Что такое повышающий трансформатор

Принцип действия трансформатора для повышения напряжения

Что такое повышающий трансформатор

Открытие в далёком 1831 году великим учёным Фарадеем принципа электромагнитной индукции позволило по-новому взглянуть на многие законы электротехники.

Именно основываясь на взаимодействие электромагнитных полей, через 45 лет после этого великий русский учёный П. Н. Яблочков получил патент на изобретение трансформатора.

Классическое определение звучит так: трансформатор — это электрическое устройство, преобразующее ток первичной обмотки одного напряжения, в ток вторичной обмотки с другим напряжением.

Индукционный эффект образуется при изменении электромагнитного поля, поэтому для работы трансформатора необходимо наличие напряжения с переменным током.

Трансформация (передача) осуществляется преобразованием электрической энергии первичной обмотки в магнитное поле, а затем, во вторичной обмотке происходит обратное преобразование магнитного поля в электрическую энергию.

В случае если количество витков вторичной обмотки будет превышать число витков первичной обмотки, то устройство будет называться повышающим трансформатором. При подключении обмоток в обратном порядке, получается понижающее устройство.

Устройство и принцип работы

Конструктивно повышающее устройство трансформации напряжения состоит из сердечника и двух обмоток. Сердечник собран из пластин электротехнической листовой стали. На него намотаны первичная и вторичная обмотки, из медного провода, различного диаметра. Толщина провода намотки трансформатора напрямую зависит от его выходной мощности.

Сердечник устройства может быть стержневым или броневым. При использовании изделия в сетях низкочастотного напряжения чаще всего применяются стержневые магнит проводы, которые по форме могут быть:

  • П-образные.
  • Ш-образные.
  • Тороидальные.

Изготавливаются сердечники из трансформаторного специального железа, от качественных характеристик которого и зависят многие общие параметры устройства. Набирается сердечник из тонких железных пластин, которые изолированы друг от друга лаком или слоем окиси, для уменьшения потерь за счёт вихревых токов. Могут применяться и готовые половинки, которые сделаны из сплошных железных лент.

Достоинства и недостатки сердечников

  • Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
  • Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
  • Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.

В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой.

Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.

Основными характеристиками при эксплуатации трансформатора считаются:

  • Напряжение входное.
  • Величина напряжения на выходе.
  • Мощность прибора.
  • Ток и напряжение холостого хода.

Величина отношения напряжений на входе и выходе устройства называется коэффициентом трансформации. Это соотношение зависит только от количества витков в обмотках и остаётся неизменным при любом режиме функционирования устройства.

От диаметра проводов и от типа сердечника напрямую зависит мощность трансформатора, которая со стороны первичной намотки равна сумме мощностей вторичных обмоток, за исключением потерь.

Напряжение, получаемое на выходной обмотке устройства, без подключения нагрузки, называется напряжением холостого хода. Разница между этим показателем и напряжением с нагрузкой указывает на величину потерь за счёт разного сопротивления проводов обмотки.

От качественных показателей сердечника трансформатора полностью зависит величина тока холостого хода. В идеальном случае, ток первичной обмотки создаёт в сердечнике устройства магнитное поле переменного значения, по величине электродвижущая сила которого равна току холостого хода и противоположна по направлению. Но вот в реальности величина электродвижущей силы всегда меньше напряжения на входе, за счёт возможных потерь в сердечнике.

Именно поэтому для уменьшения величины тока холостого хода, требуется материал высокого качества при изготовлении сердечника и минимальный зазор между его пластинами. Таким условиям в большей мере соответствуют тороидальные сердечники.

Типы устройств

В зависимости от мощности, конструкции и сферы их применения, существуют такие виды трансформаторов:

  • Автотрансформатор конструктивно выполнен как одна обмотка с двумя концевыми клеммами, а также в промежуточных точках устройства имеются несколько терминалов, в которых располагаются первичные и вторичные катушки.
  • Трансформатор тока включает в себя первичную и вторичную обмотку, сердечник из магнитного материала, а также оптические датчики, специальные резисторы, позволяющие ускорять способы регулировки напряжения.
  • Силовой трансформатор — это устройство, передающее ток, при помощи индукции электромагнитного поля, между двумя контурами. Такие трансформаторы могут быть повышающими или понижающими, сухими или масляными.
  • Антирезонансные трансформаторы могут быть как однофазными, так и трёхфазными. Принцип работы такого устройства мало чем отличается от трансформаторов силового типа. Конструктивно представляет собой устройство литого типа с хорошей теплозащитой и полузакрытой структурой. Трансформаторы антирезонансного типа применяются при передаче сигнала на большие расстояния и в условиях больших нагрузок. Идеально подходят для работы в любых климатических условиях.
  • Заземляемые трансформаторы (догрузочные). Особенностью этого типа является расположение обмоток в форме звезды или зигзага. Часто заземляемые приборы применяют для подключения счётчика электрической энергии.
  • Пик — трансформаторы используются в устройствах радиосвязи и технологиях компьютерного производства, по принципу отделения постоянного и переменного тока. Конструкция такого трансформатора является упрощённой: обмотка с определённым количеством витков расположена вокруг сердечника из ферромагнитного материала.
  • Разделительный домашний трансформатор применяется при передаче энергии переменного тока к другому устройству или оборудованию, блокируя при этом способности источника энергии. В бытовых условиях такие приборы обеспечивают регулирование напряжения и гальваническую развязку. Чаще всего применяются для подавления электрических помех в чувствительных приборах и защиты от вредного воздействия электрического тока.

Желательно человеку, не знающему принцип действия электротехнических приборов, не заниматься ремонтными работами этого оборудования, из-за возможности поражения электрическим током. При ремонте и обслуживании трансформаторных устройств, единственное, что можно исправить, без недопустимых последствий, это перемотка трансформатора.

Перед началом любых ремонтных работ необходимо произвести проверку трансформатора:

  • Первым делом необходимо оценить состояние прибора при помощи визуального осмотра, так как порой, потемневшие и вздувшиеся участки, прямо указывают на неисправность обмотки трансформатора.
  • Определение правильности подключения устройства. Электрический контур, генерирующий магнитное поле обязательно должен быть подключён к первичной обмотке прибора. А вот вторая схема, потребляющая энергию трансформатора, должна быть включена в обмотку выходного напряжения.
  • Фильтрация выходного сигнала фазы определяется как для диодов и конденсаторов на вторичной обмотке устройства.
  • Следующим шагом нужно подготовить прибор к контрольному измерению параметров, т. е. снять защитные панели и крышки, чтобы получить свободный доступ к элементам схемы. С помощью тестера нужно в дальнейшем произвести измерение напряжения трансформатора.
  • Для проведения измерений, нужно подать питание на схему устройства. Измерение параметров первичной обмотки проводится тестером в режиме переменного тока. Если полученное значение меньше чем на 80% от ожидаемого, то неисправность может быть как в самом трансформаторе, так и в схеме всего устройства.
  • Проверку выходной обмотки осуществляют при помощи тестера. При этом проверяем обмотку как на возможность появления короткозамкнутых витков, так и на обрыв провода намотки катушки, по принципу измерения сопротивления (если сопротивление мало — то есть вероятность короткозамкнутых витков, а в случае когда сопротивление обмотки велико — обрыв).

После перемотки повышающего трансформатора напряжения, в случае неисправности обмотки, нужно собрать его в обратной последовательности, при этом особое внимание необходимо уделить наиболее плотному прилеганию пластин сердечника.

Самостоятельное изготовление или ремонт устройства предоставляется процессом очень сложным и трудоёмким. Для выполнения таких работ потребуется наличие необходимых материалов, а также умение производить некоторые специальные расчёты. В частности, нужно будет точно рассчитать количество витков в обмотке трансформатора, диаметр проводов для обмотки, а также сечение и тип сердечника устройства.

Поэтому лучше обратиться для проведения этих операций к квалифицированному человеку, знакомому с основными понятиями и свойствами электротехники и расчётами по необходимым формулам.

Источник: https://tokar.guru/stanki-i-oborudovanie/ustroystvo-povyshayuschego-transformatora-napryazheniya.html

Повышающий трансформатор: конструктивные особенности приборов, способных повышать и понижать напряжение

Что такое повышающий трансформатор

Трансформатор преобразовывает мощность в сетях и установках, предназначенных для приема электричества и работы с ним. Повышающий трансформатор — это статический агрегат, получающий питание от источника напряжения для трансформирования высокой мощности в низкие показатели. Его применяют для обособления логических защитных контуров и измерительных линий от высокого напряжения.

Электромагнитное устройство с двумя или больше обмотками, связанными индукцией на магнитопроводе, называется трансформатором. Оно разработано для изменения напряжения переменного тока с сохранением частоты и используется при производстве, трансляции на расстояние и приемке электроэнергии.

Агрегат, повышающий напряжение, содержит проволочную катушку, охваченную магнитными линиями, располагающуюся на сердечнике для проведения потока. Материалом стержня служат ферромагнитные сплавы. Агрегат работает с большими мощностями, его применение обусловлено разными показателями напряжений городских линий (около 6,2 кВ), потребительского контура (0,4 кВ) и мощности, необходимой для функционирования электроприборов и машин (от единичных показаний до нескольких сотен киловольт).

Применение в сетях

Приборы устанавливаются в электрических линиях и источниках питания потребительских точек. В соответствии с законом Джоуля — Ленца при увеличении силы тока выделяется тепло, которое нагревает провод. Для транслирования энергии на большие линейные расстояния увеличивают напряжение, а токи уменьшают. При поступлении к потребителю мощность снижают, поскольку в целях безопасности пришлось бы использовать массивную изоляцию.

В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.

Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.

Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.

Магнитная система

Магнитопровод представляет собой комплекс пластин или других элементов из электротехнической стали, составленных в выбранной геометрической конфигурации. В конструкции сосредоточены поля агрегата.

Магнитопровод в сборе вместе с узлами и соединительными элементами образует остов трансформатора. Деталь, на которую намотаны обмотки, является стержнем. Область системы, предназначенная для замыкания цепи и не несущая витков контура, называется ярмом.

Расположение в пространстве стержней служит для разделения системы на следующие виды:

  • плоская конструкция, в которой все сердечники располагаются на единой поверхности;
  • пространственный способ — продольные стержни или сердечники и ярма находятся в различных плоскостях;
  • симметричный порядок — стержни одной длины и формы располагаются так, что их пространственная установка одинаково относится ко всем элементам и сердечникам;
  • несимметричный строй предполагает разные по виду и размерам стержни, расположенные отлично от аналогичных деталей.

Обмотки агрегата

Обмотка состоит из отдельных витков, являющихся проводниками, или комплекса таких передатчиков (жилы из нескольких проводов). Оборот однократно обходит стержень, ток которого совместно с токами других сердечников и систем воспроизводит магнитное поле. В результате возникает электродвижущая сила (ЭДС).

Обмотка представляет собой упорядоченный комплекс витков. Она образует цепь, в которой складываются силы, наведенные в оборотах. Обмотка трехфазного агрегата состоит из нескольких объединенных обвивок трех фаз с одинаковым напряжением.

Стержни обмоток понижающего и повышающего трансформатора делают квадратной конфигурации для наилучшего использования пространства (повышения коэффициента наполнения в окне стержня). Если требуется увеличить поперечное сечение сердечника, то его делят на несколько проводников. Это применяется для уменьшения вихревых токов в обвивке. Проводник квадратного поперечного сечения называется жилой. По функционированию обмотки делят на несколько типов:

  • основные — обвивки, предназначенные для приема или отвода преобразуемой или трансформированной энергии переменного тока;
  • регулирующие — те, что предусматривают выводы для изменения коэффициента преобразования напряжения при небольшом токе обмотки и маленьком диапазоне нормализации;
  • вспомогательные витки обеспечивают питание собственных нужд, при этом используется малая мощность, гораздо меньшая, чем аналогичный номинальный показатель повышающего трансформатора.

Изоляцией жилы служит слой бумаги или эмалевый лак. Два параллельно проходящих защищенных провода, расположенные рядом, отгораживаются общей бумажной оберткой и называются транспонированным кабелем.

Его отдельный вид составляет непрерывное продолжение, складывающееся при перемещении жилы одного слоя к следующему пласту с одинаковым шагом в единой изоляции. Бумажная защита делается из тонких полос шириной 2—4 см, нанесенных вокруг кабеля.

ЭТО ИНТЕРЕСНО:  Как подключить пусковой и рабочий конденсатор к электродвигателю

Для получения требуемого пласта заданной толщины бумага накладывается в несколько слоёв. В зависимости от конструкции обмотка бывает:

  1. Рядовая. Обороты на сердечнике кладут в направлении оси по всей протяженности обвивки. Последующие витки располагают плотно один к другому, не допуская промежутка между ними.
  2. Винтовая. Является одним из вариантов многослойного нанесения. Между каждым заходом оборота оставляется расстояние.
  3. Дисковая. Последовательно объединяется ряд накопителей. В них обороты кладут в радиальном направлении по спиральной форме. На первичной прослойке обвивка ведется внутрь, а на соседних кругах делается наружу.
  4. Фольговая. Вместо прямоугольного кабеля ставят медные или алюминиевые пластины. Они широкие, их толщина составляет от 0,1 до 2,5 мм.

Охладительный резервуар

Является емкостью для масла и одновременно защищает активные компоненты агрегата от перегрева. В конструкции исполняет роль опоры для дополнительных и управляющих устройств. Перед наполнением из бака удаляют воздух, подвергающий разрушению изоляцию и уменьшающий ее защитные свойства. Из-за этого резервуар работает в условиях низкого атмосферного давления.

Для уменьшения шума от функционирования трансформатора должны совпадать звуковые частоты, воспроизводимые стержнем агрегата, и аналогичные показатели резонанса конструктивных элементов. Для сброса при увеличении объема жидкости в баке от нагревания устанавливается отдельно расположенная расширительная емкость.

Повышение номинальных значений мощности увеличивает скорость движения электронов снаружи и внутри трансформатора, что разрушает конструкцию. Аналогично действует рассеивающее магнитное течение в баке. Применяют вкладыши из материала, не подверженного намагничиванию.

Их располагают вокруг изоляторов сильного потока, что уменьшает риск нагревания. Внутреннюю отделку бака выполняют так, чтобы она не пропускала магнитный поток через ограждения емкости.

Материал с малым сопротивлением магнетизму поглощает течение перед его проникновением через наружные стенки.

Количество полуокружностей почти соответствует числу оборотов обвивки. С увеличением витков делается больше дуг, но строгая пропорциональность отсутствует. Возле выхода жирной точкой указывают начало обмоток (на двух катушках и больше). Ставят обозначения мгновенно возникающей ЭДС, они на выходах обычно одинаковы.

Такой подход используется при показе промежуточности агрегатов в преобразовательных цепочках для наметки синхронности или противофазности. Обозначение актуально и при нескольких катушках, если для их эффективного функционирования требуется соблюдать полярность. Отсутствие явного обозначения обвивок говорит о том, что они идут в одном направлении, то есть конец предыдущей соответствует началу последующей.

Особенности эксплуатации

Для определения времени службы используют понятие экономического и технического срока работы. Экономический отрезок заканчивается, когда цена трансформации мощности с помощью искомого трансформатора превышает удельную стоимость таких же услуг в соответствующей рыночной нише. Технический срок службы прекращается с выходом из строя большого числа элементов, требующих капитального ремонта агрегата.

Использование в параллельном режиме

Такой регламент применяется из-за того, что при небольшой нагрузке силовой понижающий агрегат допускает значительные потери на холостом ходу. Для исправления ситуации он заменяется группой устройств небольшой мощности, которые при необходимости отключают поодиночке. Требования к такому подсоединению:

  • к параллельному использованию допускаются агрегаты с равной угловой погрешностью между вторичным и первичным показателем напряжения;
  • параллельно связываются одинаково полярные полюса из областей низкой и высокой мощности;
  • объединяемые устройства должны показывать аналогичный коэффициент передачи по напряжению;
  • сопротивление при коротком замыкании должно отличаться в сторону уменьшения или увеличения не более 10%;
  • соотношение мощности задействованных трансформаторов не должно превышать 1:3.

Агрегаты, входящие в группу, используют с одинаковыми техническими параметрами.

Частота и регулирование мощности

В случаях равного напряжения на первичных обмотках агрегаты с определенной частотой могут эксплуатироваться при увеличенных показателях сети с рекомендованной заменой навесного оборудования. При частоте меньше номинальной индукция повышает значения в магнитном приводе, что ведет к скачку тока при холостой работе и изменению его вида.

Регулирование напряжения трансформатора применяется в сети из-за того, что нормальная работа потребителей возможна только при мощности определенных параметров и минимальных от них отклонениях.

Изоляция и перенапряжение

Специалисты проводят регулярные испытания и ремонты защитного слоя трансформатора, так как он теряет свои свойства от высоких температур. Это касается агрегатного масла в охладительном баке и изоляции активных элементов. После проверки сведения о состоянии защитных материалов вписываются в паспорт агрегата.

Иногда устройства работают в условиях повышенной мощности. Перенапряжение подразделяется на два вида:

  • кратковременное действие сильного фактора продолжается от одной секунды до 2—4 часов;
  • переходное перенапряжение длится от 2—5 наносекунд до 3—5 миллисекунд, оно бывает колебательным или неколебательным, но всегда имеет одинаковое направление.

Иногда при перегрузке комбинируются оба вида перенапряжения. Причинами их возникновения могут быть грозовые разряды, при этом токовый показатель импульса зависит от расстояния между трансформатором и местом удара. Второй причиной являются изменения условий работы, сформированные внутри системы. Они заключаются в поломках, нарушениях проводимости, коротких замыканиях, возгораниях, частых подключениях и отключениях.

При контроле качества в заводских условиях агрегаты проверяют и выдают сведения о возможности бесперебойной работы в соответствии со стандартами.

Источник: https://220v.guru/elementy-elektriki/transformatory/rabota-transformatora-povyshayuschego-ili-ponizhayuschego-napryazhenie.html

Повышающий трансформатор MAGNUS

Что такое повышающий трансформатор

  • Позволяет получить кривые намагничивания измерительных трансформаторов быстро и легко
  • Размагничивание сердечника трансформатора тока
  • Измерение коэффициента трансформации трансформаторов напряжения
  • Двуручное управление повышает личную безопасность

Перед первым запуском электроэнергетической системы в эксплуатацию или повторным пуском после аварийного отключения требуется проверять рабочие характеристики измерительных трансформаторных блоков. Процедура позволит своевременно выявить проблемы в обеспечении контрольно-измерительной аппаратуры и оборудования релейной защиты выходами с необходимыми значениями электрических токов и разностей потенциалов.

Данный трансформатор повышающий напряжение предназначен для проведения испытаний в месте установки оборудования. С его помощью:

  • быстро и просто снимаются кривые намагничивания измерительных трансформаторных установок;
  • размагничивается сердечник токового трансформатора (ТТ);
  • измеряется коэффициент трансформации по напряжению.

Благодаря двуручному управлению обеспечивается электробезопасность оператора.

В стандартный комплект поставки входят два специальных кабеля на 15 кВ длиной пять метров, сечением полтора квадрата каждый и прочный кейс для транспортирования.

Технические характеристики повышающего трансформатора напряжения MAGNUS

Агрегат предназначен для использования на высоковольтных подстанциях и в промышленных энергетических комплексах.

Параметры рабочих выходов при нормальных условиях эксплуатации:

Выход Напряжение переменного тока, B Ток, A Время рабоьв над загрузкой, C Время отдыха, минут
Питание 230В
высоковольтный 2200 1 30 10
регулируемый трансформатор 250 6 непрерывно
Питание 115 В
высоковольтный 2000 1 30 10
регулируемый трансформатор 110 10 непрерывно

Параметры измерительных выходов:

  • напряжение 100/1, (при максимальной нагрузке один МОм), погрешность ±1,5 %;
  • ток 10/1, точность ±1,5 % при 2 А, ±3 % при 0,5 А выходного тока.

Потребляемая мощность составляет 2300 ВА максимум.

В конструкции предусмотрены защитные термические выключатели.

Допустимые условия окружающей среды:

  • эксплуатационная температура 050 °С;
  • температура при хранении и транспортировке -400 °C;
  • влажность 595% RH;
  • не допускается наличие конденсата.

Размеры составляют 356x203x241 мм, а вес – 16.3 кг. Благодаря таким компактным габаритам прибор отличается высокой мобильностью и маневренностью.

Повышающий трансформатор купить в Украине

Научно производственная фирма «Харьков-Прибор» предлагает купить MAGNUS компании Megger по лучшей в Украине цене. Для уточнения стоимости и заказа заполните онлайн форму.

На изделие предоставляется официальная гарантия.
 

С этим товаром покупают:

Ad Reference ID: 203582b1ff533d3f

Источник: https://pribory.com/product/povy-shayushhij-transformator-magnus/

Повышающие трансформаторы ОС(ОСЗ) и ТС(ТСЗ) 36 на 220 вольт

Необходимость в повышении напряжения является специфической, востребованной гораздо реже, чем понижение, но всё же довольно часто встречающейся задачей в условиях ликвидации аварийных ситуаций в производственной зоне.

В качестве примера можно привести типичную ситуацию, в которой для монтажа специальных датчиков или приборов в зоне прокатного стана нет возможности подключить электроинструмент, работающий от 220 вольт, но есть линия с напряжением 36 вольт, предназначенная для освещения.

Для решения такой задачи можно использовать однофазный повышающий трансформатор напряжения ОСЗ  36 в 220 вольт с рабочей мощностью 1,6 кВА, который выполнен в переносном варианте и имеет относительно небольшой вес.

Направление преобразования 36 -220 вольт в большей степени характерно для однофазных цепей, хотя нельзя исключать возникновение такой необходимости и для трёхфазных установок.

В любом случае, серия ОСЗ (ТСЗ) содержит достаточное число моделей как для однофазного преобразования (ОСЗ), так и для трёхфазного (ТСЗ). Различие между моделями определено разными номиналами рабочих мощностей.

Для серии ОСЗ это 13 уровней (0,1 – 10 кВА), для серии ТСЗ – 14 уровней (1—500 кВА). Купить повышающий трансформатор напряжения ОСЗ (ТСЗ) 36/220 можно любой мощности, входящей в эти интервалы.

Серийная модель однофазных трансформаторов имеет медные обмотки, класс температурной устойчивости «В» и тип корпуса, соответствующий категории IP20. Все трёхфазные установки имеют две базовые реализации: с медными и с алюминиевыми обмотками. Предельно допустимое рабочее напряжение для обеих групп – 1000 вольт.

Универсальность и низкий уровень шума

Компания «ЭТА» производит трансформаторную технику уже более двадцати пяти лет. За это время накоплен огромный опыт по созданию мощной преобразующей техники различных типов. В том числе и той, которая работает с ударными нагрузками.

Применяя эти знания в технологическом цикле производства силовых повышающих трансформаторов напряжения ОСЗ 36В/220В, мы создали обмотки более стойкие к электродинамической вибрации и имеющие значительно меньший уровень шума в сравнении с другими моделями сухих трансформаторов.

Все трансформаторы в серии ОСЗ производства ЭТА могут работать как в повышающих, так и в понижающих цепях. В их конструкцию заложена возможность быстрого перехода на другой режим работы в виде расширенной коммутационной панели, на которую выведены все рабочие окончания обмоток.

Адаптация серийного изделия к вашей системе электроснабжения

Всякое внедрение новых силовых установок в сбалансированную цепь электроснабжения сопряжено с большим количеством косвенных последствий, которые далеко не всегда очевидны и видны только специалистам. Поэтому, чтобы избежать многократных переделок (а в некоторых случаях и поломок оборудования) для разработки специальных устройств мы рекомендуем обращаться к специалистам, имея на руках рабочий проект Вашей системы электропитания.

Своевременная консультация поможет вам купить повышающий трансформатор напряжения ОСЗ 36v/220v, в котором учтены все сопряжённые факторы и подключение которого в Вашу сеть не создаст критических нагрузок и помех.

Консультации такого рода а также полную разработку любого трансформатора осуществляет конструкторское бюро компании «ЭТА». Мы занимаемся разработкой электроустановок, работающих в цепях до 1000 вольт. Предельная мощность трансформаторной техники, изготавливаемой нами, составляет 500 кВА.

Цена повышающего трансформатора напряжения ОСЗ 36 на 220 специального исполнения оговаривается отдельно.

Особые условия для постоянных клиентов

Для постоянных клиентов мы создаём самые благоприятные условия работы. После достижения определённого объёма закупок возможно заключение договора на поставку партий товара в кредит. С крупными торговыми организациями возможно заключение консигнационных договоров.

Существенным плюсом в нашей системе работы с оптовыми заказчиками можно назвать возможность предварительного планирования закупок. Наши постоянные клиенты могут формировать свой план закупок на несколько месяцев вперёд, резервируя товарные партии в нашей системе учёта.

Мы всегда неукоснительно соблюдаем договорные обязательства такого рода и, сотрудничая с нами, вы получаете возможность не только получить скидки на оптовые партии, но и освободить часть оборотных средств.

Доставка при покупке на сайте

На нашем сайте представлен полный каталог нашей продукции, есть возможность увидеть фотоизображения каждого товара, а также можно ознакомиться с детальными техническими характеристиками каждого изделия. В том числе Вы можете узнать весовые и габаритные параметры товаров.

Трансформаторные устройства имеют значительную массу, поэтому, готовясь приобрести ту или иную силовую установку, внимательно изучите возможности доставки. Компания «ЭТА» не осуществляет самостоятельную доставку изделий со склада, а сотрудничает с транспортными компаниями.

Надо отметить, что стоимость доставки товарных партий весом в несколько тонн значительна и решению этой задачи надо уделить особое внимание. Со своей стороны, мы гарантируем скорейшую отгрузку проданного товара.

Источник: https://eta-group.ru/info/stock/povyshayushchie-transformatory-os-osz-i-ts-tsz-36-na-220-volt/

Что делает повышающий трансформатор?

Повышающие трансформаторы представляют собой силовые конструкции, предназначенные для монтажа в электрических бытовых и производственных цепях. Установка меняет напряжение в сторону повышения. Как работает повышающий тип трансформаторов, где используются такие установки, нужно рассмотреть подробнее.

Функционирование

Чтобы понять, что такое трансформаторы повышающие напряжение, нужно вникнуть в принцип работы. Оборудование изготавливается для электростанций, схемы конструкции которых относятся к проходной категории.

Повышающий трансформатор на электростанциях используется для обеспечения населенных пунктов, прочих объектов током с определенными техническими показателями. Без преобразователя высокое напряжение по пути своего следования постепенно снижается.

Конечный потребитель получал бы недостаточное количество электроэнергии. На конечной в цепи электростанции благодаря этой установке, принимают электричество соответствующего значения. Потребитель получает напряжение в сети до 220 В.

Промышленные сети обеспечиваются до 380 В.

Схема, показывающая работу трансформатора в линии, включает в себя несколько элементов. Генератор на электростанции производит электричество 12 кВ. Оно поступает по проводам к повышающим подстанциям. Здесь устанавливается трансформаторный аппарат, призванный повышать показатель в линии до 400 кВ.

От подстанции электричество поступает в высоковольтную линию. Далее энергия попадает на понижающую подстанцию. Здесь она снижается до 12кВ.

Трансформаторами с обратным принципом действия ток направляется в низковольтную линию передач. В конце устанавливается еще один понижающий агрегат. От него электричество с показателем 220 В поступает в дома, квартиры и т. д.

Принцип устройства

Рассматривая, как работает трансформатор повышающий напряжение, нужно вникнуть в основные принципы действия конструкции. Основой работы трансформатора является механизм электромагнитной индукции. Металлический сердечник находится в изоляционной среде. В схему включено две катушки. Количество обмоток неодинаковое. Повысить показатель способны катушки, в первом контуре которых больше витков, чем во втором.

ЭТО ИНТЕРЕСНО:  Как определить термистор

Напряжение переменного типа поступает на первый контур. Например, это ток в сети 110 (100) В. Появляется магнитное поле. Его сила увеличивается при правильном соотношении обмоток в сердечнике. Когда электричество проходит по второй обмотке в повышающем трансформаторе появляется ток с определенным показателем. Например, обеспечивается показатель характеристики сети 220 В.

При этом частота остается прежней. Для поступления постоянного тока в линию электроснабжения в цепь монтируется преобразователь. Этот прибор может быть в оборудовании повышающего типа. Прибор способен работать не только для изменения напряжения, но и частоты. Определенное оборудование питается постоянным током.

Разновидности

К категории повышающих разновидностей техники относится ряд устройств, отличающихся конструкцией, назначением, техническими характеристиками:

  1. Автотрансформатор. Обладает одной совмещенной обмоткой.
  2. Силовой. Наиболее распространенная разновидность среди приборов, которые повышают показатель напряжения.
  3. Антирезонансный. Обладает закрытой конструкцией. Из-за особого принципа функционирования имеют компактные габариты.
  4. Заземляемый. Обмотки соединяются звездой или зигзагом.
  5. Пик-трансформаторы. Отделяют постоянный и переменный ток.
  6. Бытовые. Повышение характеристик электричества при функционировании трансформатора производится в небольшом диапазоне. Помогают устранить помехи в бытовой сети, защитить технику от перепадов, пониженного и повышенного электричества.

Представленные конструкции отличаются мощностью и техническими характеристиками.

Другие виды

В соответствии с рабочими характеристиками представленное оборудование различается еще по нескольким признакам. По количеству контуров бывают однофазные (бытовые) и трехфазные (промышленные) конструкции.

В качестве охладительной системы применяются разные субстанции. Различают масляные и сухие разновидности. В первом случае оборудование стоит дешевле. Масло является пожароопасным веществом. При их использовании предусматривается качественная защита от аварии. Сухие агрегаты заполнены негорючим веществом. Они стоят дороже, но требования по их установке лояльные.

Циркуляция охладителя в системе может быть принудительным или естественным. Существуют конструкции, в которых эти методы комбинируются. Многообразие видов позволяет каждому подобрать оптимальный тип устройства.

Маркировка

Производителями разработана специальная маркировка представленного оборудования. Это позволяет потребителям и проверяющим легко определить разновидность оборудования.

В общем виде обозначение выглядит так — ТМ/Н – Х, где:

  • Т – обозначение типа прибора;
  • М – мощность агрегата, заданная производителем, кВА;
  • Н – класс напряжения со стороны обмотки высокого напряжения (ВН);
  • Х – климатическая характеристика, определяющая особенности размещения в соответствии с ГОСТ 15150.

Маркировка может включать в себя и другие характеристики. Табличка с указаниями параметров прибора устанавливается на его корпус. При установке оборудования информация с маркировкой должна находиться в доступном для визуального осмотра месте. Подробнее о маркировке трансформаторов читайте здесь.

Ремонт и обслуживание

Трансформатором называется сложное оборудование. Периодически потребуется проводить его обслуживание и ремонт. Доверить эту работу рекомендуется профессионалам. Только человек с соответствующей подготовкой имеет право проводить подобные работы.

При повышенной скорости нагрева, наличии шума, требуется произвести перемотку контуров трансформатора. Эту процедуру сможет выполнить неквалифицированный специалист, обладающий минимальным уровнем знаний в области работы электротехники.

Прибор имеет магнитопривод. Он является общим для катушек. Первый контур ответственен за понижение, а второй – за повышение электричества в сети. Осмотр трансформатора производится по определенной технологии.

Проверка

Сначала проводится визуальный осмотр блока. Если при работе наблюдается перегрев, на поверхности появляются деформации, неровности, вздутие изоляции. Если осмотр не выявил отклонений, нужно найти вход и выход прибора. Первый из них подведен к первой катушке. Здесь появляется магнитное поле в момент подачи электричества. Вывод подведен ко вторичной обмотке.

Выходной сигнал фильтруется. Этот показатель нужно замерять. Снимаются разборные части конструкции корпуса. Требуется получить доступ к микросхемам. Это позволит замерять напряжение мультиметром. При этом потребуется учесть номинальные показатели. Если результат замеров окажется меньше 80 % от заданного производителем значения, цепь первичной не функционирует правильно.

Первую катушку отсоединяют от прибора. На нее больше не поступает электричество. Затем проверяется вторичный контур. При отсутствии фильтрации используется питание от измерительного прибора. При отсутствии нормального напряжения в системе, аппаратура требует ремонта.

После проверки в случае исправности составляющих элементов, конструкция собирается  обратном порядке. При необходимости проводится ремонт агрегата.

Интересное видео: Как работает трансформатор?

Рассмотрев особенности, принцип работы повышающих трансформаторов, можно оценить их важность в линиях электропередач. Применение подобного оборудования повышает качество электричества в бытовых, промышленных сетях. Его устанавливают повсеместно. Представленные разновидности установок сегодня пользуются высоким спросом.

Источник: https://protransformatory.ru/vidy/povyshayushhij-transformator

Для чего нужен повышающий трансформатор

Открытие в далёком 1831 году великим учёным Фарадеем принципа электромагнитной индукции позволило по-новому взглянуть на многие законы электротехники.

Именно основываясь на взаимодействие электромагнитных полей, через 45 лет после этого великий русский учёный П. Н. Яблочков получил патент на изобретение трансформатора.

Классическое определение звучит так: трансформатор — это электрическое устройство, преобразующее ток первичной обмотки одного напряжения, в ток вторичной обмотки с другим напряжением.

Индукционный эффект образуется при изменении электромагнитного поля, поэтому для работы трансформатора необходимо наличие напряжения с переменным током.

Трансформация (передача) осуществляется преобразованием электрической энергии первичной обмотки в магнитное поле, а затем, во вторичной обмотке происходит обратное преобразование магнитного поля в электрическую энергию.

В случае если количество витков вторичной обмотки будет превышать число витков первичной обмотки, то устройство будет называться повышающим трансформатором. При подключении обмоток в обратном порядке, получается понижающее устройство.

Технические характеристики

Основными характеристиками при эксплуатации трансформатора считаются:

  • Напряжение входное.
  • Величина напряжения на выходе.
  • Мощность прибора.
  • Ток и напряжение холостого хода.

Величина отношения напряжений на входе и выходе устройства называется коэффициентом трансформации. Это соотношение зависит только от количества витков в обмотках и остаётся неизменным при любом режиме функционирования устройства.

От диаметра проводов и от типа сердечника напрямую зависит мощность трансформатора, которая со стороны первичной намотки равна сумме мощностей вторичных обмоток, за исключением потерь.

Напряжение, получаемое на выходной обмотке устройства, без подключения нагрузки, называется напряжением холостого хода. Разница между этим показателем и напряжением с нагрузкой указывает на величину потерь за счёт разного сопротивления проводов обмотки.

От качественных показателей сердечника трансформатора полностью зависит величина тока холостого хода. В идеальном случае, ток первичной обмотки создаёт в сердечнике устройства магнитное поле переменного значения, по величине электродвижущая сила которого равна току холостого хода и противоположна по направлению. Но вот в реальности величина электродвижущей силы всегда меньше напряжения на входе, за счёт возможных потерь в сердечнике.

Именно поэтому для уменьшения величины тока холостого хода, требуется материал высокого качества при изготовлении сердечника и минимальный зазор между его пластинами. Таким условиям в большей мере соответствуют тороидальные сердечники.

Повышающий трансформатор: история создания

Любая сфера человеческой деятельность связана с определенными устройствами, предметами, символизирующими эту область. Судостроение, мореплавание – развивающиеся паруса, длинные яхты, корабли, морские волны. Авиация – крыло самолета, пропеллер.

Автомобильная отрасль осталась бы смутной мечтой, не изобрети когда-то человек колесо.

Многие вещи, которые сегодня кажутся нам привычными, естественными, были изобретены в творческих муках, трудах, но стали поворотным моментом развития не только отдельной сферы, но и всего человечества.

Таким символом электротехники является повышающий трансформатор тока. Принцип, ставший основой его работы, был открыт Майклом Фарадеем еще в 1831 году. Открытое им явление электромагнитной индукции оказало несравнимое влияние на весь человеческий быт, способы производства продукции. Но использовано открытие было лишь спустя почти полвека — в 1876 году отечественным изобретателем Яблочковым П. Н., который стал владельцем патента на трансформатор.

Принцип работы и разновидности

Трансформатор – это электрический прибор, который преобразует ток входящей сети в ток с другими показателями напряжения. Работает прибор только с напряжение переменного тока, потому что лишь при изменении электромагнитного поля становится возможным использования эффекта индукции.

Его устройство не отличается сложностью: пара обмоток размещается на незамкнутом сердечнике, что позволяет преобразовывать показатели напряжения тока. Передача энергии происходит посредством перевода электрической энергии в магнитное поле, а затем снова в ток с новыми показателями.

Чтобы повысить параметры, необходимо иметь такую вторичную обмотку, количество оборотов которой больше чем у первичной. Чтобы понизить – наоборот. Трансформатор повышающий напряжение был первым изобретенным видом этого прибора.

По габаритам современные устройства отличаются как от первого изобретения, так и друг от друга. Сегодня используются повышенные трансформаторы размером менее одного сантиметра у небольших приборов, а также размером с двухэтажный дом для крупных промышленных комплексов.

Их производство, продажа, обслуживание являются самостоятельной областью промышленности. Изобретение русского ученого используется электротехническими лабораториями, промышленностью, нефтегазовой отраслью и многими другими.

Современные модели повышающих трансформаторов позволяют получать напряжение 220 В, подходящее подавляющему числу бытовых, профессиональных приборов, при минимальном входном питании сети.

Сделать самому или купить повышающий трансформатор?

Решением некоторых задач может стать преобразователь, собранный своими руками. Например, если для гаражных работ нужно подключить оборудование с питанием 220 В, а сеть имеет напряжение лишь 36 В, то собранный самостоятельно повышающий трансформатор позволит решить эту проблему.

Собираем повышающий трансформатор своими руками

  1. Первым делом определяем мощность первичной обмотки будущего преобразователя. Для этого нужно узнать мощность прибора, который мы будем подключать. Обычно эти данные указывают в паспорте устройства. Например, возьмем среднее значение 100 Вт. Следует учитывать, что потребуется некоторый запас, т.к. коэффициент полезного действия будет равен примерно 0,8 -0,9. Нам подойдет мощность 150 Вт.
  2. Нужно подобать магнитопровод. Если не прибегать к услугам специализированных магазинов, то можно взять сердечник по форме буквы «О» из, например, старого телевизора. Но придется рассчитать сечение по формуле: A1= C*C/1,44 , где A1 – мощность будущего преобразователя (Вт), а C – поперечное сечение (кв. см). У нас С должно быть равно 10,2 кв. см.
  3. Определяем число витков на 1 В.

    Рассчитываем по формуле: K=50/C, у нас это 50/10,2, т.е. 4,9 витков на 1 В. После мы легко рассчитаем количество оборотов первичной и вторичной обмоток. В первом случае умножаем имеющиеся напряжение питания сети на 4,9, получаем 176 витков. Во втором умножаем требуемое напряжение (220 В) на 4,9, получаем 1078.

  4. Следующий шаг – расчет тока каждой обвивки. За исходные показатели берем мощность равную 150 Вт.

    Тогда для первичной обвивки нужен ток в 4,2 А, вторичной – 0,7 А. Рабочий показатель равен мощности деленной на напряжение.

  5. Для правильной работы устройства важно не только количество оборотов, но и диаметр обмоток. Рассчитываем этот параметр по формуле: рабочий ток обмотки умноженный на коэффициент 0,8. У нас получается 1,64 мм и 0,67 мм для первичной и вторичной обмоток соответственно.

    Подбираем максимально похожие на наши диаметры из представленных магазином.

  6. Вырезаем два каркаса для магнитопровода. Берем половину первичной обмотки, плотно укладываем на каркасы. После укладки изолируем стеклотканью.
  7. Берем половину вторичной обмотки, также укладываем, изолируем.
  8. Собираем магнитопровод, стягиваем его отдельные части хомутом.

    Части устройства рекомендуем проклеить специальным клеем с содержанием ферропорошка, тогда оборудование не будет издавать лишних звуков во время эксплуатации. Устройство готово!

Если вы далеки от физики, самодеятельности или не обладаете свободным временем, рекомендуем просто купить готовый трансформатор в нашем интернет-магазине.

Также стоит учесть, что промышленные, производственные задачи способен решить лишь прибор, собранный профессионалами. Использование самодельного устройства не всегда безопасно! Будьте осторожны.

Источник: https://www.zapitatel.ru/uniform/povyshayushchiy-transformator-istoriya-sozdaniya/

Понижающие и повышающие трансформаторы напряжения сухого и масляного исполнения

Компания Матик-электро предлагает своим клиентам сухие и масляные понижающие и повышающие трансформаторы на напряжение ВН (по выской стороне) от 220/380 В до 10 кВ и напряжение НН (по низкой стороне) от 6 В до 660 В и мощностью от 1 кВА до 2500 кВА. Наши трансформаторы напряжения могут использоваться для бытовых целей и в коммунальном хозяйстве (серии ОСМ, ТСЗ, ТСЗИ, ТСЗПБ, КТПТО), на промышленных предприятиях (серии ТСЗ, ТСЗИ, НТС), для распределительных сетей 6 и 10 кВ (серии ТС, ТМ и ТМГ).

Сухие понижающие и повышающие трансформаторы напряжения

Сухие трансформаторы по сравнению с масляными обеспечивают более высокий уровень пожарной и взрывобезопасности, более экономичны и просты в эксплуатации, обслуживании и ремонте.

Трансформаторы напряжения сухого исполнения могут использоваться в электроустановках предприятий химической, нефтехимической, целюлозно-бумажной промышленности, в сетях электроснабжения общественных и жилых зданий, устанавливаться на транспортные средства, суда и плавсооружения.

Чаще всего сухие трансформаторы используются для понижения напряжения (понижающий трансформатор). Например, для подключения к промышленной электросети напряжением 380 В ручного электроинструмента может использоваться понижающий трансформатор 380/220 В марки ТСЗ или ТСЗИ.

В случае, если необходимо питание от одного источника потребителей, рассчитанных на разные напряжения, то для решения этой проблемы целесообразно использовать многообмоточный понижающий трансформатор.

Многообмоточный трансформатор, как правило, состоит из одной первичной обмотки и нескольких вторичных (конструктивно они могут быть выполнены как на одном сердечнике, так и каждая обмотка на своем собственном сердечнике). Например, возможно изготовление трансформатора понижающего напряжение с 220 В до 110 В, 24 В и 12 В.

Такой понижающий трансформатор напряжения может одновременно использоваться для питания инструмента, низковольтной сети освещения и приборов автоматики и сигнализации.

Но бывают случаи когда необходимо повышение напряжение – в частности, когда нужно запитать от сети 220 В оборудование предназначенное для сети 380 В. Данную проблему возможно решить используя сухой повышающий трансформатор напряжения. Повышающие трансформаторы также традиционно используются в местах генерации электроэнергии для сокращения ее потерь при передаче на большие расстояния.

– однофазные сухие трансформаторы многоцелевого назначения. Применяются в сетях местного освещения, для питания цепей управления, электроавтоматики, сигнализации и т.д.

Напряжение ВН – от 380/220 В до 10 кВ

Напряжение НН – от 6 В до 660 В

Мощность – от 1 до 63 кВА

Типовые варианты изготовления:

220/220 В 220/110 В

220/36 В 220/48 В

Могут изготавливаться на любые напряжения первичной и вторичной обмотки!

– трехфазные сухие трансформаторы. Могут изготавливаться как на низкое, так и высокое напряжение. Применяются в основном на промышленных предприятиях в цепях питания силового оборудования и инструмента в качестве понижающего трансформатора. Могут применяться в электроустановках жилых и общественных зданий, в цепях питания местного освещения, для подключения ручного электроинструмента. Силовые трансформаторы серии ТС могут применяться в распределительных сетях 6-10 кВ.

Исполнение – в кожухе и без кожуха

Напряжение ВН – от 380 В до 660 В

Напряжение НН – от 8 В до 220

Типовые варианты изготовления:

380/380 В 380/220 В

380/110 В 380/65 В

380/36 В

420/420 В 660/660 В

Могут изготавливаться на любые напряжения первичной и вторичной обмотки!

— трансформаторы силовые сухие с обмотками с литой изоляцией типа «Геафоль» (эпоксидный компаунд с кварцевым наполнителем). Этот материал не оказывает вредного влияния на окружающую среду и не выделяет токсичных газов даже при воздействии дуговых разрядов. Трансформаторы с изоляцией типа «Геафоль» можно использовать в электроустановках общественных и жилых зданий.

Напряжение ВН – 6 кВ, 10 кВ

Напряжение НН – 0,7 кВ

Мощность — от 100 кВА до 2500 кВА

— сварочный трансформатор. Предназначен для преобразования переменного напряжения сети 380 В в переменное напряжение 24; 36; 42; 220 В.

Мощность — от 1,6 кВА до 40 кВА.

— трансформатор прогрева бетона. Трехфазный, двухобмоточный понижающий сухой трансформатор с принудительным воздушным охлаждением защищенного исполнения. Предназначен для термообработки бетона и мерзлого грунта.

Напряжение — 380 В

Мощность — до 63 кВА

– станция прогрева бетона на основе масляного трехобмоточного понижающего трансформатора ТМТО с естественным охлаждением. Предназначена для подогрева бетона в зимнее время, с регулированием температуры в ручном и автоматическом режимах.

Напряжение первичное – 380 В .

Напряжение вторичное – 55-95 В

Мощность — 80 кВА

— трансформатор однофазный сухой водозащищенный. Трансформатор предназначен для электроустановок судов и плавсооружений морского и речного флота неограниченного района плавания.

Климатическое исполнение — ОМ5 (каплезащищенный)

Напряжение — до 660 В

Напряжение — до 660 В

Частота напряжения — 50 (60) Гц и 400 (500) Гц

— трансформатор понижающий трехфазный сухой для судов и плавсооружений. Трансформатор предназначен для питания пониженным напряжением различных цепей с частотой 50 (60)или 400 (500) Гц электроустановок общего и специального назначения.

Климатическое исполнение — ОМ5 (каплезащищенный)

Напряжение ВН – от 380 В до 0,7 кВ

Напряжение НН – от 130 В до 230 В

Мощность — от 6,3 до 1000 кВА

— трансформатор трехфазный сухой водозащищенный. Предназначен для электроустановок судов и плавсооружений морского и речного флота неограниченного района плавания.

Климатическое исполнение — ОМ5 (каплезащищенный)

Напряжение — до 660 В

Частота напряжения — 50 (60) Гц и 400 (500) Гц

— трансформаторы однофазные сухие промышленного и бытового назначения, водозащищенного исполнения. Трансформаторы ОСОВ применяются в шахтах, неопасных по газу и пыли, в других производствах для питания ламп местного освещения и электроинструмента.

Напряжение ВН – 380 В

Напряжение НН – 110 В

Мощность – от 0,25 до 4 кВА

Масляные трансформаторы серии ТМ и ТМГ

Масляные силовые трансформаторы напряжения по сравнению с сухими обладают меньшими габаритами, они более надежны и долговечны. Компания Матик-электро поставляет масляные трансформаторы серий ТМ и ТМГ для распределительных четей 6-10 кВ. Трансформаторы ТМ и ТМГ могут эксплуатироваться как в условиях внутренней, так и наружной установки при температуре окружающей среды от +40 до -60 °С.

Трансформаторы серии ТМ конструктивно выполнены с расширительным масляным баком, а серии ТМГ выполняются герметичными, что значительно улучшает условия работы масла, исключает его увлажнение, окисление и шламообразование.

Источник: http://www.matic.ru/transformers/

Как сделать повышающий трансформатор своими руками — Металлы, оборудование, инструкции

На сегодняшний период времени увеличивающие или уменьшающие трансформаторы применяются для изменения напряжения. Данное устройство является машиной с высоким уровнем КПД и используется в большинстве сферах техники. Нередко людей интересует, как создать каркас и другие части трансформатора собственноручно.

Чтобы выполнить подобную задачу не обойтись без специальных умений. Помимо этого важно быть в курсе всего технологического процесса.

Создаём трансформатор

При необходимости сделать данный прибор, важно ответить на ряд вопросов, в том числе:

  • Какое непосредственно напряжение должен он пропускать?
  • На какой именно частоте планируется запустить в работу устройство?
  • Для каких целей требуется аппарат: для снижения или увеличения тока?

Какую мощь будет иметь?

Как только вы сможете ответить на каждый из перечисленных вопросов, приобретайте требуемые материалы. Необходимые материалы вы можете без сложностей купить в специализированных магазинах. Вам потребуются провода, изоляция ленточного типа высшего качества, сердечник.

Трансформатор собственноручно требует намотку. В этих целях  следует создать станок, изготовление которого осуществляется из доски длиною сорок сантиметров и шириною десять сантиметров. На доску необходимо прикрепить несколько брусков, посредством шурупов.

Расстояние, имеющееся между брусками не должно быть менее чем тридцать сантиметров. Затем следует просверлить отверстия восемь миллиметров диаметром. В созданные отверстия нужно вставить специальные пруты для катушки аппарата.

С одной из сторон следует создать резьбу. Закрутив обустроенную шайбу, вы получите его ручку. Габариты станка для намотки можно выбрать на собственное усмотрение. Прежде всего, правильный выбор напрямую зависит от габарита сердечника. При кольцевидной его форме намотка создаётся вручную.

Согласно схеме трансформаторного устройства, аппарат может быть оснащён разнообразным числом витков. Требуемое их количество рассчитывается, ориентируясь на мощность. К примеру, при необходимости создания прибора до 220 вольт, мощность должна достигать не менее 150 ватт.

Форма магнитного провода должна быть о-образной. Можно обустроить его из бу телевизора. При этом сечение определяется посредством определённой формулы.

Обустройство катушечного корпуса

Корпус делают из качественной картонной бумаги. Внутренняя его сторона слега больше в сравнении со стержневой частью сердечника. При применении о-образного сердечника потребуется несколько катушек. При сердечнике ш-образном достаточно использовать всего одну катушку.

Применяя сердечник круглой формы, его следует обмотать, применяя изоляцию. Затем можно осуществлять проводную намотку. Как только вы завершите с обмоткой первичной, её следует закрыть несколькими изоляционными слоями. После этого нужно накрутить очередной слой. Концы имеющихся обмоток выводятся на наружную сторону.

При применении магнитного провода корпус трансформатора собирается пошагово:

  • Осуществляется выкраивание определённого размера гильзы с требуемыми отворотами.
  • Создаются картонные щёчки.
  • Основная часть катушки сворачивается в специальную коробочку.
  • На гильзы надеваются щёчки.

Создание обмоток для увеличивающего трансформатора

Следует надеть катушку на брусок из натурального массива. В нём необходимо просверлить специальное отверстие для прутка намоточного.

К одному из серьёзных этапов относится подключение тока. Деталь вставляется внутрь станка и можно производить обмотку:

  • Сверху катушки наматывается лакоткань в несколько слоёв.
  • Конец имеющегося провода закрепляется на обустроенной щёчке, после чего можно приступать к вращению ручку.
  • Витки укладываются максимально плотно.
  • После обмотки следует обрезать провод для последующего закрепления сверху щёчки возле первого.
  • На имеющиеся выводы необходимо закрепить трубку изоляционную.

Сборка трансформатора увеличивающего

При необходимости узнать, как создать собственноручно трансформатор, воспользуйтесь инструкцией. Для сборки повышающего устройства важно разобрать полностью сердечник. При применении отдельно размещённых пластин, важно определиться с пакетной толщиной, рассчитать листы.

В случае если в процессе включения аппарата будет издаваться шум, то необходимо закрепить имеющийся крепёж максимально плотно. Затем следует проверить прибор на работоспособность. В этих целях он подключается к сети, после чего должно высветиться напряжение, составляющее 12В.

Немаловажно знать, что в процессе включения аппарата, важно оставить его в работающем состоянии на пару часов. При этом трансформатор должен не перегреваться.

Инструменты

Чтобы изготовить трансформатор собственноручно, следует взять инструменты, а также определённые материалы:

  • Лакоткань.
  • Сердечник, для которого вполне подходит телевизор бывший в использовании.
  • Плотная картонная бумага.
  • Доски, а также бруски из природной древесины.
  • Прут из стали.
  • Пила, специальный клей.

Сделать собственными руками трансформатор, как на фото, совершенно не проблематично. Если требуется изготовление трансформатора, предназначенного для лампочек галогенных, то вполне можно использовать тоже перечисленные выше инструменты.

Не забывайте, что очень важно придерживаться технологического процесса намотки. При точном соблюдении важных правил, аппарат прослужит вам ни одно десятилетие. Данных материалов, а также инструментов вам будет вполне достаточно для собственноручного создания качественного и практичного в применении трансформатора.

На основе подобной самоделки можно сформировать трансформатор для подзарядки машинного аккумулятора, либо создать повышающий прибор для источника питания лабораторного, выжигатель по древесине, либо другое устройство, которое удовлетворит нужды мастера по дому.

Фото трансформаторов своими руками

Источник: https://spb-metalloobrabotka.com/kak-sdelat-povyshayuschiy-transformator-svoimi-rukami/

Что такое повышающий и понижающий трансформатор

Преобразование напряжения присутствует повсеместно в любой области нашей жизни и деятельности. Вырабатываемое на электростанции напряжение повышается до нескольких киловольт, чтобы быть переданным с наименьшими потерями через линии электропередач на многие тысячи километров. А потом оно снова понижается на трансформаторных подстанциях до привычных нам значений в 380/220 вольт.

Самые простые и понятные примеры для простого человека: сетевое зарядное устройство для автомобильного аккумулятора, блок питания в компьютерной и другой технике, инвертор для автономного электроснабжения 220 вольт от низковольтных источников питания, понижающие трансформаторы 220-115 и т.д.

В общем, есть много устройств, в которых установлен трансформатор напряжения. Рассмотрим его немного подробнее, не погружаясь в излишние сложности.

Трансформатор напряжения

Все обмотки намотаны на общем сердечнике (магнитопроводе). Если число витков у вторичной обмотки больше, чем у первичной, то это повышающий трансформатор, если меньше — понижающий.

Мощность трансформатора напряжения зависит от сечения проводов обмоток, а габариты и вес — от типа сердечника и материала проводов (медь или технический алюминий). По исполнению он может быть одно- и трёхфазным. Самым компактным и лёгким является автотрансформатор, в котором всего одна обмотка.

Повышающий трансформатор

Первая мысль, которая приходит на ум, когда напряжение в сети всё чаще и чаще становится низким, поставить повышающий трансформатор. На первый взгляд кажется, что это — простое и отличное решение, и теперь, наконец-то, будет нормальное напряжение, яркое освещение и стабильно работающие электроприборы.

Но не всё так просто в сказочном королевстве, и прежде чем купить повышающий трансформатор напряжения, цена на который уж очень привлекательна, задумайтесь об одной особенности его работы: он имеет постоянный коэффициент повышения напряжения (коэффициент трансформации). Рассмотрим это на примере.

Предположим, что у вас сетевое напряжение порядка 170 вольт. Чтобы повысить его до 220, нужен трансформатор с коэффициентом трансформации 1.29 (220/170). Вроде бы всё хорошо и логично получается, за исключением одного: если напряжение в сети станет нормальным 220 вольт, то на выходе трансформатора будет уже очень высокое напряжение 285 вольт (220*1.29)! Не все электрические приборы способны выдержать такое перенапряжение в течение даже небольшого времени. Так и до пожара недалеко!

Как вариант, можно приобрести регулируемый автотрансформатор, т.н. ЛАТР, в котором предусмотрен ручной регулятор выходного напряжения. Но и он не будет являться надёжным решением, т.к.

придётся постоянно контролировать значение выходного напряжения по индикатору и корректировать его вручную, особенно во время максимальной нагрузки электросети со стороны соседей.

Если вовремя этого не делать, то при первом же скачке в электросети напряжение на выходе ЛАТРа тоже резко повысится, и подключенные электроприборы вполне могут перегореть.

Поэтому повышающие трансформаторы напряжения применимы лишь тогда, когда в сети ВСЕГДА существенно меньше 220 вольт, а такого практически никогда и не бывает.

Заключение

Задачу автоматического поддержания напряжения на постоянном уровне решает

но прежде нужно в обязательном порядке выявить истинную причину низкого напряжения в сети, а затем уже принимать какие-либо решения.

Трансформаторы — электромагнитные статические преобразователи электрической энергии. Трансформаторами называются электромагнитные аппараты, служащие для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте и для передачи электрической энергии электромагнитным путем из одной цепи в другую.

Основное назначение трансформаторов — изменять напряжение переменного тока. Трансформаторы применяются также для преобразования числа фаз и частоты.

Трансформаторами тока называются аппараты, предназначенные для преобразования тока любой величины в ток, допустимый для измерений нормальными приборами, а также для питания различных реле и обмоток электромагнитов. Число витков вторичной обмотки трансформатора тока w2 > w1.

Особенностью трансформаторов тока является их работа в режиме, близком к короткому замыканию, так как их вторичная обмотка всегда замкнута на небольшое сопротивление.

Трансформаторами напряжения называются аппараты, предназначенные для преобразования переменного тока высшего напряжения в переменный ток низшего напряжения и питания параллельных катушек измерительных приборов и реле. Принцип действия и устройства трансформаторов напряжения аналогичен принципу работы силовых трансформаторов. Число витков вторичной обмотки w2

Источник: https://ostwest.su/instrumenty/chto-takoe-povyshajushhij-i-ponizhajushhij.php/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]