Для чего нужен режим холостого хода трансформатора

Что такое режим холостого хода сварочного трансформатора

Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать мощность, напряжение электричества в соответствии с требованиями потребителей.

В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.

Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря  электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

К = Е1/Е2 = W1/W2

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым  классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Измерение тока

При опытном измерении тока холостого хода мастер применяет амперметры. Их необходимо подсоединять к первичной обмотке последовательно. Напряжение в контуре должно равняться номинальному значению.

Если проводится исследование работы трехфазного промышленного агрегата, замер выполняет для всех фаз одновременно или последовательно. При этом испытания производятся только для установок от 1000 кВА.

Измерение потерь

Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.

При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.

  ВИК сварных швов трубопроводов

Применение ваттметра

Ваттметр позволяет произвести замер с учетом коэффициента мощности. Это дает возможность получить более точный результат. Расчет выполняется по следующей формуле:

Cos φ = P1/U1*L0

Далее необходимо создать на основе полученного результата векторную диаграмму. По каждой фазе учитываются установленные потери. Для этого чаще всего строится таблица. При этом используется схема, которая изначально применялась производителем при создании оборудования.

Полученный результат не подлежит сравнению с нормативами. Показатели сравнивают только с характеристиками предыдущих проверок. Если потери с течением времени только возрастают, это говорит о нарушении изоляции пластин магнитопривода или появлении иных нарушений. Обратить этот процесс невозможно.

Проведение замеров холостого хода позволяет оценить состояние аппаратуры, а также определить потребность в необходимости планового или аварийного ремонта. Поэтому регулярные испытания позволяют правильно спланировать работу установки, предотвратить ее непредвиденное отключение.

Интересное видео: Описание основ работы трансформатора.

Источник: https://respect-kovka.com/chto-takoe-rezhim-holostogo-hoda-svarochnogo-transformatora/

Всё об энергетике

Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго.

Режимы работы трансформатора

Существует пять характерных режимов работы трансформатора:

  1. Рабочий режим;
  2. Номинальный режим;
  3. Оптимальный режим;
  4. Режим холостого хода;
  5. Режим короткого замыкания;

Рабочий режим

Режим характеризуется следующими признаками:

  • Напряжение первичной обмотки близко к номинальному значению или равно ему \(\dot{u}_1 ≈ \dot{u}_{1ном}\);
  • Ток первичной обмотки меньше своего номинального значения или равен ему \(\dot{i}_1 ≤ \dot{i}_1ном\).

В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.

Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.

Номинальный режим работы

Характерные признаки режима:

  • Напряжение первичной обмотки равно номинальному \(\dot{u}_1 = \dot{u}_{1ном}\);
  • Ток первичной обмотки равен номинальному \(\dot{i}_1 = \dot{i}_{1ном}\).

Номинальный режим работы является частным случаем рабочего режима. В таком режиме могут работать все трансформаторы, но как правило, с бóльшими в сравнении с рабочим режимом потерями и как следствие, с меньшим КПД (коэффициентом полезного действия). Из-за этого при эксплуатации трансформатора его избегают.

Оптимальный режим работы

Режим характеризуется условием:

\begin{equation} k_{нг} = \sqrt{P_{хх}\over P_{кз}} \end{equation}

Где \(P_{хх}\) — потери холостого хода;    \(P_{кз}\) — потери короткого замыкания;

    \(k_{нг}\) — коэффициент нагрузки трансформатора, определяемый по формуле:

\begin{equation} k_{нг} = {I_2\over I_{2ном}} \end{equation}

Где \(P_2\) — ток нагрузки вторичной обмотки;
    \(P_{2ном}\) — номинальный ток вторичной обмотки.

В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД [2, с.308] (Смотри «Трансформаторы. Оптимальный режим работы»).

Режим холостого хода

Характерные признаки режима:

  • Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки(1) трансформатора;
  • К первичной обмотке приложено напряжение \(\dot{u}_{1хх} = \dot{u}_{1ном}\);
  • Ток вторичной обмотки \(\dot{i}_2 ≈ 0\) (для трехфазного трансформатора — \(\dot{i}_{2ф} ≈ \dot{i}_{2л} ≈ 0\).

На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 — трехфазного двухобмоточных трансформаторов.

Рисунок 1 — Схема опыта холостого хода однофазного двухобмоточного трансформатора

Рисунок 2 — Схема опыта холостого хода трехфазного двухобмоточного трансформатора

По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока \(i_х\), мощности \(ΔQ_хх\) холостого хода и ряда других параметров [2, c. 291][3, с. 207] (смотри «Опыт холостого хода трансформатора»).

    Примечание:
  1. Под сопротивлением номинальной нагрузки обмотки понимается величина \(R_{Нном}\), равная отношению номинального напряжения обмотки \(U_{ном}\) к её номинальному току обмотки \(I_{ном}\)

Режим короткого замыкания

Режим короткого замыкания характеризуется:

  • Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;
  • К первичной обмотке приложена такая величина напряжения \(\dot{u}_1\), что ток первичной обмотки равен её номинальному току \(\dot{i}_1 = \dot{i}_{1ном}\)
  • Напряжение вторичной обмотки \(\dot{u}_2 = 0\) (для трехфазного трансформатора — \(\dot{u}_{2ф} = \dot{u}_{2л} = 0\).

Схема опыта короткого замыкания изображена на рисунке 3 для однофазного, а на рисунке 4 — для трехфазного двухобмоточных трансформаторов.

Рисунок 3 — Схема опыта короткого замыкания однофазного двухобмоточного трансформатора

Рисунок 4 — Схема опыта короткого замыкания трехфазного двухобмоточного трансформатора

Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов. Также он используется для определения напряжения \(u_к\), мощности \(ΔP_кз\) короткого замыкания и других параметров трансформатора [2, c. 294][3, с. 209] (смотри «Опыт короткого замыкания трансформатора»).

Список использованных источников

  1. Бессонов, Л.А. Теоретические основы электротехники: учебник / Л.А. Бессонов — Москва: Высшая школа, 1996 — 623 с.
  2. Вольдек, А.И. Электрические машины: учебник для студентов вузов / А.И. Вольдек — СПб.: Энергия, 1978 — 832 с.
  3. Касаткин А.С. Электротехника: учебное пособие для вузов / А.С. Касаткин, М.В. Немцов — Москва: Энергоатомиздат, 1995 — 240 с.

Источник: https://allofenergy.ru/16-transformatory-rezhimy-raboty

Назначение и принцип действия измерительных трансформаторов

Назначение и принцип действия измерительных трансформаторов

На предприятиях в энергетических установках требуется постоянный контроль режимов функциональности оборудования. Контроль выполняют с помощью учета электроэнергии и наблюдением за показаниями приборов нагрузки и рабочего и сетевого напряжения.

Приборы для измерения тока нагрузки, рабочего напряжения в высоковольтных установках подключаются через трансформаторы тока и напряжения. Кроме измерения трансформаторы нужны для присоединения защитных устройств и реле. 

Для чего нужны измерительные трансформаторы тока и напряжения 

Трансформатор принадлежит к классу статических электромагнитных аппаратов, который преобразует ток одного напряжения в переменный ток другого напряжения. Измерительные трансформаторы признаны одними из самых надежных элементов в системе энергообеспечения. 

Помимо определения показателей нагрузки и напряжения служат для присоединения аппаратуры автоматического регулирования и защитных устройств. С помощью измерительных трансформаторов:

  • снижают габариты и вес приборов измерения;
  • повышают уровень безопасного обслуживания оборудования;
  • предупреждают последствия от ошибочных действий электротехнического персонала;
  • расширяют пределы измерения переменного тока.

Назначение трансформаторов напряжения

Подобное оборудование относится к однофазным устройствам, через которые присоединяют киловольтметры, фазометры для обозначения правильности чередования фаз, ваттметры для определения мощности и для подключения защитных реле в цепях напряжения 3, 6, 10 кВ промышленной частоты.

Обмотки первичного и вторичного напряжения трансформатора ТН отличаются сопротивлением большой величины и малой мощностью. Работа происходит в режиме холостого хода. Стандартное номинальное напряжение вторичной обмотки не бывает более 100 В и имеет рабочий ток от 1 до 5 А. 

Рис. №1. Трансформатор напряжения масляный 6 кВ. НТМИ

Рассмотрим какие бывают трансформаторы напряжения.

Классификация трансформаторов напряжения

Типы измерительных трансформаторов напряжения включают в линейку изделия, классифицируемых следующим образом:

  • однофазные трансформаторы с одним заземленным концом первичной обмотки. К заземляемым относятся и трехфазные тр-ры с заземленной нейтралью катушки первичного напряжения;
  • незаземляемые тр-ры напряжения с полностью изолированными от «земли» участками, зажимами «первички»;
  • каскадный тип с обмоткой первичного напряжения, разделенной на несколько последовательных секций. В конструкции предусмотрены обмотки, выравнивающие напряжение. В наличии есть связующая катушка, которая служит для передачи мощности к обмотке вторичного напряжения;
  • емкостный ТН с делителем;
  • двухобмоточный ТН с одной обмоткой вторичного напряжения;
  • трехобмоточный ТН с двумя обмотками: основного напряжения и дополнительной.

Рис. №2. Трансформатор напряжения, литого типа, опорный с заземленным выводом первичной обмотки, 3НОЛ-СВЭЛ-6. Используется для КРУН, КРУ, КСО

Рис. №3. Трехфазный антирезонансный масляный трансформатор для сетей с изолированной нейтралью

Чтобы понять для каких задач нужны измерительные трансформаторы рассмотрим назначение и разберем принцип действия оборудования.  

Устройство трансформаторов напряжения

Конструкцию ТН рассмотрим на примере лабораторных трансформаторов НЛЛ, используемыми для проверки работы большинства трансформаторов измерения и приборов. 

Трансформаторы напряжения на 3, 6 или 10 кВ имеет магнитопровод с конструкцией из электротехнической стали в основном стержневого типа. На магнитопроводе расположена внутренняя вторичная обмотка. Первичка представляет собой две секции, которые соединены между собой. 

Изоляции представляет собой заливку компаудом, что создает монолитный блок с высокой степенью электрической прочности от попадания влаги и внешних повреждений.

Выводы первичной обмотки размещаются вверху корпуса трансформатора.

С торца трансформатора на клеммнике размещены выводы вторичной обмотки и контакты заземления.

Измерительные трансформаторы напряжения, условия безопасной эксплуатации

Для обеспечения рабочих условий эксплуатации клеммы вторичной обмотки присоединяют к измерительными приборам или защитному оборудованию. Одну из клемм и основание оборудования заземляют.

Цепи при вторичной работе не замыкают, иначе может произойти термическое разрушение.

Если существует не использованная вторичная обмотка ее оставляют открытой, заземлив одну из клемм. Разомкнутая треугольная цепь должна включать резистор соответствующего напряжения и номинальной мощности вторички. Заземление цепи производится по техническим рекомендациям.

Нейтральный вывод первичной обмотки однофазного трансформатора заземляется только в нейтральную систему замыкания.

Будьте уверены, что правильный выбор и эксплуатация измерительных трансформаторов приведут вас к объективным показателям нагрузки и качества электрической сети. 

Рис. №6. Схема подключения трансформатора напряжения где: 1 – первичная обмотка, 2 – магнитопровод, 3 – обмотка вторичного напряжения

Рис. №7. Размещение трансформатор напряжения в ячейке КРУН, подключение к питающей сети через предохранители

Назначение и принцип действия трансформаторов тока

Трансформаторы тока преобразуют первичный ток во вторичный ток меньшей величины в процессе гальванического разделения цепи. Они служат для включения амперметров и токовых катушек приборов измерения, отличающихся очень малым сопротивлением. 

Трансформаторы тока постоянно работают в режиме короткого замыкания. Вторичная цепь защищается от сильных токов за счет эффекта насыщения стального сердечника.  

Применяются ТТ там, где затруднительно произвести замеры токовых величин напрямую. 

С использованием измерительных трансформаторов выполняют учет потребления электроэнергии.

О измерительных трансформаторах напряжения иы вкратце узнали. За более подробной информацией обращайтесь к менеджеру компании «КубаньЭлектрощит»  Задавайте вопросы на сайте. Мы ответим в самые короткие сроки.

Классификация трансформаторов тока

Типы измерительных трансформаторов тока подразделяют на следующие классы:

  • по функциональности: на измерительные и защитные;
  • по току: постоянного и переменного тока;
  • по коэффициенту трансформации: одно и многодиапазонные;
  • по способу монтажа: внутреннего и наружного размещения, встроенные, накладные;
  • по напряжению: низкого и среднего;
  • по типу изготовления и диэлектрическому материалу: газо- и маслонаполненные, сухие.

Рис. №4. Внешний вид трансформатора тока ТОЛ-СЭЩ-20 

Рис. №5. Опорный трансформатор тока ТОЛ-СЭЩ-10, внешний вид

Измерительные подключают напрямую к считывающему, записывающему и вычисляющему измерительному оборудованию. Также их подключают к защите от сверхтоков. Разделяются на однопроводниковые ТТ и трансформаторы с первичной обмоткой. Однопроводниковый трансформатор – это устройство с проемом для первичной цепи, он устанавливается на первичный проводник. 

Мощность трансформаторов тока зависит от коэффициента трансформации и поперечного сечения сердечника. 

При низком токе первичной обмотки применяется трансформатор тока с высокой пропускной способностью. Для того чтобы получить трансформатор тока с первичной обмоткой через однопроводниковый трансформатор несколько раз пропускают первичный проводник.

Маркировка клемм первичной обмотки: Р1 (К) и Р2 (L), вторичной S1 (k) S2 (i). Полярность соответствует направлению прохождению тока.

Трансформатор постоянного тока

Трансформатор для измерения постоянного тока работает по принципу магнитного усилителя и включает в свою конструкцию ферромагнитный сердечник и две обмотки постоянного и переменного тока. 

Устройство трансформаторов тока

Большинство измерительных трансформаторов тока выполнены в виде литой и опорной конструкции. Изоляция, например, как у трансформаторов тока ТОЛ-СЭЩ-10-IV выполнена из циклоалифатической смолы, защищающей обмотки от влаги и всех внешних повреждений. Катушки первичного напряжения выполнены из 2, 3 или 4 магнитопроводов со вторичными обмотками. 

Эксплуатационные условия для трансформаторов тока

Важно. Трансформаторы тока запрещено включать в линию без измерительного прибора. 

Для безопасной эксплуатации

  1. Чтобы увеличить степень надежности ТТ и обеспечить безопасную эксплуатацию кожух трансформатора и одну из клемм «вторички» необходимо заземлить. 

  2. Вторичная обмотка не эксплуатируется при разомкнутой цепи, а та обмотка, которая не используется закорачивается и заземляется.

  3. Трансформаторы тока с ответвителем емкостного делителя присоединяются к индикатору. Неиспользованное ответвление заземляют.

Обслуживание измерительных трансформаторов 

Перед началом работы с поверхности трансформаторов удаляется смазка, пыль и прочие загрязнения. Протирка производится с использованием уайт-спирита. Ветошь не должна оставлять ворс. 

Трансформатор исследуется на наличие сколов, трещин и наличие следов коррозии. 

После визуального осмотра трансформатор подвергают испытанию или проверяют прибором/мегомметром (2500 В) на достаточность сопротивления изоляции.  Вторичная обмотка проверяется мегомметром со шкалой деления на 1000 В.

Ток холостого хода проверяется со стороны вторичной обмотки под напряжением равным 1,2 от номинального. Отличие полученного результата не должно быть отличным от паспортного больше чем на ±10%.

Основное требование к трансформаторам – номинальная мощность не должна быть больше указанных в паспорте изделия.

Качество электроэнергии в сети должно быть соответствующим требованиям ГОСТ 32144. 

Установка трансформатора должна производиться на место с обеспеченным доступом к клеммным контактам.

При обслуживании трансформатора измерения проверяют надежность контактного соединения.

Разомкнутые треугольные обмотки однофазных индукционных ТН обеспечивают безаварийность кабельных систем распределения энергии.

Для повышения надежности разомкнутых треугольных обмоток трансформатора напряжения в цепь добавляют стабилизаторы напряжения, ограничители, стабилитроны. Эти устройства поддерживают работоспособность систем распределения электроэнергии после аварий и сбоев.

Работы по обслуживанию измерительных трансформаторов производятся по наряду в соответствии с технологическими картами. Капитальный ремонт, например, у трансформаторов тока не делают. Если испытания и замеры сопротивления основной изоляции показали неудовлетворительные результаты трансформатор меняют на другой. Основная изоляция должна иметь сопротивление не менее 300 МОм.

Вторичная обмотка в отключенном и отсоединенном состоянии должна показать сопротивление не менее 50 МОм, с подключенными вторичными цепями не менее 1 МОм.

При обслуживании трансформаторов тока проверяют переходное сопротивление болтового контактного соединения. Оно не должно превышать 33 мкОм для контактов на 2000 А и не выше 60 мкОм для контактных соединений на 630 А. 

Технология ремонта измерительных трансформаторов: разборка магнитопровода, демонтаж и ремонт катушек, перемотка обмоток, замена пластин магнитопровода и прочее схожи с ремонтом силовых трансформаторов. На время ремонта трансформатора обмотки закорачивают между собой, чтобы исключить возможный контакт и обратную трансформацию и напряжение при выполнении ремонтных работ. 

Важные примечания 

В индукционных однополюсных измерительных трансформаторах тока при замыкании цепи и во время затухания токов замыкания на «землю» возникает феррорезонанс, следствием которого является перегрев, появляется высокое напряжение, а сам трансформатор может разрушиться.

Для предупреждения феррорезонанса в разомкнутую треугольную цепь трех обмоток трансформатора напряжения включают резистор. Заземление выполняют только в одной точке. В контакты разомкнутого треугольника присоединяют приборы, которые следят за токами замыкания не землю.

Приобретение и установка измерительного трансформатора в соответствии с паспортными данными нагрузки и напряжения электроустановки гарантируют бесперебойную и точную работу приборов и оборудования.  

Источник: https://www.kesch.ru/info/articles/naznachenie-i-printsip-deystviya-izmeritelnykh-transformatorov/

Трансформатор электрический

статьи

Трансформатор электрический, не имеющее подвижных частей электромагнитное устройство, служащее для передачи посредством магнитного поля электрической энергии из одной цепи переменного тока в другую без изменения частоты.

Трансформатор может повышать его напряжение (повышающий трансформатор), понижать (например, измерительный трансформатор) или передавать энергию при том же напряжении, при каком он ее получил (разделительный трансформатор). Трансформаторы обладают высоким КПД: от 97% при небольших мощностях до свыше 99% при больших.

Они имеют достаточно прочную конструкцию и относительно низкую стоимость на единицу передаваемой мощности.

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из кремнистой стали (рис. 1). На магнитопроводе располагаются две обмотки – первичная P и вторичная S. Для простоты обмотки показаны на разных стержнях магнитопровода.

На самом деле при таком расположении обмоток переменный магнитный поток, создаваемый первичной обмоткой в магнитопроводе, недостаточно эффективно используется для наведения ЭДС во вторичной обмотке. Кроме того, такой трансформатор плохо поддавался бы регулированию.

На практике первичные и вторичные обмотки располагают близко друг к другу (рис. 2).

На рис. 1 генератор переменного тока A подает ток I0 напряжения E1 на первичную обмотку P. В рассматриваемый момент ток в верхнем проводнике имеет положительное направление и возрастает, так что первичная обмотка создает в магнитопроводе магнитный поток Fпо часовой стрелке.

Этот поток, пронизывающий обе обмотки, называется потоком взаимоиндукции; его изменение индуцирует электродвижущую силу (ЭДС) как в первичной, так и во вторичной обмотке. ЭДС, индуцированная в первичной обмотке, направлена против тока питания в ней и соответствует противо-ЭДС электродвигателя.

ЭДС, индуцированная во вторичной обмотке, соответствует ЭДС электрогенератора и может быть подана на нагрузку.

Величина индуцированной в обмотке трансформатора ЭДС дается формулой E = 4,44 Fm fN 10-8 В, где Fm – максимальное мгновенное значение магнитного потока F в максвеллах, f – частота в герцах и N – число витков. Поскольку поток Fm является общим для обеих обмоток, индуцированная в каждой из них ЭДС пропорциональна числу витков в соответствующей обмотке:

E2 /E1 = N2 /N1.

В обычном трансформаторе напряжения на зажимах отличаются от индуцированных ЭДС лишь на несколько процентов, так что для большинства практических целей указанные напряжения фактически пропорциональны соответствующим числам витков, V2 /V1 = N2 /N1.

Ток I0 в отсутствие нагрузки (ток холостого хода) создает магнитный поток F и вместе с приложенным напряжением является источником потерь в магнитопроводе на гистерезис и вихревые токи. В режиме холостого хода потери I02R в меди первичной обмотки ничтожны. Ток холостого хода I0составляет обычно от 1 до 2% номинального тока трансформатора, хотя в низкочастотных (25 Гц) трансформаторах он может достигать величины 5 или 6%.

Если на рис. 1 переключатель X вторичной цепи замкнут, в ней течет ток. Согласно правилу Ленца, направление тока во вторичной обмотке таково, что он противодействует потоку F. Когда этот поток уменьшается, противо-ЭДС E1первичной обмотки тоже уменьшается и ток в ней становится больше, обеспечивая передачу мощности, которая снимается затем со вторичной обмотки. Противо-ЭДС E1 отличается от приложенного напряжения V1всего на 1–2%.

Напряжение V1 постоянно. Если E1 постоянна, то поток взаимоиндукцииF также постоянен, и, следовательно, постоянна магнитодвижущая сила (число ампер-витков), действующая на магнитопровод. Таким образом, увеличение МДС вторичной обмотки при приложении нагрузки должно уравновешиваться противоположной величиной МДС первичной обмотки. Ток холостого хода мал по сравнению с токами нагрузки и обычно значительно отличается от них по фазе.

Пренебрегая им, имеем

N2 I2 = N1 I1 и I2 /I1 = N1 /N2.

Таким образом, в трансформаторе токи практически обратно пропорциональны количеству витков в соответствующих обмотках.

Зависимость напряжения от нагрузки

На рис. 2 показан поперечный разрез одного плеча трансформатора со связанными первичной и вторичной обмотками P и S, причем первичная охватывает вторичную. Практически всегда имеется некоторая часть потока F, создаваемого первичным током, которая замыкается на одной лишь первичной обмотке P; это первичный поток рассеяния. Аналогично существует вторичный поток рассеяния.

Оба эти потока создают реактивное сопротивление рассеяния в соответствующих цепях, что в сочетании с активным сопротивлением уменьшает напряжение на зажимах вторичной обмотки с включенной нагрузкой. На рис. 3 величина V1представляет напряжение на зажимах первичной обмотки, а I1 – ток в ней, запаздывающий по отношению к V1 на q градусов.

Напряжение I1R01 (находящееся в фазе с I1)и напряжение I1X01 (сдвинутое по отношению к I1 на 90° и опережающее его) суммируются векторно с V1, давая E1. В результате имеем

Опережающий ток берется со знаком минус. Если коэффициент мощности равен 1, то cosq = 1 и sinq = 0. При этом относительное изменение напряжения на первичной обмотке трансформатора при изменении нагрузки от оптимальной до режима холостого хода определяется отношением

Для вторичной обмотки имеем R02 = R01(N2 /N1)2 и X02 = X01(N2 /N1)2. Записывая аналогично предыдущему уравнение для Е2, получим такое же соотношение. Потери на активном и реактивном сопротивлениях трансформатора составляют от одного до трех процентов от напряжения на зажимах (на рис. 3 они показаны в увеличенном масштабе).

КПД преобразования трансформаторов настолько близок к единице, что при прямых измерениях на входе и выходе точность оказывается недостаточной. Более точный метод определения КПД состоит в измерении потерь Pc в магнитопроводе путем измерения мощности одной из обмоток без нагрузки, когда эта обмотка работает при номинальном напряжении. Тогда КПД (h) можно получить из формулы

Автотрансформаторы

Автотрансформатором называют трансформатор, в котором часть обмотки является общей как для первичной, так и для вторичной цепи. При низком коэффициенте трансформации автотрансформатор обеспечивает значительную экономию в стоимости и увеличение КПД по сравнению с обычным двухобмоточным трансформатором.

На рис. 4,а показан автотрансформатор с коэффициентом трансформации 2. Предполагается, что коэффициент мощности равен 1, а потери и ток холостого хода незначительны. Непрерывная обмотка ac на магнитопроводе трансформатора может быть распределена между несколькими катушками на противоположных плечах магнитопровода.

Чтобы получить коэффициент трансформации 2, делается отвод b от средней точки обмотки ac, а нагрузка вторичной обмотки подсоединяется между точками b и c. Для преобразования мощности обмотка ab является первичной, а bc – вторичной. Допустим, что ток нагрузки I составляет 20 А при 50 В. Ток 10 А течет от a к b и отсюда к нагрузке dd ў.

Мощность, создаваемая током 10 А при падении напряжения 50 В на участке ав, составляет 500 Вт; эта мощность наводит магнитное поле в магнитопроводе, которое проявляется в индуцированном токе I2 = 10 А при напряжении 50 В между c и b.

Таким образом, из суммарной мощности 1000 Вт на нагрузке 500 Вт передаются от a к b по проводам без трансформации, а 500 Вт – в результате трансформации. В обычном двухобмоточном трансформаторе потребовалась бы не только обмотка ac, рассчитанная на 100 В и 10 А, но также вторичная обмотка, рассчитанная на 50 В и 20 А и содержащая то же количество меди.

Более того, при одной обмотке нужно меньше железа для магнитопровода (сердечника). Следовательно, в автотрансформаторе с коэффициентом трансформации 2 или 1/2 требуется вдвое меньше, чем в двухобмоточном трансформаторе, материала, да и потери сокращаются примерно наполовину.

На рис. 4,б показан автотрансформатор с первичной обмоткой на 100 В и коэффициентом трансформации 4/3. Нагрузка вторичной обмотки составляет 20 А при 75 В, что соответствует мощности на выходе 1500 Вт. Следовательно, первичный ток должен иметь величину 15 А. Отвод b сделан в точке, соответствующей трем четвертям числа витков от c к a. Ток 15 А течет от a к b и отсюда к нагрузке dd ў.

Этот ток при падении напряжения 25 В на ab дает 15ґ25 = 375 Вт магнитному полю, которое индуцирует ток между c и b 5 А при 75 В, так что подвергаются трансформации только 375 Вт, а остальные 1125 Вт мощности передаются от 100 В- к 75 В-цепи по проводам.

Таким образом, чтобы осуществлять трансформацию всей заданной мощности, для указанного трансформатора достаточно всего одной четвертой от того значения мощности, которое должен иметь соответствующий двухобмоточный трансформатор.

Автотрансформаторы обычно используются для регулирования вторичного напряжения и трансформации с небольшими коэффициентами, такими, как 2 или 1/2. Они используются также для пускателей двигателей, уравнительных катушек и для многих других целей, требующих небольших коэффициентов трансформации.

Измерительные трансформаторы

При высоких напряжениях трудно проводить измерения, поскольку высоковольтные приборы дороги и обычно громоздки; их точность подвержена воздействию статического электричества, к тому же они небезопасны. Когда ток превышает 60 А, нелегко обеспечить высокую точность амперметров из-за больших проводов и значительных ошибок, обусловленных паразитным полем концевых выводов.

Кроме того, амперметры и катушки тока в высоковольтных цепях опасны для оператора. В измерительных трансформаторах тока и напряжения используются катушки напряжения на 100 В и катушки тока на 5 А. Вторичные обмотки должны быть заземлены. Если шкалы приборов не откалиброваны в коэффициентах трансформации, то показания надо умножать на соответствующий коэффициент трансформации.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/tehnologiya_i_promyshlennost/TRANSFORMATOR_ELEKTRICHESKI.html

Трансформаторы и режимы их работы

Работа всех трансформаторных устройств, а их около десятка различных видов, способны соответствует одному из трех основных режимов:

  • Холостому ходу.
  • Короткому замыканию.
  • Нагрузочному режиму.

Один из наиболее важных режимов — холостой ход трансформатора, ведь именно на основании информативных показателей опытов холостого хода проводится доскональный анализ любого их режимов. Для этого также требуются параметры схемы замещения.

Как определить коэффициент трансформации и другие параметры? 

Что такое «холостой ход трансформатора»? По сути, это особый режим работы устройства, условием которого является разомкнутость вторичной обмотки, а первичная обмотка имеет номинальное напряжение. В таком состоянии, при проведении ряда расчетов, можно определить точные параметры целого ряда показателей, например, для трансформаторных устройств распространенного однофазного типа так рассчитываются:

  • коэффициент трансформации;
  • активное, полное, индуктивное сопротивление ветви намагничивания;
  • коэффициент мощности, процентное значение тока и измерения холостого хода.

Алгоритм проведения измерений холостого хода выглядит так:

  • Измеряется ток, который был приложен к первичной обмотке, посредством измерительных приборов, которые включены в общую цепь.
  • Замыкается вторичная обмотка на вольтметре. Сопротивление должно быть такой величины, чтобы значение тока вторичной обмотки приближалось к минимальной отметке.
  • Величина тока холостого хода в первичной обмотке минимальна относительно значения номинала, если сравнивать с прикладываемым напряжением, которое приводит в равновесие электродвижущая сила первичной обмотки. И оба этих показателя отличаются незначительно, а значит значение хода электродвижущей силы в первичной обмотке можно определить по данным вольтметра.

Наиболее точные искомые значения можно получить, используя обмотки различного напряжения — низкого и высокого. Точность таких измерений будет определяться разницей номиналов между ними.

Причины и следствия потерь холостого хода трансформатора 

Потери холостого хода трансформаторных устройств любого типа — это следствие износа устройств. Со временем их магнитная система и структура используемого металла стареет и меняется, межлистовая изоляция становится хуже, а прессовка сердечника ослабляется. Естественно, вы это негативно сказывается на уровне потерь электроэнергии.

Практика показывает, что вопреки установленных нормам, согласно которым потери могут отличаться от заводских показателей не более, чем на пять процентов, во многих случаях они превышают порог в пятьдесят процентов. Особенно это касается трансформаторов силового типа.

Данные измерений такого типа устройств позволяют довольно точно прогнозировать потери энергии в каждом отдельном муниципалитете.

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Источник: https://steelfactoryrus.com/chto-takoe-rezhim-holostogo-hoda-svarochnogo-transformatora/

Холостой ход трансформатора — что это?

Трансформаторы являются устройствами, предназначенными для повышения и понижения переменного напряжения. При этом частота тока не меняется, также, как и практически не изменяются его мощностные характеристики. Каким бы ни был трансформатор (по разным критериям их можно разделить на несколько групп), он имеет ряд сходных характеристик, на которые следует обращать особое внимание, не только во время эксплуатации, но и во время проверки работоспособности устройства.

:

Реактивное сопротивление трансформатора: формулы расчета

Мы привыкли считать, что все магнитные потоки в трансформаторе пронизывают обе обмотки и магнитопровод. Если бы существовал идеальный трансформатор, то это действительно так бы и происходило. К сожалению, в реальности часть магнитного потока преодолевает изоляционное пространство, выходит за пределы обмоток и замыкается в них (см. рис. 1). В результате возникает реактивное сопротивление трансформатора. Такое явление ещё называют рассеиванием магнитных потоков.

Рис. 1. Схема, иллюстрирующая рассеивание магнитных потоков

В катушках существуют и другие сопротивления, являющиеся причинами потерь мощности. Таковыми являются: внутреннее сопротивление материалов обмоток, и рассеивания, вызванные индуктивными сопротивлениями. Совокупность рассеиваний магнитных потоков называют внутренним сопротивлением или импедансом трансформатора.

Потери реактивных мощностей

Вспомним, как работает идеальный двухобмоточный трансформатор (см. рис. 2). Когда первичная обмотка окажется под переменным напряжением (например, от электрической сети), возникнет магнитный поток, который пронизывает вторичную катушку индуктивности. Под действием магнитных полей происходит возбуждение вторичных обмоток, в витках которых возникает ЭДС. При подключении активной мощности к прибору во вторичной цепи начинает протекать переменный ток с частотой входного тока.

Рис. 2. Устройство трансформатора

В идеальном трансформаторе образуется прямо пропорциональная связь между напряжениями в обмотках. Их соотношение определяется соотношением числа витков каждой из катушек. Если U1 и U2 – напряжения в первой и второй обмотке соответственно, а w1 и w2 – количество витков обмоток, то справедлива формула: U1 / U2 = w1 / w2.

Другими словами: напряжение в рабочей обмотке во столько раз больше (меньше), во сколько раз количество мотков второй катушки увеличено (уменьшено) по отношению к числу витков, образующих первичную обмотку.

Величину w1 / w2 = k принято называть коэффициентом трансформации. Заметим, что формула, приведённая выше, применима также для автотрансформаторов.

В реальном трансформаторе часть энергии теряется из-за рассеяния магнитных потоков (см. рис. 1). Зоны, где происходит концентрация потоков рассеяния обозначены пунктирными линиями. На рисунке видно, что индуктивность рассеяния охватывает  магнитопровод и выходит за пределы обмоток.

Наличие реактивных сопротивлений в совокупности с активным сопротивлением обмоток приводят к нагреванию конструкции. То есть, при расчётах КПД необходимо учитывать импеданс трансформатора.

Обозначим активное сопротивление обмоток символами R1 и R2 соответственно, а реактивное – буквами X1 и X2. Тогда импеданс первичной обмотки можно записать в виде: Z1= R1+jX1. Для рабочей катушки соответственно будем иметь: Z2= R2+jX2, где j – коэффициент, зависящий от типа сердечника.

Реактивное сопротивление можно представить в виде разницы индукционного и ёмкостного показателя: X = RL – RC. Учитывая, что RL =  ωL, а RC = 1/ωC, где ω – частота тока, получаем формулу для вычисления реактивного сопротивления: X = ωL – 1/ωC.

Не прибегая к цепочке преобразований, приведём готовую формулу для расчёта полного сопротивления, то есть, для определения импеданса трансформатора:

Суммарное сопротивление трансформатора необходимо знать для определения его КПД. Величины потерь в основном зависят от материала обмоток и конструктивных особенностей трансформаторного железа.

Вихревые потоки в монолитных стальных сердечниках значительно больше, чем многосекционных конструкциях магнитопроводов. Поэтому на практике сердечники изготавливаются из тонких пластин трансформаторной стали.

С целью повышения удельного сопротивления материала, в железо добавляют кремний, а сами пластины покрывают изоляционным лаком.

Для определения параметров трансформаторов важно найти активное и реактивное сопротивление, провести расчёты потерь холостого хода. Приведённая выше формула не практична для вычисления импеданса по причине сложности измерений величин индукционного и ёмкостного сопротивлений. Поэтому на практике пользуются другими методами для расчёта, основанными на особенностях режимов работы силовых трансформаторов.

Режимы работы

Двухобмоточный трансформатор способен работать в одном из трёх режимов:

  • вхолостую;
  • в режиме нагрузки;
  • в состоянии короткого замыкания.

Для проведения расчётов режимов электрических цепей проводимости заменяют нагрузкой, величина которой равна потерям при работе в режиме холостого хода. Вычисления параметров схемы замещения проводят опытным путём, переводя трансформатор в один из возможных режимов: холостого хода, либо в состояние короткого замыкания. Таким способом можно определить:

  • уровень потерь активной мощности при работе на холостом ходу;
  • величины потерь активной мощности в короткозамкнутом приборе;
  • напряжение короткого замыкания;
  • силу тока холостого хода;
  • активное и реактивное сопротивление в короткозамкнутом трансформаторе.

Параметры режима холостого хода

Для перехода в работу на холостом ходу необходимо убрать отсутствует нагрузку на вторичной обмотке, то есть – разомкнуть электрическую цепь. В разомкнутой катушке напряжение отсутствует. Главной составляющей тока в первичной цепи является ток, возникающий на реактивных сопротивлениях. С помощью измерительных приборов довольно просто найти основные параметры переменного тока намагничивания, используя которые можно вычислить потери мощности, умножив силу тока на подаваемое напряжение.

Схема измерений на холостом ходу показана на рисунке 3. На схеме показаны точки для подключения измерительных приборов.

Рис. 3. Схема режима холостого хода

Формула, применяемая для  расчётов параметров реактивной проводимости, выглядит так: Вт = Iх%*Sном  / 100* Uв ном2  Умножитель 100 в знаменателе применён потому, что величина тока холостого хода Iх обычно выражается в процентах.

26. Режим холостого хода трансформатора

Трансформатор-статическоеэлектромагнитное устройство,предназначенное для преобразованияэлектрической энергии одного напряженияв другое при одинаковой частоте.

Холостойход-вторичная обмотка разомкнута, а кпервичной подано напряжение определеннойвеличины.

Параметры:I2=0,I10=,Ixx=5-10%Iном,z0-сопротивление.

Всилу малой величины тока холостого токапотери мощности, связанные с нагревомневелики и вся затрачиваемая мощностьР0будет идти на потери. Р0=1,5%от Рном.Так де учитывается коэф.трансформации- показывает во сколько раз повышаетсяили понижается напряжение. Работахолостого тока аналогична работе катушкисо стальным сердечником и все расчетыодинаковы.

27.Режим короткого замыкания трансформатора

Трансформатор-статическоеэлектромагнитное устройство,предназначенное для преобразованияэлектрической энергии одного напряженияв другое при одинаковой частоте.

Короткоезамыкание-испытание трансформатора накороткозамкнутой вторичной обмоткеноминального первичного напряжения.

U2=0,U=U1H,Pr=PK,IКЗ=I1H,I2≠0.Опыткороткого замыкания позволяет определить:

1.напряжениеКЗ U1H

2.электрическиепотери мощности РК=РЭЛ=РМ(потери в меди)

3.параметрыобмоток R1,x1,R2,x2.

Опытпроводят при пониженном напряженииРКЗ=3-15%от Рном, очень мала I0.

, ,

28.Режим работы трансформатора под нагрузкой

Трансформатор-статическоеэлектромагнитное устройство,предназначенное для преобразованияэлектрической энергии одного напряженияв другое при одинаковой частоте.

Дляпервичной обмотки справедливо выражениеU1=-E1+I1*z1,причем падение напряжения I1*z1можно пренебречь и считать U1=-E1.При U1=const,f1=constтрансформатор соответствует заданнойв паспорте работе, магнитный поток будетпрактически неизменным при любыхзначениях тока и E1+U1=0. Т.к. магнитный поток во вторичнойобмотке хар-ся ЭДС2, то можно к не1приложить нагрузку zН,тогда возникает ток Iл.

Первичная и вторичная обмотки имеютодинаковые направления намотки, поэтомупотенциалы совпадают. В первичнойобмотке ток I1направлен от начала обмотки, во вторичнойобмотке ток I2направляют к подаваемой нагрузке zH,создается Фz,который замыкается по магнитопроводу.В перв обмотке возникает составляющаятока I1kсоздается Ф1=Ф2 по направлению впротивоположную сторону. В результатев магнитопроводе восстанавливаетсяпрежнее значение Ф, определяемое U1и f.

Происходит переход электрическойэнергиив энерг МП и наоборот.

29.Группы соединений обмоток трансформатора

Трансформатор-статическоеэлектромагнитное устройство,предназначенное для преобразованияэлектрической энергии одного напряженияв другое при одинаковой частоте.

Минутнаястрелка считается установленной нацифре 12 и с ней совмещается векторвысшего линейного напряжения. С часовойстрелкой совмещается вектор низшеголинейного напряжения. Отчет углапроизводится от минутной до часовойстрелки по направлению их вращения.

Дляоднофазного трансформатора угол сдвигафаз между высшим и низшим линейнымизначениями может быть 0 или 120 градусов.Для трехфазных трансформаторов возможно12 групп соединения обмоток, желательноиметь минимальное их число, поэтомустандартами выбраны 2группы соединенийобмоток (0 или 11 группы). 0 — звезда, звездас нейтр.

точкой. 11 — звезда, треугольник,звезда с нейтр.проводом/треугольник.

Источник: https://studfile.net/preview/5836862/page:8/

Опыт холостого хода трансформатора

> Теория > Опыт холостого хода трансформатора

Производительность трансформатора возможно прогнозировать, зная эквивалентные параметры схемы. Эти величины устанавливаются в опытах холостого хода и короткого замыкания трансформатора, которые осуществляются без фактической нагрузки. Причем испытания дают более точный результат, в отличие от тестирования нагруженного аппарата.

В соответствии с полученными цифрами в дальнейшем легко определяется трансформаторная эффективность при любом мощностном показателе и любом нагрузочном токе.

Опыт холостого хода

С помощью тестирования возможно установить:

  • коэффициент трансформации;
  • каким образом ток, мощность, мощностной коэффициент cosφ холостого хода зависят от подаваемого напряжения;
  • мощностные потери в стальном магнитопроводе.

Из самого названия опыта следует, что он осуществляется, когда выводы вторичной обмотки остаются открытыми, а входное питание подается со стороны высокого напряжения. Применяется и обратная схема с подведением питания со стороны НН и размыканием выводов первичной обмотки.

Опыт холостого хода трансформатора выполняется путем подключения выбранной обмотки к источнику питания на переменном токе через различные приборы: амперметр, вольтметр, ваттметр. С целью установления коэффициента трансформации с другой стороны также подсоединяется вольтметр. Во время испытания подаваемое напряжение можно изменять. Как правило, его регулирование происходит в диапазоне 0,6-1,1 от номинального.

У ненагруженного аппарата первичный ток очень низкий – 3-5 % от Iн. Потери в проводах трансформаторной обмотки несущественны.

Важно! Трансформатор в режиме х.х. работает при Uн, создаваемый магнитный поток в стальном магнитопроводе соответствует самым высоким значениям. Практически полная энергия потребления используется на нагрев сердечника.

Измерения для вычисления коэффициента трансформации

  1. После подачи питающего напряжения фиксируются синхронно показания с двух вольтметров. Затем коэффициент трансформации подсчитывается в соответствии с формулой:

К = U1/U2.

Для трехфазных аппаратов снимают показания фазных или линейных напряжений;

  1. При соединении обмоток трехфазных аппаратов ∆/Y и Y/∆ измерение фазного коэффициента производят, подавая напряжение на одну фазу и по очереди закорачивая другие. На стороне треугольника одну фазу закорачивают, а на остающиеся подают питание. Вычисленный показатель фазного коэффициента нужно умножить на 2, если напряжение подается на Y, и поделить на 2, если на ∆.

Важно! Значение фазного коэффициента рассчитывается, когда наблюдаются значительные отклонения линейного показателя.

Определение потерь

Графические характеристики холостого хода (х.х.) строятся, исходя из нескольких считываемых с приборов значений тока, напряжения и мощности в процессе регулировании напряжения. Количественные значения тока для аппаратов с низкими мощностными показателями не превышают 10% от номинальных величин, а для устройств большой мощности – 2%.

Формула для расчета коэффициента мощности без нагрузки:

cosφ = P/I x U.

Важно! В режиме х.х. cosφ составляет 0,2-0,3.

Мощностной показатель, замеряемый ваттметром, – это мощность потерь в стальном сердечнике.

Также можно определить:

  • намагничивающую составляющую тока х.х.:

Im = I x sinφ

  • активную часть тока х.х.:

Ia = I x cosφ

  • реактивное сопротивление:

X = U/Im

  • сопротивление, представляющее активные потери в магнитопроводе:

R = U/Ia.

Опыт короткого замыкания

Тестирование заключается в подсоединении обмотки ВН к питающему источнику через вольтметр, амперметр, ваттметр. Выводы обмотки НН закорачиваются. Второе наименование эксперимента – низковольтное тестирование. При короткозамкнутой вторичной обмотке и Uн значение потребляемого тока высоко, учитывая маленькое сопротивление обмотки. Это может вызвать значительный нагрев и повреждение аппарата.

Важно! Чтобы ограничить ток, обмотка ВН должна быть под низким U, достаточным для создания в ней Iн. Это значение U именуется Uкз (напряжение короткого замыкания). Uкз находится в пределах пяти процентов от Uн.

При Iн регистрируются данные вольтметра и ваттметра.

В данном эксперименте рассчитываются:

  • активное, реактивное, общее сопротивление обмоточных проводов;
  • потери в меди.

Важно! На намагничивание сердечника влияет напряжение, следовательно, мощностные потери в нем допустимо не учитывать из-за его малого значения, и на ваттметре отобразится показатель потерь в меди.

Мощностные потери, которые считываются с ваттметра, определяются по формуле:

P = I² x R.

На основании снятых показаний производятся расчеты:

  • активное сопротивление обмоточных проводов – R = P/I²;
  • общее сопротивление – Z = U/I;
  • реактивное сопротивление – X = √ (Z² — R²)*
  • мощностной коэффициент к. з. – cosφ = P/ U x I;
  • U*кз = (Z x I/U) x 100%. Этот показатель в процентном выражении указан в техпаспорте аппарата.

Расчет КПД трансформатора

Трансформатор имеет два вида главных потерь: в стальном сердечнике и в меди. Они выделяются в виде тепла. Из-за потерянной энергии выходная мощность устройства не равна мощности потребления.

Эффективность трансформатора, или КПД, вычисляется по формуле:

η = выходная мощность в кВт/потребляемая мощность в кВт =

выходная мощность/(выходная мощность + потери в сердечнике + потери в меди),

или η = Pвых/(Рвых + Рхх + Ркз), где Рхх и Ркз определяются из опытов х.х. и к.з.

Напряжение к.з. – важный показатель в технических характеристиках трансформатора. По нему определяют, можно ли аппараты включать на параллельную работу, рассчитывают вторичное U при разной нагрузке.

Источник: https://elquanta.ru/teoriya/opyt-kholostogo-khoda-transformatora.html

Холостой ход трансформатора – что это?

Трансформаторы являются устройствами, предназначенными для повышения и понижения переменного напряжения. При этом частота тока не меняется, также, как и практически не изменяются его мощностные характеристики. Каким бы ни был трансформатор (по разным критериям их можно разделить на несколько групп), он имеет ряд сходных характеристик, на которые следует обращать особое внимание, не только во время эксплуатации, но и во время проверки работоспособности устройства.

Как определить коэффициент трансформации и другие параметры?

Что такое «холостой ход трансформатора»? По сути, это особый режим работы устройства, условием которого является разомкнутость вторичной обмотки, а первичная обмотка имеет номинальное напряжение. В таком состоянии, при проведении ряда расчетов, можно определить точные параметры целого ряда показателей, например, для трансформаторных устройств распространенного однофазного типа так рассчитываются:

  • коэффициент трансформации;
  • активное, полное, индуктивное сопротивление ветви намагничивания;
  • коэффициент мощности, процентное значение тока и измерения холостого хода.

Алгоритм проведения измерений холостого хода выглядит так:

  • Измеряется ток, который был приложен к первичной обмотке, посредством измерительных приборов, которые включены в общую цепь.
  • Замыкается вторичная обмотка на вольтметре. Сопротивление должно быть такой величины, чтобы значение тока вторичной обмотки приближалось к минимальной отметке.
  • Величина тока холостого хода в первичной обмотке минимальна относительно значения номинала, если сравнивать с прикладываемым напряжением, которое приводит в равновесие электродвижущая сила первичной обмотки. И оба этих показателя отличаются незначительно, а значит значение хода электродвижущей силы в первичной обмотке можно определить по данным вольтметра.

Наиболее точные искомые значения можно получить, используя обмотки различного напряжения – низкого и высокого. Точность таких измерений будет определяться разницей номиналов между ними.

Причины и следствия потерь холостого хода трансформатора

Потери холостого хода трансформаторных устройств любого типа — это следствие износа устройств. Со временем их магнитная система и структура используемого металла стареет и меняется, межлистовая изоляция становится хуже, а прессовка сердечника ослабляется. Естественно, вы это негативно сказывается на уровне потерь электроэнергии.

Практика показывает, что вопреки установленных нормам, согласно которым потери могут отличаться от заводских показателей не более, чем на пять процентов, во многих случаях они превышают порог в пятьдесят процентов. Особенно это касается трансформаторов силового типа.

Данные измерений такого типа устройств позволяют довольно точно прогнозировать потери энергии в каждом отдельном муниципалитете.

Инженерный центр “ПрофЭнергия” имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории “ПрофЭнергия” вы выбираете надежную и качествунную работу своего оборудования!

Источник: https://stalcu.ru/svarka/chto-takoe-rezhim-holostogo-hoda-svarochnogo-transformatora.html

ЭТО ИНТЕРЕСНО:  Сколько ватт нужно для телевизора
Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]