные панели и половины электроэнергии не будут вырабатывать. Значит можно смело вычеркнуть 4 дня, и получится уже не 210кВт*ч, а 186кВт*ч

Так-же нужно понимать что весной и осенью световой день короче и облачных дней значительно больше, поэтому если вы хотите пользоваться солнечной энергией с марта по октябрь, то нужно увеличить массив солнечных батарей на 30-50% в зависимости от конкретного региона.

Но это ещё не всё, также есть серьёзные потери в аккумуляторах, и в преобразователей (инверторе), которые тоже надо учитывать, об этом далее.

Про зиму я пока говорить не буду так-как это время совсем плачевное по выработке электроэнергии, и тут когда неделями нет солнца, уже никакой массив солнечных батарей не поможет, и нужно будет или питаться от сети в такие периоды, или ставить бензогенератор. Хорошо помогает также установка ветрогенератора, зимой он становится основным источником выработки электроэнергии, но если конечно в вашем регионе ветренные зимы, и ветрогенератор достаточной мощности.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей

Самый минимальный запас ёмкости аккумуляторов, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100%. Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%. По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД.

Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%.

Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%, чтобы компенсировать эти потери.

Но и это ещё не все потери. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись.

PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности.

А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20%.

Расчёт солнечных батарей для частного дома или дачи

Если вы не знаете ваше потребление и только планируете скажем запитать дачу от солнечных батарей, то потребление считается достаточно просто. Например у вас на даче будет работать холодильник, который по паспорту потребляет 370кВт*ч в год, значит в месяц он будет потреблять всего 30.8кВт *ч энергии, а в день 1.02кВт*ч.

Также свет, например лампочки у вас энергосберегающие скажем по 12 ватт каждая, их 5 штук и светят они в среднем по 5 часов в сутки. Это значит что в сутки ваш свет будет потреблять 12*5*5=300 ватт*ч энергии, а за месяц «нагорит» 9кВт*ч.

Также можно почитать потребление насоса, телевизора и всего другого что у вас есть, сложить всё и получится ваше суточное потребление энергии, а там умножить на месяц и получится некая примерная цифра. Например у вас получилось в месяц 70кВт*ч энергии, прибавляем 40% энергии, которая будет теряться в АКБ, инверторе и пр. Значит нам нужно чтобы солнечные панели вырабатывали примерно 100кВт*ч. Это значит 100:30:7=0,476кВт.

Получается нужен массив батарей мощностью 0,5кВт. Но такого массива батарей будет хватать только летом, даже весной и осенью при пасмурных днях будут перебои с электричеством, поэтому надо увеличивать массив батарей в два раза.

В итоге вышеизложенного в вкратце расчёт количества солнечных батарей выглядит так:

  • принять что солнечные батареи летом работают всего 7 часов с почти максимальной мощностью
  • посчитать своё потребление электроэнергии в сутки
  • Разделить на 7 и получится нужная мощность массива солнечных батарей
  • прибавить 40% на потери в АКБ и инверторе
  • прибавить ещё 20% если у вас будет PWM контроллер, если MPPT то не нужно
  • Пример: Потребление частного дом 300кВт*ч в месяц, разделим на 30 дней = 7кВт, разделим 10кВт на 7 часов, получится 1,42кВт. Прибавим к этой цифре 40% потерь на АКБ и в инверторе, 1,42+0,568=1988ватт. В итоге для питания частного дома в летнее время нужен массив в 2кВт.

    Но чтобы даже весной и осенью получать достаточно энергии лучше увеличить массив на 50%, то-есть ещё плюс 1кВт. А зимой в продолжительные пасмурные периоды использовать или бензогенератор, или установить ветрогенератор мощностью не менее 2кВт.

    Более конкретно можно рассчитать основываясь на данных архива погоды по региону.

    Стоимость солнечных батарей и аккумуляторов

    Цены на солнечные батареи и оборудование сейчас достаточно разнятся, одна и также продукция может по цене в разы отличаться у разных продавцов, поэтому ищите дешевле, и у проверенных временем продавцов. Цены на солнечные батареи сейчас в среднем 70 рублей за ватт, то-есть массив батарей в 1кВт обойдётся примерно в 70т.руб, но чем больше партия тем больше скидки и дешевле доставка.

    Качественные специализированные аккумуляторы стоят дорого, аккумулятор 12в 200Ач обойдётся в среднем в 15-20т.рублей. Я использую вот такие акб, про них написано в этой статье Аккумуляторы для солнечных батарей Автомобильные в два раза дешевле, но их надо ставить в два раза больше чтобы они прослужили хотябы лет пять. А так-же автомобильные АКБ нельзя ставить в жилых помещениях так-как они не герметичны.

    Специализированные при разряде не блолее 50% прослужат 6-10 лет, и они герметичные, ничего не выделяют. Можно купить и дешевле если брать крупную партию, обычно продавцы дают приличные скидки.

    Остальное оборудование наверно индивидуально, инверторы бывают разные, и по мощности, и по форме синусоиды, и по цене. Так-же и контроллеры заряда могут быть как дорогие со всеми функциями, в том числе с о связью с ПК и удалённым доступом через интернет.

    Источник: http://e-veterok.ru/095-solnehnye-batarei-vraschyot.php

    Сколько стоит солнечная батарея для частного дома — Специалист по климату

    Полупроводниковые панели, преобразующие энергию солнца в электричество, обычно устанавливаются с одной целью – обеспечить работу домашних бытовых приборов.

    Настоящие энтузиасты на достигнутом не останавливаются и пытаются приспособить солнечные батареи для отопления дома. Предлагаем обсудить эту идею, рассмотреть возможные способы обогрева с помощью фотоэлектрических панелей.

    Рентабельность электростанций альтернативной энергетики и прочие финансовые вопросы разбирать нет смысла, это отдельная тема.

    Как работает солнечная электростанция

    Мы не собираемся отнимать ваше время и рассказывать, как полупроводниковые модули генерируют ток. Но если вы хотите организовать солнечное отопление частного дома, нужно представлять принцип работы фотоэлектрической станции и знать все нюансы, влияющие на ее мощность.

    ЭТО ИНТЕРЕСНО:  Как вырабатывается энергия в организме человека

    Солнечная энергетическая установка (СЭС) состоит из следующих элементов (показаны ниже на схеме):

    • одна либо несколько панелей, воспринимающих излучение солнца;
    • аккумуляторные батареи (АКБ), накапливающие произведенную электроэнергию;
    • контроллер следит за уровнем заряда, направляет ток в нужную цепь;
    • инвертор преобразует постоянное напряжение солнечных батарей в переменный ток 220 В.

    Интересный момент. Цена модулей составляет не более 30% от стоимости полного комплекта оборудования. Остальные 70% – это аккумуляторы, инверторный блок и контроллер. Комплектующие подбираются под одно рабочее напряжение 12, 24 или 48 вольт.

    Схема солнечной установки с инвертором и контроллером

    Упрощенно поясним алгоритм работы системы:

    1. В течение светового дня батареи вырабатывают ток, проходящий через контроллер.
    2. Электронный блок оценивает уровень заряда АКБ, затем направляет энергию в нужную линию – на зарядку либо потребителям (к инвертору).
    3. Инверторный блок преобразует постоянный ток в переменный со стандартными параметрами – 220 В / 50 Гц.

    Существует 2 типа контроллеров – ШИМ и MPPT. Разница между ними состоит в способе зарядки элементов электропитания и величине потерь напряжения. Блоки MPPT более современные и экономичные. Аккумуляторы применяются разные: свинцово-кислотные, гелевые и так далее.

    В состав СЭС входят специальные АКБ, не боящиеся глубокого разряда

    Если планируется использование нескольких модулей, то они соединяются между собой 3 способами:

    1. Параллельная схема подключения позволяет нарастить ток в цепи. «Минусовые» контакты всех батарей присоединяются к одной линии, «плюсовые» – к другой. Напряжение на выходе остается неизменным.
    2. Применение последовательной схемы дает возможность увеличить выходное напряжение. «Минусовая» клемма первой панели соединяется с «плюсом» второй и так далее.
    3. Комбинированный способ применяется, когда нужно изменить оба параметра – силу тока и напряжение. Несколько модулей соединяется последовательно, потом группа подключается к общей сети параллельно другим аналогичным группам.

    Как выглядят солнечные панели для дома и сопутствующее оборудование, расскажет мастер-электромонтажник на видео:

    Сколько нужно солнечных батарей для отопления дома

    Казалось бы, все просто. На обогрев небольшого загородного коттеджа площадью 100 м² пойдет приблизительно 10 кВт = 10 000 Вт тепловой энергии. Это 100 панелей по 0.1 кВт или 34 больших модуля по 300 Вт. Столько батарей на крышу дома не поставишь, а о квартире и речи нет.

    Справка. Размер 1 фотоэлектрического элемента мощностью 100 Вт, изготовленного по поликристаллической технологии, составляет около 1020 х 700 мм или 0.71 м². Аналогичная батарея на 300 Вт займет 1.68 м² (170 х 99 см).

    Сразу оговоримся, полученный результат – неправильный, поскольку не учитывает особенности эксплуатации солнечных энергетических систем:

    1. Фотоэлектрический модуль выдает максимальную мощность, когда лучи падают под углом 90° к плоскости батареи. Если не сделать трекер – следящий механизм, поворачивающий панель вслед за движением солнца, потеряем около 40% энергии. С другой стороны, подобное устройство тоже расходует электричество.

      Трекер поворачивает модули вслед за светилом, обеспечивая угол падения лучей 90°

    2. Величина солнечного излучения на 1 м² – инсоляция – зависит от региона проживания, высоты над уровнем моря, затененности участка. Перечисленные факторы напрямую влияют на производительность батарей.
    3. С течением времени полупроводниковое покрытие модулей деградирует, в результате теряется примерно 1% электрической мощности ежегодно.
    4. Если фотоэлектрический слой перегревается солнцем, производительность панели тоже уменьшается.
    5. Малая толика энергии теряется в сопутствующем оборудовании – инверторах, контроллерах, АКБ. Это банальный нагрев деталей – трансформаторов, микросхем и прочих элементов.
    6. Когда рабочая поверхность загрязняется пылью либо засыпается снегом, возникают дополнительные потери.
    7. Заметьте, для отопления солнцем зимой вырабатываемого электричества должно хватать на обогрев дома и зарядку аккумуляторов на ночь.

    Вывод. Универсального расчета электрической мощности батарей, подходящего ко всем странам и регионам, не существует. Но озвученную выше цифру 10 кВт нужно удвоить (как минимум), чтобы получить пристойный результат на практике. Понадобится от 200 стоваттных панелей, занимающих площадь свыше 140 м².

    Есть надежный способ получить точные данные по инсоляции и рассчитать производительность солнечных батарей – обратиться в местную организацию, занимающуюся их монтажом. Либо самому изучать карту инсоляции района.

    На карте видно, что центральные регионы РФ получают довольно мало радиации солнца – в среднем 3–3.5 кВт на метр квадратный за день

    Предлагаем пойти другим путем – использовать опыт владельцев солнечных автономных электростанций, почитать их отзывы на тематических форумах. Отыщите там пользователей, проживающих в вашей местности, если хотите получить реальные цифры бесплатно. Приведем примеры:

    1. Автономная система солнечного электроснабжения, расположенная в Ленинградской области, РФ. Установлено 6 панелей по 0.22 кВт (всего 1.32 кВт), пиковая мощность в зимний безоблачный день – 1157 Вт. Тема обсуждается на известном русскоязычном форуме.
    2. г. Анапа, производительность батарей – 2.2 кВт, количество не указывается. За световой день электростанция генерирует порядка 9 кВт.
    3. г. Москва, мощность СЭС 2.64 кВт. За весь июнь установка выработала 304 кВт энергии.

    Примечание. Отзывы и другие полезные данные по эксплуатации СЭС вы найдете по этому адресу.

    Обратите внимание: нами учитывалась только солнечная энергия для отопления, подогрев воды и прочие хозяйственные нужды в расчет не принимались. Как рассчитать число батарей на практике, смотрите в видеосюжете:

    Реальные способы обогрева

    Как вы поняли их вышесказанного, реализовать полноценное электрическое отопление дома солнечными батареями довольно сложно (и дорого). Далеко не каждый хозяин решится купить и установить панели на площади 100–150 м², дабы прогреть небольшой дом или дачу. Значит, схема электрокотел + водяная система + отопительные радиаторы отпадает.

    Но идею обогрева солнечными модулями все же нельзя назвать утопией. Перечислим варианты, реализованные домовладельцами на практике:

    • панели плюс инверторные кондиционеры с коэффициентом эффективности COP 3.5–4;
    • подключение батарей напрямую к электрическим обогревателям без инвертора;
    • строительство полноценной СЭС, продажа электроэнергии государству, вырученные средства идут на оплату традиционного отопления.

    Дополнение. Применение панелей в качестве дополнительных источников энергии для основного отопления обсуждать нет смысла – это очевидное решение.

    Начнем с третьего варианта, который интересен предпринимателям. В странах, где государством установлен так называемый зеленый тариф, домовладелец может получать электричество из возобновляемых источников и отдавать в общую энергетическую сеть, получая прибыль. То есть, домовладелец приобретает те же 200–300 солнечных панелей, но продает энергию по хорошей цене, а не расходует почем зря.

    Большое количество батарей на крыше жилого дома не поместится, станцию большой мощности придется размещать на участке

    Например, в Украине зеленый тариф превышает обычный в 3 раза (по состоянию на июнь 2019 г.). Необходимо выдержать 1 условие: минимальная производительность СЭС – 30 кВт. Строите электростанцию, поставляете энергию в сеть, а сами покупаете втрое дешевле.

    Оставшиеся 2 варианта рассмотрим поподробнее.

    Отопление кондиционерами

    Способ основан на эффективности инверторных сплит-систем, доставляющих внутрь дома вчетверо больше тепла, чем затрачено электроэнергии. Как реализовать такое отопление:

    1. Первым делом максимально снижаем теплопотери здания – утепляем стены, полы и крышу, устанавливаем энергосберегающие окна. Идеальный показатель теплопотребления для жилища 100 м² – 6 кВт.
    2. Приобретаем 2 кондиционера с инверторными компрессорами, работающими при отрицательной уличной температуре. Суммарная производительность агрегатов должна равняться теплопотерям дома, в нашем случае – 6 кВт. Потребление таких «сплитов» не превысит 2 кВт.
    3. Монтируем солнечную станцию, способную круглосуточно обеспечивать электричеством кондиционеры.
    4. Для отопления в самые холодные сутки стоит установить любой традиционный источник тепла – котел, дровяную печь.

    Тепловые насосы Mitsubishi Zubadan расходуют энергии еще меньше, чем кондиционеры, а тепла приносят вчетверо больше (COP = 4)

    в конце данного раздела подтверждает, что описанная схема вполне работоспособна. Один существенный минус: при отрицательной температуре эффективность кондиционеров резко снижается, без помощи котла не обойтись. В условиях умеренного и северного климата солнечные модули в одиночку не справятся.

    Примечание. Большинство инверторных сплит-систем способны функционировать при морозе до —15 °C. Коэффициент эффективности COP снижается до 1.5–2 (тепла выделяется вдвое больше, чем потребляется электричества).

    Использование местных обогревателей

    Речь идет о значительном удешевлении системы в случае использования неприхотливых потребителей – обычных тепловентиляторов. Ввиду отсутствия инвертора к солнечным модулям придется подключать 12-вольтовые обогреватели (можно взять автомобильный либо сделать своими руками).

    Как собрать солнечный генератор электроэнергии:

    1. Устанавливаем нужное количество батарей с рабочим напряжением 12 вольт.
    2. Соединяем их проводами 2.5 мм² согласно приведенной ниже схеме – без инвертора.
    3. Подключаем нагрузку – маломощный тепловентилятор на 12 В.

    Ниже на видео специалист подробно описывает все нюансы такого подключения. Способ годится для обогрева отдельных комнат тепловентиляторами 1–1.5 кВт. Отопить весь дом сложнее – нужно собирать несколько отдельных контуров с солнечными панелями, чтобы не увеличивать сечение проводов.

    Заключительный вывод

    Сделать полноценное отопление частного дома на солнечных батареях очень непросто. Единственный более-менее реалистичный сценарий – это применение сплит-систем, а лучше – геотермального теплового насоса, мало зависящего от уличной температуры. Установка потребляет мало электричества, поэтому сможет работать от домашней СЭС.

    Мы специально исключили из статьи финансовые вопросы, поскольку речь шла о технических моментах. Но надо понимать, что оборудование солнечной энергетики – аккумуляторы, батареи, инверторы и блоки управления – стоят больших денег. Чтобы успешно решить задачу, нужно быть хорошо зарабатывающим энтузиастом.

    Схема с вакуумными коллекторами, подключенными к косвенному водонагревателю, обойдется дешевле. Но в данном варианте есть свои трудности, например, аккумулирование тепла и стагнация коллектора при жаре. В нелегком деле освоения солнечной энергии нет простых решений.

    Источник: https://vashklimat.info/obogrev-doma/skolko-stoit-solnechnaya-batareya-dlya-chastnogo-doma.html

    Расчет мощности солнечных батарей для дома

    Если вы решили сэкономить на расходах электроэнергии и установить собственную солнечную электростанцию в доме или на даче, тогда необходимо начать с расчетов показателей как потребления энергии, так и мощности солнечных панелей.

    Это самый важный и трудоемкий процесс, который станет залогом правильной работы солнечной системы и выработки нужного количества тока для обеспечения всех потребностей.

    Кроме того, рассчитанные показатели смогут послужить основой для увеличения эффективности или экономии энергии.

    Показатель мощности солнечной батареи

    Если посмотреть описание разных моделей солнечных батарей, то можно обратить внимание, что показателем измерения выступает номинальная мощность (Вт). Этот показатель и будет служить главным критерием для оценки мощности солнечной батареи.

    Номинальная мощность указывается из расчета, что на 1 кв. метр панели будет поступать 1 кВт солнечной энергии.

    То есть вы сможете рассчитывать на такой показатель мощности батареи, если в месте, где расположена солнечная система, температура не менее 25 градусов, ориентация модулей на юг с учетом угла наклона и отсутствует затемнение.

    Зачем нужен расчет мощности солнечных батарей

    Сегодня на рынке представлено огромное количество солнечных батарей, они отличаются не только производителем и ценой, но и своими техническими характеристиками. Мощность – это главный показатель, от которого необходимо отталкиваться, если вы хотите получить выгоду от установки солнечной системы.

    Важно понимать, что неправильно произведенный расчет или и вовсе отсутствие каких-либо анализов по планируемой мощности могут привести к неудовлетворению ваших электрических потребностей в доме, тогда придется использовать дополнительное питание от сети либо ограничивать себя в электроприборах.

    В итоге сложная задумка с солнечными батареями теряет весь смысл.

    Порядок расчета

    Чтобы рассчитать необходимую мощность батареи, которая покроет ваши затраты электроэнергии, нужно провести ряд действий, основанных на точных расчетах.

    Определение потребляемой энергии

    Начинать надо в первую очередь с расчета необходимой энергии для обеспечения вашего дома. Сделать это можно двумя способами: первый – посмотреть на счетчике, сколько электроэнергии вы расходуете за месяц или в сутки, а второй – сделать более детальный расчет.

    Чтобы произвести второй вариант расчета, нужно взять бумагу с ручкой и составить список всех электроприборов, которые имеются у вас в доме.

    Количество потребляемой энергии каждым устройством нужно умножить на количество часов работы, а после все полученные показатели сложить и получить общий расход, который должны покрывать солнечные батареи.

    Ниже приведены приблизительные значения самых часто используемых электроприборов в любом доме.

    Электроприбор Ватт Сколько часов работы в сутки Вт/час
    Холодильник 250 24 6000
    Компьютер 100 4 400
    Стиральная машина 500 1 500
    Электрочайник 1000 0.3 300
    Телевизор 150 6 900
    Радиоприемник 4 2 8
    Экономлампа 1 20 6 120
    Экономлампа 2 15 4 60
    Экономлампа 3 10 2 20

    Если вы не знаете потребление электроэнергии того или иного прибора, то для точности расчетов лучше посмотреть это значение в технической документации или на сайте производителя.

    Просуммировав последнюю колонку в таблице, вы сможете посчитать суточный расход электроэнергии. Однако здесь не все так просто. Это не будет конечная цифра для выбора мощности солнечной батареи и их количества. Дополнительно нужно будет прибавить около 30% потребляемой энергии на обслуживание обязательных устройств для работы солнечной системы – аккумулятора и инвертора.

    Кроме того, солнечными батареями генерируется постоянный ток, который впоследствии при помощи инвертора перерабатывается на переменный с повышением напряжения для обслуживания дома (220В), где еще теряется около 20%. И еще нужно прибавить около 10%, которые пойдут на пусковую мощность электроприборов.

    Так как при запуске техника первые несколько минут потребляет в 3, а то и в 5 раз больше заявленной энергии.

    Уровень инсоляции

    Суть солнечных батарей заключается в выработке энергии за счет воздействия лучей солнца на фотоэлементы со специальным составом. Чем больше солнечная радиация, тем выше производительность панелей.

    Максимальная эффективность зафиксирована при попадании лучей на поверхность пластин под углом 90 градусов, то есть перпендикулярно. Соответственно ночью энергия не вырабатывается, а используется та, которая накопилась в аккумуляторе за дневное время.

    Поэтому очень важно правильно установить солнечную панель и рассчитать ее работоспособность в зависимости от климата того или иного региона.

    Во время пасмурной погоды, а также захода солнца, уровень выработки энергии солнечной системы падает на 20-30%.

    Уровень солнечной инсоляции – это еще один немаловажный показатель, который необходимо учитывать при определении мощности солнечной батареи. В каждом регионе он разный и дает четкое понятие, сколько количества солнечного тепла приходится на единицу площади панели.

    Если вы проживаете в регионе с небольшим уровнем инсоляции, тогда вам нужно будет приобретать либо более мощное устройство, либо в большем количестве для полного обеспечения дома электроэнергией. Рассчитывать самостоятельно показатель инсоляции не нужно. Его значение представлено в специальных справочниках, которые можно найти без проблем в интернете.

    Подобная информация также представлена на метеорологических сайтах. Указанная информация может быть представлена как за год, так и отдельно по месяцам (для крупных городов).

    Выбор мощности панелей

    В зависимости от рассчитанного количества потребляемой энергии количество солнечных батарей может быть разным. Также следует учитывать, какие задачи возложены на батарею – полная продуктивность или использование ее в качестве дополнительного источника питания, если в вашем доме часто бывают перебои. Если вы хотите покрыть все электрорасходы в доме, тогда придется хорошо потратиться и приобретать устройства с высокой мощностью и продуктивностью.

    Мощность панели напрямую будет зависеть от количества потребляемой энергии как электроприборами в доме, так и техническими устройствами, которые являются обязательными для работы солнечной станции. Здесь нельзя не учесть и количество солнечных дней в месяце, уровень инсоляции, частоту смены угла наклона.

    Максимальная производительность панели наблюдается не более 7 часов в сутки и то при условии, что небо чистое, а ночью и вовсе не будет никакой выработки, соответственно, при соотнесении расходуемой энергии с мощностью батареи нельзя приравнивать эти два показателя. Мощность должна быть на 30-40% больше.

    Для примера можно взять батарею с указанной мощностью в 1кВт. Это значение нужно умножить на количество часов работы панели с максимальной производительностью, приплюсовать дополнительные расходы на снабжение инвертора и аккумулятора, а также то время в сутках, когда солнечный свет отсутствует. В результате вы сможете получить выработку одной батареи. Если показатель слишком маленький, тогда нужно присмотреться к батареям с более высокой мощностью, однако и цена их будет выше.

    ЭТО ИНТЕРЕСНО:  Сколько ампер у батарейки АА

    Расчет мощности солнечных батарей

    Расчет количества панелей

    Итак, мы определились, что мощность панелей измеряется в Вт. Чтобы произвести расчет, нам понадобятся все ранее полученные значения, а именно:

    • Количество потребляемой электроэнергии.
    • Уровень инсоляции в вашем регионе.
    • Мощность одной батареи.

    Формула для расчета выглядит следующим образом:

    W = k*Pw*E/1000, где

    к – фиксированное значение/коэффициент 0,5 в летний период и 0,7 в зимний.

    Рw – мощность.

    Е – значение инсоляции за выбранный период.

    Итак, представим, что вы просчитали суточное потребление энергии, которое равно 5600 Вт. Скорректируем это значение на 30% с учетом потребностей инвертора, аккумулятора и преобразования энергии. В результате получается 5600*1,3=7280Вт, можно округлить до 7300 Вт. Теперь посмотрим показатель солнечной радиации для конкретного города, например, он равняется 0,79 для зимы и 4,5 для лета. Стандартная мощность составляет 260Вт.

    W зимой = 0,7*260*0,79=143Втч.

    W летом = 0,5*260*4,5=585Втч.

    Теперь делим общую потребность в электроэнергии на выработку солнечной батареи. Зимой, чтобы обеспечить весь дом электричеством, понадобится примерно 51 панель, а летом 13 штук мощностью в 260Вт и напряжением 24В. Так как полученное значение достаточно велико и для размещения 50 панелей понадобится большая площадь, целесообразнее купить панели с более высоким напряжением и мощностью.

    Как увеличить эффективность работы солнечных батарей

    Первый шаг, который пытается сделать любой владелец солнечных батарей с целью увеличить эффективность выработки электроэнергии – это заменить обычные электроприборы на экономные. Но, перед тем как это сделать, ознакомьтесь с основными рекомендациями специалистов, которые помогут повысить КПД батареи.

    • Следите, чтобы не происходило затемнения солнечного оборудования.
    • Придерживайтесь правил монтажа, от которых зависит производительность солнечных батарей.
    • Очищайте панели от грязи, пыли и наледи.
    • Старайтесь регулярно менять угол наклона панелей, чтобы солнечные лучи попадали перпендикулярно, в зависимости от месяца и времени года.
    • Используйте электроприборы классов А, А++, А+++.
    • Выбирайте правильные крепления для солнечных батарей.

    Выполнять все предложенные рекомендации необходимо в комплексе. Если, к примеру, вы будете регулярно менять угол наклона панелей, но при этом забываете их очищать от грязи, то результат от ваших действий не появится. Солнечные батареи прослужат вам долго и бесперебойно при соблюдении правил эксплуатации, которые рекомендованы производителем. Если у вас возникли сложности при расчете, то вы всегда можете обратиться за помощью к специалисту по данным вопросам.

    Источник: https://www.termico-solar.com/moshhnost-solnechnyh-batarej/

    Выгоден ли частный дом на солнечных батареях

    Одним из преимуществ собственного дома является возможность его модификации. В том числе и источниками альтернативной энергии. Солнечные батареи для частного дома – наилучший на данный момент способ обеспечить себя экологичным электричеством.

    С чего начать

    Подсчет затрат электроэнергии. Для установления необходимой мощности системы солнечных панелей, нужно подсчитать, сколько электричества вы расходуете.

    Очень многое в этом вопросе зависит от того, используется ли частный дом постоянно или только как дача в определенные сезоны года.

    Для подсчета возьмите квитанции по оплате за электроэнергию за год и установите общее количество киловатт, затраченных за этот период, затем разделите на 12 (количество месяцев) – вы получите среднемесячный расход электроэнергии.

    Расчет среднемесячного расхода потребляемого электричества

    Как показывает опыт и отзывы реальных потребителей, в средней полосе России полученный результат необходимо умножить на коэффициент 16, чтобы получить необходимую мощность батарей в Ваттах.

    Рассмотрим пример. За год вы потратили 1625 кВт, делим эту цифру на 12 месяцев и умножаем на коэффициент 16 – получается, 2166 Ватт. Т.е. система солнечных батарей будет обеспечивать такой дом, если ее мощность будет не менее 2200 Ватт/час

    Где крепить?

    Крыша. Закрепление солнечных батарей на крыше – очевидное, но не всегда лучшее решение для частного дома. Направленный на юг скат крыши действительно обеспечивает наилучший результат из стационарных способов крепления солнечных батарей, но на этом варианты не ограничиваются.

    При таком закреплении скат крыши должен быть на ЮГ

    Стены. Если стена «смотрит» на юг – она отлично подходит для размещения на ней солнечных батарей. Понаблюдайте, не падает ли на стену тень от деревьев, хозяйственных построек, забора, иных объектов. Не размещайте солнечные панели в этих местах.

    Желательно также использовать южную стену

    Не стоит ставить панели на восточной или западной стенах. Таким образом, в самый интенсивный период светового дня вы будете получать на свои панели только косые лучи, что значительно снижает эффективность системы

    Свободное размещение. Самый эффективный вариант размещения солнечных батарей, но требует свободной площади во дворе. При свободном размещении солнечных батарей в частном доме их можно закреплять на шарнирах и таким образом, направляя их поверхность к солнцу под 90°.

    Такое расположение батарей позволяет получить от них максимум мощности

    Что входит в систему

    Солнечные панели. О том, как их собрать, мы писали в этой статье (откроется в новом окне). Вы можете купить готовый комплект солнечных батарей для дома, но для экономии средств можно приобрести поликристаллические фотоэлементы и собрать солнечные батареи для своего дома своими руками.

    Инвертор. Солнечные батареи вырабатывают постоянный ток, близкий к 12 или 24 вольтам (в зависимости от подключения), инвертор преобразует его в переменный 220 В и 50 Гц, от которого можно питать все бытовые приборы.

    Аккумулятор. Даже их система. Солнечная энергия вырабатывается не постоянно. В пиковые часы её может быть переизбыток, а с наступлением сумерек её выработка прекращается вовсе. Аккумуляторы накапливают электричество в течении светового дня и отдают его вечером/ночью. Как выбирать аккумулятор для солнечной электростанции написано в этой статье (откроется в новом окне).

    Важно знать. Не рекомендуется использовать для этих целей обычные автомобильные аккумуляторы – они приходят в негодность за 2-3 года эксплуатации (на такой срок службы они и рассчитаны)

    Контроллер. Обеспечивает полный заряд аккумуляторной батареи и защищает её от перезарядки и закипания. О том, какой контроллер выбрать мы писали в этой статье (откроется в новом окне).

    Выгодны ли солнечные батареи для частного дома

    В западных странах мода на солнечную энергетику продиктована больше заботой об экологии, чем поиском экономической выгоды. У нас реалии несколько иные.

    При сохранении нынешних цен на поставляемое электричество, система из солнечных батарей, собранная своими руками для одного частного дома и семьи из 4 х человек, полностью окупается за 4-5 лет. При этом срок службы фотоэлементов – составляет 20-25 лет, а вот аккумуляторы придется менять через 5-7 лет в зависимости от качества батарей.

    Пока нигде в мире (и Россия не исключение) не наблюдается снижения цен на поставляемое электричество, поэтому за срок службы фотоэлементов в солнечной панели, система успеет окупиться как минимум 4-5 раз.

    . Как рассчитать необходимое количество солнечных батарей для дома

    В ролике наглядно показан порядок расчета площади солнечных батарей для частного дома. Полезно для тех, кто хочет учесть все расходы на сооружение системы автономного солнечного электроснабжения уже на этапе планирования.

    Фотомануал: солнечная батарея своими руками шаг за шагом Виды садовых светильников и фонарей на солнечных батареях, как и где использовать. Принцип действия солнечных батарей. Плюсы и минусы вертикальных ветрогенераторов, их виды и особенности

    Источник: http://electricadom.com/okupayutsya-li-solnechnye-batarei-dlya-chastnogo-doma.html

    Солнечные батареи для дома – сколько нужно панелей для отопления

    Полупроводниковые панели, преобразующие энергию солнца в электричество, обычно устанавливаются с одной целью – обеспечить работу домашних бытовых приборов.

    Настоящие энтузиасты на достигнутом не останавливаются и пытаются приспособить солнечные батареи для отопления дома. Предлагаем обсудить эту идею, рассмотреть возможные способы обогрева с помощью фотоэлектрических панелей.

    Рентабельность электростанций альтернативной энергетики и прочие финансовые вопросы разбирать нет смысла, это отдельная тема.

    On-line калькулятор расчета работы солнечной электростанции

    Выберите месторасположение объекта, воспользовавшись поиском по названию города или передвигая метку на карте. Введите параметры солнечных панелей, ветрогенераторов, воздушных и/или тепловых коллекторов.

    Для расчета солнечных панелей и ветрогенераторов укажите среднесуточное потребление (кВт·ч/сутки) или воспользуйтесь «калькулятором» средней нагрузки, расположенным под картой, справа. Рассчитайте время автономной работы системы, задав данные ёмкости и напряжения аккумуляторных батарей.

    Для расчёта тепловой энергии или объема горячей воды выберите тип и количество солнечных коллекторов.

    Вы можете воспользоваться подсказками, расположенными под калькулятором или обратиться за помощью в расчётах к нашим специалистам по телефону (812)903-28-88, [email protected].

    Как подобрать комплектацию солнечной и/или ветровой электростанции?

    1. Мы рекомендуем начать с расчёта необходимого количества энергии или суточного потребления вашего дома/объекта в кВт*ч/сутки. Эти данные можно получить, списав с электросчетчика или рассчитать в калькуляторе средней нагрузки, справа под картой. Обратите внимание, что данные средней нагрузки в летний и зимний период могут отличаться. Рекомендуем заполнить оба показателя. На графике появятся две прямые: синяя линия указывает зимнее потребление, красная – летнее.

    2. Выберите регион установки, для этого используйте «поиск города по названию» или двигайте метку на карте. Инсоляция в разных регионах может значительно отличаться.

    3. Выберите тип и количество солнечных панелей в соответствии с суточным потреблением вашего объекта. На графике появится кривая жёлтого цвета, она показывает выработку выбранного вами солнечного массива, при условии ориентации его строго на юг и соблюдении рекомендуемого угла наклона (зенитный угол).

    4. Чтобы увидеть количество энергии, вырабатываемое панелями в разные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч».

    5. Подберите необходимую ёмкость аккумуляторных батарей, для этого справа под картой выбирайте желаемую ёмкость аккумуляторов и их напряжение. Время автономной работы системы (часов) с выбранным массивом аккумуляторов и при указанной суточной нагрузке высветится ниже.

    6. Обратите внимание, что в большинстве случаев перекрыть зимнее (ноябрь-февраль) потребление сложно. Поэтому для зимней эксплуатации используют резервные источники энергии, при полном отсутствии сети это может быть ветрогенератор или топливный генератор.

    7. Чтобы добавить к вашей резервной системе ветрогенератор откройте вкладку «Расчет энергии, вырабатываемой ветрогенераторами». Выберите количество и модель ветрогенератра, высоту мачты и окружающий ландшафт. На графике появится голубая кривая, отображающая выработку ветрогенератора в кВт*ч.

    Чтобы увидеть количество энергии, вырабатываемое в определенные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч».

    Обратите внимание, что в нижнем графике «Суммарная выработка электроэнергии» отображаются общие данные как солнечной, так и ветровой системы в сумме.

    Как подобрать тип и количество водяных солнечных коллекторов?

    Объем горячей воды, получаемой от того или иного водного солнечного коллектора можно рассчитать, открыв вкладку «Расчет энергии, вырабатываемой водяными солнечными коллекторами».

    Выберите модель и количество коллекторов и укажите угол наклона коллектора в графе «зенитный угол». На графике появится жёлтая кривая, указывающая количество воды в литрах нагреваемой в сутки в различные месяцы года. Температура нагрева 25°С.

    Как рассчитать количество тепловой энергии и выбрать воздушный солнечный коллектор?

    Для расчета объема нагреваемого солнечным коллектором воздуха откройте вкладку «Расчёт энергии, вырабатываемой воздушными солнечными коллекторами» выберите модель и количество коллекторов. Обязательно укажите угол наклона коллектора в графе «зенитный угол». Для моделей с креплением на стену установите значение 90.

    На графике появится желтая кривая, отображающая объем горячего воздуха в м³/сутки при нагреве на 44°С.

    Обратите внимание, что полученные при расчетах данные приблизительные. On-line калькулятор в своих расчётах опирается на базы данных о инсоляции на земной поверхности в разных точках земного шара.

    Период наблюдения, учтённый в базе данных инсоляции земной поверхности — чуть более двадцати лет. Фактическая выработка энергии может отличаться из года в год, и зависит от инсоляции в конкретном периоде.

    К тому же данные калькулятора предполагают расположение источников тепловой и электрической энергии (солнечных панелей и коллекторов) строго на юг!

    Источник: https://www.helios-house.ru/on-line-kalkulyator.html

    Сколько нужно солнечных батарей для дома, Как расчитать солнечные батареи для частного дома

    На данный вопрос нету однозначного ответа. Все зависит от количества энергии потребляемой в вашем доме: холодильник, чайник, микроволновка, телевизоры, стиральная машина, компьютеры, кондиционер, посудомоечная машина и прочее.

    На основе полученных данных по потреблению энергии, наклона и площади крыши, выбора мощности солнечных панелей, рассчитывается необходимое кол-во солнечных батарей для СЭС. Сколько солнечных батарей нужно для дома или квартиры — точно сможет ответить специалист, только после выезда на объект.

    Как рассчитать сколько нужно солнечных батарей

    Чтобы рассчитать требуемое количество световых батарей для дома, нужно отталкиваться от нескольких факторов:

    • Размера кровли;
    • Количества потребляемой электроэнергии в месяц;
    • Суммы которую готовы инвестировать в проект;
    • Мощности которая прописана в договоре на пользование электрической энергии (мощность станции не должна быть больше чем в договоре на Зеленый тариф).

    Если нужна станция исключительно для замещения собственного потребления, необходимо отталкиваться от среднемесячного потребления энергии домом. Перед покупкой обязательно должен быть проделан расчет мощности, особенно, если стоит задача максимально быстро окупить солнечную станцию, нужно устанавливать максимально возможную мощность станции.

    Как самостоятельно рассчитать солнечные батареи и их выработку

    Воспользуемся простой формулой, с помощью которой можно приблизительно рассчитать сколько надо солнечных панелей для дома. Для этого вам нужно:

    1. Знать площадь крыши, для примера возьмем 50 м²;
    2. Площадь одной солнечной батареи, берем 1,63 м²;
    3. И мощность солнечной панели — возьмем среднюю по рынку на 275 Вт.

    Теперь как рассчитать солнечные батареи для дома с помощью формулы:

    1. Площадь крыши делим на площадь одной панели: 50/1,63 = 30,67, округляем в меньшую сторону, получаем 30 солнечных батарей.
    2. Далее умножаем полученное кол-во панелей на мощность одной панели: 30*275 = 8250 Вт, сново округляем в меньшую сторону и выходит 8000 Вт или 8 кВт в час.

    Получаем солнечную электростанцию мощностью на 8 кВт с максимальным количеством солнечных батарей в 30 штук, которые покроют крышу площадью 50 м².

    Еще раз напоминаем, что вышеприведенные цифры, всего лишь пример расчета приблизительного количества солнечных батарей для частного дома. В формуле не были учтены: тип и угол наклона крыши, потеря КПД в инверторе и аккумуляторе, сезонность и т.п.

    Какие электроприборы учитываются при расчете показателей СЭС для частного дома

    Детальное внимание к мощности потребителей, стоит уделять в случае проектирования автономных систем и систем резервного питания. В таких системах генерирующее оборудование должно справляться с нагрузкой от потребителей, даже иметь некий запас мощности на время пусковых процессов.

    Недостаточная мощность оборудования в таких системах может привести к аварийному отключению питания во время перегрузки, и, даже, к выходу его из строя.

    Стоит учитывать все мощное оборудование в доме: электрические котлы, электрические теплые полы, глубинные и циркуляционные насосы, компрессоры холодильников и др.

    В случае сетевой солнечной электростанции важнее учитывать потребление электроприборов, поскольку вся потребленная мощность отнимаеться от объема электроэнергии произведенной солнечной электростанции, а недостаток от мощности сетевых инверторов покрывается потреблением из сети.

    Как улучшить показатели выработки электроэнергии

    Согласно калифорнийскому исследованию регулярная очистка батарей для солнечных электростанций позволяет вырабатывать больше на 12 % электроэнергии. Для выработки максимального количества солнечных элементов СЭС устанавливаются под определенным углом с учетом строения вашей крыши. Оптимальный угол наклона — 45°.

    Будем рады, если данный материал дал возможность узнать, как рассчитать солнечные батареи самостоятельно. Но мы бы рекомендовали обращаться к специалистами для проведения подобных расчетов.

    Источник: https://joule.net.ua/articles/skolko-nuzhno-solnechnyh-batarej-dlya-doma

    Понравилась статья? Поделиться с друзьями:
    Электро Дело
    Какие средства защиты необходимо применять при обслуживании электроустановок

    Закрыть
    Для любых предложений по сайту: [email protected]