Особенности высоковольтных электродвигателей
Когда речь заходит об электродвигателях, не существует линейной зависимости между мощностью, числом оборотов и потребляемого напряжения. Рассмотрим, в каких отраслях применяют и чем различаются высоковольтные электродвигатели, двигатели с высокими оборотами, а также двигатели с большой мощностью.
Разные виды высоковольтных электродвигателей
Высоковольтные электродвигатели – это синхронные и асинхронные двигатели с напряжением 3000, 6000, 6300, 6600 и 10000 В. В основном данные электродвигатели применяются в промышленности: металлургическая, горнодобывающая, станкостроительная, химическая отрасли. Такие электродвигатели применяются в установках, дымососах, мельницах, станах, грохотах, вентиляторах и т.д.
Трехфазные двигатели предназначены для работы от переменного тока с частотой 50 (60) Гц. Для обеспечения надежной работы используют обмотку статора типа «Монолит» или «Монолит-2» с классом нагревостойкости не ниже «В». Корпус электродвигателей усиленный, что, в свою очередь, понижает уровни звука и вибрации. Удельная материалоемкость и энергетические показатели находятся в оптимальном соотношении. Высоковольтные электродвигатели характеризуются также повышенной износостойкостью.
Предназначаются такие электродвигатели для привода:
- механизмов, не требующих регулирования частоты вращения – серии А4, А4 12 и 13, ДАЗО4, ДАЗО4-12, ДАЗО4-13, АОД, АОВМ, АОМ, ДАВ;
- механизмов с тяжелыми условиями пуска — серия 2АОД;
- вертикальных гидравлических насосов – серия ДВАН.
Высокооборотистые электродвигатели и их особенности
В отличие от высоковольтных электродвигателей, высокооборотные – это двигатели, количество оборотов которых равно 50 об/с или 3000 об/мин. Они имеют меньшую массу, габариты и даже стоимость, чем более тихоходные собратья одинаковой мощности.
Для применения двигателей с частой до 9000 об/мин необходимо использовать механизм с большим передаточным числом, в частности, волновой передаточный механизм. Он отличается простотой, высокой надежностью, точностью и компактностью.
Область применения высокооборотных двигателей очень широка. Сюда входят и электродвигатели для ручного гравера, и для сверла бормашины, и двигатели для автомобильной и авиационной промышленности.
Мощные электродвигатели
У обычных трехфазных электродвигателей номинальная мощность колеблется в диапазоне 120 Вт-315 кВт. Однако, как показывает практика, чем мощней электродвигатель, тем больше высота оси вала. Поэтому мощными принято считать электродвигатели больше 11 кВт. Области применения тоже довольно широкие. В частности, краново-металлургическая. Электродвигатели большой мощности также применяются в насосных агрегатах.
Источник: https://www.rosdiler-electro.ru/vysokovoltnye-moshhnye-jelektrodvigateli.html
Качественные электродвигатели от производителя с гарантией
elmo.ua
15 Дек 2019, 07:59
Производитель предлагает приобрести качественные электродвигатели под самые разные нужды.
Без электродвигателей не обойтись никому
Электродвигатели появились почти сразу после появления электричества. Сегодня уже сложно представить нашу жизнь без этого оборудования. По сравнению с бензиновыми или дизельными двигателями внутреннего сгорания электродвигатели имеют ряд преимуществ.
Во – первых, они могут работать в безвоздушной среде – для двигателей внутреннего сгорания нужен воздух. Поэтому электродвигатели активно применяют под водой. Во вторых, множество механизмов, станков, насосов оснащены именно электродвигателями, так как они имеют более высокий КПД, и управлять ими легче, чем бензиновыми «движками».
В третьих, электродвигатели более экологичны и не имеют выбросов, что позволяет использовать их в закрытых помещениях. Ну и еще одним несомненным плюсом использования электродвигателей является их экономическая эффективность, простота в обслуживании и высокий срок службы.
Изучив каталог асинхронных электродвигателей, можно выбрать и заказать нужное оборудование определенных параметров на одном из крупнейших предприятий по их выпуску – ООО «Днепроресурс».
Преимущества приобретения электродвигателей в ООО «Днепроресурс».
Компания «Днепроресурс» осуществляет выпуск электродвигателей самого разного назначения под самые разнообразные нужды. На заводе выпускают электрические двигатели самых разных модификаций.
Это и общепромышленные «движки», широко применяемые в промышленности, и крановые двигатели, взрывозащищенные электродвигатели, широко применяемые в газовой и нефтяной промышленности. На заводе «Днепроресурс» выпускают надежные однофазные, трехфазные, рольгановые электродвигатели. Они работают от сетей с разным напряжением и разными частотами.
Однми словом, здесь можно найти электрические двигатели под любые нужды и на любой вкус. Благодаря широкому ассортименту этого специфического товара, а также 2- летней гарантии, предложение ООО «Днепроресурс» является одним из самых выгодных на украинском рынке.
Немаловажно, что осуществляется доставка товара до заказчика, также есть и сервисное обслуживание электродвигателей всех марок и модификаций. С электродвигателями от ООО «Днепроресурс» ваш бизнес будет двигаться только вперед!
Источник: https://tayga.info/150860
Что следует учитывать при выборе асинхронного электродвигателя
При выборе асинхронных электродвигателей переменного тока часто не учитываются требования к конструкции, которые связаны с их применением в составе того или иного оборудования.
Также обычно имеет место подход, основанный на универсальности электродвигателя, и тогда выбор зависит только от его напряжения, мощности и скорости вращения ротора.
Тем не менее есть еще целый ряд дополнительных аспектов для рассмотрения, таких как диапазон напряжения питания, сохранение номинальной мощности при изменении скорости вращения и область применения. Все это в итоге сводится к решению следующих вопросов: какова цель применения электродвигателя, как сделать все быстрее и эффективнее?
Базовые принципы выбора электродвигателя
Отправными точками для выбора асинхронного двигателя являются напряжение питания обмоток статора, создающего магнитное поле, а также номинальная мощность и скорость вращения ротора, которые соответствуют требованиям конкретного применения. Еще один, не менее важный момент — это необходимый вариант установки двигателя в приводе.
Должен ли двигатель иметь крепление на основании, или он будет помещен на фланец на конце привода, или же должен предоставлять обе возможности? Кроме того, необходимо учитывать характеристики окружающей среды, в которой будет эксплуатироваться двигатель.
При этом для выбора двигателя необходимо знать, потребуется ли ему работать под дождем и имеется ли вообще риск попадания на него воды, а также оценить уровень загрязнения и наличия пыли. Для эксплуатации в жестких условиях хорошо подходят электродвигатели закрытого типа с вентиляторным охлаждением (англ. totally enclosed fan cooled, TEFC) или электродвигатели закрытого типа без охлаждения (англ.
totally enclosed non-vented, TENV). Если среда, в которой будет использоваться двигатель, не загрязнена и он будет эксплуатироваться без риска попадания на него воды, то в этом случае может быть достаточно применения каплезащищенного электродвигателя открытого исполнения (англ. open drip proof, ODP).
Выбор инвертора
Благодаря усилиям лоббистов местных энергетических компаний в сочетании с преимуществами, получаемыми при возможности регулирования скорости вращения ротора двигателей, все более распространенными становятся частотно-регулируемые приводы (ЧРП, англ. variable frequency drive, VFD).
При их использовании особое внимание следует уделять генерации электромагнитных помех, которая характерна для таких приводов исходя из самой их природы.
Для того чтобы электродвигатель мог использоваться с ЧРП, необходимо учитывать несколько технических особенностей, которым должен удовлетворять подходящий по остальным характеристикам электродвигатель. Среди них можно выделить две главные:
Максимально допустимое напряжение изоляции обмоточных проводов статора электродвигателя.
Электрическая прочность изоляции провода, из которого выполнена обмотка статора асинхронного электродвигателя, находится в пределах 1000–1600 В, но, как правило, в документации указывается значение прочности изоляции, равное 1200 В. Однако чем больше воздушный зазор между приводом и двигателем, тем, естественно, бо́льшим скачкам переходного напряжения, воздействующим на двигатель, он может противостоять.
Электродвигатель, в котором для обмотки статора используется провод с электрической прочностью изоляции провода, равной 1600 В, может иметь ссылку на стандарт Национальной ассоциации производителей электрооборудования (NEMA, США) NEMA MG-1 2003, раздел 4, параграф 31, в котором говорится, что двигатель должен выдерживать без повреждений начальное напряжение коронного разряда (англ.
corona inception voltage, CIV) уровнем до 1600 В.
Коэффициент сохранения постоянного крутящего момента (CT) двигателя, часто упоминается как «xx: 1 CT».
Этот показатель дает представление о диапазоне регулирования скорости. По нему можно узнать, насколько может быть снижена скорость вращения ротора двигателя, при которой он будет работать с сохранением того же крутящего момента (англ. CT — constant torque, постоянный крутящий момент), что и при номинальной скорости. Ниже этого значения крутящего момента производительность асинхронного электродвигателя снижается.
Например, возьмем электродвигатель мощностью 10 л. с. с начальной скоростью 1800 об/мин. При номинальной скорости (около 1800 об/мин), как указано, он имеет крутящий момент 29 фунтов на фут.
Если в спецификации на электродвигатель написано, что коэффициент сохранения номинальной мощности составляет 10:1 CT, это означает, что такой электродвигатель может обеспечить номинальный крутящий момент до скорости 180 об/мин.
Если же указано, что электродвигатель имеет коэффициент сохранения номинальной мощности 1000:1 CT, то имеется в виду, что крутящий момент сможет сохранять номинальное значение до скорости 1,8 об/мин.
При этом необходимо учитывать еще один нюанс, который связан с охлаждением электродвигателя. Нужно обязательно уточнить у поставщика, будет ли электродвигатель перегреваться при длительной работе на малых оборотах.
Дело в том, что если двигатель охлаждается за счет крыльчатки, закрепленной на его валу, то на малых скоростях вы столкнетесь с низкой скоростью охлаждающего двигатель потока воздуха.
Если асинхронный электродвигатель работает на низкой скорости и в течение длительного времени используется с большим крутящим моментом, то он будет выделять много тепла — при таких условиях, возможно, придется остановить свой выбор на двигателе с иным методом охлаждения.
Например, для организации принудительного охлаждения можно применить воздуходувное устройство, имеющее собственный, отдельно управляемый двигатель. Производительность такого устройства не связана с системой управления электропривода. В этом случае воздушный поток, который обдувает мощный электродвигатель, будет постоянным и достаточным для его охлаждения при низкой или даже при нулевой скорости.
Связь мощности и крутящего момента
При выборе асинхронного электродвигателя еще одним важным аспектом является номинальная, или основная, скорость двигателя. Обычно используются двухполюсные (3600 об/мин) и четырехполюсные (1800 об/мин) электродвигатели.
Однако имеются и коммерчески доступные 6-, 8- и 12-полюсные асинхронные электродвигатели со скоростью вращения ротора 1200, 900
и 600 об/мин соответственно.
Номинальная скорость асинхронного электродвигателя напрямую связана с числом полюсов, которые такой двигатель конструктивно содержит (табл.), и определяется по следующей формуле:
Об/мин = (120 × частота) / N (число полюсов)
В качестве примечания необходимо отметить, что, хотя прямой связи здесь нет, но, как правило, с увеличением количества полюсов возрастают и размеры, а также стоимость электропривода.
Кроме того, пользователям электроприводов, в зависимости от области применения данных устройств, может понадобиться обеспечить необходимый крутящий момент путем изменения скорости. В целом по мере увеличения скорости двигателя крутящий момент уменьшается, что также относится к редукторам и цепным приводам. Это соотношение объясняется следующим уравнением:
мощность (л. с.) = (крутящий момент × × номинальная скорость) / 5252
Крутящий момент, в соответствии с заданной целью, может быть достигнут путем выбора электродвигателя с необходимой мощностью и номинальной скоростью и реализован через любую цепную, ременную передачу или редуктор. Такой подход снижает стоимость привода, его габаритные размеры и время, уходящее на замену его подвижных заменяемых частей в ходе выполнения ремонта или технического обслуживания.
Число полюсов, N | Скорость, об/мин | Крутящий момент, л. с. / фут-фунт |
2 | 3600 | 1,46 |
4 | 1800 | 2,92 |
6 | 1200 | 4,38 |
8 | 900 | 5,84 |
10 | 720 | 7,29 |
12 | 600 | 8,75 |
Примечание. Как правило, увеличение числа полюсов приводит к увеличению габаритов, а следовательно, и к повышению стоимости привода на основе асинхронного электродвигателя
Источник: https://controlengrussia.com/e-lektroprivod/vybor-asinhronnogo-jelektrodvigatelja/
Электродвигатели АДЧР | НПО СПЕЦЭЛЕКТРО
Электродвигатели асинхронные АДЧР применяются для работы с преобразователями частоты, используются в составе КОМПЛЕКТНЫХ ПРИВОДОВ.
Электродвигатели серии АДЧР асинхронные двигатели частотного регулирования выпускаются с учетом всех особенностей питания от частотного преобразователя и отвечают требованиям заказчика по конструкции, комплектации и режимам работы.
К качеству изготовления всех элементов двигателя предъявляются повышенные требования.
В работе частотно-регулируемого привода существует ряд ограничений на использование электродвигателя, поэтому между электродвигателями АДЧР и общепромышленными двигателями есть существенные отличия.
Установка узла независимой вентиляции дает возможность работы двигателя АДЧР в регулируемом диапазоне рабочих скоростей. Монтаж датчика обратной связи скорости вращения обеспечивает точность скорости вращения и глубину регулирования скорости, а так же поддержку точности в системах с регулированием момента электродвигателя.
Установка электромагнитного тормоза дает возможность торможения и удержания ротора электродвигателя АДЧР при отключении питания электродвигателя.
Главное преимущество использования двигателей АДЧР в составе частотно-регулируемого привода (в комплекте с частотным преобразователем), это экономия денежных средств на ремонт и замену оборудования для компаний и предприятий.
Преимущества использования АДЧР
- увеличение ресурса оборудования
- экономия электроэнергии до 50%
- уменьшение нагрузок на механическую часть агрегата
- снижение нагрузки на сеть
- простая интеграция в системы автоматического управления
- уменьшение пусковых токов
- гибкость управления технологическим процессом
электродвигатель с частотным регулированием применяется
- в прокатных станах, для обеспечения синхронной работы;
- в системах производственных предприятий;
- в станках с ЧПУ и для обеспечения синхронизации движения нескольких осей;
- в автоматах для резки, мешалках;
- в вентиляторных системах и компрессорах;
- в приводе насосного оборудования;
- в промышленных стиральных машинах;
- в инверторных системах;
- в электротранспорте;
- в системах позиционирования;
- в текстильной промышленности (обеспечение постоянной скорости и натяжения ткани);
- в судовых электроприводах большой мощности.
Адчр 0 — двигатель с частотным регулированием адчр базового исполнения
Отсутствуют — электромагнитный тормоз, датчик скорости / положения и независимая вентиляция. Предназначен для эксплуатации в составе частотно-регулируемого привода, питается от стандартной сети трехфазного тока. Выпускается во всех стандартных габаритных размерах асинхронных двигателей.
Эффективное охлаждение двигателя обеспечивается начиная с выходной частоты инвертора порядка 30Гц, в виду того что для охлаждения асинхронного электродвигателя используется вентилятор который установлен на валу двигателя (самостоятельная вентиляция), допускаемая глубина регулирования примерно 1:3.
Используется в составе регулируемого привода для вентиляторов, конвейеров, насосов и т.п. или заменяет обычный асинхронный электродвигатель.
Отсутствуют — электромагнитный тормоз и датчик скорости / положения. Предназначен для эксплуатации в составе частотно-регулируемого привода при длительной работе во всех диапазонах рабочих скоростей. Выпускается во всех стандартных габаритных размерах асинхронных электродвигателей.
Датчик скорости/положения в данной модификации асинхронного двигателя отсутствует, поэтому максимальная глубина регулирования с преобразователем частоты может составлять 1:10, при использовании специальных типов инверторов до 1:20-40.
Используются в центрифугах, конвейерных системах, автоматических линиях и т.п.
Отсутствуют — датчик скорости / положения и независимая вентиляция отсутствуют.
Предназначен для эксплуатации в составе частотно-регулируемого привода — статический тормоз, или с работой от стандартной сети питания — динамический тормоз, с необходимостью обеспечивать удержание вала двигателя при отключении силового питания двигателя, а так же в системах, требующих повышенной безопасности.
Выпускается во всех габаритных размерах электродвигателей. Эффективное охлаждение обеспечивается, начиная с выходной частоты инвертора порядка 30Гц, в виду того что для охлаждения асинхронного электродвигателя используется вентилятор установленный на валу двигателя (самостоятельная вентиляция), допускаемая глубина регулирования 1:3.
Максимальная скорость – не превышает номинальную. При эксплуатации такого типа асинхронного двигателя при прямом питании от стандартной питающей сети 50/60Гц, необходима установка динамического тормоза. Применяется в грузоподъемных механизмах, автоматических линиях, конвейерных системах, центрифугах, и т.п.
Отсутствует — электромагнитный тормоз.
Предназначен для работы в составе частотно-регулируемого привода, при необходимости для обеспечения большой глубины регулирования по скорости, точного контроля скорости вращения, управления моментом, в любом диапазоне скоростей от 0 об/мин до максимальной скорости. Выпускается во всех стандартных габаритных размерах электродвигателей. Применяются в точном машиностроении, для станков с ЧПУ, грузоподъемных механизмов, конвейерных систем, автоматических линий и т.п.
Предназначен для работы в составе частотно-регулируемого привода, а так же для обеспечения точного контроля скорости вращения, получения большого диапазона регулирования по скорости, управления моментом в любом диапазоне скоростей от 0 об/мин до максимальной в технологических процессах, где требуется удержание вала электродвигателя при отключении питания асинхронного двигателя или имеются требования по безопасности оборудования. Выпускается во всех габаритных размерах электродвигателей. Применяется в точном машиностроении, для станков с ЧПУ, грузоподъемных механизмов, конвейерных систем, автоматических линий.
Отличия электродвигателя с частотным регулированием АДЧР
- Специальная обмотка статора.Электродвигатель АДЧР имеет обмотку, предназначенную для работы с источником питания, выдающим прямоугольные импульсы напряжения(ШИМ). Частотно-регулируемые двигатели имеют специальную систему изоляции обмотки, стойкую к высокой скорости нарастания напряжения. Работа общепромышленного двигателя от преобразователя частоты сокращает срок службы двигателя т.к. общепромышленные моторы предназначены для питания от сети переменного тока синусоидальной формы фиксированной частоты. Специальная технология изготовления обмотки двигателей АДЧР и специальный обмоточный провод предотвращают систему изоляции от преждевременного разрушения и от короткого замыкания, а также выхода из строя электродвигателя.
- Повышенные требования по вибрации для двигателей АДЧР.Часто электродвигатели АДЧР работают на скоростях выше, чем аналогичные общепромышленные электродвигатели, поэтому к роторам таких двигателей предъявляются более строгие требования по уровню вибрации. Роторы электродвигателей серии АДЧР точно отбалансированы и имеют низкий уровень вибрации по сравнению с общепромышленными моторами, что положительно сказывается на сроке службы электродвигателя и связанного оборудования.
- Надежный подшипниковый узел двигателей АДЧР.Электродвигатели АДЧР комплектуются подшипниками производства SKF, которые гарантируют высокое качество и длительный срок эксплуатации, что снижает затраты на обслуживание двигателей.
- Дополнительное оборудование и независимая вентиляция.Двигатель АДЧР работает в диапазоне частот вращения с необходимым уровнем нагрузки, в то время как общепромышленные двигатели предназначен для работы на одной фиксированной скорости вращения. Работа стандартных электродвигателей на скоростях ниже номинальной вызывает перегрев и выход их строя, а работа на повышенных скоростях приводит к потере мощности и увеличению шума. Электродвигатели АДЧР (АДЧР-В, -ДВ, -ТДВ) с установленным узлом независимой вентиляции лишены этих недостатков и могут работать в режиме постоянного момента на валу от самой минимальной до максимальной скорости.
По требованию заказчика частотно-регулируемые электродвигатели АДЧР могут быть оснащены:
- электромагнитным тормозом — для торможения и удержания вала электродвигателя после остановки или в аварийной ситуации, что актуально, в первую очередь, для системы кранового привода (АДЧР-Т, -ТВ, -ТДВ);
- датчиком обратной связи — для регулирования и позиционирования в точных системах с векторным управлением с глубиной до 1:10000 (АДЧР-ДВ, -ТДВ).
Целесообразно использовать ЧАСТОТНЫЕ ПРЕОБРАЗОВАТЕЛИ не в качестве элементов системы управления конкретного агрегата, а как составляющую комплексных системных решений с подключением широкого набора средств автоматизации технологических процессов. Такие решения позволяют получить эффект, который заведомо больше простой экономии электрической энергии.
Установка независимой вентиляции на двигателе АДЧР дает возможность увеличения диапазона по минимальной и максимальной скорости предохраняя от перегрева на разных скоростях.
Электромагнитный тормоза устанавливаемый на АДЧР выполняет задачи по удержанию нагрузки при отключенном силовом питании двигателя, а так же обеспечивает безопасность оборудования, на которое устанавливается асинхронный электродвигатель.
Датчик скорости/положения энкодер установленный на асинхронных двигателях АДЧР, предназначен для обеспечения работы в системах точного регулирования и позиционирования, требующих реального контроля скорости, а так же в системах требующих управление моментом вращения механизма.
Условные обозначения старого образца
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
АДЧР | 180 |
Источник: http://se33.ru/variable-frequency.html
Каталог продукции: Ассинхронные электродвигатели, описание, характеристики. Расшифровка монтажного исполнения двигателей
Асинхронные электродвигатели с короткозамкнутым ротором переменного тока предназначены для преобразования энергии переменного электрического тока в механическую энергию вращения.
Благодаря простоте конструкции, высокому КПД и экономичности в производстве данное оборудование широко используется во всех сферах жизнедеятельности человека. Существует мнение, что более 80% потребляемой электроэнергии в мире, используется электродвигателями.
Из недостатков следует отметить небольшой момент во время пуска и большие пусковые токи. Данные недостатки в настоящий момент компенсируются использованием устройств плавного пуска и преобразователями частоты.
Принцип действия и конструкция асинхронных электродвигателей
Основными элементами конструктивными элементами электродвигателей являются статор и ротор. Статор это неподвижная часть двигателя с уложенными медными обмотками по углом 120 градусов. Ротор – металлический сердечник закрепленный на оси вала.
Все остальные части двигателя корпус, вентилятор, подшипник и т.д.
являются дополнительными конструктивными элементами, придающим электродвигателю необходимые технические характеристики по жесткости, защите от механических и атмосферных воздействий, присоединение к электрической цепи и т.д.
При прохождении через обмотки статора переменного электрического тока, благодаря явлению электромагнитной индукции, внутри статора создается вращающееся магнитное поле.
В роторе под воздействием магнитного поля также наводится электрический ток, создающий в свою очередь магнитное поле, которое начинает взаимодействовать с магнитным полем статора, (вращаться вместе с ним) и соответственно приводя в движение сам ротор.
Так как частота вращения ротора меньше частоты вращения магнитного поля статора (ротор с учетом приложенной к нему нагрузки «скользит»), то данный вид двигателей называется асинхронным.
Управление и защита асинхронных электродвигателей
С помощью магнитных пускателей — при подаче напряжение силовые контакты контакторов замыкаются, и двигатель начинает работать. Для снижения пусковые токов двигатель зачастую управляют с помощью пускателей «звезда треугольник»
Также для снижения пусковых токов и обеспечения плавного пуска и останова двигателей используют софтстартеры.
Если же необходимо управлять частотой вращения двигателя или автоматизировать процесс его работы, то для этой цели используют преобразователи частоты.
Для предотвращения выхода из строя электродвигателей из за перегрузки или заклинивания в питающую цепь обычно устанавливают автоматы защиты двигателей или тепловые реле. Для защиты от скачков напряжения и обрыва или перекоса фаз устанавливают трехфазные реле защиты электродвигателей. Особенно хорошо себя зарекомендовало универсальное устройство защиты двигателей УБЗ 301 производства Новатек Электро.
Наша компания производит типовые щиты управления двигателями РУСМ и Я5000
Основные технические характеристики и условиям эксплуатации асинхронных электродвигателей
- Мощность – величина, характеризующая работу, которую может совершить электродвигатель в единицу времени.
- Количество полюсов
Источник: http://www.elektro-portal.com/category/assinhronnye-elektrodvigateli/series
Выгода использования электродвигателей в железнодорожной и автомобильной промышленности
Вскоре после того как электродвигатель был изобретен, его начали использовать в наземном и водном транспорте в качестве тягловой силы. Даже с появлением двигателя внутреннего сгорания электрические механизмы не утратили своей актуальности благодаря таким качествам, как:
- Высокий КПД (до 95%).
- Большой ресурс.
- Экологичность.
- Простота в уходе.
- Большая мощность.
- Экономичность.
- Бесшумность.
Виды транспорта, в которых применяются электродвигатели
Использование электродвигателей в железнодорожной и автомобильной промышленности обусловлено их высокой эффективностью и, что особенно важно на данный момент, экологической чистотой. Основные виды техники, работающей на электричестве – это:
- Локомотивы (тепловозы с электропередачей и электровозы).
- Атомоходы, подводные лодки, теплоходы с электроприводами.
- Пригородные электропоезда.
- Городской наземный транспорт (троллейбусы и трамваи).
- Подземный городской транспорт (поезда метрополитена).
- Электромобили.
- Большегрузные автомобили с электроприводом.
- Беспилотные летательные аппараты.
- Самоходные краны.
- Транспортно-подъемные машины.
В тепловозах часто устанавливается дизель в паре с электродвигателем – первый вращает генератор, питающий ТЭД, а второй приводит колеса в движение.
Ниже мы рассмотрим особенности моторов разных типов транспорта.
Двигатели для городского транспорта
Двигатели для надземного и подземного городского транспорта дают возможность улучшить экологическую обстановку и снизить уровень шума в мегаполисах. Основная нагрузка приходится на поезда метро, поэтому сейчас непрерывно ведется работа над улучшением эксплуатационных характеристик, надежности и долговечности электродвигателей вагонов. К ним предъявляются следующие требования:
- Способность справляться с высокими пусковыми ускорениями.
- Способность сохранять высокую эффективность при постоянной смене режимов работы.
К особенностям тяговых двигателей для всех видов городского транспорта можно отнести:
- Сравнительно небольшую мощность (до 200 кВт).
- Низкое максимальное напряжение.
- Высокий КПД (до 91%).
- Наличие резервов для роста эффективности работы агрегата.
Двигатели для спецтехники и крановых установок
На самоходных кранах электродвигатели приводят в движение привод колес и лебедку. При мощности в 40-50кВт они могут работать от сети 220В. В торговых и логистических центрах для транспортировки продуктов питания и фармакологических товаров применяются исключительно погрузчики с электродвигателями, так как они не производят экологически вредных выбросов.
Двигатели для электровозов
Это самые мощные двигатели (до 400кВт для тепловозов и до 1500кВт для карьерных и магистральных электровозов), которые работают в комплексе с тяговой передачей и движущей колесной парой, образуя колесно-моторный блок. Они создают очень сильное тяговое усилие и позволяют транспорту развивать большую скорость.
Источник: https://www.szemo.ru/press-tsentr/article/vygoda-ispolzovaniya-elektrodvigateley-v-zheleznodorozhnoy-i-avtomobilnoy-promyshlennosti/
Danfoss Drives
Электродвигатель – устройство для преобразования электроэнергии во вращательное движение вращающейся части электрической машины. Преобразование энергии в двигателях происходит за счет взаимодействия магнитных полей обмоток статора и ротора. Эти электрические машины широко используются во всех отраслях промышленности, в качестве привода электротранспорта и инструментов, в системах автоматизации, бытовой техники и так далее.
Существует множество видов электродвигателей, различающихся по принципу действия, конструкции, исполнению и другим признакам. Рассмотрим основные типы этих электрических машин.
По принципу действия различают магнитоэлектрические и гистерезисные электрические машины. Несмотря на простоту конструкции, высокий пусковой момент, последние не получили широкого распространения. Эти электродвигатели имеют высокую цену, низкий коэффициент мощности, ограничивающие их применение. Подавляющее большинство выпускаемых электродвигателей – магнитоэлектрические.
По типу напряжения питания различают:
- Электродвигатели постоянного тока.
- Двигатели переменного тока.
- Универсальные электрические машины.
По конструкции различают электродвигатели с горизонтально и вертикально расположенным валом. Кроме того, электрические машины классифицируют по назначению, климатическому исполнению, степени защиты от попадания влаги и посторонних предметов, мощности и другим параметрам.
Классы электродвигателей:
- Постоянного тока
- Бесщеточные ЕС (электронно-коммутируемые)
- Со щетками
- С последовательным возбуждением
- С параллельным возбуждением
- Со смешанным возбуждением
- С постоянными магнитами
- Переменного тока
- Универсальные
- Синхронные
- Индукционные
Электродвигатели постоянного тока
Двигатели постоянного тока широко применяются в качестве привода электротранспорта, промышленного оборудования, а также микропривода исполнительных механизмов. Такие электрические машины обладают следующими преимуществами:
- Возможность регулировки частоты вращения путем изменения напряжения в обмотке возбуждения. При этом крутящий момент на валу ДПТ (двигатели постоянного тока) остается неизменным.
- Высокий к.п.д. (коэффициент полезного действия) у машин постоянного тока несколько выше, чем у самых распространенных асинхронных двигателей переменного тока. При неполной нагрузке на валу к.п.д. ДПТ выше на 10-15%.
- Возможность изготовления ДПТ небольших габаритов. Практически все используемые микроприводы рассчитаны на постоянный ток.
- Простота схем управления. Для пуска, реверса и регулирования скорости и момента не требуется сложного электронного оборудования и большого количества аппаратов для коммутации.
- Возможность работы в режиме генератора. Электродвигатели такого типа можно использовать в качестве источников постоянного тока.
- Высокий пусковой момент. ДПТ используют в составе электроприводов кранов, тяговых и грузоподъемных механизмов, где требуется запуск под значительной нагрузкой.
ДПТ различают по способу возбуждения, они бывают:
- С постоянными магнитами. Такие двигатели отличаются малыми габаритами. Основная область их применения – микроприводы.
- С электромагнитным возбуждением.
Электрические машины с электромагнитами такого типа получили самое широкое распространение. Их классифицируют по способу подключения обмотки статора:
- Двигатели с параллельным возбуждением. Обмотки якоря и статора в электрической машине такого типа соединены параллельно. Такие электрические машины не требуют дополнительного источника питания для обмотки возбуждения, скорость вращения ротора практически не зависит от нагрузки. Их используют для привода металлорежущих станков и другого оборудования.
- Электродвигатели с последовательно включенной обмоткой статора. ДПТ этого типа имеют значительный пусковой момент. Их применяют в качестве привода электротранспорта и промышленных установок с необходимостью пуска под нагрузкой.
- Двигатели с независимым возбуждением. Для питания обмотки статора таких электромашин используется независимый источник постоянного тока. ДПТ такого типа отличаются широким диапазоном регулирования скоростей.
- Электрические машины со смешанным возбуждением. Электромагнит возбуждения в таких двигателях поделен на 2 части. Одна из них включена параллельно, вторая последовательно обмотке якоря. Электрические машины такого типа используются в механизмах и оборудовании, где необходим высокий пусковой момент, а также переменная и постоянная скорость при переменном моменте.
Электродвигатели переменного тока
Электрические машины такого типа широко используют для приводов всех типов технологического оборудования, электроинструментов, автоматических регуляторов. По наличию разности между скоростью вращения магнитного поля статора и частотой вращения ротора различают синхронные и асинхронные двигатели.
Асинхронные электродвигатели
Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора.
Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов.
По особенностям обмоток статора выделяют:
- Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
- Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
- Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.
По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.
Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:
- Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
- Допустимость кратковременных перегрузок.
- Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
- Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
- Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.
Электрические машины с короткозамкнутым ротором имеют свои недостатки:
- Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
- Технически сложная реализация регулирования частоты вращения.
- Высокие пусковые токи при прямом запуске.
Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.
Такие электродвигатели обладают следующими достоинствами:
- Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
- Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
- Возможность регулировки скорости.
Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.
Синхронные двигатели переменного тока
Как и в асинхронных электродвигателях, вращение ротора в синхронных машинах достигается взаимодействием полей ротора и статора. Скорость вращения ротора таких электрических машин равна частоте магнитного поля, создаваемого обмотками статора.
Обмотка неподвижной части двигателя рассчитана на питание от трехфазного напряжения. К электромагнитам ротора подключается постоянное напряжение. Различают явнополюсные и неявнополюсные обмотки. В синхронных двигателях малой мощности используют постоянные магниты.
Запуск и разгон синхронной машины осуществляется в асинхронном режиме. Для этого на роторе двигателя имеется обмотка конструкции “беличья клетка”. Постоянное напряжение подается на электромагниты только после разгона до номинальной частоты асинхронного режима. Синхронные двигатели имеют следующие особенности:
- Постоянная скорость вращения при переменной нагрузке.
- Высокий к.п.д. и коэффициент мощности.
- Небольшая реактивная составляющая.
- Допустимость перегрузки.
К недостаткам синхронных электродвигателей относятся:
- Высокая цена, относительно сложная конструкция.
- Сложный пуск.
- Необходимость в источнике постоянного напряжения.
- Сложность регулировки скорости вращения и момента на валу.
Все недостатки электрических машин переменного тока можно исправить установкой устройства плавного пуска или частотного преобразователя. Обоснование выбора того или иного устройства обусловлено экономической целесообразностью и требуемыми характеристиками электропривода.
Универсальные двигатели
В отдельную группу выделяют универсальные электродвигатели, которые могут работать от сети переменного тока и от источников постоянного напряжения. Они используются в электроинструментах, бытовой технике, а также других маломощных устройствах. Конструкция такой электрической машины принципиально не отличатся от двигателя постоянного тока.
Главное отличие – конструкция магнитной системы и обмоток ротора. Магнитная система состоит из изолированных друг от друга секций для снижения магнитных потерь. Обмотка ротора такой машины поделена на 2 части. При питании от переменного тока напряжение подается только на ее половину.
Это делается в целях снижения радиопомех, улучшения условий коммутации.
К преимуществам таких машин относятся:
- Высокая скорость вращения. Универсальные электродвигатели развивают скорость до 10 000 об/мин и более.
- Питание от переменного и постоянного напряжения. Двигатели такого типа широко применяют для электроинструментов, имеющих дополнительные аккумуляторные батареи.
- Возможность регулирования скорости без использования дополнительных устройств.
Однако, такие электромашины имеют свои недостатки:
- Ограниченная мощность.
- Необходимость обслуживания коллекторного узла.
- Тяжелые условия коммутации при питании от переменного напряжения из-за наличия трансформаторной связи между обмотками.
- Электромагнитные помехи при подключении к сети переменного тока.
Каждый тип двигателя имеет свои достоинства и недостатки. Выбор электрической машины для привода любого оборудования делается исходя из условий эксплуатации, требуемой частоты вращения, экономической целесообразности, типа нагрузки и других параметров.
Источник: https://drives.ru/stati/ehlektricheskie-dvigateli/
Синхронный, асинхронный – какая разница?!
И. Станкевич
Обычно о том, какие электродвигатели стоят на том или ином оборудовании, его владельцы особенно не задумываются, но только до тех пор, пока они не выходят из строя. А уже первые «болезни» этих «скромных тружеников» вызывают коллапс необъятных потоков грузов. На склады России поступает много иностранного подъемно-транспортного оборудования, и читателям будет интересно узнать, какие существуют типы и исполнения электродвигателей, работающих в этих машинах и механизмах.
Электродвигатели – непременная составляющая подъемно-транспортного и автоматизированного оборудования: конвейеров, автоматизированных складов, штабелеров, упаковочных автоматов и иной складской техники.
Обычно эти агрегаты подбирают для своего оборудования сами изготовители, но все чаще бывает так, что покупатели и владельцы машин сами могут выбирать электрические силовые агрегаты для нужд своего предприятия в зависимости, например, от специфики условий работы отдельных его участков.
В некоторых случаях компании комплектуют электродвигателями одного типа технику на всех своих складах и предприятиях, чтобы за счет унификации процедур и запчастей сократить расходы на техобслуживание. Иногда электродвигатели выбирают по соображениям невысокой стоимости.
В складском и подъемно-транспортном оборудовании наиболее широко применяют электродвигатели пяти типов:
- электродвигатели постоянного тока с возбуждением от постоянного магнита;
- асинхронные электродвигатели переменного тока. Их применяют в оборудовании непрерывного цикла, например, в обычных конвейерах;
- серводвигатели (сервомоторы). Они работают в машинах, которые должны совершать точные движения, перемещать и позиционировать грузы на строго определенные места: в штабелерах, автоматических складских системах;
- линейные асинхронные двигатели. Используются в оборудовании, для которого важна прежде всего высокая скорость работы, например, в сортировочных машинах;
- мотор-ролики (или мотор-барабаны), т. е. ведущие герметичные ролики, внутри которых заключены небольшие электродвигатели и редукторы. Используются для привода конвейеров, работающих периодически. Раньше складское подъемно-транспортное оборудование оснащали электродвигателями постоянного тока с возбуждением от постоянных магнитов. В настоящее время машины и автоматы комплектуют асинхронными электродвигателями переменного тока, применение которых постоянно расширяется.
В чем преимущества асинхронных электродвигателей?
Асинхронные двигатели переменного тока проще и дешевле электродвигателей других типов, поэтому в настоящее время их применяют все чаще. При выборе асинхронного двигателя следует учитывать два фактора – к.п.д. преобразования энергии и тип исполнения агрегата.
К.п.д. В ряде стран законодательством установлена минимальная величина к.п.д. для электродвигателей приводов, однако многие производители изготавливают электродвигатели по более жестким стандартам Национальной ассоциации производителей электрооборудования США (NEMA). Если, выбирая электродвигатель, вы видите, что он соответствует стандарту NEMA Premium, то это гарантирует его высокий к.п.д., надежность и экономичность.
У электродвигателей обычного качества к.п.д. равен 7585%, у агрегатов высшего качества – 8595%. Как считают специалисты, агрегаты с высоким к.п.д. стоят намного дороже обычных, но если электродвигатель будет работать непрерывно, он окупится быстро. Кроме того, благодаря экономии энергии улучшается экологическая обстановка, на которую все больше обращают внимание в цивилизованных государствах.
Тип исполнения – важная характеристика при выборе электродвигателя. Существует пять основных исполнений асинхронных электродвигателей:
• ODP (Open drip proof) – «каплезащищенный электродвигатель открытого исполнения». Этот тип электродвигателей наиболее широко используют в промышленности. Они не оборудованы вентилятором и имеют проемы в корпусе, через которые внутрь может проникнуть грязь и влага, поэтому использовать такие электродвигатели рекомендуется только в закрытых помещениях;
• TEFC (Totally Enclosed Fan Cooled) – «закрытого типа с вентиляторным охлаждением». Эти двигатели оборудованы вентилятором, создающим поток воздуха через их корпус. Вентилятор герметизирован, и инородные частицы и жидкости не могут проникнуть в электродвигатель извне. Электродвигатели в исполнении TEFC часто применяют в конвейерах;
• TENV (Totally Enclosed Non-Ventilated Motor) – «закрытого типа без охлаждения». Эти электродвигатели также используются в подъемно-транспортном оборудовании складов, если есть внешний источник, создающий воздушный поток для охлаждения двигателя;
• TEBC (Totally Enclosed Blower-Cooled Motor) – «охлаждаемый обдувом». Эти двигатели комплектуют собственным вентилятором, но расположенным и управляемым снаружи. Электродвигатели типа TEBC обычно применяют в оборудовании высокой мощности: в подъемных кранах, лебедках и т. п. или в оборудовании, работающем с переменной скоростью, где электродвигатель иногда может работать с частотой вращения, близкой к нулю;
• EPFC (Explosion Proof Fan Cooled Motor) – «во взрывозащищенном исполнении с вентиляторным
охлаждением». Используются в условиях высокого содержания в воздухе горючих и взрывоопасных элементов, например, паров бензина, других нефтепродуктов, аммиака, угольной пыли и проч.
Возможности применения любого асинхронного электродвигателя расширяются благодаря использованию электропривода с частотным регулированием (VFD). Асинхронные электродвигатели традиционной конструкции работают с постоянной частотой.
Электропривод с частотным регулированием позволяет менять скорость двигателя и всей машины.
В складском подъемно-транспортном оборудовании электроприводы с частотным регулированием позволяют максимально увеличивать скорость в «пиковые» периоды работы и снижать в другое время, благодаря чему экономится энергия и средства.
Серводвигатели
Эти двигатели занимают свою особую нишу – они работают в оборудовании, где требуется точное регулирование положения и скорости движений. Эти устройства специально разработаны как электродвигатели с якорем малого диаметра, но развивающие высокий крутящий момент. Чем меньше якорь, тем меньше инерция и, следовательно, электродвигатель быстрее разгоняется, и машина работает быстрее.
Серводвигатели оснащают также системами управления по обратной связи: по сигналам тахометра, датчиков линейных перемещений и аналого-цифрового преобразователя (АЦП). Благодаря управлению по сигналам от этих приборов увеличивается точность движений и регулирования скорости машин.
Серводвигатели применяют в оборудовании и системах, где требуется высокая точность движений: в роботизированном оборудовании, штабелерах и подобных складских машинах.
Электродвигатели этого типа применяют также в оборудовании и системах, где необходима большая точность синхронизации – в машинах, выполняющих установку (позиционирование) грузов на стеллажах автоматизированных складов.
Линейные асинхронные электродвигатели
Линейные асинхронные электродвигатели – новинка в отрасли складского подъемно-транспортного оборудования. Они позволяют значительно увеличить скорость движений машин при замечательной их повторяемости и точности.
Линейный асинхронный двигатель генерирует магнитное поле, которое перемещает ползун (пластину) в двигателе.
Обычно ползун прикрепляется к объекту, который должен передвигаться магнитным полем: например, в сортировочных машинах ползун электродвигателя соединен с подвижным лотком распределителя.
В такой конструкции нет деталей, которые бы изнашивались. Линейные асинхронные электродвигатели обеспечивают точность движений до 0,0335 мм на 1 м перемещения, т. е. позволяют выполнять прецизионные работы. Насколько уникальна такая способность устройств, иллюстрирует тот факт, что толщина человеческого волоса составляет около 0,09 мм, т. е.
в три раза больше! Скорость работы линейных асинхронных электродвигателей очень высокая – до 5 м/с, а следовательно, длительность рабочих циклов у них небольшая и производительность на высочайшем уровне.
Скорость перемещения ползуна на разных отрезках в течение одного цикла можно менять, а можно задавать пошаговое перемещение – это очень полезное качество для некоторых автоматических машин.
Мотор-ролики
Линейные асинхронные электродвигатели – не единственная инновация в области электрических силовых агрегатов. В последнее время в конвейерах все шире стали применять мотор-ролики (MDR – Motor Driven Roller).
Еще два года назад на выставке оборудования по транспортировке материалов и логистике ProMat в Чикаго лишь несколько фирм представили конвейеры с приводом от мотор-роликов, зато в экспозиции в январе 2007 г.
в ассортименте почти каждой фирмы, предлагающей конвейеры, были модели с мотор-роликами.
В Соединенных Штатах конвейеры с приводом от мотор-роликов впервые использовала почтовая служба. Конструкция их проста. Внутри ведущего ролика устанавливается миниатюрный электродвигатель постоянного тока, работающий от напряжения 24 В, и редуктор. В обычных конвейерах один мотор-ролик приходится на 9 обычных роликов.
По словам специалистов, если конвейер перемещает грузы непрерывным потоком, привод от наружных электродвигателей более экономичен. Конвейеры с мотор-роликами рентабельны и используются в основном в тех случаях, когда надо накапливать поступающие грузы на конвейере, а затем перемещать их дальше либо когда требуется разделять поток грузов на группы и перемещать грузы группами.
У мотор-роликов целый «букет» преимуществ. Уровень шума от конвейеров, оснащенных мотор-роликами, значительно ниже, чем от обычных конвейеров. Они позволяют экономить энергию: не только благодаря более высокому к.п.д. мотор-роликов, но и потому, что конвейер работает только тогда, когда надо. Еще одно преимущество – более высокий уровень систем управления мотор-роликами.
В настоящее время выпускаются конвейеры с мотор-роликами, развивающие скорость до 90 м/мин, а если поток грузов уменьшился, можно снизить скорость до 30 м/мин, уменьшив таким образом износ деталей конвейера и энергопотребление. Наконец, мотор-ролик практически не нуждается в техобслуживании. Поскольку он работает лишь тогда, когда надо, его ресурс продляется на годы.
Когда электродвигатель выйдет из строя, мотор-ролик заменяют другим практически без остановки конвейера.
Источник: https://sitmag.ru/article/10079-sinhronniy-asinhronniy-kakaya-raznitsa
Электрический двигатель
Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения
В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.
Ротор может быть:
- короткозамкнутым;
- фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТКН которые повсеместно используются в крановых установках.
Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте).
По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление.
Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.
Принцип действия трехфазного асинхронного электродвигателя
При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует ЭДС), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.
Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется cкольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора.
Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.
Асинхронные двигатели нашли широкое применение во всех отраслях техники.
Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода.
Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.
Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.
Рис. 1Трёхфазный двухполюсный асинхронный двигатель.
На рис.1. показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.
Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока:
При частоте 50 Гц получаем для= 1, 2, 3 (двух-, четырех- и шести-полюсных машин) синхронные частоты вращения поля= 3000, 1500 и 1000 об/мин.
Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с «беличьей клеткой») или ротора с контактными кольцами (фазный ротор).
В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и закорачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.
У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу.
При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки).
После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.
Классификация электродвигателей
По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные имагнитоэлектрические. У двигателей первой группы вращающий момент создается вследствиегистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.
Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока(также существуют универсальные двигатели, которые могут питаться обоими видами тока).
Двигатели постоянного тока
Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками
Двигатель постоянного тока — электрический двигатель, питание которого осуществляетсяпостоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узлаподразделяется на:
- Коллекторные двигатели;
- Бесколлекторные двигатели.
Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.
По типу возбуждения коллекторные двигатели можно разделить на:
Двигатели с самовозбуждением делятся на:
- Двигатели с параллельным возбуждением (обмотка якоря включается параллельно обмотке возбуждения);
- Двигатели последовательного возбуждения (обмотка якоря включается последовательно обмотке возбуждения);
- Двигатели смешанного возбуждения (обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря).
Бесколлекторные двигатели(вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.
Двигатели переменного тока
Трехфазные асинхронные двигатели
Двигатель переменного тока — электрический двигатель, питание которого осуществляетсяпеременным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели.
Принципиальное различие состоит в том, что в синхронных машинах первая гармоникамагнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).
Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).
Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.
Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.
По количеству фаз двигатели переменного тока подразделяются на:
Универсальный коллекторный электродвигатель
Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном.
Для переменного тока номинальные напряжения 127, 220 В, для постоянного 110, 220 В. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 Гц не позволяют получить частоту вращения выше 3000 об/мин.
Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы).
При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.
Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока. Строго говоря, универсальный коллекторный двигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети.
Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.
Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин.
Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3—5 от номинального (против 5—10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.
Синхронный электродвигатель возвратно-поступательного движения
Принцип его работы заключается в том, что подвижная часть двигателя представляет собой постоянные магниты, закреплённые на штоке. Через неподвижные обмотки пропускается переменный ток и постоянные магниты под действием магнитного поля, создаваемого обмотками, перемещают шток возвратно-поступательным образом.
Источник: http://www.promenergo-nn.ru/elektricheskij-dvigatel/
Виды электродвигателей и их особенности
Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.
Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели. Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее.
Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения. При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.
Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.
Электродвигатели переменного тока
Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста.
Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д.
В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
Шаговые электродвигатели
Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
Линейные электродвигатели
Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
Синхронные двигатели
Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
Асинхронные двигатели
Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора.
Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.
Электродвигатели незаменимы в современном мире.
Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.
Источник: https://mirprivoda.ru/articles/vidy-elektrodvigateley
Электродвигатели ДАК, ДАТ, ДАО, КД
Модельный ряд продукции завода более 100 наименований продукции, постоянно обновляется и реконструируется. Предприятие в 2004 году было награждено дипломом с медалью за освоение и разработку новых типов двигателей (5-я Российская выставка «Изделия и технологии двойного назначения. Конверсия ОПК», г. Москва).
Важнейшая гарантия качества выпускаемой продукции – мощный производственно-технический комплекс. Механический, сборочный цеха, участки алюминиевого и пластмассового литья, гальванический, лакокрасочный, инструментальный, транспортный цеха, другие производственные участки, оснащенные современным оборудованием формируют основу предприятия, которая используется в целях производства основной продукции завода, а также оказания услуг заинтересованным организациям.
Электродвигатели ДАК
Асинхронные конденсаторные двигатели с распределительной обмоткой статора. Электродвигатели ДАК относятся к двигателям общепромышленного назначения. Применяются для нужд сельского хозяйства и в приводе электробытовых приборов (стиральных машин, соковыжималок, мясорубок, холодильных компрессоров), в системах вентиляции и охлаждения электронной аппаратуры.
По конструктивному исполнению ДАК — двигатели закрытого типа с естественным охлаждением. Монтируется двигатель фланцевым креплением или креплением на лапе, с одним или двумя вылетами вала.
Электродвигатели ДАТ
Асинхронные электрические двигатели переменного тока общепромышленного назначения. Преобразуют механическую энергию в электрическую. Используются в приводах компрессоров, насосов, деревообрабатывающих станков, аспирационных установок, вентиляторов, транспортеров. При выборе электродвигателя следует учитывать характеристики двигателя: мощность двигателя, частоту вращения, допустимую частоту пуска, уровень шума, способ монтажа.
Электрические двигатели серии ДАТ являются аналогами могилевских двигателей АИР.
Электродвигатели КД
Бытовые двигатели применяются для привода малогабаритных стиральных машин и центрифуг, соковыжималок, электромясорубок, и бытовых электроинструментов. Конструктивное исполнение: КД является двигателем открытого типа с естественным охлаждением. Монтаж двигателя выполняется фланцевым креплением, креплением на лапе с одним или двумя вылетами вала.
Микродвигатели ДАО
4-х полюсные, однофазные, малошумные, бесконденсаторные, на подшипниках скольжения предназначены для привода вентиляторов холодильного оборудования (витрин, шкафов), медицинского оборудования, тепловентиляторов и других машин с рабочей температурой от – 30°С до +50°С, для привода вентилятора бытовых холодильников в системе No-Frost. Режим работы двигателя продолжительный. Микродвигатели ДАО для промышленного холодильного оборудования мощностью 18Вт, 2600 об/мин, однофазные, двухполюсные, на подшипниках скольжения с установленным на кронштейне конденсатором.
Источник: https://www.xn----7sbfedebebzdrkbi5bmwkezhiw8r1a.xn--p1ai/category/krzed/
Асинхронные электродвигатели
Асинхронные двигатели с короткозамкнутым ротором составляют значительную часть семейства электрических двигателей переменного тока – преобразователей электромагнитной энергии от одно- или трехфазной сети в механическую энергию вращения вала двигателя.
Асинхронный электродвигатель с короткозамкнутым ротором содержит две основные части: неподвижную и вращающуюся. Неподвижная часть – статор – состоит из сердечника той или иной конфигурации, одной или нескольких обмоток, уложенных в пазы сердечника и конструктивных деталей: станины, крепежных деталей и т.п.
Подвижная часть – ротор – состоит из сердечника, короткозамкнутой обмотки, уложенной в его пазы, и конструктивных деталей, с помощью которых обеспечивается возможность вращения подвижной части относительно неподвижной: вала, опорных подшипников, крепежных деталей и т.п.
Конструкция таких двигателей наиболее проста из всех видов электрических машин.
Модельный ряд асинхронных электродвигателей
Сводная таблица основных характеристик серий однофазных и трехфазных асинхронных двигателей с короткозамкнутым ротором INNOVARI, INNORED:
Применение асинхронных двигателей
Предельная простота конструкции и дешевизна производства, а также появление гибких в программировании преобразователей частоты определили практически повсеместное применение асинхронных двигателей с короткозамкнутым ротором в промышленных электроприводах. Однофазные и трехфазные асинхронные двигатели находят применение:
- в металлургическом производстве: в автоматизированных приводах оборудования прокатных и волочильных станов, литейного производства;
- в металлообрабатывающем производстве: в автоматизированных приводах станков и обрабатывающих центров, подъёмно-крановом оборудовании, транспортерах и т.п.;
- в механосборочном производстве: в приводах манипуляторов, конвейеров, компрессорном оборудовании;
- в горнодобывающем производстве: в бурильном и экскаваторном оборудовании, транспортерах и др.;
- в насосном, вентиляционном, компрессорном оборудовании;
- в строительстве: в крановом оборудовании, оборудовании подготовки и транспортировки стройматериалов;
- в бытовой сфере: в ручном электроинструменте, прачечном, кухонном и офисном оборудовании.
Преимущества использования асинхронных двигателей
Привлекательными сторонами использования асинхронных двигателей с короткозамкнутым ротором являются:
- относительно высокие значения коэффициента мощности (cos φ) и коэффициента полезного действия (η);
- жесткая механическая характеристика (малы изменения скорости при колебаниях нагрузки);
- высокие значения пускового и максимально допустимого момента на валу двигателя.
При этом имеет место предельная простота конструкции и обусловленная этим надежность в эксплуатации. Основными элементами, определяющими отказы асинхронных короткозамкнутых двигателей, являются опорные подшипники вала двигателя и электрическая изоляция обмоток.
К основным факторам разрушения изоляции обмоток относится вибрация и перегрев обмоток, а также агрессивность внешней среды. Факторы разрушения подшипников: вибрации и перекос нагрузок, агрессивность внешней среды и паразитные токи через станину и вал двигателя, способствующие эрозии дорожек и тел качения.
Эти недостатки присущи всем видам электрических машин, но в случае асинхронных короткозамкнутых двигателей простота конструкции и обеспечение условий эксплуатации сводит их влияние к минимуму.
Принцип работы асинхронных электродвигателей с короткозамкнутым ротором
В пазах статора пространственно симметрично уложена трехфазная обмотка. Принцип работы асинхронного двигателя основан на свойстве таких обмоток, заключающемся в следующем: при питании фаз обмотки токами, сдвинутыми по времени на электрический угол, в градусах равный пространственному углу сдвига фаз обмотки, внутри статора возникает вращающееся магнитное поле. Частоту вращения такого поля принято называть синхронной.
За один период изменения тока частотой f поле поворачивается на электрический угол 360°, соответствующий двум полюсным делениям. Поэтому скорость вращения поля (синхронная скорость) nс = f/p (об/сек), где p – число пар полюсов обмотки. Вращающийся магнитный поток в пространстве статора пересекает витки обмотки ротора. При этом он индуцирует в обмотке ротора электродвижущую силу, под действием которой в обмотке начинает протекать ток.
Частота и сила тока зависит от разности скоростей синхронной nс и самого ротора n. Относительную разницу этих скоростей принято называть скольжением S=(nс–n)/nс. При номинальном режиме работы величина скольжения лежит в пределах 0,030,05. По мере увеличения нагрузки на валу двигателя скольжение возрастает, поскольку возрастает отставание ротора от магнитного потока.
Ток ротора так же создает свой вращающийся магнитный поток, который, векторно складываясь с потоком статора, создает внутреннее магнитное поле машины. В результате взаимодействия тока ротора с магнитным полем машины возникает вращающий электромагнитный момент, поддерживающий вращение ротора и приводящий в движение нагрузку электродвигателя.
При движении ротора с синхронной скоростью исчезнет индуцируемая электродвижущая сила и ток в обмотке ротора, исчезнет и вращающий момент. Таким образом, ротор всегда движется со скоростью, меньшей синхронной.
В однофазных асинхронных двигателях обмотка статора состоит из двух пространственно сдвинутых фаз и запитывается однофазным напряжением.
Для получения сдвига фаз токов в обмотках последовательно или параллельно одной из них включается фазосдвигающий элемент – чаще всего, конденсатор.
Однофазные асинхронные двигатели, как правило, имеют худшие по сравнению с трехфазными двигателями характеристики, однако, в ряде случаев, эти недостатки перекрываются преимуществами, возникающими при возможности питания от однофазной сети.
Обмотка, уложенная в пазах статора, может быть многополюсной. В этом случае переключение обмоток на разное число пар полюсов используется для дискретного регулирования скорости вращения электродвигателя.
Источник: https://rusautomation.ru/privodnaya-tehnika/asinhronnye-elektrodvigateli