Что происходит при включении конденсатора в цепь переменного тока

Как изменится емкостное сопротивление цепи переменного тока

Что происходит при включении конденсатора в цепь переменного тока

g84jsm9tB4S

Электросопротивление — это параметр в электротехнике, характеризующий возможность вещества препятствовать прохождению электричества. В зависимости от качеств материала, электросопротивляемость может уменьшаться до крайне маленьких величин (микромилиОмы — у проводников, металлов) или повышаться до огромных значений (ГигаОмы — изоляторов, диэлектриков). Величина противоположная сопротивлению — проводимость.

Что такое

Цепь, по которой протекает непостоянный ток, обладает полным сопротивлением. Вычисляется оно по сумме активного и реактивного сопротивлений, возведенных в квадрат.

Графическое изображение этой формулы представляет собой треугольник. Его катеты представлены активным и реактивным сопротивлениями, а гипотенуза полным электросопротивлением.

Емкостное электросопротивление (Xc) является одним из видов реактивного сопротивления. Этот показатель характеризует противодействие электроемкости в цепи электротоку с переменными параметрами. Преобразование электроэнергии в тепловую в момент протекания электричества сквозь емкость не возникает (свойство реактивного сопротивления). Вместо этого осуществляется передача энергии электрического тока электрическому полю и обратно. Потерь энергии при таком обмене не происходит.

Емкостное сопротивление конденсатора можно сравнить с кастрюлей, наполняемой жидкостью, при полном заполнении ее объема она переворачивается, выливая содержимое, а затем наполняется заново. После достижения максимального заряда конденсатора происходит разрядка, затем он заряжается вновь.

Дополнительная информация: Конденсатор цепи способен накопить лишь ограниченную величину заряда до перемены полярности напряжения. По данной причине непостоянный ток не падает до нуля, важное отличие от постоянного электричества. Низкие значения частоты тока соответствуют низким показателям заряда, накопленного конденсатором, низким значениям противодействия электричеству, что придает реактивные свойства.

По сути, Xc — это противостояние электродвижущей силы конденсатора, уровню его заряда.

От чего зависит сопротивление конденсаторов цепей переменного тока

Показатели его, зависят не только от емкостных характеристик последнего, но и от частотной характеристики электротока, протекающего по цепи.

Когда речь идет о сопротивлении резистора, то говорится о параметрах самого резистора, например, материале, форме, но полностью отсутствует взаимосвязь сопротивления его и показателей частоты электричества цепи (речь идет об идеальном резисторе, паразитные параметры которому не характерны).

Когда речь идет об устройстве накопления энергии и заряда электрического поля — все иначе. Конденсатор одной и той же емкости при разных частотах тока обладает неодинаковым уровнем сопротивления. Амплитуда протекающего через него электричества при постоянной амплитуде напряжения обладает разной величиной.

Источник: http://pechi-sibiri.ru/kak-izmenitsja-emkostnoe-soprotivlenie-cepi/

Тест. Конденсатор и катушка индуктивности в цепи переменного тока

Что происходит при включении конденсатора в цепь переменного тока
Будьте внимательны! У Вас есть 10 минут на прохождение теста. Система оценивания — 5 балльная. Разбалловка теста — 3,4,5 баллов, в зависимости от сложности вопроса. Порядок заданий и вариантов ответов в тесте случайный. С допущенными ошибками и верными ответами можно будет ознакомиться после прохождения теста. Удачи!

В цепь включена индуктивность L = 1 Гн. Максимальное напряжение Um = 314 В. Частота тока v = 50 Гц. Каково амплитудное значение тока в цепи?

Варианты ответов

Что происходит при включении конденсатора в цепь переменного тока на его обкладках с колебаниями  напряжения?

Как рассчитать падение напряжения на конденсаторе?

Что происходит при включении конденсатора в цепь переменного тока

Итак, берем блок питания  постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт.  Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А  вот если напрямую сделать, то горит:

Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот  генератор част оты вполне сойдет:

Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой резистор на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:

Спаиваем как-то вот так и подаем сигнал с генератора частоты:

Далее за дело берется Цифровой осциллограф OWON SDS 6062. Что такое осциллограф и с чем его едят, читаем зде   сь.  Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.

Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:

Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц? 

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда:  F – это частота, Ma – амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал – желтым,  для удобства восприятия.

Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта.  На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то “лохматый”.

Это связано с так называемыми “шумами“. Шум – это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо “шумит” резистор.

Значит “лохматость” сигнала – это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз. Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени :-), что конечно же, невозможно.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Давайте увеличим частоту  на генераторе до 500 Герц

На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца

На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц

Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц

Амплитуда уже почти  такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:

Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2.

Если построить обрезок графика, то получится типа что-то этого:

По вертикали я отложил напряжение, по горизонтали –  частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по  этим же частотам.

Смотрим и анализируем значения:

Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора.

Например, на частоте в 100 Герц  и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт( в реальности еще меньше из за помех).

На частоте 500 Герц –  560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

ЭТО ИНТЕРЕСНО:  Какой провод нужен для бойлера

где, ХС  – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14 

F – частота, измеряется в Герцах

С – емкость,  измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в  ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили Фильтр Высокой Частоты (ФВЧ).

С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик,  в динамике мы будет слышать только писклявые высокие тона.  А вот  частоту баса как раз и заглушит такой фильтр.

Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.

Источник: https://1000eletric.com/kak-rasschitat-padenie-napryazheniya-na-kondensatore/

Как ведет себя конденсатор в цепи переменного тока? Сопротивление конденсатора переменному току

При переменном напряжении на реальном конденсаторе кроме тока смещения имеются небольшие токи проводимости, через толщу диэлектрика (объемный ток) и по поверхности (поверхностный ток).Токи проводимости и поляризацию диэлектрика сопровождают потери энергии.

Таким образом, в реальном конденсаторе наряду с изменением энергии электрического поля (это характеризует реактивная мощность Q) из-за несовершенства диэлектрика идет необратимый процесс преобразования электрической энергии в тепло, скорость которого выражается активной мощностью Р. Поэтому в схеме замещения реальный конденсатор должен быть представлен активным и реактивным элементами.

Деление реального конденсатора на два элемента — это расчетный прием, так как конструктивно их выделить нельзя. Однако такую же схему замещения имеет реальная цепь из двух элементов, один из которых характеризуется только активной мощностью Р (Q = 0), другой — реактивной (емкостной) мощностью Q(P = 0).

Схема замещения конденсатора с параллельным соединением элементов

Реальный конденсатор (с потерями) можно представить эквивалентной схемой параллельного соединения активнойG и емкостнойB спроводимостей (рис. 13.15), причем активная проводимость определяется мощностью потерь в конденсаторе G = Р/U c 2, а емкость — конструкцией конденсатора. Предположим, что проводимости G и В с для такой цепи известны, а напряжение имеет уравнение

u = Umsinωt.

Требуется определить токи в цепи и мощность. Исследование цепи с активным сопротивлением и цепи с емкостью показало, что при синусоидальном напряжении токи в них так же синусоидальны. При параллельном соединении ветвей G и В с, согласно первому закону Кирхгофа, общий ток i равен сумме токов в ветвях с активной и емкостной проводимостями:

i = i G + i c ,(13.30)

Учитывая, что ток i G совпадает по фазе с напряжением, а ток i cопережает напряжение на четверть периода, уравнение общего тока можно записать в следующем виде:

Векторная диаграмма токов в цепи с конденсатором

Для определения действующей величины общего тока I методом векторного сложения построим векторную диаграмму согласно уравнению

I = I G + I C

Действующие величины составляющих тока:

I G = GU (13.31)

I C = B C U (13.32)

Первым на векторной диаграмме изображается вектор напряжения U (рис. 13.16, а), его направление совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза напряжения φ a =0).

Вектор I G совпадает по направлению с вектором U, а вектор I Cнаправлен перпендикулярно вектору U с положительным углом. Из векторной диаграммы видно, что вектор общего напряжения отстает от вектора общего тока на угол φ, величина которого больше нуля, но меньше 90º.

Вектор I является гипотенузой прямоугольного треугольника, катеты которого — составляющие его векторы I G и I C:
При напряжении u = U m sinωt соответствии с векторной диаграммой уравнение тока

i = I m sin(ωt + φ)

Треугольник проводимостей для конденсатора

Стороны треугольников токов, выраженные в единицах тока, разделим на напряжение U. Получим подобный треугольник проводимостей (рис. 13.16, б), катетами которого являются активная G = I G /Uи емкостная В с = I с /U проводимости, а гипотенузой — полная проводимость цепи Y = I/U. Из треугольника проводимостей

Связь между действующими величинами напряжения и тока выражается формулами

I = UY

U = I/Y (13.35)

Из треугольников токов и проводимостей определяют величины

cosφ = I G /I = G/Y; sinφ = I c /I = B c /Y; tgφ = I C /I G = B c /G. (13.36)

Мощность цепи с конденсатором

Выражение мгновенной мощности реального конденсатора

p = ui = U m sinωt * I m sin(ωt+φ)

совпадает с выражением мгновенной мощности катушки. Рассуждения, аналогичные тем, которые сделаны при рассмотрении графика мгновенной мощности (см. рис.13. 11), можно провести и для реального конденсатора на основе графика рис. 13.17.

Величины активной, реактивной и полной мощностей выражаются теми же формулами, какие были получены для катушки [см. (13.19) — (13.22)]. Это нетрудно показать, если стороны треугольника токов, выраженные в единицах тока, умножить на напряжение U.

В результате умножения получится подобный треугольник мощностей (рис. 13.16, в), катетами которого являются мощности; активная

P = UI G = UIcosφ

реактивная

Q = UI C = UIsinφ

Схема замещения конденсатора с последовательным соединением элементов

Реальный конденсатор, так же как и , на расчетной схеме может быть представлен последовательным соединением двух участков: с активным R и емкостнымХ с сопротивлениями. На рис. 13.18, а такая схема показана в сравнении со схемой параллельного соединения активной и емкостной проводимостей (рис.13. 18,6).

Все выводы и формулы, полученные для катушки, остаются в силе и для конденсатора при условии замены индуктивного сопротивления емкостным. Конденсаторы, применяемые на практике, имеют относительно малые потери энергии. Поэтому в схемах замещения они представлены чаще всего только реактивной частью, т. е.

емкостью С Участки цепи, где последовательно соединены отдельные элементы — резистор R и конденсатор С, имеют такую схему замещения, как показано на рис. 13.18, а. Если вам интересно прочитайте которые применяются в промышленности.

Это легко подтвердить опытами. Можно зажечь лампочку, присоединив ее к сети переменного тока через конденсатор. Громкоговоритель или телефонные трубки будут продолжать работать, если их присоединить к приемнику не непосредственно, а через конденсатор.

Конденсатор представляет собой две или несколько металлических пластин, разделенных диэлектриком. Этим диэлектриком чаще всего бывает слюда, воздух или керамика, являющиеся наилучшими изоляторами. Вполне естественно, что постоянный ток не может пройти через такой изолятор.

Но почему же проходит через него переменный ток? Это кажется тем более странным, что такая же самая керамика в виде, например, фарфоровых роликов прекрасно изолирует провода переменного тока, а слюда прекрасно выполняет функции изолятора в ах, электроутюгах и других нагревательных приборах, исправно работающих от переменного тока.

Посредством некоторых опытов мы могли бы «доказать» еще более странный факт: если в конденсаторе заменить диэлектрик со сравнительно плохими изоляционными свойствами другим диэлектриком, который является лучшим изолятором, то свойства конденсатора изменятся так, что прохождение переменного тока через конденсатор будет не затруднено, а, наоборот, облегчено.

Например, если включить лампочку в цепь переменного тока через конденсатор с бумажным диэлектриком и затем заменить бумагу таким прекрасным изолятором; как стекло или фарфор такой же толщины, то лампочка начнет гореть ярче.

Подобный опыт позволит прийти к заключению, что переменный ток не только проходят через конденсатор, но что он к тому же проходит тем легче, чем лучшим изолятором является его диэлектрик.

Однако, несмотря на всю кажущуюся убедительность подобных опытов, электрический ток — ни постоянный, ни переменный — через конденсатор не проходит. Диэлектрик, разделяющий пластины конденсатора, служит надежной преградой на пути тока, каким бы он ни был — переменным или постоянным. Но это еще не означает, что тока не будет и во всей той цепи, в которую включен конденсатор.

Источник: https://beasthackerz.ru/odnoklassniki/kak-vedet-sebya-kondensator-v-cepi-peremennogo-toka-soprotivlenie.html

Последовательное включение конденсатора в цепь переменного тока. Что такое электрический конденсатор

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию,оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС,равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения,что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), котораяпропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

ЭТО ИНТЕРЕСНО:  Как правильно заряжать необслуживаемый автомобильный аккумулятор

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока сосдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома,где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда –накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное.Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю.Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току,обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума.Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2)

Источник: https://studygu.ru/posledovatelnoe-vklyuchenie-kondensatora-v-cep-peremennogo-toka.html

Конденсатор в цепи переменного тока

Если конденсатор включить в цепь постоянного тока, то такая цепь будет разомкнутой, так как обкладки конденсатора разделяет диэлектрик, и ток в цепи идти не будет. Иначе происходит в цепи переменного тока.

Переменный ток способен течь в цепи, если она содержит конденсатор. Это происходит не из-за того, что заряды вдруг получили возможность перемещаться между пластинами конденсатора.

В цепи переменного тока происходит периодическая зарядка и разрядка конденсатора, который в нее включен благодаря действию переменного напряжения.

Рассмотрим цепь на рис.1, которая включает конденсатор. Будем считать, что сопротивление проводов и обкладок конденсатора не существенно, напряжение переменного тока изменяется по гармоническому закону:

По определению емкость на конденсаторе равна:

Следовательно, напряжение на конденсаторе:

Из выражения (3), очевидно, что заряд на конденсаторе будет изменяться по гармоническому закону:

Сила тока равна:

Сравнивая законы колебаний напряжения на конденсаторе и силы тока, видим, что колебания тока опережают напряжение на . Этот факт отражает то, что в момент начала зарядки конденсатора сила тока в цепи является максимальной при равенстве нулю напряжения. В момент времени, когда напряжение достигает максимума, сила тока падает до нуля.

В течение периода, при зарядке конденсатора до максимального напряжения, энергия, поступающая в цепь, запасается на конденсаторе, в виде энергии электрического поля. За следующую четверть периода данная энергия возвращается обратно в цепь, когда конденсатор разряжается.

Амплитуда силы тока (), исходя из выражения (5), равна:

Емкостное сопротивление конденсатора

Физическую величину, равную обратному произведению циклической частоты на емкость конденсатора называют его емкостным сопротивлением ():

Роль емкостного сопротивления уподобляют роли активного сопротивления (R) в законе Ома:

где – амплитудное значение силы тока; – амплитуда напряжения. Для емкостного сопротивления действующая величина силы тока имеет связь с действующим значением напряжения аналогичную выражению (8) (как сила тока и напряжение для постоянного тока):

На основании (9) говорят, что сопротивление конденсатора переменному току.

При увеличении емкости конденсатора растет ток перезарядки. Тогда как сопротивление конденсатора постоянному току является бесконечно большим (в идеальном случае), ёмкостное сопротивление конечно. С увеличением емкости и (или) частоты уменьшается.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/kondensator-v-cepi-peremennogo-toka/

Ёмкостное сопротивление. Емкостное сопротивление в цепи переменного тока

» Банки » Ёмкостное сопротивление. Емкостное сопротивление в цепи переменного тока

Емкостное сопротивление это сопротивление переменному току, которое оказывает электрическая емкость. Ток в цепи с емкостью опережает напряжение по фазе на 90 градусов. Емкостное сопротивление является реактивным, то есть потерь энергии в нем не происходит как, например, в активном сопротивлении. Емкостное сопротивление обратно пропорционально частоте переменного тока.

Проведем эксперимент, для этого нам понадобится. Конденсатор лампа накаливания и два источника напряжения один постоянного тока другой переменного. Для начала построим цепь, состоящую из источника постоянного напряжения, лампы и конденсатора все это включено последовательно.

Рисунок 1 — конденсатор в цепи постоянного тока

При включении тока лампа вспыхнет на короткое время, а потом погаснет. Так как для постоянного тока конденсатор имеет большое электрическое сопротивление. Оно и понятно ведь между обкладками конденсатора находится диэлектрик, через который постоянный ток не способен пройти. А вспыхнет лампа по тому, что в момент включения источника постоянного напряжения идет кратковременный импульс тока, заряжающий конденсатор. А раз ток идет значит и лампа светится.

Теперь в этой цепи заменим источник постоянного напряжения на генератор переменного. При включении такой цепи мы обнаружим, что лампа буде светится непрерывно.

Происходит это по тому, что конденсатор в цепи переменного тока заряжается за четверть периода. Когда напряжение на нем достигнет амплитудного значения, напряжение на нем начинает уменьшаться, и он будет, разряжается следующие четверть периода.

В следующие пол периода процесс повторится снова, но напряжение в этот раз уже будет отрицательным.

Таким образом, в цепи непрерывно течет ток хотя он и меняет при этом свое направление дважды за период. Но через диэлектрик конденсатора заряды не проходят. Как же это происходит.

Представим себе конденсатор, подключаемый к источнику постоянного напряжения. При включении, источник убирает электроны с одной обкладки, тем самым создавая на ней положительный заряд. А на второй обкладке добавляет электронов, создавая тем самым равный по величине, но противоположный по знаку отрицательный заряд. В момент перераспределения зарядов в цепи протекает ток заряда конденсатора. Хотя электроны при этом не движутся через диэлектрик конденсатора.

Рисунок 2 — заряд конденсатора

Если теперь из цепи исключить конденсатор, то лампа будет светить ярче. Это говорит о том, что емкость создает сопротивление, току ограничивая его величину. Происходит это из-за того что при заданной частоте тока значение ёмкости мало и она не успевает накопить достаточно энергии в виде зарядов на своих обкладках. И при разряде будет протекать ток меньше чем способен развить источник тока.

Опыт показывает, что если последовательно с лампочкой соединить конденсатор и подключить их к генератору постоянного напряжения, то лампочка не горит. Это понятно, так как обкладки конденсатора разделены диэлектриком, и цепь оказывается разомкнутой.

При подключении конденсатора к источнику постоянного тока возникает кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Но если эту цепь подключить к источнику переменного напряжения, то лампочка горит.

Переменный ток представляет собой вынужденные электромагнитные колебания, происходящие под действием переменного электромагнитного поля генератора. При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода.

После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается, и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор снова заряжается, но знак заряда на его обкладках изменяется на противоположный и т.д.

Через диэлектрик, разделяющий обкладки конденсатора, как и в цепи постоянного тока, электрические заряды не проходят. Но по проводам, соединяющим обкладки конденсатора с источником напряжения, течет переменный ток разрядки и зарядки конденсатора. Поэтому лампочка, включенная последовательно с конденсатором, будет гореть непрерывно. Если теперь конденсатор отсоединить, то лампочка горит ярче. Следовательно, конденсатор оказывает переменному токусопротивление, которое называется емкостным сопротивлением.

Рассмотрим цепь (рис. 1), состоящую из конденсатора и подводящих проводов, сопротивление которых пренебрежительно мало, и генератора переменного напряжения.

Пусть напряжение на конденсаторе изменяется по закону \(~U = U_0\sin wt.\) Как известно, заряд на обкладках конденсатора можно определить по формуле \(~q = CU = CU_0\sin wt.\) Сила тока \(~I = q».\) Следовательно,

\(~I = -wCU_0\cos wt = wCU_0\sin(wt+\frac {\pi}2).\)

Отсюда \(~I=I_0\sin (wt +\frac {\pi}2),\)

где \(~I_0=wCU_o\) — амплитудное значение силы тока:

\(~I_0=\frac {U_0}{\frac 1{wC}}; I_0 =\frac {U_0}{X_C},\)

где \(~X_C = \frac 1{wC}.\)

Выразив амплитудные значения через действующие \(~I_0 = \sqrt2 I \) и \(~U_0 = \sqrt2 U,\)получим \(~I= \frac U{X_C}, \) т.е. действующее значение силы тока связано с деиству-Хсющим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение на участке цепи постоянного тока. Это позволяет рассматривать величину Хс как сопротивление конденсатора переменному току:

ЭТО ИНТЕРЕСНО:  Как обозначается гелевый аккумулятор

\(~X_C = \frac 1{wC}\) — емкостное сопротивление.

В СИ единицей емкостного сопротивления является ом (Ом).

Как видно из полученной выше формулы, если в цепи включено только емкостное сопротивление, колебания силы тока в этой цепи опережают по фазе колебания напряжения на конденсаторе на \(~\frac {\pi}2,\) что изображено на графике и на векторной диаграмме (рис. 2).

Мгновенная мощность

\(~P=IU = I_0\sin (wt +\frac {\pi}2)U_0\sin wt = I_0U_0\sin wt \cos wt =\frac {I_0U_0}2 \sin 2wt,\)

т.е. мощность периодически изменяется с двойной частотой, а среднее значение мощности — за период \(\mathcal h P \mathcal i =0,\) так как \(~\mathcal h \sin 2wt \mathcal i = 0.\) Первую и третью четверти периода, когда конденсатор заряжается, он получает энергию от генератора, а вторую и четвертую четверти периода, когда конденсатор разряжается, он отдает энергию генератору.

Таким образом, так же, как активное сопротивление, емкостное сопротивление ограничивает силу тока в цепи, но в отличие от активного сопротивления на емкостном сопротивлении электрическая энергия не превращается необратимо в другие виды энергии.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 402-404.

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Виды включений

Конденсатор в цепи постоянного тока (без переменной составляющей) работать, как известно, не может.

Обратите внимание! Это утверждение не касается сглаживающих фильтров, где протекает пульсирующий ток, а также специальных блокирующих схем.

Совершенно иная картина наблюдается, если рассматривать включение этого элемента в цепи переменного тока, в которой он начинает вести себя более активно и может выполнять сразу несколько функций. В этом случае конденсатор может использоваться в следующих целях:

  • Для блокировки постоянной составляющей, всегда присутствующей в любой электронной схеме;
  • С целью создания сопротивления на пути распространения высокочастотных (ВЧ) компонентов обрабатываемого сигнала;
  • Как ёмкостной нагрузочный элемент, задающий частотные характеристики схемы;
  • В качестве элемента колебательных контуров и специальных фильтров (НЧ и ВЧ).

Из всего перечисленного сразу видно, что в подавляющем большинстве случаев конденсатор в цепи переменного тока используется как частотно-зависимый элемент, способный оказывать определённое влияние на протекающие по ней сигналы.

Простейший тип включения

Происходящие при таком включении процессы приведены на размещённом ниже рисунке.

Эпюры переменных процессов

Они могут быть описаны путём введения понятия гармонической (синусоидальной) ЭДС, выражаемой как U = Uocos ω t, и выглядят следующим образом:

  • При нарастании переменной ЭДС конденсатор заряжается протекающим по нему электрическим током I, максимальным в начальный момент времени. По мере заряда ёмкости величина зарядного тока постепенно уменьшается и полностью обнуляется в тот момент, когда ЭДС достигает своего максимума;

Важно! Такое разнонаправленное изменение тока и напряжения приводит к образованию между ними характерного для этого элемента сдвига фаз на 90 градусов.

  • На этом первая четверть периодического колебания заканчивается;
  • Далее синусоидальная ЭДС постепенно убывает, вследствие чего конденсатор начинает разряжаться, и в это время в цепи протекает нарастающий по амплитуде ток. При этом наблюдается то же отставание его по фазе, что было в первой четверти периода;
  • По завершении этой стадии конденсатор полностью разряжается (при этом ЭДС равна нулю), а ток в цепи достигает максимума;
  • По мере нарастания обратного (разрядного) тока ёмкость перезаряжается, вследствие чего ток постепенно снижается до нуля, а ЭДС достигает своего пикового значения (то есть весь процесс возвращается в исходную точку).

Далее все описанные процессы повторяются с периодичностью, задаваемой частотой внешней ЭДС. Сдвиг по фазе между током и ЭДС может рассматриваться как некое сопротивление изменению напряжения на конденсаторе (отставание его от токовых колебаний).

Понятие ёмкости

Закон Ома для переменного тока

При исследовании процессов, протекающих в цепях с подключённым в них конденсатором, обнаружено, что время заряда и разряда для различных образцов этого элемента существенно отличается одно от другого. На основании данного факта было введено понятие ёмкости, определяемое как способность конденсатора накапливать заряд под воздействием заданного напряжения:

C=Q/U.

После этого изменение заряда на его обкладках со временем можно представить как:

I = dQ/dt.

Но поскольку Q=CU, то путём несложных вычислений получаем:

I = CxdU/dt = ω C Uo cos ω t = Io sin(ω t+90),

то есть ток течёт через конденсатор таким образом, что он начинает опережать по фазе напряжение на 90 градусов. Такой же результат получается при использовании других математических подходов к этому электрическому процессу.

Векторное представление

Для большей наглядности в электротехнике используется векторное представление рассмотренных процессов, а для количественной оценки замедления реакции вводится понятие ёмкостного сопротивления (смотрите фото ниже).

Векторное представление тока

Из векторной диаграммы также видно, что ток в цепи конденсатора опережает по фазе напряжение на 90 градусов.

Дополнительная информация. При изучении «поведения» катушки в цепи синусоидального тока было обнаружено, что он в ней, напротив, отстаёт по фазе от напряжения.

И в том, и в другом случае наблюдается различие в фазных характеристиках процессов, свидетельствующих о реактивном характере нагрузки в цепи переменной ЭДС.

Упуская из внимания сложные для описания дифференциальные вычисления, для представления сопротивления ёмкостной нагрузки получим:

Xс=1/ ω C.

Из неё следует, что создаваемое конденсатором сопротивление обратно пропорционально частоте переменного сигнала и ёмкости установленного в цепь элемента. Указанная зависимость позволяет строить на основе конденсатора такие частотно-зависимые схемы, как:

  • Интегрирующие и дифференцирующие цепочки (совместно с пассивным резистором);
  • НЧ и ВЧ фильтрующие элементы;
  • Реактивные цепи, используемые для улучшения нагрузочных характеристик силового оборудования;
  • Резонансные контуры последовательного и параллельного типа.

В первом случае посредством ёмкости удаётся произвольно изменять форму прямоугольных импульсов, увеличивая их длительность (интегрирование) или сокращая её (дифференцирование).

Фильтрующие цепочки и резонансные контура широко используются в линейных схемах самого различного класса (усилители, преобразователи, генераторы и подобные им устройства).

График ёмкостного сопротивления

Доказано, что ток через конденсатор протекает только под воздействием гармонически изменяющегося напряжения. При этом сила тока в цепочке определяется ёмкостью данного элемента, так что чем больше ёмкость конденсатора, тем он значительнее по величине.

Но можно проследить и обратную зависимость, в соответствие с которой сопротивление конденсатора возрастает с понижением частотного параметра. В качестве примера рассмотрим график, приведённый на рисунке ниже.

График зависимости сопротивления ёмкости от частоты

Из приведённой выше зависимости можно сделать следующие важные выводы:

  • Для тока постоянной величины (частота = 0) Хс равно бесконечности, что означает невозможность его протекания в ней;
  • При очень высоких частотах сопротивление этого элемента стремится к нулю;
  • При прочих равных условиях оно определяется ёмкостью установленного в цепи конденсатора.

Определённый интерес представляют вопросы распределения электрической энергии в цепях переменного тока с включённым в них конденсатором.

Работа (мощность) в ёмкостной нагрузке

Подобно случаю с индуктивностью, при исследовании «поведения» конденсатора в цепях переменной ЭДС обнаружено, что расхода мощности в них из-за сдвига фаз U и I не наблюдается. Последнее объясняется тем, что электрическая энергия на начальном этапе процесса (при заряде) запасается между обкладками конденсатора, а на второй его стадии – отдается назад в источник (смотрите рисунок ниже).

Вследствие этого емкостное сопротивление относится к категории реактивных, или безваттных, нагрузок. Однако такой вывод можно считать чисто теоретическим, поскольку в реальных цепях всегда присутствуют обычные пассивные элементы, обладающие не реактивным, а активным или ваттным сопротивлением. К ним относятся:

  • Сопротивления подводящих проводов;
  • Проводимости диэлектрических зон в конденсаторе;
  • Рассеяние на контактах;
  • Активные сопротивления витков катушек и тому подобное.

В связи с этим в любой реальной электрической цепочке всегда имеются потери активной мощности (её рассеяние), определяемые в каждом случае индивидуально.

Особое внимание следует обратить на внутренние потери, связанные с утечками через диэлектрик и плохим состоянием изоляции между пластинами (обкладками). Обратимся к следующим определениям, учитывающим реальное положение дел. Так, потери, связанные с качественными характеристиками диэлектрика, называются диэлектрическими. Энергетические затраты, относимые на несовершенство находящейся между пластинами изоляции, принято классифицировать как потери из-за утечек в конденсаторном элементе.

В завершении этого обзора интересно проследить за одной аналогией, представляющей процессы, происходящие в конденсаторной цепи с упругой механической пружиной. И, действительно, пружина, подобно этому элементу, в течение одной части периодического колебания накапливает в себе потенциальную энергию, а во второй фазе – отдает её обратно в кинетической форме. На основании такой аналогии может быть представлена вся картина поведения конденсатора в цепях с переменной ЭДС.

Источник: https://elquanta.ru/teoriya/kondensator-cepi-peremennogo-toka.html

Понравилась статья? Поделиться с друзьями:
Электро Дело