Чем опасна молния
В последнее время на территории Подмосковья наблюдаются крайне не благоприятные погодные условия. Ливневые дожди, град, ураганный ветер, и все это сопровождается грозой с ударами молнии. В Московской области зафиксированы случаи травмирования людей от удара молнии, а также есть случаи, которые привели к летальному исходу. Что бы избежать гибели, необходимо знать, что такое молния и как вести себя при грозе.
Молния — это мощнейший электрический разряд, который обладает высоким напряжением в несколько миллионов вольт, силой тока в сотни тысяч ампер и очень высокой температурой, до 25 тысяч градусов.
Мгновенный удар молнии может вызвать паралич, глубокую потерю сознания, остановку дыхания и сердца. Прямое попадание молнии в человека заканчивается мгновенной смертью вследствие остановки сердца, тяжёлых повреждений внутренних органов, разрушения тканей и костей, поскольку молния в этом случае воздействует на человека подобно удару молота.
Чтобы не стать жертвой этого опасного природного явления, необходимо придерживаться определённых правил поведения во время грозы.
Чаще всего молния ударяет на открытых местах или в одиноко стоящее дерево, несколько реже в помещение и еще реже в лесу, поэтому при приближении грозового фронта нужно заранее остановиться и подыскать безопасное место.
Если во время грозы вы находитесь в квартире или частном доме, не подходите близко к электропроводке, антеннам, закройте окна, выключите телевизор, радио и другие электробытовые приборы и не касайтесь металлических предметов. В частном доме или даче особую опасность при грозе представляет топящаяся печь, поскольку выходящий из трубы дым обладает высокой электропроводностью и может притянуть к себе электрический разряд. Поэтому печь или камин лучше затушить и закрыть дымоход.
Если вы на улице, помните: в зоне грозы нельзя бегать и суетиться. Не приближайтесь к линиям электропередач или высоким деревьям, не стойте рядом с металлической оградой, стальными трубами, рельсами, а также вблизи других проводников электричества. Не приближайтесь к сельскохозяйственной технике и небольшим транспортным средствам типа мотоциклов и велосипедов
Если во время грозы Вы оказались в лесу, то укройтесь среди невысоких деревьев с густыми кронами. Не ищите защиты под кронами высоких или отдельно стоящих деревьев, не прислоняйтесь к их стволам, поскольку прямое попадание молнии в дерево может разбить его в щепки и травмировать рядом стоящих людей. В лесу наиболее безопасным местом будет низина с массивом из невысоких деревьев. Нельзя оставаться на поляне, особенно вблизи одиноко стоящего дерева.
Если гроза застала вас в автомобиле, не покидайте его, при этом закройте окна и опустите антенну радиоприемника. Прекратите движение и переждите непогоду на обочине, подальше от высоких деревьев
Во время грозы не рекомендуется пользоваться и мобильным телефоном. Самое верное средство, это на время непогоды вообще отключить аппарат. Так же бывают случаи попадания молнии в зонт, при которых могут быть ожоги и летальные исходы.
Анна Самойлова, эксперт Пушкинского ТУ СиС «Мособлпожспас»
Источник: http://inkrasnoarmeisk.ru/novosti/bezopasnost/chem-opasna-molniya
Что наука знает о грозе
Романтикам, тем, кто любит грозу в начале мая или любого другого месяца, уместно было бы вспомнить, что гроза не только очищает атмосферу и озонирует окружающую действительность, но и может быть разрушителем и даже убийцей. Хотя с научной точки зрения это всего лишь более или менее хорошо изученное природное явление, определяемое как электрические разряды в мощных кучево-дождевых облаках, сопровождаемые вспышкой света (молнией) и резкими звуковыми раскатами (громом).
Учёные научились по своему желанию провоцировать молнии, не прикасаясь к облакам. Испытания прошли на Лысой горе – правда, в США, а не в →
Молния — гигантская искра
Грозы имеют свою классификацию. Ученые разделяют их на одноячеечные, многоячеечные линейные, многоячеечные кластерные и — самые опасные — сверхмногоячеечные. Возникающие во время гроз молнии особенной классификации не имеют (если не брать в расчет таинственные шаровые молнии), однако сам процесс возникновения этих электрических разрядов и их параметры тоже изучены, казалось бы, достаточно хорошо.
Фактически молния — это просто гигантская искра, возникающая либо внутри наэлектризованного грозового облака, либо между ним и Землей. Длина этой искры достигает порой 10–20 км, ток, протекающий внутри ее канала, исчисляется десятками и сотнями килоампер, а напряжение, вызывающее разряд, достигает десятков миллионов вольт. На больших высотах молнии даже способны вызывать термоядерные вспышки, за которыми следят специальные спутники.
Кто заряжает облака: лед или космос?
При всей кажущейся простоте процесса у исследователей к молниям остается еще много вопросов. Например, не совсем ясен механизм образования грозовых облаков и возникновения молниевых разрядов.
Существует множество версий, отвечающих на эти вопросы, ни одна из них не лишена недостатков, но в основном исследователи сходятся в том, что главную роль здесь играет конвекция — перемещение воздушных масс.
Очень распространены, например, версии, объясняющие электризацию облака мелкими льдинками, находящимися внутри него, быстро перемещающимися, сталкивающимися между собой и с водяными каплями и, соответственно, наэлектризовывающими друг друга.
Но ни одна из существующих версий не объясняет, каким образом грозовое облако растет и каким образом образуются молниевые разряды.
Возможно, ответ на эти вопросы лежит в теории, предложенной российскими физиками из ФИАН, по которой катализатором молний является космическое излучение. По этой теории, частица космического излучения, сталкиваясь на околосветовой скорости с молекулой воздуха, ионизирует ее, выбивая из нее электроны с высокой энергией. В свою очередь, они ионизируют путь своего движения, увлекая за собой лавину электронов, движущихся к земле и создавая канал для разряда.
Интересно, что из наблюдений известно, что молнии в облаках возникают при напряженностях электрического поля, не превышающих 3 киловольта на сантиметр, тогда как на тех высотах пробивное напряжение воздуха в 10 раз больше.
Убивает в основном мужчин
При всей кажущейся простоте процесса у исследователей к молниям остается еще много вопросов. Например, не имеется четкого ответа на их гендерные пристрастия.
Композитные материалы, инертный газ и медная проволока: «Газета.Ru» разобралась, почему попадание молнии в самолет не так страшно. →
Как известно, молния порой убивает. По статистике, от удара молнии в год на Земле погибает примерно 3 тыс. человек. Так, во время нынешней грозы в Москве погиб мужчина. И та же статистика утверждает, что 70% людей, погибших от удара молнии, — мужчины. Почему так — ответа нет, хотя версий, разумеется, предостаточно, в качестве «приманки» подозревают даже тестостерон.
Причем, возможно, число жертв со временем будет увеличиваться. Прошлой осенью журнал Science опубликовал статью группы климатологов из Беркли, утверждающих, что глобальное потепление умножает число молний и что если глобальное потепление не закончится, то к концу столетия это число возрастет на 50%. В этом смысле несколько утешает недавно появившееся сообщение о том, что на самом деле глобальному потеплению осталось быть недолго и что лет через двадцать-тридцать Земля начнет замерзать.
Китайские ученые впервые в мире сняли спектр шаровой молнии, случайно появившейся во время их экспериментов. Они полагают, что в самой молнии нет →
Самое молниеносное место
Еще одна загадка — молнии озера Маракайбо на севере Венесуэлы. Это самое молниеносное место нашей планеты. Над озером эти молнии бьют практически постоянно. Ночные грозы бывают здесь до 260 суток в год, создавая по 280 молний в час. По другим оценкам, в каждый квадратный километр озера и его болотистых берегов ежегодно ударяет по 180 молний. Молнии бьют в основном с вечера и до четырех часов утра, так что у местных жителей нет надобности в ночных фонарях.
Почему молнии выбрали для своего буйства именно это озеро, никто не знает.
На Сатурне уже почти полгода не прекращаются грозы, почти каждую секунду атмосферу пронзают разряды в тысячи раз мощнее земных молний. Если →
Молния вместо «Бука» и ядерной бомбы
Но исследования продолжаются, и будем надеяться, что со временем все тайны молний будут разгаданы. Более того, есть подозрение, что в конце концов человек даже сможет приручить молнию. На сегодня извилистый путь, который чертит молния в небе, совершенно непредсказуем.
Однако в прошлом месяце журнал Science Advances опубликовал статью французских физиков во главе с профессором Роберто Морадотти, которые придумали способ направлять путь электрического разряда с помощью хитроумной системы лазеров.
Ученые утверждают, что направляемые ими электрические разряды способны даже обходить препятствия.
Сегодня это может восприниматься фантастикой, но если такую лазерную технологию или другую более продвинутую технологию будущего применить к молнии и протоптать для нее дорожку, то можно будет не только спасать леса от пожаров и людей от ударов, но и сделать молнию управляемым оружием, от которого громоотводы уже не спасут.
Источник: https://www.gazeta.ru/science/2015/07/27_a_7659085.shtml
Что делать при встрече с шаровой молнией?
Первые письменные упоминания о загадочных и таинственных огненных шарах можно найти в летописях 106 г. до н. э.: «Над Римом появились огромные огненные птицы, несущие в клювах раскалённые угли, которые, падая вниз, сжигали дома. Город полыхал» Также было обнаружено не одно описание о шаровых молниях в Португалии и во Франции в Средние века, явление которых побудило алхимиков проводить время в поисках возможности властвовать над духами огня.
Этот удивительный шар
Шаровая молния считается особым видом молнии, который представляет собой плывущий по воздуху светящийся огненный шар (иногда имеет вид гриба, капли или груши).
Размер её обычно колеблется от 10 до 20 см, а сама она бывает голубого, оранжевого или белого тонов (хотя нередко можно увидеть и другие цвета, вплоть до чёрного), цвет при этом бывает неоднородным и нередко изменяется.
Люди, которые видели, как выглядит шаровая молния, говорят о том, что внутри она состоит из небольших неподвижных деталей.
Что касается температуры плазменного шара, то она до сих пор не определена: хотя по подсчётам учёных она должна составлять от 100 до 1000 градусов Цельсия, очутившиеся поблизости огненного шара люди жара от него не почувствовали. Если он неожиданно взрывается (правда, это бывает далеко не всегда), вся находящаяся неподалёку жидкость испаряется, а стекло и металл плавятся.
Был зафиксирован случай, когда плазменный шар, оказавшись в доме, попал в бочонок, где находилось шестнадцать литров только что принесённой колодезной воды. При этом он не взорвался, а вскипятив воду, исчез. После того как вода закончила кипеть, она была горячей в течение двадцати минут.
Цветные озера вулкана Келимуту857414.670
Существовать огненный шар способен довольно длительное время, а при перемещении – неожиданно поменять направление, при этом он даже может на несколько минут повиснуть в воздухе, после чего резко, на скорости от 8 до 10 м/с уйти в сторону.
Возникает шаровая молния в основном во время грозы, но также были зафиксированы неоднократные случаи её появления и в солнечную погоду.
Появляется она обычно в единственном экземпляре (по крайней мере, современная наука другого не зафиксировала), и нередко самым неожиданным образом: она может спуститься с туч, появиться в воздухе или выплыть из-за столба или дереве.
Для неё не составляет труда проникнуть в закрытое пространство: известны случаи её появления из розеток, телевизора и даже в кабинах пилотов.
Было зафиксировано немало случаев постоянного возникновения шаровой молнии на одном и том же месте.
Так, в небольшом городке под Псковом существует Чёртова поляна, на которой из-под земли периодически выскакивает шаровая молния черного цвета (появляться здесь она стала после падения Тунгусского метеорита).
Её постоянное возникновение в одном и том же месте дало возможность учёным попытаться зафиксировать это появление при помощи датчиков, правда, безуспешно: все они были расплавлены во время передвижения шаровой молнии по поляне.
Тайны шаровых молний
Учёные долгое время не допускали даже существования такого явления, как шаровая молния: сведения о её появлении относили в основном или к оптическому обману, или к галлюцинациям, что поражают сетчатку глаза после вспышки обыкновенной молнии. Тем более что свидетельства о том, как выглядит шаровая молния, во многом не совпадали, а во время её воспроизведения в лабораторных условиях удавалось получить лишь кратковременные явления.
Всё изменилось после того, как вначале XIX ст. физик Франсуа Араго опубликовал отчёт, с собранными и систематизированными свидетельствами очевидцев о явлении шаровой молнии. Хотя эти данные и сумели убедить многих учёных в существовании этого удивительного явления, скептики всё же остались. Тем более загадки шаровой молнии со временем не уменьшаются, а лишь множатся.
Прежде всего, непонятна природа появления удивительного шара, поскольку появляется он не только в грозу, но и в ясный погожий день.
Непонятен и состав вещества, которое позволяет ему проникать не только через дверные и оконные проёмы, но и через малюсенькие щели, после чего вновь принимать без ущерба для себя изначальную форму (физики этого явления разгадать на данный момент не в состоянии).
Некоторые учёные, изучая явление, выдвигали предположение, что в действительности шаровая молния являет собой газ, но в таком случае плазмовый шар под воздействием внутреннего тепла должен был бы взлетать вверх наподобие воздушного шара.
Да и природа самого излучения непонятна: откуда оно исходит – лишь с поверхности молнии, или со всего её объёма. Также перед физиками не может не возникать вопрос о том, куда пропадает энергия, что находится внутри шаровой молнии: если бы она шла лишь на излучение, шар исчезал бы не через несколько минут, а светился бы пару часов.
Несмотря на огромное количество теорий, физики до сих пор не могут дать научно обоснованного объяснения этого явления. Но, существует две противоположные версии, получившие популярность в научных кругах.
Гипотеза №1
Доминик Араго не только систематизировал данные о плазменном шаре, но и попытался объяснить, в чём состоит загадка шаровой молнии. По его версии шаровая молния — это специфическое взаимодействие азота с кислорода, во время которого выделяется энергия, создающая молнию.
Другой физик Френкель дополнил эту версию теорией о том, что плазмовый шар является вихрем шарообразной формы, состоящий из пылевых частиц с активными газами, что стали таковыми из-за полученного электрического разряда.
По этой причине вихрь-шар вполне может существовать довольно продолжительное время.
В пользу его версии говорит тот факт, что плазмовый шар обычно возникает в запыленном воздухе после электрического разряда, а после себя оставляет небольшой дымок со специфическим запахом.
Таким образом, эта версия говорит о том, что вся энергия плазменного шара находится внутри него, из-за чего шаровую молнию можно считать накопителем энергии.
Гипотеза №2
Академик Петр Капица с этим мнением был не согласен, поскольку утверждал, что для беспрерывного свечения молнии нужна дополнительная энергия, которая подпитывала бы шар извне. Он выдвинул версию, что явление шаровой молнии подпитывают радиоволны длиной от 35 до 70 см, возникающие в результате электромагнитных колебаний, возникающих между грозовыми тучами и земной корой.
Взрыв шаровой молнии он объяснял неожиданной остановкой подачи энергии, например, изменение частоты электромагнитных колебаний, в результате чего разреженный воздух «схлопывается».
Хотя его версия многим пришлась по душе, природа шаровой молнии версии не соответствует. На данный момент современная аппаратура ни разу не зафиксировала радиоволны нужной волны, которые появлялись бы в результате атмосферных разрядов. Кроме того, вода является почти непреодолимым препятствием для радиоволн, а потому нагреть воду, как в случае с бочонком, а тем более вскипятить её, плазменный шар не смог бы.
Также ставит гипотезу под сомнение масштаб взрыва плазменного шара: он не только способен расплавить или разнести в куски прочные и крепкие предметы, но и переломать толстые брёвна, а его ударная волна – перевернуть трактор. В то же время обыкновенное «схлопывание» разреженного воздуха проделать все эти трюки не способно, а его эффект подобен лопнувшему воздушному шару.
Что делать, встретив шаровую молнию
Что бы ни было причиной возникновения удивительного плазменного шара, нужно учитывать, что столкновение с ней чрезвычайно опасно, поскольку если переполненный электричеством шар дотронется до живого существа, вполне может убить, а если взорвётся – разнести всё вокруг.
Град8574141
Увидев огненный шар дома или на улице, главное, не впадать в панику, не делать резких движений и не бежать: шаровая молния чрезвычайно чувствительна к любым завихрениям воздуха и вполне может последовать за ним.
Нужно неторопливо, спокойно свернуть с пути движения шара, пытаясь держаться как можно дальше от него, но ни в коем случае не поворачиваться спиной. Если шаровая молния оказалась в помещении, нужно подойти к окну и открыть форточку: вслед за движением воздуха молния, скорее всего, вылетит наружу.
Также категорически нельзя ничего бросать в плазменный шар: это вполне может привести ко взрыву, и тогда травмы, ожоги, а в некоторых случаях даже остановка сердца неотвратимы. Если так получилось, что человек не сумел уйти с траектории движения шара, и тот задел его, вызвав потерю сознания, потерпевшего нужно перенести в проветриваемую комнату, тепло закутать, сделать искусственное дыхание и, естественно, сразу же позвонить в скорую помощь.
Источник: https://awesomeworld.ru/prirodnye-yavleniya/sharovaya-molniya.html
Ловцы молний. Необычные эксперименты с грозой
Добрый день, уважаемые читатели Хабра. Я расскажу о своём необычном хобби. Нет, это не фото/видео охота за молниями. Я ловлю молнии в прямом смысле этого слова, запуская воздушного змея в грозовые тучи. Направляю энергию грозы в специальные схемы и устройства, чтобы проводить опыты. Меня всегда вдохновляла красота и мощь молний.
Сила тока в разряде молнии достигает 10-300 тысяч ампер, а напряжение — от десятков миллионов до миллиарда вольт. Мощность разряда — от 1 до 1000 ГВт. Вот было бы хорошо «приручить» эту энергию! Хочу предупредить, не повторяй это дома! Я соблюдаю особую осторожность и хорошо знаю природу электрических явлений.
Помни, поражение молнией смертельно.
Рождение идеи
Первое, что приходит на ум, это подвести к грозовой туче провод и разрядить заряд на землю. Но как поднять провод так высоко? Обдумав все возможные варианты я пришел к выводу, что это можно сделать с помощью воздушного змея. Еще до того как началась гроза я хорошенько испытал воздушного змея.
Меня приятно обрадовала его подъёмная сила! Даже в небольшой ветер змей подымал достаточно тяжёлые грузы, а в сильный ветер его с трудом удавалось удержать за леску. Но провод змей высоко поднять не мог, так как уже 100 метров провода весило 2 кг и провод обладал большой парусностью — его сдувало ветром в сторону. Решено было заменить провод тонкой проволокой.
Ничего, что проволока не выдержит огромный ток молнии и мгновенно сгорит, на месте проволочки образуется ионизированный канал, и по малому сопротивлению этого канала пройдет основной заряд молнии.
Чтобы добиться минимального веса, парусности и как следствие максимальной высоты я использовал проволоку разной толщины: первые 100 метров от змея — самая толстая ≈0,3 мм, следующие 100 метров — тоньше, и так далее, чтобы она не порвалась под собственным весом. Леску, на которой я пускал змея тоже выбрал как можно тоньше — 0,25 мм. Змея она держала надёжно. Пробный запуск показал, что змей с проволокой способен взлететь на высоту 300 — 500 метров. Тучи конечно выше, но попробовать всё-таки стоит.
Первый опыт
Дождавшись грозовой погоды, мы бросаем все дела, прыгаем на скутер и летим на максимальной скорости под тучу. В то самое место, где сильнее сверкают молнии и гремит гром. Это настолько захватывающе, что сильный ветер и ливень для нас уже не помеха. Добравшись на место, мы разматываем 200 метров лески и укладываем её ровной линией на землю. Привязываем воздушного змея и ставим возле него баллон, вокруг которого аккуратно намотана проволока.
Баллон ставим на изолированный ящик и заземляем его через измерительные токовые шунты, а также подсоединяем различные бытовые приборы, чтобы посмотреть, что с ними будет после разрушительной силы грозы. Как только змей начинает взлетать, мы убегаем на безопасное расстояние и наблюдаем за происходящим. Змей довольно не плохо взлетел, но молния никак не хотела в него попадать, хотя рядом громко громыхала. Мы пробовали ещё несколько раз в другом месте и опять неудачно.
Стало ясно, что нужно что-то менять.
Ура! Нам удалось покорить грозу!
Молния вблизи, да еще и вызванная тобой, это действительно круто. Тебе наверняка интересно, как же нам удалось поймать молнию? Увидеть место, куда ударила молния. Что же мы испытали, находясь в непосредственной близости от этой страшной стихии? И узнать, что случилось с нашим оборудованием после грозы.
В этом ролике я подробно всё покажу: В прошлом ролике я подвязал тоненькую проволочку к змею и запустил его в грозу, но ничего не вышло. Теперь я доработал эту технологию и подал на проволочку высокое напряжение из телевизора «Юность». На аноде кинескопа в нём используется 10 000 вольт. Этого вполне достаточно, чтобы вызвать начальную ионизацию.
В темноте даже можно наблюдать, как светится коронный разряд на кончике проволочки, который закреплён на верхушке змея. В грозовую погоду я выехал за город и на высоком холме включил портативный телевизор «Юность» от аккумулятора. Корпус телика я хорошенько заземлил, а высоковольтный вывод подключил к тоненькой медной проволоке, намотанной на бутылке. Пока воздушный змей набирал высоту, проволока легко сматывалась с бутылки.
Я в это время наблюдал за процессом из безопасного места. Змей то набирал высоту, то опускался, отчего проволока касалась земли и искрила. При очередном порыве ветра змей резко рванул вверх и молния с оглушительным треском бахнула в телевизор. Я не ожидал, что от молнии будет настолько сильная ударная волна, которой отбросило мою видеокамеру. Ощущения от молнии просто непередаваемые.
Звук — как взрыв артиллерийского снаряда, только внушительнее и резче. Вспышка — это нечто. Рассмотреть её удалось хорошо, так как её я видел несколько минут, особенно если глаза закрыть. А внутренние ощущения не передать словами! Мы после молнии не сразу пришли в себя. Просто не верилось, что такое можно сделать своими руками. А потом, как не совсем вменяемые бегали по лесу, опасаясь, что на такой шум могут приехать военные.
Всего за 5 минут мы долетели домой и теперь можно спокойно изучить последствия удара молнии. Если рассмотреть видео, которое я заснял, по кадрам, то можно заметить искры, которые расходятся кольцами от телевизора — это магнитной индукцией сорвало оставшиеся витки проволоки с бутылки.
Потом видно как молния перескочила на антенну телевизора и мгновенно её испарила! Молния вышла из переключателя каналов в землю, оплавив его как после сварки. Провод от аккумулятора отгорел. Расплавленной земли в месте где ударила молния, я почему-то не увидел. Может мне попалась слабенькая молния. Но зато обнаружил три отверстия на земле, вокруг которых выгорела трава.
Получается, что молния вошла в землю в трёх разных местах, одно возле переключателя каналов телевизора, а другие в метре от телевизора. Почему так произошло? Может быть была серия молний и каждая ударила в новое место? А что же случилось с телевизором? К моему удивлению кинескоп не взорвался, на нем появились какие то странные пятна. Задняя стенка слетела, оплавилась и покрылась пузырьками.
Антенна полностью испарилась, остался только пиптык. Плата покрылась странным фиолетовым налётом и много дорожек перегорело. Из динамика вырвало мембрану. А вот аккумулятор жалко. Хоть он и находился в стороне и в него не было прямого попадания молнии, он оплавился и потрескался и полностью разрядился. После полной зарядки, к моему удивлению, он заработал нормально. И трещины оказались не сквозными — заплавленными изнутри. Теперь главный секрет молнии разгадан. А во что ты хотел бы разрядить грозу? Напиши в комментариях и мы сделаем это.
А почему бы нам не получить шаровую молнию?
Недавно я увидел, как ученые в лабораторных условиях получают шаровые молнии. Они погружают в воду электрод и подают на него высоковольтный импульс, в результате вылетает шаровая молния, которая за доли секунды гаснет. В этот раз я решил провести более масштабный эксперимент. Я погрузил массивный электрод в реку и подал на него грозовой разряд, подсоединив его через провод к воздушному змею, взлетающему к грозовой туче. Но что-то пошло не так.
Провод начал искрить, после чего змей зашипел и засветился ярким голубым свечением. Из него начала опускаться светящаяся лента и как только она соприкоснулась с землёй, с оглушительной мощью ударила молния. Я так и не понял, что за странное природное явление я наблюдал! Молния ударила почему-то не в реку, а в берег, оставив выжженный след на земле: Жаль, что фотоаппарат, который снимал на видео воздушного змея, выключился и не заснял то, как он светился.
Вообще, заснять молнию близко, не такая уж и лёгкая задача. От мощного электромагнитного импульса фотик зависает, а флешка из него не читается. Но одна камера оказалась более выносливой и не разу не выключилась за время съёмок. Но тут я столкнулся с другой трудностью. Вспышка молнии вблизи выглядит очень ярко, как тысяча дуг от сварочного аппарата. Камера не успевает подстроить экспозицию и ослепляется, из-за чего кадр с молнией получается засвеченным.
Уменьшение экспозиции и спортивный режим съёмки тут не помогают. Конечно в идеале грозовые явления нужно снимать скоростной камерой, но стоимость такой камеры просто шокирует: Sony NEX-FX700R которая способна снимать 960 кадров в секунду, стоит 7000$, а Fastec TS3Cine на 10000 кадров в сек. стоит 30000$. Даже на списанную камеру в убитом состоянии я не скоро насобираю деньги. Может ты знаешь, чем можно заснять качественно грозовые явления? Делись своими идеями.
Буду рад любой помощи.
Самое интересное и необычное впереди
Жаль, но сезон гроз закончился. А ещё так много идей осталось не выполненных. Ну а пока на улице холода, самое время хорошенько подготовится к следующему сезону. Я уже готовлю десяток усовершенствованных установок для ловли молний. Проволочка будет подыматься с помощью модельного ракетного двигателя, что даст значительный прирост в высоте.
Управление запалом будет дистанционное, что повысит безопасность. Все необходимые приборы и проволока будут заранее закреплены в каждой установке так, что выехав на место, не придётся терять драгоценного времени. Готовлю подходящую видеоаппаратуру, чтобы качественно заснять молнию в полный ракурс.
Получить SLOW-MO кадры удара молнии в: — дерево; — баллон с газом; — телефон nokia; — работающую микроволновку; — и многое другое (предложи в комментариях).
Чётко и не засвечено заснять шаровую молнию и если повезёт, другие редкие грозовые явления. Получить фульгурит. Ещё хочу провести целый ряд опытов с энергией молнии.
Сейчас изучаю эту тему в интернете, чтобы хорошо подготовиться к таким экспериментам. Может повезёт и удастся открыть что-то новое!
Ужасы нашего городка
В этом сезоне планировалось гораздо больше, но в нашем городе не всё так просто: при первых запусках змея, приходилось осматриваться, ни едет ли танк или БТР, опасаясь, чтобы военные нас не приняли за разведчиков. Следующий опыт проводился под конкретную бомбёжку, и когда грохнула молния в наш телевизор мы не на шутку перепугались военных, которые нашу молнию могли принять за вражескую армию! И мы, как сумасшедшие, бежали лесом напролом оттуда домой.
Моего друга поймали люди с автоматами, забрали телефон, уложили в багажник и увезли в неизвестном направлении. Нам повезло, его не захватили в плен. Последний наш опыт с шаровой молнией проходил в посадке усеянной неразорвавшимися снарядами. Мы попросили сапёров, разминирующих дома, чтобы они разминировали посадку, но они категорично отказались туда идти, сказав, что в посадке работают снайпера. Их не убедили наши слова, что мы там были и снайперов не видели.
Большинство опытов проводилось ещё в начале лета, но разместить видео и написать эту статью удалось совсем недавно. Мы живём в Луганске на Востоке Украины и в результате обстрелов полумиллионный город почти три месяца полностью оставался без света, интернета и вообще без какой либо связи.
На этом у меня всё. В следующем сезоне ожидай гораздо более грандиозных экспериментов от меня. Будь осторожен в грозу.
Не забудь поделиться своими идеями в комментариях, твой опыт и знания важны для нас!
Источник: https://habr.com/ru/post/243095/
Узип и защита от импульсных перенапряжений — авб электрика. профессионально
В этой статье я хочу описать систему УЗИП, другими словами Устройство Защиты от Импульсных Перенапряжений, ограничитель перенапряжений, устройство от перенапряжения.
Защита от перенапряжений в вашем доме
Защита от перенапряжений нужна в первую очередь в частных домах и коттеджах, где велика вероятность удара молнии в относительной близости от строения и ее питающих линий. В момент удара молнии в землю переходит огромная энергия.
Со стороны заземляющих устройств, и нулевого проводника в системе TN-C-S происходит значительное повышение потенциала, гораздо выше «положенного» им ноля.
По мере удаления от места удара молнии потенциал уменьшается, соответственно чем ближе находится устройство молниезащиты, тем более хорошим следует делать Защиту от Импульсных Перенапряжений.
Отсутствие системы защиты от перенапряжений приводит к тому, что электрооборудование подключенное к сети может подвергаться импульсам напряжения превышающим номинальное в десятки раз, что значительно сокращает срок его службы и может вывести из строя чуствительные электронные блоки, такие как устройства управления котлами, компьютеры, щиты сигнализации.
Типы УЗИП
Защита от импульсных перенапряжений на современном этапе развития состоит из трех и более звеньев. Одной из классификаций является — УЗИП Класс B, УЗИП Класс C, УЗИП Класс D. По другой классификации УЗИП Класс 1, УЗИП Класс 2, УЗИП Класс 3. Например ABB OVR, IEK ОПС.
Одно из основных правил защиты от импульсных перенапряжений — чем дальше от источника перенапряжения, тем импульс слабее. Зная это, будет проще понять как работает система УЗИП.
Базовым свойством элементов, входящих устройства УЗИП, является способность приобретать нулевое сопротивление при появлении импульса в сотни и тысячи вольт, даже очень коротких во времени.
То есть, если в фазном проводнике 220 Вольт, а в момент удара молнии со стороны «земли» 3000 Вольт — в этот момент УЗИП срабатывает (коммутирующего типа, разрядники), сопротивление его становится мало, и в фазном проводнике оказывается тоже около 3220 Вольт.
Главное что разница составляет те-же 220 Вольт или может быть 500 Вольт, но не 3 киловольта. От того какой импульс может погасить УЗИП и различаются их классы.
УЗИП Класс 1, или Класс B — устанавливается ближе всего к вводному щиту в здание, то есть ближе к источнику перенапряжения. УЗИП Тип 1 позволяет погасить импульс 10/350 (см. рисунок), с током который вы выбираете исходя из конкретных условий 7, 10, 25, 50, 100 и более кА (кило-ампер).
На рисунке представлен импульс 10/350 для тока 100кА. Где 10 мкС время нарастания импульса до максимума, 350 мкС скорость спадания до половины максимума. Данные формы импульсов выбраны производителями УЗИП как типичные и применяются для сравнения.
УЗИП Класс 2, рассчитан на импульс 8/20, имеющий значительно меньшую энергию. Данный тип устройств может быть как коммутирующего типа, так и ограничевающего типа. Применяется как вторая ступень УЗИП, сглаживая перенапряжение оставшееся от работы первой ступени УЗИП Класс 1.
В некоторых случаях УЗИП Класс 2 может использоваться отдельно как помехоподавляющее устройство при наличии в сети импульсов перенапряжений от коммутации мощных нагрузок, скачков напряжения происходящих по различным причинам.
УЗИП Класс 2 может устанавливаться в главном распределительном щите (ГРЩ) в здании.
УЗИП Класс 3, обычно рассчитаны на еще более слабые импульсы, и призваны сглаживать скачки напряжения еще более деликатно. Могут устанавливаться в распределительных щитах еще ближе к потребителям. Иногда комбинируются с помехоподавляющими фильтрами, или с УЗИП класса 2.
По мере удаления от источника импульса в сторону электропотребителя, проходя по линии ВРУ-ГРЩ-РЩ импульс ослабевает, и снижается вероятность выходя устройства УЗИП из строя. В этом состоит одна из особенностей построения такой распределенной системы.
Особенности эксплуатации УЗИП
При покупке и монтаже следует иметь ввиду, что УЗИП, особенно Класса 1 это вещь которая может сработать один раз, после чего нужно будет менять сменные элементы, или все устройство целиком. В то время как УЗИП Класс 2 и Класс 3, при правильном монтаже, вполне могут работать какое-то время не требуя замены, и исправно выполняя свои функции.
В настоящее время выпускаются устройства УЗИП Класс 1+2+3, но следует иметь ввиду, что при таком сосредоточенном построении системы повышается вероятность выхода из строя сразу трех ступеней УЗИП.
В заключение хочу отметить, что монтаж Устройства защиты от импульсных перенапряжений класса 1 следует выполнять проводами возможно большего сечения, и возможно меньшей длины.
Впереди лето, сезон гроз, поэтому обратите внимание на защиту вашего электрооборудования от перенапряжений. Обращайтесь к нам и вы получите квалифицированную помощь в выборе и установке Устройств защиты от Импульсных перенапряжений.
Мы предлагаем Вам — качественный электромонтаж, проектирование и обслуживание объектов по адекватным ценам и всегда высоком качестве. Звоните и мы решим все Ваши задачи по электрике!
> Статьи
Источник: https://avb.spb.ru/stati-2/uzip/
В воздухе пахнет грозой | суббота | самая интересная газета
Грозовой сезон в нашей стране начинается в мае и заканчивается осенью. Как не пострадать во время природной стихии
Хотя вероятность погибнуть от удара молнии невелика — один шанс к 600 000, — трагических историй, связанных с грозовыми разрядами, становится всё больше. Ежегодно от ударов молнии и их последствий погибают 3000 человек в разных странах мира.
По данным ГПСС Латвии, за последние пять лет удары молнии стали причиной 181 пожара, уничтожены 83 строения.
Надо думать, что разрушительные торнадо Латвии всё-таки не грозят, но грозы и очень сильный ветер становятся всё более частыми гостями на территории Латвии. Сезон настоящих бурь и сильных гроз приходится на июль-август.
Жертвы прошлого лета
В прошлом году на лесозаготовках пострадали два работника научно-исследовательского хозяйства «Вецауце» Латвийского сельскохозяйственного университета. В момент грозы люди сидели под высокой сосной, в которое угодил небесный разряд: 49-летний мужчина скончался на месте, а его коллега получил сильные ожоги.
По вине стихии летом 2012 года погибли ещё двое: шестилетний ребёнок и 70-летняя женщина. Мальчика ударил кусок шифера, сорванный порывом ветра с крыши; он был доставлен в больницу, но спасти его жизнь не удалось. А на женщину рухнула ветка дерева, сломанная ветром.
Гнев небесный в 100 000 ампер
Молния — это разряд электричества напряжением до 30 000 000 вольт, который достигает температуры 30 000o С, что в пять раз горячее поверхности Солнца.
Один разряд молнии несёт в себе электрический ток силой в 100 000 ампер, чего достаточно, чтобы в течение минуты освещать город с населением 200 тыс. человек.
Каждый день молния ударяет в Землю более 17 млн. раз, то есть около 200 раз в секунду. Наибольшее число несчастных случаев в грозу (90 процентов) происходит вне городов — в сельской местности.
Наука никак не может до конца разобраться с природой молнии, особенно шаровой.
Огненный шар
Шаровые молнии — яркие сферы белого или алого цвета размером от 10 сантиметров до метра. Шаровая молния может передвигаться с разной скоростью, бесшумно или с лёгким шорохом.
В дом или квартиру шаровая молния попадает через открытые двери, окна, дымовые трубы, щели. Специалисты настоятельно не рекомендуют каким-либо образом препятствовать движению шаровой молнии.
Главные правила при появлении шаровой молнии, будь то в квартире или на улице, — не паниковать, не метаться, не приближаться.
Надо сохранять абсолютное спокойствие и не делать никаких резких движений: эти загадочные шары очень восприимчивы к завихрениям воздуха, которые мы создаём при беге и прочих резких движениях и которые как бы тянут молнию за собой.
Если вы находитесь в квартире, подойдите к окну и откройте форточку. С большой долей вероятности молния сама вылетит наружу.
Алгоритм поведения
Советы заместителя начальника управление Государственной пожарно-спасательной службы (ГПСС) Рижского региона майора Паулиса Третьякова
- От прямых попаданий молнии людей защищают молниеотводы, которые установлены на большинстве зданий. В городах риск погибнуть от разряда молнии невысок.
Бич Риги и других населённых пунктов — старые деревья, которые падают, не выдержав удара сильного ветра; в результате страдают пешеходы и неудачно припаркованные машины. Меня это коснулось лично: два десятилетия назад во время грозы сломалось дерево и насмерть задавило мою родную тётю, которая ехала по улице Огре на велосипеде Поэтому пожарные всегда просят: люди, дорогие, не надо во время грозы выходить на улицу — по возможности лучше переждать ситуацию в помещении. - Советую всем владельцам автомашин думать наперёд: надо ли оставлять авто возле деревьев, если синоптики обещают непогоду с сильным ветром и тем более грозой.
- Мало кто сегодня во время вспышек молнии отключает телевизор и другие электроприборы. Понятно, что молниеотводы на зданиях спасают нас от беды Но всё-таки бережёного бог бережёт.Дело в том, что при попадании молнии в землю или какой-то объект в радиусе до 1500 метров от здания существует вероятность перемещения к нему электрических разрядов по различным коммуникациям, способным проводить ток: системы электроснабжения, связи, газопровод. Это вызывает резкое возрастание напряжения в электрических сетях, приводящее к различным аварийным ситуациям — от выгорания микросхем в бытовых приборах до полного выхода из строя электрооборудования. Вам это надо?
Поэтому наша служба рекомендует на время грозы отключать все бытовые электроприборы, не пользоваться телефоном. Окна и двери надо закрыть. Этим вы убережёте от непредвиденных проблем и свою технику, и, кто знает, может быть, и своё здоровье.
- Ситуация становится более тревожной, если непогода застала вас в поле, на лугу, где-то на природе. Тут действует особый алгоритм поведения. Если в поисках укрытия вам необходимо пересечь открытое пространство — идите спокойным шагом, не бегите, при этом отключите сотовый телефон и не ищите укрытия в прибрежных кустах. При этом надо стороной обходить одинокие деревья и столбы высоковольтных линий. Вообще, если ненастье застанет вас вне помещений, нежелательно находиться также под строительными лесами, рекламными стендами и линиями электропередачи.
- Молния чаще всего бьёт в самое высокое дерево, если их несколько. Чаще других притягивают молнию дубы, сосны, тополя и ели.
- Зонт в грозу не раскрывайте — лучше вообще спрячьте его под каким-то кустом, потом заберёте.
- Если гроза разбушевалась, а вы в чистом поле и до укрытия не дойти, присядьте сгорбившись на корточки, ноги вместе. Или встаньте — не смейтесь! — на одну ногу.
- Автомобиль — безопасное убежище от молнии, во время грозы лучше его не покидать. Но при этом надо закрыть окна и остановиться в стороне от высоких деревьев.
- Купаться и рыбачить в грозу (особенно в лодке на озере, море или реке) — это играть со смертью в прятки: попавшая в воду молния поражает всё вокруг в радиусе около 100 метров.
- Велосипед или мотоцикл могут быть небезопасны; лучше остановиться и отойти от двухколёсного транспортного средства на 20-30 метров.
- Во время ненастья нежелательно выводить наружу домашний скот и домашних животных. Кроме того, нужно быть готовым к отключению электроэнергии.
Источник: http://www.subbota.com/2013/06/06/v-vozduhe-pahnet-grozoj/
Каково это, когда в тебя попадает молния Научно-популярное издание Mosaic — о напряжении в 200 миллионов вольт — Meduza
Если в человека попадет молния, его шанс выжить — 9 из 10, только потом его здоровье не всегда возвращается к прежнему состоянию. Принято считать, что удар молнии — это что-то очень редкое, сравнимое с нападением акулы.
Если вы доживете до 80 лет, то шансы встретиться с разрядом молнии напряжением до 200 миллионов вольт — 1 к 13 тысячам.
Научно-популярное издание Mosaic рассказывает о том, что случилось с теми людьми, в кого молния все же попала и что делать всем остальным, чтобы этого никогда не произошло.
Что происходит
«Все мое тело просто замерло — я не мог больше двигаться. Боль была Трудно объяснить. Если вы в детстве засовывали палец в розетку, умножьте это чувство в газиллион раз — и ты это чувствуешь всем телом. Я увидел белый свет вокруг себя, как будто я был в пузыре. И это длилось вечность», — рассказывает Джастин Гогер, которого ударила молния, когда он возвращался с рыбалки.
На самом деле молния редко бьет прямо в человека — это происходит в трех—пяти процентах случаев. Обычно через человека проходит только ее часть, а все остальное как бы «обтекает» тело. Либо молния бьет рядом, а человеку достается часть удара. Это происходит очень быстро, гораздо быстрее, чем при контакте с высоковольтной линией, поэтому при ударе молнии люди так часто выживают.
Наверное, многие думают, что молния бьет в макушку и проходит через тело в землю. На самом деле точки входа бывают разными. Часто это уши, губы или глаза, и пострадавшие могут потерять слух, у кого-то потом развивается катаракта. Если молния проникает в мозг, то это может нарушить работу дыхательного центра.
Если молния оказывается в сердце, это нарушает его работу, и тут часто не обойтись без сердечно-легочной реанимации. Еще это ожоги, особенно если кожа человека была влажной. От одежды могут остаться только клочки, телефон может просто-напросто расплавиться. После удара молнией многие люди теряют сознание, нередко бывает, что ноги или руки временно парализует.
Окружающие видят дым, поднимающийся от человека.
Если человек выжил, дальше он может столкнуться с самыми неожиданными последствиями. Хронические боли, ухудшение памяти, изменение личности, настроения и многое другое. Некоторые пострадавшие говорят, что теперь, когда они входят в комнату, компьютер зависает, а батарейки в технике разряжаются быстрее, но специалисты относятся к таким заявлением со скепсисом.
Вообще последствия ударов молнией изучены плохо. Есть не так много врачей, которые специализируются именно на этом, исследований мало. Одни из самых известных проводились на овцах. У специалистов по молниям есть свой симпозиум, у людей, которых ударила молния, кстати, тоже есть свои форумы, потому что многие хотят общаться с теми, кто понимает, что они пережили и с чем им приходится сейчас сталкиваться.
Как себя вести во время грозы
Есть множество популярных советов, как избежать удара молнии, но американский метеоролог Рон Холл просит не обманываться: ни один из них не гарантирует вам стопроцентную защиту. В идеале нужно как можно быстрее попасть в помещение. Но и то — не везде помещения полностью защищены, особенно в сельской местности.
Когда вы находитесь на улице, лучше сделать хоть что-нибудь, чтобы не стать мишенью для молнии. Она нацеливается в основном на отдельно стоящие выступающие объекты: деревья, столбы, здания, людей. Поэтому:
- лучше спуститься с возвышенности — чем глубже, тем лучше. Овраг подходит идеально;
- держитесь подальше от высоких деревьев и воды;
- если вы в компании, то рассредоточьтесь (между людьми должно быть около 6 метров);
- не ложитесь на землю — лучше присядьте на корточки и поставьте ноги вместе.
Раньше активно распространялось правило 30/30: человек должен считать, сколько секунд прошло после вспышки молнии. Если гром гремел до того, как удалось досчитать до 30, значит, молния достаточно близко и представляет угрозу. Но теперь мы стараемся отойти от этого правила по многим причинам, говорит Холл. Одна — практичная: не всегда точно можно определить, к какой именно молнии относится этот гром.
Mosaic
Источник: https://meduza.io/feature/2017/05/26/kakovo-eto-kogda-v-tebya-popadaet-molniya
Молния: интересные факты
Молния — электрический искровой разряд в атмосфере, который обычно происходит во время грозы. Проявляется в виде яркой вспышки света и сопровождается громом.
Молния — это мощный электрический разряд. Он возникает при сильной электризации туч или земли. Поэтому разряды молнии могут происходить или внутри облака, или между соседними наэлектризованными облаками, или между наэлектризованным облаком и землей. Разряду молнии предшествует возникновение разности электрических потенциалов между соседними облаками или между облаком и землей.
Сколько вольт в молнии?
Молния обладает колоссальной мощностью. При напряжении, достигающем 10 млн вольт, и силе тока, доходящей до 20 тысяч ампер, мощность разряда молнии превышает 200 тысяч миллионов ватт. Для грозовых облаков характерны заряды молний силой 100000 вольт и более. Энергии, содержащейся в одном ударе молнии, может хватить на горение 100Вт лампочки в течение 90 дней.
От чего зависит цвет молнии?
Молнии бывают различного цвета. По цвету молнии можно судить о свойствах окружающего воздуха: вспышка красного цвета – в облаке дождь, голубого – град, желтого – пыль. Белый цвет свидетельствует о том, что воздух очень сухой. Такая молния представляет особую опасность, потому что часто при разряде в землю вызывает пожары.
Как вычислить насколько далеко находится молния?
Скорость звука меняется в зависимости от температуры и влажности воздуха, но если вы хотите получить среднее число для простоты расчета, то это будет примерно 350 метров в секунду. Так что звук проходит 1 километр примерно за 3 секунды.
Когда увидите вспышку молнии, начните отсчет секунд, а затем умножьте полученные секунды на скорость, чтобы увидеть, как далеко ударила молния. Если от вспышки до удара грома проходит 10 секунд, то это значит, что молния ударила примерно в 3-3.
5 км от вас.
Где чаще всего возникают молнии?
Молнии чаще всего возникают в тропиках. Местом, где молнии встречаются чаще всего, является деревня Кифука в горах на востоке Демократической Республики Конго. Там в среднем отмечается 158 ударов молний на квадратный километр в год. Также молнии очень часты на Кататумбо в Венесуэле, в Сингапуре, городе Терезина на севере Бразилии и в «Аллее молний» в центральной Флориде.
Какая длина молнии?
В среднем, длина молнии составляет около 10 км. Самая длинная молния была зафиксирована в Оклахоме в 2007 году. Её протяжённость составила 321 км.
Какая температура молнии?
Внутри молнии ученые зафиксировали температуру около 9,5 тысячи градусов Цельсия — почти в два раза выше температуры поверхности Солнца. Воздух рядом с разрядом молнии нагревается до полутора тысяч градусов. Это сравнимо с температурой пирокластических потоков, вытекающих из вулкана при извержении
Какова вероятность быть убитым молнией?
Вероятность быть убитым молнией составляет 1 к 2000000. Такие же шансы умереть от падения с кровати.
Почему зимой практически не бывает молний?
Чтобы образовалось грозовое облако, необходимы восходящие потоки влажного воздуха. Концентрация насыщенных паров растет с повышением температуры и максимальна летом. Разница температур, от которой зависят восходящие потоки воздуха, тем больше, чем выше его температура у поверхности земли, так как на высоте нескольких километров его температура не зависит от времени года. Значит, интенсивность восходящих потоков максимальна тоже летом. Поэтому зимой грозы довольно редки.
Какие деревья молния поражает чаще всего?
Среди всех деревьев чаще всего молния поражает дуб, реже всего – бук. Существует мнение, что это связано с наличием жирных масел
Источник: https://outer-world-insider.com/priroda/molnija-interesnye-fakty/