Для чего необходим трансформатор в выпрямителе

Электропитание устройств и систем связи. Курс лекций

1. Трансформаторы

3. Неуправляемые выпрямители

4. Управляемые выпрямители

6. Стабилизаторы в цепи постоянного тока

8. Инверторы напряжения

9. Корректор коэффициента мощности

10. Аккумуляторы (кислотные)

11. Промышленные выпрямительные устройства

12. Принципиальная схема двухтактного преобразователя постоянного напряжения на базе микросхемы 1169ЕУ1

13. Система электропитания

Примеры решения задач

Конструкция и принцип действия трансформатора

Трансформатор — это статический электромагнитный аппарат, преобразующий электрическую энергию напряжения переменного тока с одними параметрами в электрическую энергию с другими параметрами (частота, напряжение, фазность, форма напряжения и.т.д.).
Принцип действия трансформатора основан на законе электромагнитной индукции. Рассмотрим работу трансформатора по логической цепочке на «холостом» ходу. На рисунке изображена конструкция однофазного трансформатора,

Здесь Ф0 основной магнитный поток (магнитопровод предназначен для направления и концентрации основного магнитного потока);
ФS1ФS2 потоки рассеяния основного магнитного потока в обмотках первичной и вторичной цепей. Они зависят от сцепления обмоток (удаленности друг от друга), от расположения их на стержнях, а также от контура прохождения основного потока. Представим принцип действия трансформатора в виде логической цепочки:

1 — При подключении трансформатора к первичной цепи переменного тока возникает ток (по закону Ома), обратно пропорциональный входному сопротивлению трансформатора:

2 — При протекании тока по обмотке трансформатора, намотанной на замкнутый магнитопровод, возникает напряженность магнитного поля (H):

где F — магнитодвижущая сила, lср — средняя линия магнитопровода, W1 — число витков в первичной цепи. Магнитопровод трансформатора необходимо выполнять из ферромагнитного материала.

3 — Под действием напряженности магнитного поля Н в магнитопроводе (сердечнике) трансформатора возникает основной магнитный поток Ф0, прямо пропорциональный сечению магнитопровода (Sмаг). Магнитная индукция Вх является рабочей точкой на основной кривой намагничивания и выбирается на линейном участке, чтобы при намагничивании сердечника постоянным током магнитопровода не было захода ее в область насыщения.

4 — При прохождении основного магнитного потока по сердечнику в первичной цепи возникает ЭДС самоиндукции, а во вторичной цепи ЭДС взаимоиндукции, которые определяются по закону магнитодвижущих сил — закону Максвелла — Фарадея:

где ЭДС — это изменение потока сцепления во времени.

Логическая цепочка работы трансформатора под нагрузкой

При подключении нагрузки во вторичной цепи начинает протекать ток I2 , при этом в сердечнике возникает размагничивающий магнитный поток, противоположный по направлению к основному. Это приводит к уменьшению ЭДС в первичной цепи. В электромагнитной системе нарушается равновесие (), что приводит к возрастанию потребляемого тока из сети I1, т.е. к самобалансированию системы и поток Ф0 восстанавливается:

Отсюда следует уравнение магнитодвижущих сил (МДС):

, где — ток цепи намагничивания (ток «холостого» хода).

Уравнение ЭДС трансформатора

Рассмотрим его для низкочастотного трансформатора, в котором напряжение питания изменяется по синусоидальному закону:

При анализе работы однофазного трансформатора используют связь действующего значения ЭДС с конструктивными параметрами трансформатора:

где KФ — коэффициент формы, для низкочастотного трансформатора имеем синусоидальную форму напряжения KФ=1,11, для высокочастотного трансформатора форма напряжения — прямоугольная и KФ=1.

Источник: https://siblec.ru/telekommunikatsii/elektropitanie-ustrojstv-i-sistem-svyazi

������ 1.2


» ������������ ��������� » ������ 1 » ������ 1.2

������������ ����������������� ������������

1.2.1 ��������� ���������� ��������������

��������� ���������� �������������� (����) ������������� ��� ��������� ����������, ���������� ��� ������� ��������� ����������� ���������. ��� ��������, ����������� �������� ���������� ���� ����������� ���� ���������� 220 �. � �� �� ����� ��� ������ ����������� �������� ���������� ���������� ����������, �������� �������� ������ �� ��������� ���������� �����. ��������� ��������� �������� ������� �� ��������� ����������: ���� ����������� ����, ������������� � �. �.

����������� ����� ����, ����������� ������� �� ���� ����������� ����, �������� �� ���. 1.2.1. ������������� ������������ ��� ��������� ������ ����������� ���������� � �������������� �������� ����������� � �������� ����. ����������� ����������� ���������� ���������� �������������� ����� � ������������ ���������� ����� ����������. ������������ ������ ��������� ��������� ���������� �� ������ �����������. ������������ ��������� ��������� ���������� �� ��������.

���. 1.2.1

������������� �������� ������� ����� ������� ��� � ��������, ������������ ������ ����� ��������� �������������� � ������������� �������. � ��������� ����� ����� ���� ����������� ������������������� ������������, ����������� �� ��������, ������������ ������� � ����� ��������. ��� ���� ������� ����������� ��������� ������� � ��� ����������.

1.2.2 �����������

����������� ������ ��� �������������� ����������� ���������� �������� ���� � ����������. ��������� ������������ ������������ ������ ������� � �������� � ���� ���������� ���������� �����-�������� ���������������. � �������� ����� ��������� ���������� ���������� �����.

����������������� �����������. �� ���. 1.2.2 �������� ����� ����������� � ������� �� ������� ����� ��������� ������� ��������������.

���. 1.2.2

�� ��������� ������� �������������� ������������ ���������� �� , ������� ��������������� ����������. ����� �������� ��� ����������, ������ � ������� �����������. � ������������� ���������� ������ ���� VD1, � � ������������� � ���� VD2. ��� � �������� ����� ���������� ����������� � ��� �����������, ������� ���������� �� �������� ����� �����, ���������� �� ���. 1.2.3. �������� ���������� �� ���. 9.21 ������ �������� �� �������� ������� ���������� �� �����.

���. 1.2.3

� ����������������� ����������� ���������� ������������ ���� � �����������

;���� .

�� ��������� ������� ��������� ����������� �������� ���������� ��������� ������� ��������������:

.

����������� ��������� ���������� �� ������ ������������������ �����������:

.

��� �� ��������� ������� �������������� ������������������ ������������ ��������������, � �� ������������, �� �� �������� ���������� ������������. �������� ������ ��� ���� �����������, ��� ��������� ��������� �������� ��������������.
������������ ����������� ����� �� ���. 1.2.4 �������� ��, ��� � ��������� ����� ��������� �������� ����������, ������ ��������� ��������� ���������� ������ ����� ��������� ������� ��������������:

.

������� ���������� �������� ����� � ������� �������� �����������. ����� ����������� ������������ ����� � �������� �����������. �������� ����� ������������������ ����������� �������� �� ���. 1.2.4.

���. 1.2.4

��� ����� ����� ����� �� �������� �������� ���������� � ������������ ���������, ��� � ����� ����������� � ������� �� ������� ����� ��������������. �� ������������ � ���, ��� �������� ���������� �� ������ � ��� ���� ������. ����� ����, ��������� ������� �������������� �������� ����� ������ ������, ��� ��������� ������� �������������� � ����� �� ���.� 1.2.4. ����� ��� ������ ����� ��������� � ����� �������.

1.2.3 ������������ �������

������������� ����� ������������ ����� ������������ ������� �������� ������������ ���������. ����� ��� ��� ������� ����������� ���������� ����� ��������� ������������ ���������� � ������������� ���������. �� ����������� ���������� ���������,�� ��� ���������� ��������� ���������� ����������� ����������� � ������������ �������.
���������� �������� ��������� ������ (�-������). ���������� ��� ������ �� ������� ������������������ ����������� (���. 1.2.5).

���. 1.2.5

����������� ��������� ������������� ���������� � ���� ���������� �� ���� ������������� ������� ������������ Ѡ (����� ���������� �� ��������� ������� �������������� ��������� ���������� �� ��������) � ����������� ��� �������� �� ������������� ��������.

��������� ��������� ���������� � ����� ������������ �������� �� ���. 9.24. �� ��������� ������� ����� ������ � ����������� ����������. �� ��������� ������ ������ � ����������� ����������� ����� ������������� .

��� ���������� ��������� ������� ������������ ������ ���� �������, ����� ���������� ������� ������� ����� ������� ������ ������� ������������� ����������.

���. 1.2.6

��� ������� �� ���. 1.2.6, ���� ������ ������ �� ��������� . ��� ������ ���� ��������, ��� ������ ��������� ���� ����� ����.� ����� ������ ����� � ����� ����������� � �������� ����������� ���������� �������.

���. 1.2.7

�� �������� ���������� � ����� ������� ����� ������������ ��������. �� ���. 1.2.7, �, � ��������� ����� �-�������� LC- �RC-��������.
����� ������� ������������ ������ �����������. �� �������� ���������� � ������� �������� � ���.

1.2.4 ������������ �� ���������� ���������������� �������

������������� ������������ ��������� ���������������� �� �������

������� ������������� ������������ ��� ������������������ ����������� (���. 1.2.7) �������������� �� ������������ �������

.

����� �- ������� ���������� ��������� ����������� ���������� ( = 50���);
�- ����������� ��������� (� ������������� ��������).

������� ������������ ��� ������������������ ����������� ������ � ��� ����:

.

� ��������� ���������� �������������� � ��������������� �������������� ���������� �� ������ ����������� �������������� �������� �������� � ��� ���� ������� ���������� �������� . ���� ������������ �������� �����������, ������������� ����������� ��������� ��������� �� �������

.

����� � — ���������� ������������ � ������ ������, � — ���������� ��������� �����, � — ����������� ��� ������������. � ����� � ��������������� �������������� ������� ������������� ������������ �������������� �� �������

1.2.5 ������������ �� ������ ����

  1. ������������� XFRM_LINEAR ��������� � ���������� ANALOG.slb. ����������� �������� ������������� ��������� � ��������� ������� , � ����� ����������� ����� Coupling. ����������� ����� ��������� ������ �������. ����� �������� Coupling = 0.99. ������������� ��������� � ��������� ������� ������� ������������ , ��� n�- ����������� �������������.
  2. ��� ������ ����� ������������ ������ ������ D1N4148 �� D1N4002,� ������ ������������ D1N750 (zener diode) ���� ���������� EVAL.slb.
  3. ���������� ������ ������������ D1N750 ���������� 4.7 �. ��� ��������� ���������� �� ��������, �������� �� 4.7 �, ������������ �����, ��������� �� ��������������� ���������� ������������� � ������.
  4. ������� ���� ������������ � ���� ����� ����� � ������ W1_1, W1_2, W1_3� � ����� Electronics\Labs.

1.2.6 ������������� ����������

  1. �����, �. �. ����������� � ����������������� �������: ����. ��� ����� / �. �. �����, �. �. �����. � 3-� ���. �������. � ���. � �.: ����. ��., 2004. � 790 �.
  2. �������, �. �. ����������� ���� � �����������������: ����. �������/�. �. �������, �. �. ���������. � �.: ����. ��., 2002. � 384 �.: ��.
  3. ����������, �. �. ������ ����������������: ����. ������� ��� ����� / �.�. ����������. � 2-� ���., �������. � ���. � �.: ����������� ������� ������, 2003. � 488 �.: ��.
  4. �������, �. ��������� ������������ / �. �������, �. ����: ���. � ����. � 6-� ���. � �.: ���, 2003. � 704 �., ��.
  5. ������, �. �. �������������� � �����������: ����. �������: � 2-� �. �. 2 / �. �. ������. � ����������: ��� ����, 2006. � 252 �.

Источник: http://ikit.edu.sfu-kras.ru/CP_Electronics/pages/mm/1_2/index.html

ВЫПРЯМИТЕЛИ

   В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя.

Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами.

Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

   Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Фотография трансформатора

   Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

   Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

   На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

    Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

   Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода.

В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора.

В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

   И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

   Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому. 

Объяснение работы диодного моста

   Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

   При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

ЭТО ИНТЕРЕСНО:  Как разделяются электроустановки по условиям электробезопасности

Еще одно изображение диодного моста

   Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

   На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц405

Трехфазные выпрямители

   Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

   Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Схема Миткевича

   Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова

   Схема Ларионова может использоваться как «звезда-Ларионов” и «треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи — AKV.

   Форум

   Обсудить статью ВЫПРЯМИТЕЛИ

Источник: https://radioskot.ru/publ/nachinajushhim/vyprjamiteli/5-1-0-760

Выпрямители тока

Вам необходим выпрямитель тока, но Вы плохо владеете информацией об этом устройстве, чтобы купить качественный, функциональный и практичный прибор? Что нужно о нём знать?

Выпрямитель электрического тока — это электрическая машина по преобразованию электрической энергии, которая позволяет контролировать и регулировать напряжение в сети.

Какие выпрямители тока существуют?

Классификаций выпрямителей тока существует много, но особенно ходовыми являются следующие виды выпрямителей.

1. Разные виды выпрямителей преобразуют разные виды тока:

  • выпрямитель переменного тока преобразовывает входной переменный электрический ток в выходной постоянный;
  • выпрямитель постоянного тока, соответственно, преобразует постоянный ток в переменный; если при покупке такого выпрямителя Вы услышите слово инвертор, не пугайтесь: это одно из его названий.

2. Различаются выпрямители по количеству используемых в работе фаз:

  • однофазный выпрямитель применяется для питания маломощных устройств;
  • двухфазный выпрямитель используется для правильной работы устройств, чья мощность не превышает определённой нагрузки: в телевизорах, к примеру, и радиоприёмниках;
  • выпрямитель трёхфазный считается наиболее функциональным; используется в основном для питания промышленных установок большой мощности, помогает избежать неравномерности нагрузки на электросеть;
  • многофазный.

3. Вид выпрямителя может зависеть от количества напряжения, которое подвергается преобразованию:

  • низковольтные (12 В, 24 В — до 100 В);
  • средневольтовые (220 В — от 100 до 1000 В);
  • самые мощные высоковольтные (преобразовывают свыше 1000 В).

Основные характеристики

На любой выпрямитель цена будет зависеть прежде всего от технических характеристик прибора. Какие из них нужно учесть при выборе выпрямителя? Основными характеристика этого устройства принято считать следующие показатели:

  • количество габаритной мощности трансформатора, которое использует выпрямитель тока;
  • показатель внутреннего комплексного сопротивления;
  • амплитудно-частотные характеристики допустимой выходной пульсации;
  • нагрузочные характеристики;
  • процент эффективного напряжения на входе;
  • процент эффективного напряжения на выходе.

Современные устройства снабжены внутренним микропроцессором, который контролирует состояние напряжения сети.

Источник: https://tszi.ru/articles/vypryamitel-toka/

Простой расчет выпрямителя с сетевым трансформатором

Приведено описание упрощенного расчета источника питания на основе сетевого трансформатора и мостового выпрямителя. Простой блок питания состоит из силового трансформатора, выпрямителя и подавляющего пульсации конденсатора.

Схема выпрямителя

Выпрямители бывают разные, но в таких блоках питания чаще всего используются мостовые выпрямители, как в блоке питания, схема которого показана на рисунке 1. Здесь рассматривается упрощенный расчет именно такого блока питания.

Рис. 1. Принципиальная схема блока сетевого понижающего выпрямителя.

Трансформатор

Самой сложной деталью этой схемы является именно силовой трансформатор. Конечно сейчас можно приобрести готовый трансформатор практически под любые ваши «нужды», но это не всегда возможно.

И зачастую трансформатор приходится делать самостоятельно или, что бывает чаще, перематывать готовый, но неисправный (с горелыми обмотками) либо неподходящий трансформатор под необходимые для конкретного случая параметры.

И так, для изготовления силового трансформатора необходим сердечник с каркасом для обмоток и провод для намотки обмоток. Обычно сердечники встречаются двух типов — «Ш»-образные и тороидальные.

Проще всего наматывать «Ш»-образный, такой как показан на рисунке 2, особенно при большом числе витков, так как его обмотки наматываются на каркас как нитки на катушку, а потом сердечник собирается из отдельных «Ш»-образных пластин «в перекрышку». О нем и будем говорить. Для начала необходимо разобраться с требуемыми параметрами трансформатора.

А именно, — входное переменное напряжение (U), выходное переменное напряжение (Uo), мощность, которую нужно получить на выходе (Р).

Рис. 2. Ш-образный сердечник для трансформатора.

Если мы живем в РФ, то входное напряжение U = 220V. Выходное напряжение Uo — такое какое вам нужно. Мощность Р зависит от выходного напряжения и максимально необходимой величины выходного тока (Іо).

Мощность рассчитываем: Р = Uо * Іо (напряжение в V, ток в А, мощность в W).

Таким образом, нам нужны исходные данные, — Uo и Іо. И здесь придется оторваться от расчета трансформатора и начать расчет с выпрямителя, чтобы узнать какие должны быть эти значения. Точный расчет мостового выпрямителя довольно сложен, так как необходимо учитывать множество параметров.

Расчет параметров

Здесь приводится упрощенный расчет, пригодный для радиолюбительской практики.

Сначала определяемся с напряжением. Для вычисления необходимого напряжения на вторичной обмотке трансформатора Uо (рис.3) нужно знать необходимое напряжение на выходе выпрямителя без нагрузки (Uв). Uo = 0,75Uв.

Под нагрузкой выходное напряжение Uв будет снижаться. Практически выходное напряжение на выходе мостового выпрямителя со сглаживающим конденсатором лежит в пределах от Uo/0,75 при работе без нагрузки до Uo-2Uд при максимальной нагрузке (где Uд — прямое напряжение падения на одном диоде выпрямителя при максимальном токе нагрузки).

Для вычисления максимального тока через обмотку Іо нужно знать максимальный ток нагрузки /в. Іо = 1,41/в

Теперь мы знаем необходимые параметры трансформатора по напряжению и току вторичной обмотки. Этого достаточно для подбора или расчета и изготовления трансформатора. Далее переходим к определению необходимых размеров сердечника.

На рисунке 2 показан обычный «Ш»-образный сердечник. Мощность такого сердечника трансформатора зависит от площади поперечного сечения его центральной части (на которую надевается катушка). Площадь определяется:

Источник: https://radiostorage.net/4635-prostoj-raschet-vypryamitelya-s-setevym-transformatorom.html

Средняя точка трансформатора зачем нужна

Основными величинами, характеризующими эксплуатационные свойства выпрямителей, являются:

Среднее значение выпрямленного напряжения и тока U и I;

Коэффициент полезного действия η;

Однофазный выпрямитель со средней точкой вторичной обмотки трансформатора, работающей на активную нагрузку

Выпрямитель со средней точкой по существу является двухфазным, так как вторичная обмотка трансформатора со средней точкой создает две ЭДС равные по величине, но противоположные по направлению.

Эквивалентная схема выпрямителя и осциллограммы напряжений и токов поясняющие его принцип работы показаны на рисунке 2.2.

Рисунок 2.2. а) эквивалентная схема, б)осциллограммы напряжений и токов.

Вентили V1, V2 проводят ток поочередно: например в течение первого полупериода сетевого напряжения положительны потенциал имеет анод вентиля V1, поэтому ток проходит через этот вентиль, сопротивление нагрузки и полуобмотку с ЭДС U1; в течение второго полупериода положительным становится потенциал анода вентиля V2 (анод V1 становится отрицательным) и он пропускает ток через нагрузку и другую половину вторичной обмотки с ЭДС U2 в том же направлении что и в первый полупериод. Таким образом, в отличие от простейшего однофазного однополупериодного выпрямителя в выпрямителе с нулевой точкой вторичных обмоток ток в нагрузке проходит в течение обоих полупериодов сетевого напряжения, но каждая из половин вторичной обмотки оказывается нагруженной током только в течение полупериода. В результате встречного направления намагничивающих сил постоянных составляющих токов вторичных полуобмоток в сердечнике трансформатора отсутствует вынужденное намагничивание.

Среднее значение (постоянная составляющая) выпрямленного напряжения определяется с помощью разложения в ряд Фурье косинусоидального импульса выпрямленного напряжения:

где U2m – амплитуда напряжения вторичной полуобмотки, а U2 – действующее значение напряжения на ней.

Величина обратного напряжения на неработающем вентиле равно двойной амплитуде вторичного напряжения полуобмоток 2U2m или через U:

Действующее значение напряжения вторичной полуобмотки из выражения (1.1):

Среднее значение выпрямленного тока через нагрузку и вентиль:

где Iam – амплитуда тока через вентиль.

Среднее значение тока через вентиль:

Действующее значение тока вентиля:

Действующее значение тока вторичной обмотки:

Мощность вторичной обмотки трансформатора:

где – среднее значение мощности на нагрузке выпрямителя.

Действующее значение тока первичной обмотки находится через баланс мощностей:

где – коэффициент трансформации.

Мощность первичной обмотки трансформатора:

Типовая мощность трансформатора:

Однофазная мостовая схема выпрямителя с активной нагрузкой

Однофазная мостовая схема осуществляет двухполупериодное выпрямление.

Эквивалентная схема выпрямителя для рассматриваемого режима, а также осциллограммы поясняющие принцип работы показаны на рисунке 2.3.

Рисунок 2.3. а) эквивалентная схема, б) осциллограммы поясняющие принцип работы мостовой схемы выпрямления.

На рисунке представлены осциллограммы:

1 – тока через диод VD4;

2 – тока через диод VD2;

3 – обратного напряжения на VD4;

4 – выпрямленного напряжения на нагрузке.

Вентили в схеме проводят ток попарно: V1,V4 и V2,V3. Они соединены между собой и нагрузкой последовательно. В схеме начинает пропускать ток пара выпрямителей, у которой анод вентиля катодной группы (V1 или V3) имеет наиболее высокий потенциал, а катод вентиля анодной группы (V2 или V4) наиболее низкий потенциал.

Средние значения выпрямленного напряжения и тока, а так же среднее и действующее значение тока через вентили мостовой схемы такие же, как и в схеме со средней точкой.

Обратное напряжение неработающего вентиля определяется напряжением вторичной обмотки трансформатора:

Выпрямители бывают однополупериодными или двухполупериодными в зависимости от того, сколько полупериодов переменного тока используется – один или два. По однополупериодной схеме выполняют выпрямители, от которых требуется небольшой ток. Такую схему используют редко.

Рис.1. Однополупериодная схема выпрямителя.

Работа схемы однополупериодного выпрямителя.

Во время положительной полуволны плюс напряжения на вторичной обмотке трансформатора приложен к аноду диода, а минус – к катоду. (Знаки + и – указаны в скобках).

Диод пропускает ток от плюса вторичной обмотки трансформатора через диод и сопротивление нагрузки R н на минус вторичной обмотки трансформатора. Во время отрицательной полуволны к аноду диода приложен минус, а к катоду – плюс.

К диоду в это время прикладывается обратное напряжение, и он закрыт. На графике в этот момент на сопротивлении нагрузки нет падения напряжения.

Двухполупериодный выпрямитель

Рис.2. Двухполупериодная со средней точкой (б) и мостовая (в) схемы выпрямителей.

Работа схемы выпрямителя со средней точкой

Схема обеспечивает прохождение тока через нагрузку в течение обоих полупериодов. Во время положительного полупериода работает первая половина вторичной обмотки ( II а ). Ток идёт от плюса вторичной обмотки трансформатора через диод V1, нагрузку R н и на среднюю точку вторичной обмотки.

В это время к аноду диода V 2 приложен минус, а к катоду – плюс, и диод закрыт. Во время отрицательного полупериода картина меняется: будет открыт диод V 2, а диод V1 – закрыт ( для этого случая знаки указаны в скобках). В этот полупериод ток протекает за счёт напряжения на обмотке II б.

Источник: https://crast.ru/instrumenty/srednjaja-tochka-transformatora-zachem-nuzhna

Типы выпрямителей переменного тока

Радиоэлектроника для начинающих

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры.

Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц).

На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме.

К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы.

А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

ЭТО ИНТЕРЕСНО:  Что такое анод в бойлере

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF).

Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2).

Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта).

Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора.

Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков).

Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер).

При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить.

Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат.

В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора.

Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Какие бывают припои?
  • Обзор термовоздушной паяльной станции.

Источник: https://go-radio.ru/vipramiteli.html

Параллельное соединение выпрямителей

К категории выпрямителей относятся различные устройства, с помощью которых переменный входной электрический ток преобразуется на выходе в постоянный ток. В большинстве таких приборов невозможно создать постоянный ток и напряжение. В них осуществляется создание однонаправленного пульсирующего напряжения и тока, где сглаживание пульсаций выполняется с помощью специальных фильтров.

Среди множества подобных приборов, наиболее эффективной считается схема двухполупериодного выпрямителя. Данные устройства имеют различные технические характеристики, что позволяет применять их практически при любых значениях токов.

Свойства двухполупериодного выпрямителя

Основным свойством этих устройств является протекание электрического тока через нагрузку за оба полупериода в одном и том же направлении.

В приборах такого типа используются, в основном, мостовые или полумостовые схемы. В последнем случае однофазный ток выпрямляется с использованием специального трансформатора.

В качестве вывода используется средняя точка вторичной обмотки, а количество элементов, выпрямляющих ток – в два раза меньше.

В настоящее время полумостовая схема используется довольно редко из-за высокой металлоемкости и высокого активного внутреннего сопротивления, с большими потерями при нагревании трансформаторных обмоток.

Чаще всего используются двухполупериодные устройства, в схемах которых имеется сразу два вентиля. Электрический ток в нагрузке всегда протекает в одном и том же направлении. В результате, выпрямление тока происходит с участием двух полупериодов напряжения. Благодаря высокой частоте пульсаций, фильтрация выпрямляемого напряжения существенно облегчается.

Двухполупериодные выпрямители получили широкое распространение во многих радиоэлектронных устройствах, обеспечивая их нормальное питание. Возможность преобразования постоянного тока из одного напряжения в другое, дает возможность создавать в схемах питания различные напряжения при одном и том же источнике энергии.

Распространенные схемы двухполупериодных выпрямителей

Данные схемы лежат в основе многих источников питания, применяемых в радиоэлектронике и других технических областях. Таким образом, обеспечивается постоянное напряжение питания электронных устройств, технологических процессов, электромашинных приводов механизмов. Чтобы правильно эксплуатировать выпрямители, необходимо хорошо знать их основные свойства.

Двухполупериодный однофазный выпрямитель с выводом от средней точки

Основными преимуществами данной схемы считается более высокий коэффициент эксплуатации вентилей по току, сниженная расчетная мощность трансформатора, низкий коэффициент, определяющий пульсацию выпрямленного напряжения.

Однако в этой схеме вентили недостаточно используются по напряжению. Само устройство обладает высоким обратным напряжением, поступающим на выпрямительные диоды. В схеме используется более сложная конструкция трансформатора.

Двухполупериодный однофазный мостовой выпрямитель

Главным преимуществом мостового выпрямителя считается повышенный коэффициент применения вентилей по напряжению. В схеме используется трансформатор с меньшей расчетной мощностью и очень простой конструкцией. Данные выпрямители нашли широкое применение в установках малой и средней мощности.

Главным недостатком мостовой схемы является необходимость строгой симметрии напряжений на каждой обмотке и применение двух обмоток вместо одной. На диодах возникает большое обратное напряжение. В сравнении с предыдущей схемой выпрямителя, требуется в два раза больше диодов, однако значение общего сопротивления постоянному току во многих случаях оказывается меньше, чем сопротивление выпрямителя со средней точкой.

Двухполупериодный выпрямитель с удвоением напряжения

Данная схема используется в случае возникновения проблем с намоткой вторичной обмотки, состоящей из множества витков, или при обмотке действующего трансформатора с недостаточным напряжением. В схеме удвоения применяется нагрузочная характеристика с круто падающим графиком. Пульсации выпрямленного тока сглаживаются конденсаторами.

Серьезным недостатком считается возможный взрыв электролитического конденсатора под действием переменного напряжения в случае пробоя одного из диодов. Представленная схема не может быть использована для получения напряжения на выходе более 200-300В из-за возможного пробоя изоляции между нитью накала и катодами в кенотроне.

Двухполупериодный выпрямитель с умножением напряжения

Представленная схема дает возможность получать высокое напряжение без использования высоковольтного трансформатора. В ней используются конденсаторы с рабочим напряжением 2Ет, независимо от того, во сколько раз умножилось значение напряжения.

Данная схема двухполупериодного выпрямителя имеет недостаток в виде разрядки конденсаторов при включении нагрузочного сопротивления. С уменьшением сопротивления нагрузки увеличивается скорость разрядки конденсаторов, снижается их напряжение. Использование этой схемы нерационально при незначительных сопротивлениях нагрузок.

Выпрямительные схемы

Источник: https://1000eletric.com/parallelnoe-soedinenie-vypryamiteley/

Военно-техническая подготовка

Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.

1.7.1. Однополупериодный выпрямитель.

Простейшая схема однополупериодного выпрямителя состоит только из одного выпрямляющего ток элемента (диода). На выходе — пульсирующий постоянный ток.

На промышленных частотах (50—60 Гц) не имеет широкого применения, так как для питания аппаратуры требуются сглаживающие фильтры с большими величинами ёмкости и индуктивности, что приводит к увеличению габаритно-весовых характеристик выпрямителя.

Однако схема однополупериодного выпрямления нашла очень широкое распространение в импульсных блоках питания с частотой переменного напряжения свыше 10 кГц, широко применяющихся в современной бытовой и промышленной аппаратуре.

Объясняется это тем, что при более высоких частотах пульсаций выпрямленного напряжения, для получения требуемых характеристик (заданного или допустимого коэффициента пульсаций), необходимы сглаживающие элементы с меньшими значениями ёмкости (индуктивности). Вес и размеры источников питания уменьшаются с повышением частоты входного переменного напряжения.

Однополупериодный выпрямитель или четвертьмост является простейшим выпрямителем и включает в себя один вентиль (диод или тиристор).

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю. Среднее значение переменного тока по отношению к подведенному действующему составит:

.

Эта величина вдвое меньше, чем в полномостовом. Важно отметить, что среднеквадратичное значение напряжения на выходе однополупериодного выпрямителя будет в меньше подведенного действующего, а потребляемая нагрузкой мощность в 2 раза меньше (для синусоидальной формы сигнала).

1.7.2. Двухполупериодный выпрямитель.

Двухполупериодный выпрямитель может строиться по мостовой или полумостовой схеме (когда, например, в случае выпрямления однофазного тока, используется специальный трансформатор с выводом от средней точки вторичной обмотки и вдвое меньшим количеством выпрямляющих ток элементов. Такая схема ныне применяется редко, так как более металлоёмка и имеет большее эквивалентное активное внутреннее сопротивление, то есть большие потери на нагрев обмоток трансформатора).

Рис 1. Двухполупериодный выпрямитель с сглаживающим ёмкостным фильтром.

При построении двухполупериодного выпрямителя со сглаживающим конденсатором следует всегда помнить, что переменное напряжение всегда измеряется в «действующем» значении, которое в 1,41 раза меньше его максимальной амплитуды, а выпрямленное напряжение на конденсаторе, в отсутствие нагрузки, будет всегда равно амплитудному.

Это означает, что, например, при измеренном напряжении однофазного переменного тока 12 вольт до мостового однофазного выпрямителя со сглаживающим конденсатором, на конденсаторе, (в отсутствие нагрузки), будет напряжение до 17 вольт.

Под нагрузкой выпрямленное напряжение будет ниже, (но не ниже величины средневыпрямленного напряжения переменного тока, если внутреннее сопротивление трансформатора — источника переменного тока — принять равным нулю) и зависеть от ёмкости сглаживающего конденсатора.

Соответственно, выбор величины переменного напряжения вторичной обмотки трансформатора, должен строиться исходя из максимальной допустимой величины подаваемого напряжения, а ёмкость сглаживающего конденсатора — должна быть достаточно большой, чтобы напряжение под нагрузкой не снизилось меньше минимально допустимого. На практике также учитывается неизбежное падение напряжения под нагрузкой — на сопротивлении проводов, обмотке трансформатора, диодах выпрямительного моста, а также возможное отклонение от номинального величины питающего трансформатор напряжения электрической сети.

Рис 2. Входное переменное напряжение (жёлтого цвета) и постоянное выходное напряжение однополупериодного выпрямителя с фильтрующей ёмкостью.

Следует отметить, что в выпрямителях с сглаживающим конденсатором диоды открываются не на весь полупериод напряжения, а на короткие промежутки времени, когда мгновенное значение переменного напряжения превышает постоянное напряжение на фильтрующем конденсаторе (т. е. в моменты вблизи максимумов синусоиды).

Поэтому протекающий через диоды (и обмотку трансформатора) ток представляет собой короткие мощные импульсы сложной формы, амплитуда которых значительно превышает средний ток, потребяемый нагрузкой выпрямителя.

Этот факт следует учитывать при расчёте трасформатора (вариант расчёта для работы не на активную нагрузку, а на выпрямитель с ёмкостным фильтром), и принимать меры для подавления возникающих импульсных помех.

1.7.3. Мостовая схема выпрямления переменного тока.

Диодный мост — электрическая схема, предназначенная для преобразования («выпрямления») переменного тока в пульсирующий.

На вход (Input) схемы подаётся переменное напряжение (обычно, но не обязательно синусоидальное). В каждый из полупериодов ток проходит только через 2 диода, 2 других — заперты:

Рис 3. Выпрямление положительной полуволны Рис 4. Выпрямление отрицательной полуволны

Рис 5. Анимация принципа работы

В результате, на выходе (DC Output) получается напряжение, пульсирующее с частотой, вдвое большей частоты питающего напряжения:

Рис 6. Красным — исходное синусоидальное напряжение , зелёным — однополупериодное выпрямление (для сравнения), синим — рассматриваемое двухполупериодное

Преимущества

  • Двухполупериодное выпрямление с помощью моста (по сравнению с однополупериодным) позволяет:
  • Получить на выходе напряжение с повышенной частотой пульсаций, которое проще сгладить фильтром на конденсаторе.
  • Избежать постоянного тока подмагничивания в питающем мост трансформаторе.
  • Увеличить его КПД, что позволяет сделать его магнитопровод меньшего сечения.

Недостатки

  • Происходит двойное падение напряжения по сравнению с однополупериодным выпрямлением (прямое напряжение диода × 2 ≈ 1 В), это иногда нежелательно в низковольтных схемах. Частично этот недостаток может быть преодолен за счет использования диодов Шоттки с малым падением напряжения.
  • При перегорании одного из диодов схема превращается в однополупериодную, что может быть не замечено вовремя, и в устройстве появится скрытый дефект.

Источник: http://zrv.ivo.unn.ru/pages/vtp/1/1-7-vypryamiteli.htm

Выпрямители (Часть 1). Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя.

ЭТО ИНТЕРЕСНО:  Как правильно зарядить сухой аккумулятор

Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей.

Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор. 2 — Диодный мост, состоящий из диодов. 3 — Устройство фильтрования.

4 — Нагрузочная цепь со стабилизатором.

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста .

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:

  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.

По количеству импульсов одного полюса выпрямленного напряжения U2 за один период:

  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).

По типу управления вентилями выпрямители делятся на:

  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.

Выпрямители разделяют для следующих видов нагрузки:

  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.

Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:

  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1  — рабочая первичная величина тока и напряжения, I2, U2  – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/vypriamiteli/

Как выбрать сварочный выпрямитель

Сварочным выпрямителем называют аппарат, который преобразует переменный сетевой ток в ток постоянный для сварки. Обычно в составе выпрямителя есть силовой трансформатор, выпрямительный блок, а также аппаратура защитная, измерительная и пускорегулирующая.

Для сварки методом дуги выпрямители подходят идеально. Что касается параметра номинального напряжения модели, то они отличаются. Причем сильно. Всегда нужно иметь в виду, что в выпрямителях нашли применение блоки, мощность которых отличается. В настоящее время больше всего получили распространение модификации с первичной обмоткой.

Для того, чтобы можно было работать безопасно, устанавливаются предохранители. По управлению выпрямители очень похожи. В зависимости от производителя зависят и функции.

Принцип действия сварочного выпрямителя

Принцип действия агрегатов заключается в следующем: по цепи вторичной обмотки и выпрямительному блоку протекает переменный ток и преобразуется в постоянный ток, то есть выпрямляется.

Известно много способов построения сварочных выпрямителей, в которых самые разные механизмы формирования выходных параметров тока и напряжения. Применяются разные методы для того, чтобы регулировать ток и формировать внешнюю вольт-амперную характеристику выпрямителей.

Можно изменить параметры самого трансформатора. Речь идет о секционированных обмотках, подвижных катушках и магнитных шунтах. Можно также применить дросселя, регулировать фазно, используя транзисторы и тиристоры.

В самых простых аппаратах регулирование тока происходит с помощью трансформатора. А чтобы его выпрямить, применяют диоды. В силовую часть аппаратов входят трансформатор, выпрямительный блок на неуправляемых вентилях и сглаживающий дроссель. Более современными и совершенными устройствами считаются тиристорные выпрямители. В них режим регулируется за счет обеспечения тиристорным выпрямительным блоком.

Полупроводниковые элементы выпрямителей необходимо постоянно принудительно охлаждать. С этой целью на них устанавливают радиаторы, которые обдувает вентилятор.

Для того, чтобы получить необходимые характеристики, нередко в комплект выпрямителя входит дополнительный дроссель. Такие аппараты имеют непрерывную и очень стабильную дугу. В результате есть возможность выполнять профессиональную сварку. Сварной шов выпрямителя ровный и крепкий. Его качество выше, чем у шва сварочных трансформаторов.

С черными и цветными металлами сварочные выпрямители справляются великолепно. Если нужно сварить нержавеющую сталь, то для этого будут необходимы специальные электроды. В первую очередь такое оборудование производят для тех, кто профессионал. Это оптимальный вариант для того, чтобы делать сварку деталей из стали нержавеющей и низколегированной.

Достоинства и недостатки сварочных выпрямителей

Теперь несколько слов о достоинствах и недостатках сварочных выпрямителей.

По сравнению с трансформаторами главное преимущество выпрямителей в том, что в них для сварки применяется постоянный ток, который обеспечивает надежное зажигание и устойчивость горения сварочной дуги. В результате и получается более качественный шов. Можно варить даже нержавейку и цветные металлы. От сварки выпрямителем меньше брызг.

Конечно, этих преимуществ вполне хватает, чтобы определить, что вам выбрать: трансформатор или выпрямитель?

Нужно упомянуть и о недостатках. Например, такой аппарат весит относительно много. А еще есть потеря части мощности и сильная «просадка» напряжения в сети во время сварки. Последнее касается сварочных трансформаторов.

 

Источник: https://mcgrp.ru/article/4840-kak-vyibrat-svarochnyiy-vyipryamitel

Выпрямители. Схемы выпрямления электрического тока

В данной статье расскажем что такое выпрямитель тока, принципы его работы и схемы выпрямления электрического тока.

Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора.

Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции.

Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А».

Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:

Uср = 2*Umax / π = 0,636 Umax

где: π — константа равная 3,14.

Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

Трёхфазные выпрямители электрического тока (Схема Ларионова)

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».

При конструировании блоков питания

Для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – Uобр ;

— максимальный ток диода – Imax ;

— прямое падение напряжения на диоде – Uпр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей электрического тока предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

Источник: https://meanders.ru/vypryamitely.shtml

Понравилась статья? Поделиться с друзьями:
Электро Дело
Какого цвета плюс на аккумуляторе

Закрыть
Для любых предложений по сайту: [email protected]