Для чего служит резистор в электрической цепи

Резисторы и блоки резисторов для управления электроприводом кранов

Для чего служит резистор в электрической цепи

  • 6 декабря 2015 г. в 15:27
  • 8069

Грузоподъемные краны используют во всех сферах промышленности, где существует необходимость перемещения грузов большой массы. В зависимости от назначения и типа крана его характеристики и режим работы регламентируются ГОСТ 25546-82 и ГОСТ 25835-83. Одно из основных требований к механизму грузоподъемного крана — это обеспечение регулирования скорости в определенном диапазоне.

Так, скорость спуска и подъема составляет порядка 3-5 м/мин., что позволяет точно установить груз. При этом пуск и остановка механизмов должны выполняться плавно для исключения раскачивания груза и динамических ударов. Одним из самых простых и надежных способов обеспечить выполнение требований нормативных документов является использование подключения электродвигателя при помощи резистивного сопротивления.

Особенности применения резисторов

Все резисторы, которые используются для грузоподъемных кранов подразделяют на следующие виды:

  • Пускорегулирующие. Включают в цепи сигнализации и управления с целью плавного регулирования скорости вращения электропривода, его пуска и остановки.
  • Балластное сопротивление. Выполняет функции постоянной нагрузки в электрической цепи кранового электрооборудования.
  • Разрядный резистор предназначен для создания кратковременной нагрузки в электрической цепи с целью снятия остаточного напряжения.
  • Нагревательный резистор. Предназначен для нагрева пускорегулирующей аппаратуры, командоконтроллеров и реле в условиях отрицательных температур окружающей среды. В качестве материалов для создания элементов с активным сопротивлением используют фехраль и константан, которые обладают высоким удельным сопротивлением. При этом их активное сопротивление практически не зависит от изменения температуры.

Назначение пускорегулирующих резисторов

В настоящее время в качестве электропривода грузоподъемных устройств и кранов широко используют асинхронные электрические двигатели с фазным ротором. Для регулирования скорости и момента вращения электропривода этого типа применяют схему подключения в питающую цепь ротора специальных пускорегулирующих резисторов. Это обеспечивает возможность получить пониженную скорость вращения электродвигателя, что является основным требованием при подъеме и опускании груза.

Пускорегулирующие резисторы создают активное сопротивление в цепи питания обмоток электродвигателей. При выборе этих резисторов для кранового электропривода необходимо учитывать механические характеристики привода и мощность рассеяния тепловых потерь. В каждом индивидуальном случае схеме подключения кранового электропривода соответствует определенная величина механических параметров.

Они отображают зависимость момента на валу двигателя от частоты вращения ротора электродвигателя. В большинстве случаев данные характеристики изображают в пересчете на относительные единицы.

По этой причине сопротивление пускорегулирующих резисторов указывают в приведении к этим относительным единицам, а расчетный ток длительно допустимого режима работы указывают в процентном отношении от номинального значения для электродвигателя.

Характеристики пускорегулирующих резисторов

Блоки резисторов для кранового электропривода характеризуются следующими рабочими параметрами:

  • Активное сопротивление элемента, Ом.
  • Количество теплоты, которое выделяется за одну секунду при определенной температуре активной части сопротивления (мощность в установившемся режиме работы), Вт;
  • Тепловой режим работы при продолжительности включения ПВ=100; 50; 35; 25;17,7;12,5 % с длительностью цикла включения 60 секунд или кратковременно на 180,60, 30 или 20 секунд.
  • Род тока и величина рабочего напряжения, В.
  • Номинальное значение рабочего тока, А.
  • Тип климатического исполнения в соответствии с ГОСТ 15150-69.
  • Допустимый диапазон значений температуры окружающего воздуха, 0С.
  • Частота питающей сети, Гц.
  • Тип элемента сопротивления: фехралевая лента, проволока, константановая проволока или комбинация этих материалов.
  • Степень защиты корпуса от влияния пыли и влаги, IP.
  • Высота допустимой установки изделия над уровнем моря, м.

Конструкция блоков резисторов

Блоки резисторов представляют собой резисторы определенного типа, которые соединены в электрическую цепь и конструктивно расположены в одном корпусе. Некоторые производители используют название «ящик сопротивления» для наименования блоков резисторов собственного производства.

Конструктивно блок резисторов имеет открытый корпус, состоящий из двух металлических пластин, которые стянуты шпильками. На стяжных шпильках устанавливают контактные пластины и резисторы, которые изолируют друг от друга и металлических частей блока. При наличии проволочных элементов сопротивления выводы могут подключать к изолированным от корпуса шпилькам.

Пускорегулирующие блоки резисторов могут иметь ленточное или проволочное сопротивление. В проволочных сопротивлениях на металлической основе установлены фарфоровые изоляторы, по граням которых намотана фехралевая или константановая проволока.

В ленточных резисторах по граням изоляторов намотана фехралевая лента. Некоторые типы блоков резисторов имеют комбинированную конструкцию из нескольких типов резисторов подключенных по последовательной или параллельной схеме.

Благодаря этому достигается наличие преимуществ различных типов сопротивлений в одном блоке резисторов.

Разновидности блоков резисторов

Компания «КранЭлектроМаш» освоила профессиональное изготовление блоков резисторов следующих типов:

  • Б6. Предназначены в качестве элементов схемы для регулирования оборотов электрического двигателя, пуска и остановки электропривода кранов. Конструкция блока Б6 отличается наличием луженых медных выводов, которые не подвержены коррозии. Для создания активного сопротивления используется фехралевая лента с количеством элементов сопротивления до шести штук. Имеет возможность работать на напряжении величиной до 660В при частоте до 60Гц или постоянном токе величиной до 440 В.
  • БРПФ. Используется для осуществления торможения, регулирования скорости и пуска электрического двигателя кранов различной конструкции и типа. Блок БРПФ обеспечивает режим работы ПВ=40% при наличии только естественного охлаждения. В качестве активного сопротивления используется фехралевая проволока и фехралевая лента. Данный блок может выпускаться в климатическом исполнении Т2, У2 и УХЛ2.
  • БФК. Предназначены для остановки, запуска и регулирования оборотов электрических двигателей с фазным ротором. В качестве активного сопротивления в конструкции резисторов используется константановая проволока и фехралевая лента.
  • БРФ. Главное его назначение — это регулирование скорости, ввод в работу и остановка кранового электропривода. Резистивный элемент выполнен на основе фехралевой ленты, что определяет его допустимый нагрев в диапазоне не более 370 °С. Может использоваться в цепях с напряжением 660В и частотой 50 Гц или постоянного напряжения величиной до 440 В.
  • БРП. Блок резисторов БРП применяют для регулирования скорости вращения, запуска и остановки кранового электродвигателя. Активным сопротивлением в данном случае выступает фехралевая проволока. Допустимое отклонение параметров активного сопротивления этого блока во всем диапазоне допустимых режимов работы составляет не более 10%.
  • ЯС-3(ящик сопротивлений). Выполняет функции балласта, элемента для остановки и пуска, регулирования оборотов кранового электропривода. Для создания активного сопротивления используется качественная константановая проволока. При этом количество резисторов в данном блоке равно одиннадцати, а различие между разными исполнениями блоков выражается в величине номинального рабочего тока и номинального сопротивления резисторов.
  • Б12. Выполняет функции разрядного, тормозного, пускового или балластного, активного сопротивления. Конструкция блока включает элементы из константановой проволоки в количестве до двенадцати элементов.
  • ЯС-4. Ящик сопротивлений ЯС-4 обеспечивает торможение, пуск и регулирование скорости вращения электропривода грузоподъемных кранов. Активным сопротивлением выступает константановая проволока. Компактные габаритные размеры и широкий диапазон рабочих характеристик выгодно отличают этот блок резисторов.
  • БСР. Блоки резисторов силового типа используют для электродинамического торможения и реостатного пуска тяговых электрических двигателей постоянного тока на электровозах: К10, К7, К14 и других рудничных электровозах. Элементом активного сопротивления служит фехралевая лента, что обеспечивает допустимый нагрев блока до 3700°С.

Источник: https://www.elec.ru/articles/rezistory-i-bloki-rezistorov-dlya-upravleniya-elek/

Резистор

Для чего служит резистор в электрической цепи

Радиоэлектроника для начинающих

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах.

Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом).

Про множители и приставки «кило», «мега» можете почитать здесь.

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов

  • Номинальное сопротивление.Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.
  • Рассеиваемая мощность.Более подробно о мощности резистора я уже писал здесь.При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.
  • Допуск.При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,250,05%.
  • Температурный коэффициент сопротивления (ТКС).Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.

Первые три параметра основные, их надо знать!

Перечислим их ещё раз:

  • Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм)
  • Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт)
  • Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.

В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 23 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

Таблица цветового кодирования

Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.

ЭТО ИНТЕРЕСНО:  Как определить понижающий или повышающий трансформатор

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/resistance.html

Резистор тока

Для чего служит резистор в электрической цепи

Резистор тока выполняет сразу несколько очень важных задач: служит ограничителем электрического тока в цепи, создает падение напряжения на отдельных ее участках и разделяет пульсирующий ток.

Помимо номинального сопротивления, одним из наиболее важных параметров резистора является рассеиваемая мощность. Она зависима от напряжения и тока. Мощность – это то тепло, которое выделяется на резисторе, когда под воздействием протекающего тока он нагревается. При пропуске тока, превышающего заданное значение мощности, резистор может сгореть.

Мощность постоянного тока может быть рассчитана по простой формуле P(Вт) = U(В) * I(А),

где

  • P(Вт) – мощность,
  • U(В) – напряжение,
  • I(А) – ток.

Чтобы избежать сгорания резистора тока, необходимо учитывать его мощность. Соответственно, если схема указывает на замену резистора с мощностью 0,5 Ватт – 0,5 Ватт в данном случае – минимум.

Мощность резистора может зависеть от его размеров. Как правило, чем меньше резистор — тем меньше мощность его рассеивания. Стандартный ряд мощностей резисторов тока состоит из значений:

  • 0.125 Вт
  • 0.25 Вт
  • 0.5 Вт
  • 1 Вт
  • 2 Вт
  • Более 2 Вт

Рассмотрим на примере: номинальное сопротивление нашего резистора тока – 100 Ом. Через него течет ток 0,1 Ампер. Чтобы узнать мощность, на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом), 

где

  • P(Вт) – мощность,
  • R(Ом) – сопротивление цепи (в данном случае резистора),
  • I(А) – ток, протекающий через резистор.

Внимание! При расчётах следует соблюдать размерность. Например, 1 кА= 1000 А . Это же касается и других величин.

Итак, рассчитаем мощность для нашего резистора тока: P(Вт) = 0,12(А) *100 (Ом)= 1(Вт)       

Получилось, что минимальная мощность нашего резистора составляет 1 Ватт. Однако в схему следует установить резистор с мощностью в 1,5 – 2 раза выше рассчитанной. Соответственно идеальным для нас будет резистор тока мощностью 2 Вт.

Бывает, что ток, протекающий через резистор неизвестен. Для расчёта мощности в таком случае предусмотрена специальная формула:

Соединение цепи может быть последовательным и параллельным. Однако никакого труда не составляет рассчитать мощность резистора тока как в параллельной, так и в последовательной цепи. Следует учитывать лишь то, что в последовательно цепи через резисторы течет один ток.

Например, нам необходимо произвести замену резистора тока сопротивлением 100 Ом. Ток, протекающий через него – 0,1 Ампер. Соответственно, его мощность – 1 Ватт. Следует рассчитать мощность двух соединенных последовательно резисторов для его замены. Согласно формуле расчёта мощности, мощность рассеивания резистора на 20 Ом – 0,2 Вт, мощность резистора на 80 Ом – 0,8 Вт. Стандартный ряд мощностей поможет выбрать резисторы тока:

R2 – 80 Ом (1 Вт)

Из всего вышесказанного можно сделать вывод, что разное сопротивление резисторов гарантирует их разную выделяемую мощность, так как она распределяется между резисторами разных номиналов. Если не учитывать это обстоятельство, то можно столкнуться с большим количеством трудностей. Если один из резисторов выбран неправильно – второй работает в тяжелом температурном режиме. Также присутствует угроза возгорания резистора из-за несоблюдения правил мощности.

Для того, чтобы сэкономить время и не рассчитывать мощность каждого отдельного резистора тока нужно запомнить одно простое правило: мощность заменяемого резистора должна быть равна мощности каждого резистора, составляющего параллельную или последовательную цепь. То есть при замене резистора мощностью 0,5 Вт надо следить за тем, чтобы каждый из резисторов для замены имел мощность не менее 0,5 Вт.

При параллельном соединение резисторов важно помнить, что чем меньше сопротивление резистора, тем больший ток через него протекает, а значит на нем будет рассеяна большая мощность.

Источник: https://www.calc.ru/Rezistor-Toka.html

Что такое резистор и для чего он нужен в электрической цепи

Один самых часто используемых элементов в электронике – это резистор. Простым языком его называют «сопротивление». С его помощью можно ограничивать ток или измерять его, делить напряжение, создавать цепи обратной связи. Без сопротивлений не обходится ни одна схема. В этой статьи мы расскажем о том, что такое резистор, какой у него принцип работы, а также для чего нужен этот элемент электрической цепи.

Определение

Резистор происходит от английского «resistor» и от латинского «resisto», что в переводе на русский язык звучит как «сопротивляюсь». В русскоязычной литературе наравне со словом «резистор» используют слово «сопротивление». Из названия ясна основная задача этого элемента – оказывать сопротивление электрическому току.

Он относится к группе пассивных элементов, потому что в результате его работы ток может только понижаться, то есть в отличие от активных элементов – пассивные сами по себе не могут усиливать сигнал. Что из второго закона Кирхгофа и закона Ома значит, что при протекании тока на резисторе падает напряжение, величина которого равна величине протекающего тока, умноженного на величину сопротивления. Ниже вы видите, как обозначается сопротивление на схеме:

Условное обозначение на схеме легко запомнить – это прямоугольник, по ГОСТ 2.728-74 его размеры равны 4х10 мм. Существуют варианты обозначений для резисторов разной мощности рассеивания.

Виды

Классификация резисторов происходит по ряду критериев. Если говорить о дискретных компонентах, то по методу монтажа их делят на:

  • Выводные. Используются для монтажа сквозь печатную плату. У таких элементов есть выводы, расположенные радиально или аксиально. В народе выводы называют ножками. Этот вид резисторов активно использовался во всех старых устройствах (20 и боле лет назад) – старых телевизорах, приёмниках, в общем везде, и сейчас используется в простых устройствах, а также там, где использование SMD компонентов по какой-то причине затруднено либо невозможно.
  • SMD. Это элементы, у которых нет ножек. Выводы для подключения расположены на поверхности корпуса, незначительно выступая над ней. Они монтируются непосредственно на поверхность печатной платы. Преимуществом таких резисторов является простота и дешевизна сборки на автоматизированных линиях, экономия места на печатной плате.

Внешний вид элементов двух типов вы видите на рисунке ниже:

Мы уже знаем, как выглядит этот компонент, теперь следует узнать о классификации по технологии изготовления. Выводные резисторы бывают:

  • Проволочными. В качестве резистивного компонента используют проволоку, намотанную на сердечнике, для снижения паразитной индуктивности используют бифилярную намотку. Проволоку выбирают из металла с низким температурным коэффициентом сопротивления и низким удельным сопротивлением.
  • Металлопленочные и композитные. Как можно догадаться, здесь в качестве резистивного элемента используют пленки из металлического сплава.

Так как резистор состоит из резистивного материала, в роли последнего может выступать проволока или плёнка с высоким удельным сопротивлением. Что это такое? Такие материалы как:

  • манганин;
  • константан;
  • нихром;
  • никелин;
  • металлодиэлектрики;
  • оксиды металлов;
  • углерод и прочие.

Источник: https://www.entehno.ru/chto-takoe-rezistor-i-dlja-chego-on-nuzhen-v-jelektricheskoj-cepi.html

Про резисторы для начинающих заниматься электроникой

Радиолюбители в 21 веке занимаются не столько созданием различных передатчиков, приемников, сколько усовершенствованием уже промышленно изготовленных устройств.

Создание систем «умного дома», различных зарядных устройств, регуляторов скорости, преобразователей напряжения и других физических величин – вот основное направление в конструировании и разработке в наше время.

Основой для большинства современных схем уже служат не радиоэлектронные компоненты, а различные электронные устройства (контроллеры, датчики, преобразователи). Однако развитие радиотехники начиналось именно с простейших компонентов и термин «радиолюбитель» уже нечем не заменить.

Компоненты электронных схем

Практически все компоненты радиоэлектронных схем можно разделить на активные и пассивные элементы. Активные компоненты способны усиливать электрические сигналы, а одной из основных характеристик для них является коэффициент усиления. К элементам такого типа относятся микроконтроллеры, логические микросхемы, операционные усилители. К пассивным элементам относятся резисторы, конденсаторы, диоды, т.е. элементы с коэффициентом усиления в пределах от 0 до 1. Основные характеристики и назначение резисторов рассмотрим в данной статье.

Резисторы

Назначение резистора: ограничение максимального значения тока в электрической цепи. В простейшем случае резистор включается в цепь светодиода для ограничения максимального тока (рисунок 1). Резистор представляет собой простой проводник. Основной параметр любого резистора – его сопротивление. Сопротивление проводников определяется удельным сопротивлением (зависит от материала) и линейных размеров проводника. Для определения сопротивления применяется формула:

[size=16]R = ρ*L/S

где ρ — удельное сопротивление материала, L длина в метрах, S площадь сечения в кв. мм. Сопротивление, как физический параметр, препятствует прохождению электрического тока. При этом при прохождении тока через резистор выделяется тепловая энергия, равная произведению сопротивления на квадрат силы тока – рассеиваемая мощность резистора. Как и любой элемент электрической схемы, резистор имеет свое собственное условное графической обозначение (УГО). Внутри УГО резистора нанесены черточки, обозначающие мощность рассеяния резистора. Для буквенного обозначения резистора используется латинская буква «R» с порядковым номером резистора в схеме. Рядом с резистором может указываться его номинальное сопротивление (R3 1,2K). Для обозначения основных параметров резисторов используется маркировка с помощью цветных полос (рисунок 3). Впервые на просторах бывшего СССР о цветной маркировке резисторов было упомянуто в журнале «Радио» в 1946 году. Современные электронные схемы предъявляют определенные условия к размерам элементов. Поэтому для поверхностного монтажа SMD применяются специальные «чип-резисторы» (рисунок 4). Для маркировки SMD компонентов применяется цифровой шифр из трех цифр (первые две цифры – номинальное сопротивление, третья – множитель в виде показателя степени 10). Все резисторы выпускаются согласно номинальному ряду значений сопротивлений (Е6, Е12, Е24). Для каждого из рядов существует свой допуск (±5, ±10, ±20%), однако существуют резисторы с допуском в 1%.

Схемы соединения резисторов

Ввиду достаточно ограниченного числа номинальных значений сопротивлений для резисторов часто для настройки схем приходится подбирать необходимое сопротивление, соединяя несколько элементов. Существует два способа соединения резисторов – последовательное и параллельное. Зная зависимости при параллельном и последовательном соединении резисторов можно достаточно точно подобрать требуемое значение сопротивления. Рисунок 6 Стоит отметить, что при параллельном соединении резисторов в каждой из параллельных ветвей протекает ток, а его суммарное значение разделяется на количество ветвей. Поэтому мощность подбираемых резисторов можно занижать прямо пропорционально количеству параллельных ветвей.
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Последние ответы на форуме ukrelektrik.com

Заземление, зануление
rashpilek1975 Alexzhuk / 37 Электроотопление
IusCoin Multiki / 68 Всё обо всём — общение
2alpilip Наде4ка / 29

Источник: http://ukrelektrik.com/publ/pro_rezistory_dlja_nachinajushhikh_zanimatsja_ehlektronikoj/1-1-0-1493

Резистор (сопротивление) отопителя в Коломне

Резистор отопителя в Коломне

       Резистор (сопротивление) отопителя в автомобиле является основным элементом электрической цепи электродвигателя печки.

Назначение резистора

       Благодаря использованию резистора создается дополнительное сопротивление в электрической цепи, контролирующее силу тока и напряжения в ней. Электрических цепей в автомобиле много, без резистора она не может функционировать. Данный элемент выступает неким фильтром, который преобразует электрическую энергию с необходимыми для работы электроцепи параметрами. Главным параметром детали служит сопротивление, создаваемое в цепи.

Использование резистора

       Использоваться резисторный элемент может в различных системах автомобиля:

  1. Система охлаждения — за счет использования детали электродвигатель вентилятора может работать в двух или даже в трех режимах.
  2. Система зажигания — резистор в данной системе можно встретить в свечах зажигания. Деталь позволяет снизить напряжения искры, создающиеся в свечах во время работы.
  3. Система обогрева салона — используется запчасть для управления работы электродвигателя печки. Она изменяет рабочие скорости электрического мотора обогревателя.

       Именно резистор отопителя чаще всего выходит из строя, так как отопительная система особенно в холодное время года эксплуатируется сильно. Приобретать новые запасные части для системы отопления не всегда выгодно, поэтому можно приобрести оригинальные детали б/у у проверенных компаний.

Купить резистор отопителя в Коломне

       Наша компания «Авторазборка Fox» занимается продажей б/у и новых запасных частей для автомобилей любых иномарок, для заказа деталей звонить по телефону (926) 370-20-11.

Наш адрес г. Коломна, Окский пр-т, д. 3 Б.

       Стоимость запасных частей после авто разбора намного дешевле новых деталей, но при этом они такие же хорошие по качеству и состоянию, как только приобретенные.

Резистор отопления в Коломне

       Приобретать запчасти б/у, в том числе резистор отопителя на автомобили различных марок, в нашей компании выгодно и удобно:

  • Предлагаем исключительно качественные детали.
  • Осуществляем доставку до клиента или до сервиса, где проводится ремонт автомобиля.
  • Низкие цены на все детали и агрегаты.
  • К каждому клиенту индивидуальный подход.
  • Профессионально подходим к работе.

       В случае отсутствия какой-либо детали, стараемся достать ее в максимально короткие сроки. Также есть альтернатива по новым оригинальным и неоригинальным запчастям. Резистор отопления является довольно востребованной деталью, поэтому она всегда в наличии.

Запчасти для автомобиля в интернет магазине б/у запчастей в Коломне
Рассеиватель, задний фонарь в г.Коломна :: Цена на колодки тормозные, комплект в г. Коломна

Источник: http://kolomna-razborka.ru/materaly/11-rezistor-soprotivlenie-otopitelya-v-kolomne/11-rezistor-soprotivlenie-otopitelya-v-kolomne.php

Расчет простых цепей постоянного тока

В электротехнике принято считать, что простая цепь – это цепь, которая сводится к цепи с одним источником и одним эквивалентным сопротивлением. цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. Расчет цепей постоянного тока производится с помощью закона Ома и Кирхгофа.  

Пример 1

  Два резистора подключены к источнику постоянного напряжения 50 В, с внутренним сопротивлением r= 0,5 Ом. Сопротивления резисторов  R1 = 20 и R2 = 32 Ом. Определить ток в цепи и напряжения на резисторах.

Так как резисторы подключены последовательно, эквивалентное сопротивление будет равно их сумме. Зная его, воспользуемся законом Ома для полной цепи, чтобы найти ток в цепи. 

Теперь зная ток в цепи, можно определить падения напряжений на каждом из резисторов. 

Проверить правильность решения можно несколькими способами. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. 

Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур. Более удобным способом проверки является баланс мощностей.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. 

Мощность источника определяется как произведение ЭДС на ток, а мощность полученная приемником как произведение падения напряжения на ток.

Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.

Пример 2

  Общий ток цепи, содержащей два соединенных параллельно резистора R1=70 Ом и R2=90 Ом, равен 500 мА. Определить токи в каждом из резисторов.

Два последовательно соединенных резистора ничто иное, как делитель тока. Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов. 

Токи в резисторах 

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Если у вас возникли затруднения, прочтите статью законы Кирхгофа.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала рассчитать сопротивление цепи 

ЭТО ИНТЕРЕСНО:  Как правильно намотать тороидальный трансформатор

А затем напряжение 

Зная напряжения, найдем токи, протекающие через резисторы 

Как видите, токи получились теми же.

Пример 3

  В электрической цепи, изображенной на схеме R1=50 Ом, R2=180 Ом, R3=220 Ом. Найти мощность, выделяемую на резисторе R1, ток через резистор R2, напряжение на резисторе R3, если известно, что напряжение на зажимах цепи 100 В.

Чтобы рассчитать мощность постоянного тока, выделяемую на резисторе R1, необходимо определить ток I1, который является общим для всей цепи. Зная напряжение на зажимах и эквивалентное сопротивление цепи, можно его найти.

Эквивалентное сопротивление и ток в цепи 

Отсюда мощность, выделяемая на R1 

Ток I2 определим с помощью формулы делителя тока, учитывая, что ток I1 для этого делителя является общим 

Так как, напряжение при параллельном соединении резисторов одинаковое, найдем U3, как напряжение на резисторе R2 

Таким образом производится расчет простых цепей постоянного тока.

1 1 1 1 1 1 1 1 1 1 4.47 (194 Голоса)

Источник: https://electroandi.ru/toe/dc/raschet-prostykh-tsepej-postoyannogo-toka.html

Элементы электрической цепи. Схемы замещения

L.120.«Электротехника» Аксютин В.А.

Длярасчета и исследования процессов,протекающих в электрической цепи, еёзаменяют расчетной схемойзамещения,т. е. идеализированной цепью, котораяслужит расчетной моделью реальной цепи.При получении такой схемы, каждыйреальный элемент цепи представляетсясвоей схемой замещения – расчетноймоделью.Математическое описание каждого элемента(модель) должно отражать протекающие внём основные физические процессы.

1. Приемники электрической энергии

Вприёмниках энергии таких, как нагреватели,электрические машины, осветительныеприборы и т. п. электрическая энергияпреобразуется в иные виды энергии, атакже запасается в магнитных поляхкатушек индуктивностей и электрическихполях конденсаторов.

Для расчета токови напряжений в цепи необходимо задатьположительные направления токов инапряжений в элементах цепи. Положительнымнаправлением тока и напряжения полагаетсяих направление от узла с большимпотенциалом к узлу с меньшим потенциалом.

1.1. Резистор

Однимиз приёмников электрической цепиявляется резистивный элемент,резисторилиегоещё называют активноесопротивление.Резистивные сопротивления вводятся всхемы замещения элементов цепи дляучета необратимого преобразованияэлектромагнитной энергии в другие виды(например, тепловую, механическую,энергию излучения и т. п.).

Мгновеннаямощность, с которой происходитпреобразование энергии в элементе,определяется соотношением: p = i2R. Резистор (рис 1) обозначается как R( r) и измеряется в Омах (Ом). Если значениесопротивления резистора не зависит оттока, протекающего через него (рис. 3, а,вольтамперная характеристика — 1), тотакой резистор называется линейным.

Электрическая цепь, состоящая из линейныхрезисторов, — линейной резистивной.

а б

Рис. 1

Влинейном резистивном элементе (рис. 1)напряжение связано с током законом Ома:

  • для цепи постоянного тока (рис. 1,б) UR = R IR
  • для цепи синусоидального тока i(t) = Im sin(ω t + φi) (рис. 1,б)

напряжениена резисторе uR(t)= RiR(t)= RImsin(ωt+ φi)

Рис. 2

Ток и напряжение в линейном резисторе имеют синусоидальный характер и совпадают по фазе (рис. 2,б)

а б

Рис. 3

В томслучае, когда сопротивление резисторазависит от тока, (рис. 3, а, вольтампернаяхарактеристика- 2) , например, резисторназывается нелинейным(рис. 3, б). Электрическая цепь, содержащаяхотя бы один нелинейный резистор,называется нелинейной.

Энергия, выделеннаяв резисторе, определяется по законуДжоуля — Ленца:

A ==2dt=2dt.

Мощность выделениятепла в резисторе: P = = ui = Ri2= gu2.

1.2. Катушка индуктивности

Рассмотримосновные физические процессы, которыепритекают в катушке индуктивности, есличерез катушку индуктивности (рис. 4,а)протекает ток i(t).

  • Ток создаёт магнитный поток, пронизывающий витки катушки. По закону электромагнитной индукции, если ток изменяется во времени, то на зажимах катушки этот поток наведёт напряжение:

, (2.1)

где w – число витковкатушки;

Y= w Ф – потокосцепление, размерностьВебер (Вб);

— индуктивность,которая определяется отношениемизменения приращения потокосцеплениякатушки к приращению тока, создающегоэто потокосцепление, размерность Генри(Гн);

а б в

Рис.4

ИндуктивностьL учитывает способность катушки запасатьэнергию магнитного поля wL=Li2/2.

  • Ток, протекая по виткам катушки, создаёт в проводниках тепловые потери мощности p=i2 Rобм, гдеRобм — активное сопротивление обмотки
  • На низких частотах в катушках индуктивности практически не проявляются такие физические явления как вытеснение тока в проводнике, эффект близости и межвитковая ёмкость катушки.

а б

Рис.5

Еслииндуктивность катушки Lнезависит от величины протекающеговней тока, то потокосцепление самоиндукциикатушки Ψпрямопропорционально этому току Ψ= LiL(рис. 5,а, вебер-амперная характеристика1). Такая катушка индуктивности называетсялинейной.

Еслииндуктивность катушки Lзависитот величины протекающеговней токаΨ = f(iL)(рис. 5,а, вебер-амперная характеристика2). Такая катушка индуктивности называетсянелинейной.

Нарис. 4,б показана низкочастотная схемазамещения линейной катушки индуктивности,состоящая из индуктивности L и активногосопротивления обмотки .Если сопротивлением обмотки можнопренебречь, то такую катушку считаютидеальной индуктивностью (рис. 4,в).

Нарис.5,б показана низкочастотная схемазамещения идеальной нелинейнойкатушки индуктивности

Рассмотримустановившиеся процессы в катушке:

i(t)= I,

(рис.6,а – при наличии активного сопротивленияобмотки; рис. 6,б – для идеальнойиндуктивности)

а б

Рис.6

  • Режим синусоидального тока в катушке (рис. 1,а)

Рис. 7

.

— реактивноеиндуктивное сопротивление, размерность- Ом.

Изсоотношения (2.1) видно, что ток черезиндуктивность i(t) отстаёт от напряжения на угол (рис. 7).

Из(2.1) следует, что при заданном напряженииuL(t)ток iL(t)можнонайти по соотношению

. (2.2)

Еслидля установившегося синусоидальногорежима подставить напряжениеuL(t)= Umsin(ωt+ φu)в (2.2), то ток через индуктивностьопределится соотношением

. (2.3)

Источник: https://studfile.net/preview/2575521/

Подстроечный резистор схема подключения

Резисторы ‒ один из важных элементов схемы электронного устройства. Их основное назначение – ограничивать или регулировать ток в электрической цепи. Производятся постоянные, переменные и подстроечные резисторы. Есть и другие классификации их деления.

Назначение

Резисторы ‒ пассивный элемент электрической цепи, не преобразующий энергию из одного вида в другой. Они обладают активным сопротивлением. Их основной характеристикой является номинальная резистентность. Не менее важна такая характеристика, как мощность.

Переменные резисторы могут менять сопротивление с помощью доступного регулировочного органа. Выступают регулятором тока или напряжения.

У подстроечных резисторов имеется орган управления, с помощью которого изменяется сопротивление, но он недоступен для ручной настройки. Для этого надо применять специальную отвёртку. Эти резисторы применяются только для настройки режимов работы технического устройства и не предназначены для частого использования.

Графическое обозначение

По стандарту существует несколько вариантов условного графического обозначения (УГО) различных переменных резисторов.

На рисунке изображены УГО, применяемые в Европе и России. Первые два – это общее обозначение, третье – сопротивление с линейной характеристикой зависимости от угла поворота ручки управления, четвёртое – сопротивление с нелинейной зависимостью. Первый и второй тип резисторов применяют для включения по схеме потенциометра, а третий и четвёртый – по схеме регулятора.

Подстроечный резистор, обозначение которого приведено ниже, по стандарту изображается двумя способами.

Первым знаком обозначаются резисторы, выполняющие роль регуляторов тока. Второй способ предназначен для резисторов, включенных по схеме потенциометра.

В США, Японии и некоторых других странах применяются другие УГО.

Принципиальных отличий нет, но хорошо знать и те и другие обозначения.

Устройство

Существует большое количество всевозможных конструкций переменных и подстроечных резисторов мощностью от десятков ватт до нескольких милливатт. Некоторые из них приведены ниже на фото.

Подстроечные резисторы имеют почти одинаковое устройство с переменными. Они состоят из подвижной и неподвижной частей, помещённых в общий корпус. Неподвижная часть представляет из себя пластинку из изоляционной подложки, на которую нанесён по незамкнутому кругу токопроводящий слой. Концы этого слоя выведены на два контакта.

Подвижная часть выполняет роль токосъёмного пружинящего контакта, закрепленного на оси. Таким образом обеспечивается надежная связь с токопроводящим слоем.

Немного другое устройство имеет резистор подстроечный многооборотный. У него проводящий слой нанесён на прямой стержень, а токосъёмный контакт перемещается параллельно ему на винтовом стержне.

Эти два метода изменения сопротивления применяются во всех типах подстроечных резисторов.

Типы и разновидности

По способу монтажа различают 2 вида подстроечников – для навесного и поверхностного монтажа (ПМ). Первые – крупногабаритные, навесной монтаж не налагает особых ограничений к размерам элементов. Вторые – малогабаритные, к их размерам предъявляются высокие требования. Следует иметь в виду, что промышленность не выпускает проволочные подстроечные резисторы.

Резисторы однооборотного исполнения различаются по расположению органа управления, который обычно доступен только для специальной отвёртки. Он может располагаться сбоку или сверху. Все зависит от того, в каком положении к нему более удобен доступ. Форма корпуса обычно кубическая, реже – цилиндрическая.

Многооборотные подстроечники бывают преимущественно двух видов – с кубической и продолговатой формой корпуса. Орган управления может располагаться сверху или сбоку, в зависимости от требований к конструкции устройства.

Существуют и другие разновидности этих резисторов, но для этого нужно уже обращаться к справочным изданиям.

Схемы включения

Схема подстроечного резистора существует в двух основных вариантах. Первый вариант – это реостатная схема включения, используется в качестве регулятора тока. При таком способе включения используется начальный или конечный вывод резистора и средний. Иногда средний вывод соединяют с одним из крайних. Эта схема более надёжна, так как при потере контакта среднего вывода электрическая цепь не разрывается.

Второй вариант включения – это потенциометрическая схема, где резистор применяется как делитель напряжения. При таком подключении задействованы все выводы.

Большое значение имеет, каким образом изменяется сопротивление подстроечника в зависимости от угла поворота ручки управления. Эта зависимость называется функциональной характеристикой, их различают три разновидности.

Источник: https://crast.ru/instrumenty/podstroechnyj-rezistor-shema-podkljuchenija

Преобразование энергии в электрической цепи Мгновенная, активная, реактивная и полная мощности синусоидального тока

Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени. Интенсивность передачи или преобразования энергии называется мощностью р. Сказанному соответствует математическое определение:

Приняв начальную фазу напряжения за нуль, а сдвиг фаз между напряжением и током за , получим:

Итак, мгновенная мощность имеет постоянную составляющую и гармоническую составляющую, угловая частота которой в 2 раза больше угловой частоты напряжения и тока.

Когда мгновенная мощность отрицательна, а это имеет место (см. рис. 1), когда u и i разных знаков, т.е. когда направления напряжения и тока в двухполюснике противоположны, энергия возвращается из двухполюсника источнику питания.

Такой возврат энергии источнику происходит за счет того, что энергия периодически запасается в магнитных и электрических полях соответственно индуктивных и емкостных элементов, входящих в состав двухполюсника. Энергия, отдаваемая источником двухполюснику в течение времени t равна .

Активная мощность

Среднее за период значение мгновенной мощности называется активной мощностью .

Принимая во внимание, что , из (3) получим:

(4)

Активная мощность, потребляемая пассивным двухполюсником, не может быть отрицательной (иначе двухполюсник будет генерировать энергию), поэтому , т.е. на входе пассивного двухполюсника . Случай Р=0, теоретически возможен для двухполюсника, не имеющего активных сопротивлений, а содержащего только идеальные индуктивные и емкостные элементы.

Резистор (идеальное активное сопротивление)

Здесь напряжение и ток (см. рис. 2) совпадают по фазе , поэтому мощность всегда положительна, т.е. резистор потребляет активную мощность

Катушка индуктивности (идеальная индуктивность)

При идеальной индуктивности ток отстает от напряжения по фазе на . Поэтому в соответствии с (3) можно записать .

Участок 1-2: энергия , запасаемая в магнитном поле катушки, нарастает.

Участок 2-3: энергия магнитного поля убывает, возвращаясь в источник.

Конденсатор (идеальная емкость)

Аналогичный характер имеют процессы и для идеальной емкости. Здесь . Поэтому из (3) вытекает, что . Таким образом, в катушке индуктивности и конденсаторе активная мощность не потребляется (Р=0), так как в них не происходит необратимого преобразования энергии в другие виды энергии.

Здесь происходит только циркуляция энергии: электрическая энергия запасается в магнитном поле катушки или электрическом поле конденсатора на протяжении четверти периода, а на протяжении следующей четверти периода энергия вновь возвращается в сеть.

В силу этого катушку индуктивности и конденсатор называют реактивными элементами, а их сопротивления ХL и ХС , в отличие от активного сопротивления R резистора, – реактивными.

Интенсивность обмена энергии принято характеризовать наибольшим значением скорости поступления энергии в магнитное поле катушки или электрическое поле конденсатора, которое называется реактивной мощностью.

В общем случае выражение для реактивной мощности имеет вид:

(5)

Она положительна при отстающем токе (индуктивная нагрузка- ) и отрицательна при опережающем токе (емкостная нагрузка- ). Единицу мощности в применении к измерению реактивной мощности называют вольт-ампер реактивный (ВАр).

В частности для катушки индуктивности имеем:

, так как .

.

Из последнего видно, что реактивная мощность для идеальной катушки индуктивности пропорциональна частоте и максимальному запасу энергии в катушке. Аналогично можно получить для идеального конденсатора:

.

Полная мощность

Помимо понятий активной и реактивной мощностей в электротехнике широко используется понятие полной мощности:

(6)

Активная, реактивная и полная мощности связаны следующим соотношением:

(7)

Отношение активной мощности к полной называют коэффициентом мощности

. Из приведенных выше соотношений видно, что коэффициент мощности равен косинусу угла сдвига между током и напряжением. Итак,

(8)

Комплексная мощность

Активную, реактивную и полную мощности можно определить, пользуясь комплексными изображениями напряжения и тока. Пусть , а . Тогда комплекс полной мощности:

(9)

где — комплекс, сопряженный с комплексом .

.

Комплексной мощности можно поставить в соответствие треугольник мощностей (см. рис. 4). Рис. 4 соответствует  (активно-индуктивная нагрузка), для которого имеем:

.

Применение статических конденсаторов для повышения cosφ

Как уже указывалось, реактивная мощность циркулирует между источником и потребителем. Реактивный ток, не совершая полезной работы, приводит к дополнительным потерям в силовом оборудовании и, следовательно, к завышению его установленной мощности. В этой связи понятно стремление к увеличению в силовых электрических цепях.

Следует указать, что подавляющее большинство потребителей (электродвигатели, электрические печи, другие различные устройства и приборы) как нагрузка носит активно-индуктивный характер.

Если параллельно такой нагрузке (см. рис. 5), включить конденсатор С, то общий ток , как видно из векторной диаграммы (рис. 6), приближается по фазе к напряжению, т.е. увеличивается, а общая величина тока (а следовательно, потери) уменьшается при постоянстве активной мощности . На этом основано применение конденсаторов для повышения .

Какую емкость С нужно взять, чтобы повысить коэффициент мощности от значения до значения ?

Разложим на активную и реактивную составляющие. Ток через конденсатор компенсирует часть реактивной составляющей тока нагрузки :

(10)
(11)
. (12)

Из (11) и (12) с учетом (10) имеем

,

но , откуда необходимая для повышения емкость:

(13)

Баланс мощностей

Баланс мощностей является следствием закона сохранения энергии и может служить критерием правильности расчета электрической цепи.

а) Постоянный ток

Для любой цепи постоянного тока выполняется соотношение:

(14)

Это уравнение представляет собой математическую форму записи баланса мощностей: суммарная мощность, генерируемая источниками электрической энергии, равна суммарной мощности, потребляемой в цепи.

Следует указать, что в левой части (14) слагаемые имеют знак “+”, поскольку активная мощность рассеивается на резисторах. В правой части (14) сумма слагаемых больше нуля, но отдельные члены здесь могут иметь знак “-”, что говорит о том, что соответствующие источники работают в режиме потребителей энергии (например, заряд аккумулятора).

б) Переменный ток.

Из закона сохранения энергии следует, что сумма всех отдаваемых активных мощностей равна сумме всех потребляемых активных мощностей, т.е.

(15)

В ТОЭ доказывается (вследствие достаточной громоздкости вывода это доказательство опустим), что баланс соблюдается и для реактивных мощностей:

 , (16)

где знак “+” относится к индуктивным элементам , “-” – к емкостным .

Умножив (16) на “j” и сложив полученный результат с (15), придем к аналитическому выражению баланса мощностей в цепях синусоидального тока (без учета взаимной индуктивности):

или

.

Контрольные вопросы и задачи

  1. Что такое активная мощность?
  2. Что такое реактивная мощность, с какими элементами она связана?
  3.  Что такое полная мощность?
  4. Почему необходимо стремиться к повышению коэффициента мощности ?
  5. Критерием чего служит баланс мощностей?
  6. К источнику с напряжением подключена активно-индуктивная нагрузка, ток в которой . Определить активную, реактивную и полную мощности.
  7. Ответ: Р=250 Вт; Q=433 ВАр; S=500 ВА.

  8. В ветви, содержащей последовательно соединенные резистор R и катушку индуктивности L, ток I=2 A. Напряжение на зажимах ветви U=100 B, а потребляемая мощность Р=120 Вт. Определить сопротивления R и XL элементов ветви.
  9. Ответ: R=30 Ом; XL=40 Ом.

  10. Мощность, потребляемая цепью, состоящей из параллельно соединенных конденсатора и резистора, Р=90 Вт. Ток в неразветвленной части цепи I1=5 A, а в ветви с резистором I2=4 A. Определить сопротивления R и XL элементов цепи.
  11. Ответ: R=10 Ом; XС=7,5 Ом.

ЭТО ИНТЕРЕСНО:  Что это такое соленоид

Литература по преобразованию энергии в электрической цепи

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Знаете ли Вы, что, когда некоторые исследователи, пытающиеся примирить релятивизм и эфирную физику, говорят, например, о том, что космос состоит на 70% из «физического вакуума», а на 30% — из вещества и поля, то они впадают в фундаментальное логическое противоречие. Это противоречие заключается в следующем.

Вещество и поле не есть что-то отдельное от эфира, также как и человеческое тело не есть что-то отдельное от атомов и молекул его составляющих. Оно и есть эти атомы и молекулы, собранные в определенном порядке. Также и вещество не есть что-то отдельное от элементарных частиц, а оно состоит из них как базовой материи. Также и элементарные частицы состоят из частиц эфира как базовой материи нижнего уровня.

Таким образом, всё, что есть во вселенной — это есть эфир. Эфира 100%. Из него состоят элементарные частицы, а из них всё остальное. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАРыцари теории эфира

Источник: http://bourabai.ru/toe/energy.htm

Гост 28608-90 резисторы постоянные для электронной аппаратуры. часть 1. общие технические условия

ГОСТ 28608-90
(МЭК 115-1-82)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

РЕЗИСТОРЫ ПОСТОЯННЫЕ ДЛЯ ЭЛЕКТРОННОЙ АППАРАТУРЫ

Часть 1

ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ

Москва Стандартинформ2005

СОДЕРЖАНИЕ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТРЕЗИСТОРЫ ПОСТОЯННЫЕ ДЛЯ ЭЛЕКТРОННОЙ АППАРАТУРЫЧасть 1 Общие технические условияFixed resistors for use in electronic equipment. Part 1. Generic specification ГОСТ 28608-90(МЭК) 115-1-82

Дата введения 01.01.92*

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандартраспространяется на постоянные резисторы для электронной аппаратуры.

Стандарт устанавливаетстандартизованные термины, методики контроля и методы испытаний для использованияв групповых технических условиях (далее — ТУ) и в ТУ на резисторы конкретныхтипов для сертификации изделий в системах сертификации изделий электроннойтехники.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Ссылочныедокументы

Стандарты МЭК, на которыеимеются ссылки в настоящем стандарте:

27-1 (1971)** Буквенныеобозначения, применяемые в электротехнике. Часть 1. Общие положения.

60-1 (1973)*** Техникаиспытаний высоким напряжением. Часть 1. Общие определения и требования киспытаниям.

60-2 (1973)*** Часть 2.Методы испытаний

62 (1974)** Коды длямаркировки резисторов и конденсаторов.

63 (1963)** Рядыпредпочтительных величин для резисторов и конденсаторов.

Поправка № 1 (1967).

Поправка № 2 (1977).

68 Основные методыиспытаний на воздействие внешних факторов.

68-1 (1978) Часть 1.Общие положения.

68-2-1 (1974) ИспытаниеА. Холод.

68-2-1А (1976) Первоедополнение.

* Порядок введения стандартав действие приведен в приложенииD.

** В настоящем стандарте, в качестве которогонепосредственно применен международный стандарт МЭК 115-1-82, ссылки замененына:

ГОСТ 2.710ЕСКД. Обозначения буквенно-цифровые в электрических схемах

ГОСТ 28883 Коды длямаркировки резисторов и конденсаторов

ГОСТ28884 Ряды предпочтительных значений для резисторов и конденсаторов

ГОСТ2.721 ЕСКД. Обозначения условные графические в схемах. Обозначения общегоприменения

ГОСТ 21342.19 Резисторы.Методы измерения уровня

ГОСТ 28885 Конденсаторы.Методы измерений и испытаний

ГОСТ21395.0 Резисторы. Методы проверки требований к конструкции. Общиеположения

ГОСТ 21342.16Резисторы. Метод измерения нелинейности сопротивления

ГОСТ 8.417 ГСИ. Единицы величин

***Государственныйстандарт находится в стадии разработки.

68-2-2 (1974) ИспытаниеВ. Сухое тепло.

68-2-2А (1976) Первоедополнение.

68-2-3 (1969) ИспытаниеСа. Влажное тепло, постоянный режим.

68-2-6 (1970) Испытание Fc. Вибрация(синусоидальная). Поправка № 1 (1972).

68-2-13 (1966) ИспытаниеМ. Пониженное атмосферное давление.

68-2-14 (1974) ИспытаниеN. Быстрая смена температуры.

68-2-20 (1968) ИспытаниеТ. Пайка.

68-2-20А (1970) Первоедополнение. Испытание ТЬ. Теплостойкость при пайке. Метод 1.

68-2-21 (1975) Испытание U. Прочность выводов и ихкреплений к корпусу изделий. Поправка № 1 (1979).

68-2-27 (1972) ИспытаниеЕa. Удар.

68-2-29 (1968) ИспытаниеЕb. Ударная тряска.

68-2-30 (1969) Испытание Db. Влажное тепло,циклическое (12 + 12-часовой цикл).

68-2-45 (1980) ИспытаниеХА. Погружение в очищающие растворители.

117* Рекомендуемыеграфические обозначения.

195 (1965)* Методизмерения токовых шумов постоянных резисторов.

294 (1969)* Измерениеразмеров цилиндрического изделия с двумя аксиальными выводами.

410 (1973)** Правила ипланы выборочного контроля по качественным признакам.

440 (1973)* Методыизмерения нелинейности сопротивления резисторов.

QC 001001 (1981)** Основные правилаСистемы сертификации изделий электронной техники.

QC 001002 (1981)** Правила процедуры вСистеме сертификации изделий электронной техники.

Другие стандарты, накоторые имеются ссылки в настоящем стандарте

ISO 1000 (1973)* Единицы СИ ирекомендации по применению кратныхи дольных единиц от них и некоторых других единиц.

* В настоящем стандарте, вкачестве которого непосредственно применен международный стандарт МЭК 115-1-82,ссылки заменены на:

ГОСТ 2.710ЕСКД. Обозначения буквенно-цифровые в электрических схемах

ГОСТ 28883 Коды длямаркировки резисторов и конденсаторов

ГОСТ28884 Ряды предпочтительных значений для резисторов и конденсаторов

ГОСТ2.721 ЕСКД. Обозначения условные графические в схемах. Обозначения общегоприменения

ГОСТ 21342.19 Резисторы.Методы измерения уровня

ГОСТ 28885 Конденсаторы.Методы измерений и испытаний

ГОСТ21395.0 Резисторы. Методы проверки требований к конструкции. Общиеположения

ГОСТ 21342.16Резисторы. Метод измерения нелинейности сопротивления

ГОСТ 8.417 ГСИ. Единицы величин

** Государственныйстандарт находится в стадии разработки.

2.2. Единицы физических величин,обозначения и термины

2.2.1. Общиеположения

Единицы физическихвеличин, графические и буквенныеобозначения и термины, применяемые в настоящем стандарте, по следующейНТД: ГОСТ 2.710, ГОСТ2.721, ГОСТ 8.417, МЭК 50 (1978).

2.2.2. Тип — группарезисторов, имеющих общие конструктивныепризнаки, сходство технологии изготовления которых позволяет объединитьих для сертификации или дляконтроля соответствия качества. Обычно на них распространяются одни ТУ на резисторы конкретных типов.

Примечание. Резисторы, изготовляемыепо нескольким ТУ на резисторыконкретных типов, могут в некоторых случаях рассматриваться как принадлежащие кодному и тому же типу и поэтому могут быть объединены для сертификации идля контроля соответствия качества.

2.2.3. Вид -подразделение типа, осуществляемое обычнопо размерным признакам.

Вид может объединятьрезисторы нескольких вариантов исполнения,обычно отличающихся конструктивными особенностями.

2.2.4. Категория — терминдля обозначения дополнительных общих характеристик,касающихся применения, например резисторов с длительным сроком службы.

Термин «категория» можноиспользовать только в сочетании с однимили более словами (например, категория с длительным сроком службы), а не с одной буквой или цифрой.

Цифры, добавляемые послетермина «категория», должны быть арабскими.

2.2.5. Семейство (изделийэлектронной техники) — группа изделийэлектронной техники, в которых проявляется одно преобладающее физическоесвойств и (или) которые выполняют определенную функцию.

2.2.6. Подсемейство(изделий электронной техники) — группа изделий в пределах одного семейства,изготовленных по единой технологии.

2.2.7. Номинальноесопротивление — сопротивление, на которое рассчитан резистор и значениекоторого обычно указано на резисторе.

Источник: https://www.rags.ru/stroyka/text/30556/

Что такое резистор

Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.

В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.

статьи

Наглядный пример работы резистора

С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.

Закон Ома выражается формулой U = I*R, в которой:

  • U – напряжение, В;
  • I – сила тока, А;
  • R – сопротивление, Ом.

Также резисторы работают как:

  • преобразователи тока в напряжение и наоборот;
  • делители напряжения, это свойство применяется в измерительных аппаратах;
  • элементы для снижения или полного удаления радиопомех.

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность — предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

SMD-резисторы

Источник: https://www.radioelementy.ru/articles/chto-takoe-rezistor/

Что такое резистор и для чего он нужен?

Резисторы относятся к наиболее широко используемым в электронике элементам. Это название давно вышло из узких рамок терминологии радиолюбителей. И для каждого, кто хоть немного интересуется электроникой, термин не должен вызывать непонимание.

Что такое резистор

Наиболее простое определение выглядит так: резистор — это элемент электрической цепи, оказывающий сопротивление протекающему через него току. Название элемента происходит от латинского слова «resisto» — «сопротивляюсь», радиолюбители эту деталь часто так и называют — сопротивление.

Рассмотрим, что такое резисторы, для чего нужны резисторы. Ответы на эти вопросы подразумевают знакомство с физическим смыслом основных понятий электротехники.

Для разъяснения принципа работы резистора можно использовать аналогию с водопроводными трубами. Если каким-либо образом затруднить протекание воды в трубе (например, уменьшив ее диаметр), произойдет повышение внутреннего давления. Убирая преграду, мы снижаем давление. В электротехнике этому давлению соответствует напряжение — затрудняя протекание электрического тока, мы повышаем напряжение в цепи, снижая сопротивление, понижаем и напряжение.

Изменяя диаметр трубы, можно менять скорость потока воды, в электрических цепях путем изменения сопротивления можно регулировать силу тока. Величина сопротивления обратно пропорциональна проводимости элемента.

Свойства резистивных элементов можно использовать в следующих целях:

  • преобразование силы тока в напряжение и наоборот;
  • ограничение протекающего тока с получением его заданной величины;
  • создание делителей напряжения (например, в измерительных приборах);
  • решение других специальных задач (например, уменьшение радиопомех).

Пояснить, что такое резистор и для чего он нужен, можно на следующем примере. Свечение знакомого всем светодиода происходит при малой силе тока, но его собственное сопротивление настолько мало, что если светодиод поместить в цепь напрямую, то даже при напряжении 5 В текущий через него ток превысит допустимые параметры детали. От такой нагрузки светодиод сразу выйдет из строя. Поэтому в схему включают резистор, назначение которого в данном случае — ограничение тока заданным значением.

Все резистивные элементы относятся к пассивным компонентам электрических цепей, в отличие от активных они не отдают энергию в систему, а лишь потребляют ее.

Разобравшись, что такое резисторы, необходимо рассмотреть их виды, обозначение и маркировку.

Виды резисторов

Виды резисторов можно разбить на следующие категории:

  1. Нерегулируемые (постоянные) — проволочные, композитные, пленочные, угольные и др.
  2. Регулируемые (переменные и подстроечные). Подстроечные резисторы предназначены для настройки электрических цепей. Элементы с переменным сопротивлением (потенциометры) применяются для регулировки уровней сигнала.

Отдельную группу представляют полупроводниковые резистивные элементы (терморезисторы, фоторезисторы, варисторы и пр.)

Характеристики резисторов определяются их назначением и задаются при изготовлении. Среди ключевых параметров:

  1. Номинальное сопротивление. Это главная характеристика элемента, измеряется в омах (Ом, кОм, МОм).
  2. Допустимое отклонение в процентах от указанного номинального сопротивления. Означает возможный разброс показателя, определяемый технологией изготовления.
  3. Рассеиваемая мощность — предельная мощность, которую резистор может рассеивать при долговременной нагрузке.
  4. Температурный коэффициент сопротивления — величина, показывающая относительное изменение сопротивления резистора при изменении температуры на 1°С.
  5. Предельное рабочее напряжение (электрическая прочность). Это максимальное напряжение, при котором деталь сохраняет заявленные параметры.
  6. Шумовая характеристика — степень вносимых резистором искажений в сигнал.
  7. Влагостойкость и термостойкость — максимальные значения влажности и температуры, превышение которых может привести к выходу детали из строя.
  8. Коэффициент напряжения. Величина, учитывающая зависимость сопротивления от приложенного напряжения.

Применение резисторов в области сверхвысоких частот придает важность дополнительным характеристикам: паразитной емкости и индуктивности.

Полупроводниковые резисторы

Это полупроводниковые приборы с двумя выводами, обладающие зависимостью электрического сопротивления от параметров среды — температуры, освещенности, напряжения и др. Для изготовления таких деталей используют полупроводниковые материалы, легированные примесями, тип которых определяет зависимость проводимости от внешнего воздействия.

Существуют следующие типы полупроводниковых резистивных элементов:

  1. Линейный резистор. Изготовленный из слаболегированного материала, этот элемент имеет малую зависимость сопротивления от внешнего воздействия в широком диапазоне напряжений и токов, чаще всего он применяется в производстве интегральных микросхем.
  2. Варистор — элемент, сопротивление которого зависит от напряженности электрического поля. Такое свойство варистора определяет сферу его применения: для стабилизации и регулирования электрических параметров устройств, для защиты от перенапряжения, в других целях.
  3. Терморезистор. Эта разновидность нелинейных резистивных элементов обладает способностью изменять свое сопротивление в зависимости от температуры. Существует два типа терморезисторов: термистор, сопротивление которого падает с ростом температуры, и позистор, чье сопротивление растет вместе с температурой. Терморезисторы применяются там, где важен постоянный контроль над температурным процессом.
  4. Фоторезистор. Сопротивление этого прибора меняется под воздействием светового потока и не зависит от приложенного напряжения. При изготовлении используется свинец и кадмий, в ряде стран это послужило поводом для отказа от применения этих деталей по экологическим соображениям. Сегодня фоторезисторы уступают по востребованности фотодиодам и фототранзисторам, применяемым в аналогичных узлах.
  5. Тензорезистор. Этот элемент устроен так, что способен менять свое сопротивление в зависимости от внешнего механического воздействия (деформации). Используется в узлах, преобразующих механическое воздействие в электрические сигналы.

Такие полупроводниковые элементы, как линейные резисторы и варисторы, характеризуются слабой степенью зависимости от внешних факторов. Для тензорезисторов, терморезисторов и фоторезисторов зависимость характеристик от воздействия является сильной.

Полупроводниковые резисторы на схеме обозначаются интуитивно понятными символами.

Резистор в цепи

На российских схемах элементы с постоянным сопротивлением принято обозначать в виде белого прямоугольника, иногда с буквой R над ним. На зарубежных схемах можно встретить обозначение резистора в виде значка «зигзаг» с аналогичной буквой R сверху. Если для работы прибора важен какой-либо параметр детали, на схеме принято его указывать.

Источник: https://odinelectric.ru/knowledgebase/chto-takoe-rezistor

Понравилась статья? Поделиться с друзьями:
Электро Дело
Что такое конденсатор по физике

Закрыть
Для любых предложений по сайту: [email protected]