Что такое тиристор простыми словами

Что такое тиристор и как он работает

Что такое тиристор простыми словами

Появление четырехслойных p-n-p-n полупроводниковых элементов совершило настоящий прорыв в силовой электронике. Такие устройства получили название «тиристоров». Кремниевые управляемые вентили являются наиболее распространенным семейством тиристоров.

Данный вид полупроводниковых приборов имеет следующую структуру:

Как видим из структурной схемы тиристор имеет три вывода – катод, управляющий электрод и анод. Подключению к силовым цепям подлежат анод и катод, а управляющий электрод подключается к системе управления (слаботочные сети) для управляемого открытия тиристора.

На принципиальных схемах тиристор имеет такое обозначение:

Вольт-амперная характеристика показана ниже:

Давайте подробнее рассмотрим эту характеристику.

Обратная ветвь характеристики

В третьем квадранте характеристики диодов и тиристоров равны. Если к аноду приложить отрицательный потенциал относительно катода, то к J 1 и J 3 прикладывается обратное напряжение, а к J 2 — прямое, что вызовет протекание тока обратного (он очень мал, как правило несколько миллиампер).

Когда же это напряжение увеличится до так называемого напряжения пробоя, произойдет лавинное нарастание тока между J 1 и J 3 . При этом, если данный ток не будет ограничен, то произойдет пробой перехода с последующим выходом из строя тиристора.

При обратных же напряжениях, которые не превышают напряжения пробоя, тиристор будет вести себя как резистор с большим сопротивлением.

Зона низкой проводимости

В данной зоне все наоборот. Потенциал катода будет отрицательный по отношению к потенциалу анода. Поэтому к J 1 и J 3 будет приложено прямое, а к J 2 – обратное напряжение. Результатом чего станет весьма малый анодный ток.

Зона высокой проводимости

Если напряжение на участке анод – катод достигнет значения, так называемого напряжением переключения, то произойдет лавинный пробой перехода J 2 и тиристор будет переведен в состояние высокой проводимости. При этом U a снизится от нескольких сотен до 1 — 2 вольт. Оно будет зависеть от типа тиристора. В зоне высокой проводимости ток, протекающий через анод, будет зависеть от нагрузки внешней элемента, что дает возможность рассматривать его в этой зоне как замкнутый ключ.

Если пропустить ток через управляющий электрод, то напряжение включения тиристора уменьшится. Оно напрямую зависит от тока управляющего электрода и при достаточно большом его значении практически равно нулю.

При выборе тиристора для работы в схеме, то его подбирают таким образом, чтоб напряжения обратное и прямое не превышали паспортных значений напряжений пробоя и переключения.

Если эти условия выполнить трудно, или имеется большой разброс в параметрах элементов (например необходим тиристор на 6300 В, а его ближайшие значения 1200 В), то иногда применяют или включение элементов.

В нужный момент времени с помощью подачи импульса на управляющий электрод можно перевести тиристор с закрытого состояния в зону высокой проводимости. Ток УЭ, как правило, должен быть выше минимального тока открытия и он составляет порядка 20-200 мА.

Когда анодный ток достигнет определенного значения, при котором запирания тиристора невозможно (ток переключения), управляющий импульс может быть снят. Теперь тиристор сможет перейти обратно в закрытое состояние только при уменьшении тока ниже, чем ток удержания, или прикладыванием к нему напряжения обратной полярности.

работы и графики переходных процессов

В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, что такое силовые тиристоры для сварки, их принцип работы, характеристики и маркировка этих приборов.

Что такое тиристор и их виды

Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор.

Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе.

Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же – это считается аналог выпрямителя.

Фото – Cхема гирлянды бегущий огонь

Бывают:

  • ABB запираемые тиристоры (GTO),
  • стандартные SEMIKRON,
  • мощные лавинные типа ТЛ-171,
  • оптронные (скажем, ТО 142-12,5-600 или модуль МТОТО 80),
  • симметричные ТС-106-10,
  • низкочастотные МТТ,
  • симистор BTA 16-600B или ВТ для стиральных машин,
  • частотные ТБЧ,

Источник: https://rzdoro.ru/microsoft-office/chto-takoe-tiristor-i-kak-on-rabotaet.html

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

Что такое тиристор простыми словами

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т.е. ток пропускается только в одну сторону).

Схема тиристора

Этот преобразователь имеет два устойчивых состояния: закрытое (состояние низкой проводимости) и открытое (состояние высокой проводимости). Назначение тиристора – выполнение функции электроключа, особенность которого – невозможность самостоятельного переключения в закрытое состояние.

Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока. Основным материалом при производстве этого полупроводникового устройства является кремний.

Корпус изготавливается из полимерных материалов или металла – для моделей, работающих с большими токами.

Устройство тиристора и области применения

В состав прибора входят 3 электрода:

  • анод;
  • катод;
  • управляющий электрод.

В отличие от двухслойного диода, тиристор состоит из 4-х слоев – p-n-p-n. Оба устройства пропускают ток в одну сторону. На большинстве старых моделей его направление обозначается треугольником. Внешнее напряжение подается знаком «-» на катодный электрод (область с электропроводностью n-типа), «+» – на анодный электрод (область с электропроводностью p-типа).

Тиристоры применяют в сварочных инверторах, блоках питания зарядного устройства для автомобиля, в генераторах, для устройства простой сигнализации, реагирующей на свет.

Принцип работы тиристоров

В специализированной литературе тиристор называется «однооперационным» и относится к группе не полностью управляемых радиодеталей. Он переходит в активное состояние при получении импульса определенной полярности от объекта управления. На скорость активации и последующее функционирование оказывают влияние:

  • характер нагрузки – индуктивная, реактивная;
  • величина тока нагрузки;
  • скорость и амплитуда увеличения управляющего импульса;
  • температура среды устройства;
  • уровень напряжения.

Переключение из одного состояния в другое осуществляется с помощью управляющих сигналов. Для полного отключения тиристора требуется выполнить дополнительные действия. Выключение осуществляется несколькими способами:

  • естественное выключение (естественная коммутация);
  • принудительное выключение (принудительная коммутация), этот вариант может осуществляться множеством способов.

При эксплуатации возможны незапланированные переключения из одного положения в другое, которые провоцируются перепадами характеристик электроэнергии и температуры.

Классификационные признаки

По способу управления различают следующие виды тиристоров:

Диодные (динисторы)

Активируются импульсом высокого напряжения, подаваемым на анод и катод. В конструкции присутствуют 2 электрода, без управляющего.

Триодные (тринисторы)

Разделяются на две группы. В первой управляющее напряжение поступает катод и электрод управления, во второй – на анод и управляющий электрод.

Симисторы

Выполняют функции двух включенных параллельно тиристоров.

Оптотиристоры

Их функционирование осуществляется под действием светового потока. Функцию управляющего электрода выполняет фотоэлемент.

По обратной проводимости тиристоры разделяются на:

  • обратно проводящие;
  • обратно непроводящие;
  • с ненормируемым обратным значением напряжения;
  • пропускающие токи в двух направлениях.

Основные характеристики тиристоров, на которые стоит обратить внимание при покупке

  • Максимально допустимый ток. Эта величина характеризует наибольшее значение тока открытого тиристора. У мощных устройств она составляет несколько сотен ампер.
  • Максимально допускаемый обратный ток.
  • Прямое напряжение. Этот параметр тиристора равен падению напряжения при максимально возможном токе.
  • Обратное напряжение. Характеризует максимально допустимое напряжение на устройстве, находящемся в закрытом состоянии, при котором оно не утрачивает способность выполнять свои функции.
  • Напряжение включения. Это наименьшая величина, при которой возможно функционирование тиристора.
  • Минимальный ток управляющего электрода. Равен величине тока, которого достаточно для активации устройства.
  • Наибольшая допустимая рассеиваемая мощность.

Проверка тиристора на исправность

Прибор можно проверить несколькими способами, один из них – использование специального самодельного тестера, собираемого по представленной ниже схеме:

Такая схема предназначена для работы при напряжении 9-12 В. Для других значений напряжения питания производят перерасчет величин R1-R3.

Этапы проверки:

  • К аноду подключают положительный полюс, к катоду подводят «-».
  • На управляющий электрод с помощью кнопки SA подают сигнал к открытию устройства.
  • Если светодиод загорается до нажатия кнопки SA или не загорается после нажатия, то прибор является неработоспособным.

Заключение

Тиристор — не полностью управляющий ключ. Если есть ток удержания, то перейдя в открытое состояние, тиристор остается в нем, даже если прекращать подавать сигнал на управляющий переход.

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Источник: https://www.radioelementy.ru/articles/tiristory-printsip-raboty/

Тиристоры. Виды и устройство. Работа и применение. Особенности

Что такое тиристор простыми словами

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

ЭТО ИНТЕРЕСНО:  Как узнать емкость аккумулятора 18650 по маркировке

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров

  • Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток.
  • Прямое напряжение. Это падение напряжения при максимальном токе.
  • Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода. Он необходим для включения тиристора.
  • Максимально допустимый ток управления.
  • Максимально допустимая рассеиваемая мощность.

Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

По способу управления разделяют на:

  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.

Триодные тиристоры в свою очередь разделяются:

  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.

Запирание тиристора производится:

  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.

По обратной проводимости тиристоры делятся:

  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность.

Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/tiristory/

Что такое тиристор: принцип работы, способы включения и выключения

Тиристор – это полупроводниковый ключ, конструкция которого представляет собой четыре слоя. Они обладают способностью переходить из одного состояния в другое – из закрытого в открытое и наоборот.

Информация, представленная в данной статье, поможет дать исчерпывающий ответ на вопрос об этом аппарате.

Принцип функционирования тиристора

В специализированной литературе этот прибор также носит название однооперационного тиристора. Это название обусловлено тем, что устройство является не полностью управляемым. Другими словами, при получении сигнала от управляющего объекта он может только перейти в режим включенного состояния. Для того чтобы выключить прибор, человеку придется выполнить дополнительные действия, которые и приведут к падению уровня напряжения до нулевой отметки.

Работа этого прибора основывается на использовании силового электрического поля. Для его переключения из одного состояния в другое применяется технология управления, передающая определенные сигналы. При этом ток по тиристору может двигаться только в одном направлении. В выключенном состоянии этот прибор обладает способностью выдерживать как прямой, так и обратное напряжение.

Способы включения и выключения тиристора

Переход в рабочее состояние стандартного этого типа аппарата осуществляет путем поучения импульса токового напряжения в определенной полярности. На скорость включения и на то, как он впоследствии будет работать, влияют следующие факторы:

  1. Характер нагрузки. Нагрузка в этом случае может быть индуктивной, активной и др.
  2. Скорость увеличения импульса управления.
  3. Амплитуда увеличения импульса управления.
  4. Температура среды тиристора.
  5. Величина тока нагрузки.
  6. Уровень прилагаемого напряжения.
ЭТО ИНТЕРЕСНО:  Сколько вольт при сварке

Выключение тиристора может быть осуществлено некоторыми способами:

  1. Естественное выключение. В технической литературе также встречается такое понятие, как естественная коммутация – оно аналогично естественному выключению.
  2. Принудительное выключение (принудительная коммутация).

Естественное выключение этого аппарата осуществляется в процессе его функционирования в цепях с переменным током, когда происходит понижение уровня тока до нулевой отметки.

Принудительное выключение включает в себя большое количество самых разнообразных способов. Самым распространенным из них является следующий метод.

Конденсатор, обозначаемый латинской буквой C, соединяется с ключом. Он должен обозначаться маркеровкой S. При этом конденсатор перед замыканием должен быть заряжен.

Основные типы тиристоров

В настоящее время существует немалое количество тиристоров, которые различаются между собой своими техническими характеристиками – скоростью функционирования, способами и процессами управления, направлениями тока при нахождении в проводящем состоянии и др.

Наиболее распространенные типы

  1. Тиристор-диод. Такой прибор аналогичен устройству, которое имеет встречно-параллельный диод во включенном режиме.
  2. Диодный тиристор. Другое название – динистор. Отличительной характеристикой этого устройства является то, что переход в проводящий режим осуществляется в момент, когда уровень тока превышен.
  3. Запираемый тиристор.
  4. Симметричный. Он также носит название симистора. Конструкция этого прибора аналогична двум устройствам со встречно-параллельным диодами при нахождении в режиме работы.
  5. Быстродействующий или инверторный. Этот тип устройства обладает способностью переходить в нерабочее состояние за рекордно короткое время – от 5 до 50 микросекунд.
  6. Оптотиристор. Его работа осуществляется при помощи светового потока.
  7. Тиристор под полевым управлением по ведущему электроду.

Обеспечение защиты

Тиристоры входят в перечень приборов, которые критично влияют на изменение скорости увеличения прямого тока. Как и для диодов, так и для тиристоров характерен процесс протекания обратного тока восстановления. Резкое изменение его скорости и падение до нулевой отметки приводит к повышенному риску возникновения перенапряжения.

Кроме того, перенапряжение в конструкции этого прибора может возникать вследствие полного исчезновении напряжения в разнообразных составных частях системы, например, в малых индуктивностях монтажа.

По вышеуказанным причинам в подавляющем большинстве случаев для обеспечения надежной защиты этих приборов применяют разнообразные схемы ЦФТП. Данные схемы при нахождении в динамическом режиме помогают защищать устройство от возникновения недопустимых значений напряжения.

Надежным средством защиты также является применение варистора. Это устройство подключается к местам вывода индуктивной нагрузки.

Применение тиристоров

В самом общем виде применение такого прибора, как тиристор, можно разделить на следующие группы:

  1. Силовые ключи. Они представляют собой переключатели переменного напряжения. Одним из главных факторов, который привел к широкой востребованности данных приборов, стал низкий уровень потребляемой мощности в процессе функционирования. Мощность подвержена рассеиванию в частях переключения. В выключенном состоянии потери мощности практически равны нулю – это происходит благодаря тому, что уровень напряжения в данной ситуации равен нулю. При нахождении в открытом состоянии тиристор теряет некоторое количество мощности. Однако данные потери совершенно незначительны.
  2. Пороговые устройства. Применение в данных устройствах тиристора обеспечивается благодаря наличию свойства пропускать ток только при определенном значении напряжения. Наиболее часто данные типы приборов применяются в фазовых регуляторах, а также релаксационных генераторах.
  3. Подключение постоянного тока. В данной группе используются запирающие типы аппаратов. Они необходимы для прерывания напряжения в цепи или же для включения и выключения прибора.
  4. Экспериментальные устройства. Их применение в данной области обусловлено свойством обладать отрицательным сопротивлением при нахождении в переходном режиме.

Ограничения тиристора

При работе с любым типом этого прибора следует соблюдать определенные правила техники безопасности, а также помнить о некоторых необходимых ограничениях.

Например, в случае с индуктивной нагрузкой при функционировании такой разновидности прибора, как симистор. В данной ситуации ограничения касаются скорости изменения уровня напряжения между двумя основными элементами – его анодами и рабочим током. Для ограничения влияния тока и перегрузки применяется RC-цепочка.

Источник: https://elektro.guru/osnovy-elektrotehniki/chto-takoe-tiristor-princip-raboty-i-pravila-polzovaniya.html

Тиристор: принцип действия, обозначение, основные характеристики и применение

В электронике существует такое понятие, как «электронные ключи». Это приборы, имеющие два устойчивых состояния. Одним из их представителей является тиристор, представляющий, по сути, полупроводниковый элемент. Его работа задаётся с помощью тока или напряжения, поступающего на специальный вывод. Применение устройства позволяет управлять мощной нагрузкой, используя слаботочные цепи. При этом его конструкция проста, а принцип работы довольно понятен.

История изобретения

Изобретение тиристора стало возможным после открытия полупроводников и исследования их свойств. После обнаружения в 1600 году английским физиком Уильямом Гилбертом электричества многие инженеры и ученые посвятили себя изучению этого явления.

Выдающими людьми, изучающими электромагнетизм в разное время, были: Эрстед, Ампер, Вольт, Фарадей, Максвелл, Кюри, Яблочков.

Благодаря их исследованиям и теоретическим догадкам было установлено, что все окружающие твёрдые тела можно разделить на три группы:

  • проводники — вещества, обладающие большим количеством свободных носителей зарядов и способные практически без потерь проводить электрический ток;
  • диэлектрики — физические тела, плохо проводящие ток;
  • полупроводники — материалы, у которых в кристаллической решётке концентрация подвижных зарядов намного ниже, чем количество атомов.

Типичным признаком полупроводников является зависимость их проводимости от изменения температуры или другого внешнего воздействия, например, света, электромагнитного поля.

В 1947 году американцы Бардин, Бреттейн и Шокли создали первый транзистор, что и послужило толчком к бурному развитию полупроводниковой техники. В разных странах начались исследования этих материалов. Так, русским инженером Лошкарёвым была выявленная биполярная диффузия. А Красиловым и Мадояном разработаны образцы германиевых элементов.

В 60-х годах полученные исследования позволили создать чипы, которые содержали несколько объединённых транзисторов. Начали создаваться компании и заводы, выпускающие серийно электронные компоненты. В процессе изучения свойств полупроводников было установлено, что структура монокристаллов, то есть тел, имеющих непрерывную кристаллическую решётку, может иметь три и более p-n переходов. В зависимости от уровня напряжения, подаваемого на один из них, изменялись состояния других.

Изучая монокристаллы полупроводников, учёные компании Белла выявили их технические характеристики. В дальнейшем её инженеры смогли создать прибор, имеющий третий вывод. С помощью его и происходило управление процессом прохождения тока через весь элемент. Через некоторое время в Дженерал Электроникс анонсировали устройство, получившее название «триак» (thyristor).

Суть устройства

Термин «тиристор» произошёл из-за слияния двух слов: греческого hýra — дверь или вход и английского resistor — сопротивляющийся. Этим названием было названо полупроводниковое устройство, изготавливаемое на основе монокристалла полупроводникового вещества и обладающего тремя и более p-n переходами. При работе этот прибор может иметь два устойчивых положения:

  • закрытое — соответствующее низкой проводимости;
  • открытое — неоказывающее сопротивление прохождению тока.

То есть, перефразируя определения, можно сказать, что тиристор работает как ключ, по аналогии с дверью. В одном его состоянии замок на дверях открыт, и через неё могут свободно проходить люди (электрический ток), а в другом закрыт и дверь заперта. Поэтому нередко его называют электронный выключатель. Выражаясь же научным языком, его правильное название звучит как полупроводник с управляемым вентилем (диодом).

Принятие элементом одного из устойчивых состояний происходит быстро, но не мгновенно. Чтобы сменить одно на другое, используется напряжение. Когда оно есть, тиристор находится в открытом состоянии, а когда нет — закрывается. Для этого используется специальный дополнительный вывод. Поэтому прибор имеет три выхода и по виду похож на транзистор. При этом их принцип действия схож, только в отличие от транзистора тиристор либо полностью пропускает ток, либо препятствует его прохождению.

Принцип работы

Тиристоры по своей сути — это переключающие приборы. Структура простого элемента состоит из n-p-n-p слоёв и имеет три перехода. Два из них работают в прямом направлении, а один в обратном. Прибор имеет две крайние области, называемые анодом (p) и катодом (n). Для понимания принципа действия тиристора его можно представить в виде сдвоенных транзисторов: n-p-n и p-n-p. При этом средняя зона второго транзистора (n) соединена с крайней зоной первого.

В результате получится, что крайние зоны будут являться эмиттерными переходами, а средние — коллекторными. Область базы же первого элемента будет совпадать с коллектором второго и наоборот. Исходя из этого коллекторный ток транзисторов, одновременно будет являться и базовым.

Физические процессы, происходящие в элементе, можно описать следующим образом. При существовании лишь одного перехода в устройстве бы возникал лишь обратный ток, вызванный неосновными носителями заряда.

Если к эмиттерному переходу приложить прямое напряжение, то ток коллектора увеличится, а напряжение на нём уменьшится.

В транзисторе для перехода его в режим насыщения (максимальная пропускная способность) на эмиттер подаётся прямое напряжение, при этом оно между базой и коллектором снижается до единичных значений.

ЭТО ИНТЕРЕСНО:  Как рассчитать сопротивление на конденсаторе

Так и в тиристоре. Через переходы анода и катода инжектируются неосновные заряды, приводящие к снижению сопротивления управляющего электрода. При приложении прямого напряжения, то есть к катоду — минусовой потенциал, а к аноду — плюсовой, через прибор начинает протекать небольшой ток. Это состояние соответствует закрытому положению.

Повышение напряжения приводит к инжекции носителей в управляемый переход. В итоге, с одной стороны, увеличивается его сопротивление из-за обеднения основными носителями, так как переход получается включённым в обратном направлении, а с другой — обогащение, связанное с поступлением в его область новых зарядов.

При достижении напряжением определённого значения эти два явления уравновешиваются, и даже возрастание на небольшую величину напряжения приводит к возникновению лавинообразного процесса отпирания тиристора. Это состояние напоминает режим насыщения транзистора. Сопротивление перехода становится минимальным, а величина тока определяется нагрузочным сопротивлением.

Характеристики и параметры

Тиристор — это прибор, одновременно совмещающий в себе три функции: выпрямителя, выключателя и усилителя. Основные свойства, характеризующие прибор можно представить в виде следующих пунктов:

  • тиристор по подобию диода пропускает ток только в одном направлении, то есть работает как выпрямитель;
  • прибор переключается из одного состояния в другое при помощи напряжения;
  • величина тока, необходимая для переключения тиристора, составляет порядка нескольких миллиампер, при этом он может пропускать через себя десятки ампер;
  • изменяя время приложенного сигнала к управляющему выводу, можно регулировать среднее значение тока, протекающего через нагрузку, другими словами — управлять мощностью.

Главной же функцией, описывающей работу прибора, является вольт-амперная характеристика (ВАХ). Представляет она из себя плоскую систему координат по оси Y, на которой откладывается ток нагрузки, а по оси X — напряжение на управляющем электроде. По виду нелинейности соответствия этих двух величин ВАХ относится к S-типу устройств.

На характеристике используются буквенные обозначения, соответствующие ключевым точкам в работе тиристора. Так, координата (Vbo; IL) соответствует моменту включения, а точка с координатами (Vн; Iн) — открытому состоянию. Зона, лежащая на отрезке с координатами (Vbo; IL) и (Vн; Iн) считается переходной, то есть неустойчивой.

Тиристорный прибор, кроме ВАХ, характеризуется рядом параметров:

  1. Наибольшее постоянное обратное напряжение — значение, при превышении которого наступает пробой перехода.
  2. Напряжение включения — величина сигнала, при достижении которой происходит отпирание элемента.
  3. Допустимый ток — максимальное значение, которое может через себя пропустить радиоприбор без изменения своих характеристик.
  4. Ток удержания — это ток, текущий через анод и провоцирующий запирание элемента.
  5. Падение напряжения — показывает величину энергии, которая рассеивается на приборе (0,5 -1 В).
  6. Максимальна мощность — определяется допустимым током и максимально возможным напряжением, приложенным к управляемым выводам, то есть характером нагрузки.
  7. Время отключения — промежуток времени, за который тиристор полностью закроется. Составляет микросекунды.
  8. Отпирающий постоянный ток управления — обозначает значение, которое необходимо для поддержания устройства в открытом состоянии (анод-катод). Обычно составляет порядка 100 мА.

Вам это будет интересно  Особенности работы тока

Конструкция прибора

Любой тиристорный прибор имеет как минимум три вывода: анод, катод и вход. Выпускаются они различными производителями и могут иметь форму таблетки или штыря. Как правило, материалом для их изготовления служит кремний. Он обеспечивает хорошую теплопроводность и может выдерживать большую мощность.

Эмиттерные переходы выполняются по сплавной технологии, а коллекторные — методом диффузии. Используется также и планарная технология. Концентрация примесей в эмиттерных областях делается значительно большей, чем в базовых.

При этом самым толстым слоем является центральный. Эти два фактора — толщина и низкая концентрация — позволяют прибору выдерживать довольно большое обратное напряжение (порядка сотен вольт).

Анод прибора соединяется с корпусом изделия, что в итоге положительно сказывается на отводе тепла.

Немного другую конструкцию имеют асимметричные тиристоры. В их конструкции катод соединяется с n+ и p зоной, а анод с p+ и n областью. Такие соединения называются анодным или катодным коротким замыканием. Их использование приводит к появлению дополнительного сопротивления межу переходами. Такое подключение уменьшает переходные процессы и время жизни основных носителей.

В простейшую конструкцию тиристора входит основание, соединённое с полупроводниковым кристаллом и являющееся анодом, вывода катода и управляющего электрода. Сверху кристалл накрывается изолятором и крышкой, способствующей защите прибора от механических повреждений и одновременно служащей теплоотводом.

Маркировка радиодетали

Согласно системе, указанной в ГОСТ 10862–72, для обозначения тиристора используется буквенно-цифровой код, состоящий из четырёх символов. Первый элемент кода указывает на вид материала, из которого сделано устройство. Например, Г — германий, К — кремний, А — арсенид галлия. Второй обозначает принадлежность устройства — Н-динистор, У-триак. Третий элемент характеризует функциональность, возможности и номер партии.

Источник: https://rusenergetics.ru/ustroistvo/tiristor

Принцип работы тиристора простым языком — Все об электричестве

Тиристор это четырёхслойный полупроводниковый прибор, слои расположены последовательно их типы проводимости чередуются: p‑n‑p‑n. p‑n‑переходы между слоями на рисунке обозначены как «П1», «П2» и «П3».

Контакт присоединенный к внешнему p‑слою называется анодом, к внешнему n‑слою — катодом. В принципе тиристор может иметь до двух управляющих электродов, присоединённых к внутренним слоям.

Но обычно изготавливаются тиристоры с одним управляющим электродом, либо вообще без управляющих электродов (такой прибор называется динистором).

Для включения тиристора достаточно кратковременно подать сигнал на управляющий электрод — тиристор откроется и будет оставаться в этом состоянии пока ток через тиристор не станет меньше тока удержания.

Итак, главный принцип работы тиристора и схем на его основе — открываем тиристор подачей сигнала на усправляющий электрод, закрываем снижая ток анод-катод.

Как и в биполярном транзистор главную роль в принципе действия играют неосновные носители заряда (ННЗ) и обратно-смещенный p-n- переход. Пока неосновных носителей мало переход закрыт, но стоит подкинуть ННЗ к переходу и он откроется.В тиристоре есть два основных способа добавить ННЗ:1) закачать ток в управляющий электрод;

2) поднять напряжение настолько чтобы возник лавинный пробой.

Динисторное включение тиристора

Для начала рассмотрим второй случай, то есть когда управляющий электрод тиристора отключен.

При подаче напряжения прямой полярности, крайние переходы смещаются в прямом направлении, а средний – в обратном. При значительном увеличении напряжения на силовых электродах, через крайние (П1 и П3), примыкающие к среднему, переходы начинают перемещаться неосновные носители, уменьшая его сопротивление.

Процесс происходит медленно, а сопротивление остается большим, но лишь до определенного момента. При некотором значении напряжения (как правило, несколько сотен вольт) процесс становится лавинным(точка 1 на ВАХ), неосновные носители заряда заменяются основными, отпирая средний переход (П2) и уменьшая сопротивление анод-катод.

Тиристор отпирается, а падение напряжения между силовыми электродами падает до единиц Вольт (точка 2 на ВАХ).

Дальнейший рост тока ведет только к небольшому росту падения напряжения на тиристоре участок ВАХ от точки 2 до точки 3, это рабочий режим открытого тиристора.

Чтобы закрыть тиристор нужно снизить протекающий ток ниже тока удержания. Причем падение напряжения соответствующее этому току многократно ниже отпирающего напряжения.

Но зачем тиристору управляющий электрод? Какие преимущества есть у тиристора перед динистором? Дело в том, что подавая напряжение через резистор на управляющий электрод можно увеличивать концентрацию неосновных носителей заряда, что в свою очередь будет снижать величину напряжения включения тиристора.

А при какой-то величине тока управляющего электрода больше не будет горба на ВАХ, т.е. ВАХ тиристора станет похожа на ВАХ диода, кстати этот ток называют током спрямления.

Режим обратного запирания тиристора

При обратном включении тиристора крайние переходы (П1 и П3) смещаются в обратном направлении, а средний в прямом (П2). Тиристор остается закрытым пока не наступит тепловой пробой.

Физические процессы

Если пары по физическим основам электроники на которых рассматривался транзистор я ещё как-то выдерживал, то энергетические зонные диаграммы объясняющие принцип работы тиристора уже были слишком сложны.

Очень много ньюансов в концетрациях носителей заряда, толщинах слоев и уровне легирования.
Конечно, чтобы изготовить тиристор с хорошими характеристиками физические процессы протекающие в кристалле полупроводника нужно знать и понимать.

Но для разработки электронных схем достаточно знать вольт-амперную характеристику тиристора и его транзисторную модель.

Одну четрехслойную полупроводниковую структуру можно представить как две трехслойные, если посмотреть на рисунок, то в трехслойных структурах можно увидеть два биполярных транзистора n-p-n и p-n-p структуры.

Пока оба транзистора закрыты, ток через них не протекает. Но стоит открытся хоть одному из них, то он тут же откроет второй.

Ток коллектора первого транзистора поступит в базу второго и откроет его, а ток коллектора второго, будет являтся базовым для первого и будет поддерживать открытым первый транзистор.

Получаетя что оба транзистора поддерживают друг друга в открытом состоянии. И чтобы они закрылись, нужно снизить ток через ниж ниже определенной величины, так называемого тока удержания.

Источник: https://contur-sb.com/printsip-raboty-tiristora-prostym-yazykom/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как найти активную и реактивную мощность

Закрыть