Как определить начало конец обмотки электродвигателя

Начала и концы обмоток электродвигателей — простой способ определения — Ремонт220

В большинстве случаев, обмотки трехфазных асинхронных электродвигателей скоммутированы в нужное соединение (“звезда” или “треугольник”) внутри статора и выведены в клеммную коробку в виде трех проводов, на которые подается питающее напряжение ~380 В. Соединяться обмотки двигателя могут и в клеммной коробке: в этом случае все концы обмоток выводятся в коробку виде двух разделенных пучков по три провода (“начала” и “концы”).

Наконец, выводы обмоток могут быть промаркированы металлическими бирками (С1-С2-С3 – “начала”, С4-С5-С6 “концы” обмоток). Однако, в некоторых случаях попадаются электродвигатели, в клеммную коробку которых просто выведены шесть немаркированных “концов” обмоток, не разделенных на пучки. Причиной этому может быть утеря бирок с маркировкой вследствие небрежной эксплуатации электродвигателя.

В некоторых случаях, бывает, что после ремонта его обмоток – перемотки, в клеммную коробку двигателя выводят шесть совершенно одинаковых проводов одного цвета.

В этом случае, для правильного соединения. необходимо определить “начала” и “концы” обмоток электродвигателя. Для этого, сначала нужно “найти” обмотки, т. е. определить пары проводов отдельных фазных обмоток. Прозвонить пары можно любым тестером или при помощи контрольной лампы, после чего следует промаркировать найденные фазные обмотки.

Теперь нужно определить начало и конец найденных пар фазных обмоток, существуют несколько способов определения, наиболее распространенный и достаточно надежный способ – следующий:

Две любые “найденные” фазные обмотки, соединенные последовательно включают в сеть ~220 В, а к выводам третьей подключают контрольную лампу или вольтметр, с установленным пределом измерения до 100 В. Слабый накал лампы или отклонение стрелки вольтметра будет признаком, того, что две, последовательно включенные в сеть обмотки, соединены таким образом, что, «конец» одной обмотки соединен с «началом» другой.

Соответственно, полное отсутствие накала лампы или отклонения стрелки вольтметра – свидетельство отсутствия ЭДС в третьей обмотки, следовательно, последовательно включенные обмотки соединены своими “началами” или “концами”. Таким образом, определив “начала” и “концы” двух обмоток, выводы маркируются.

Теперь нужно определить “начало” и “конец” третьей обмотки, для этого ее соединяют последовательно с любой из обмоток, “начало” и “конец” которой уже определены и, подключив лампу или вольтметр к оставшейся обмотке, по аналогии предыдущего опыта находят “начало” и “конец”.

Определение начала и концов обмоток электродвигателя без внешнего питания

Источник: https://remont220.ru/stati/65-nachala-i-kontsy-obmotok-elektrodvigateley-prostoy-sposob-opredeleniya/

Определение начала и конца обмоток трехфазного электродвигателя

В данной статье мы постарались максимально подробно объяснить, как правильно определить необходимые выводы обмотки асинхронного трехфазного электродвигателя, в частности АИР, для дальнейшего правильного его подключения.

Определение пар выводов с помощью тестера

Пара выводов — это конец и начало одной обмотки трехфазного электродвигателя. Для определения пары начало/конец одной обмотки используют тестер, установленный на предел измерения сопротивления:

  1. Первый щуп тестера подсоединяют к одному из выводов
  2. Вторым поочередно касаются остальных проводов.
  3. Если на какой-то паре покажется целостность цепи – это и будет одна из фазных обмоток
  4. Аналогично выделяются все обмотки
  5. Каждую из обмоток помечают

Определение начала и конца одной обмотки

При  подаче напряжения на любую из обмоток статора, оно индуцируется в оставшиеся 2 обмотки.

Используя эту особенность, тестер и сеть низкого напряжения, можно определить начала и концы обмоток:

  1. Произвольно соединяются 2 вывода разных обмоток
  2. На оставшиеся концы обмоток подается низкое напряжение и проверяется напряжение на соединенных обмотках: (напряжение есть — значит соединенные провода — начало одной и конец другой обмотки. Напряжения нет — значит соединены 2 конца, либо 2 начала)
  3. Концы без напряжения условно помечаются как начала
  4. Повторяется опыт и соединяется уже найденное начало одной из обмоток с любым выводом на которое подавалось напряжение ранее. Теперь напряжение подается на оставшуюся обмотку.
  5. Поочередно, подобным образом, проверяются все обмотки.

Найдя начала и концы обмоток, можно приступать к подключению асинхронного электродвигателя по схемам «звезда» либо «треугольник».

Как видно из таблиц обмоточных данных электродвигателей серии АИР, большинство электродвигателей АИР предполагают подключение к сети 220/380 В. Соединив концы обмоток по схеме «треугольник» двигатель будет работать от питания 220 В, а по схеме «звезда» — от 380 В.

Маркировка концов обмотки

Как правило, выводы обмоток асинхронных электродвигателей АИР маркированы попарно и имеют такие обозначения:

Фаза 1: С1 (начало) С4 (конец)

Фаза 2: С2 (начало) С5 (конец)

Фаза 3: С3 (начало) С6 (конец)

Первоочередно определяют и выделяют каждую из пар обмоток электродвигателя. Но порой, для правильного подключения, необходимо определить концы и начала обмоток самостоятельно.

Для более подробного просмотра электрических параметров — переходите к интересующей Вас модели электродвигателя АИР.

Определение начала и конца обмоток электродвигателя обновлено: 17 февраля, 2020 автором: АИР Украины

Источник: https://xn--80aqy.com.ua/poleznoe/obmotka-asinhronnogo-elektrodvigatelya/

Схема подключения трёхфазного двигателя

Бывалому электрику ясна схема подключения магнитного пускателя. Понятно ему и как подключить асинхронный электродвигатель к трёхфазной сети. Но для домашнего мастера далёкого от электричества бывает сложным делом запустить дома станок, причем не имеет значения у него одна фаза или три В этой статье мы разберем как подключить трёхфазный асинхронный электродвигатель к трёхфазной сети переменного тока.

Схема соединения обмоток: звезда и треугольник

Начнем с двигателя, в нём, как известно есть обмотки, но так как он трёхфазный, то и обмотки обычно три (если двигатель односкоростной). Как и любую трёхфазную нагрузку их можно соединить либо звездой, либо треугольником. При подключении звездой — концы всех обмоток соединяют в одной точке, а в треугольнике соединяют конец первой, с началом второй, конец второй с началом третьей, конец третьей с началом первой обмотки.

На рис. 1 изображены эти схемы. На чертежах встречаются в двух вариантах, либо обмотки располагают, повторяя анатомически фигуры звезды и треугольника, либо в более привычном для электрическом схем виде, поэтому на рисунке представлены оба варианта. Цветными линиями условно показаны провода для подключения.

Рисунок 1 — Схемы подключения обмоток электродвигателя

Провода от обмоток электродвигателей выведены в клеммную коробку и закреплены на клеммниках. Эта клеммная коробка называется брно (или борно, а как её называете ВЫ?).

В зависимости от двигателя в брно может быть 3 или 6 проводов.

Если там шесть проводов (начало и конец каждой обмотки) — вы можете выбрать схему подключения для вашего случая и на шильдике указываются 2 номинальных напряжения (об этом поговорим ниже), если провода 3 — то обмотки соединены с завода по звезде или треугольнику, тогда на шильдике указывается 1 номинальное напряжение. Чтобы изменить схему подключения — нужно разбирать двигатель, искать места соединения обмоток, разъединять их и делать отводы в брно (см. рис. 3).

Рисунок 2 — клеммник электродвигателя: а — 6 проводов (возможно изменение схемы соединения обмоток); б – 3 провода на клеммнике. Рисунок 3 — Подключение дополнительных выводов непосредственно к обмотке электродвигателя

Схема подключения выбирается в зависимости от номинальных напряжений электродвигателя и напряжения в электросети, к которой его будут подключать.

Например, у нас есть трёхфазная электросеть с фазным напряжением в 220 вольт, а линейным — 380, стандартные величины для РФ. Нам нужно подключить электродвигатель, что выбрать звезду или треугольник? Осмотрим шильдик электродвигателя, на нем должны быть указаны номинальные напряжения для каждой из схем.

Рисунок 4 — шильдики электродвигателей: а) номинальные напряжения 220/380 для треугольника и звезды соответственно; б) то же самое, но на 380/660; в) без возможности схемы соединения обмоток, номинальное напряжение 380В.

Разберем обозначения двигателей представленные на рисунке 4 подробнее:

а) — подключается по звезде к сети 380/220 (самый распространенный случай) или подключается по треугольнику к сети 127/220 (довольно редкий вариант), либо к трёхфазным частотным преобразователям с однофазным входом на 220В; б) подключается к сети 380/220 только по схеме «треугольник», но возможен запуск с переходом со звезды на треугольник (для уменьшения пусковых токов при пуске двигатель включают по звезде и на обмотки поступает пониженное напряжение, после разгона обмотки переключают в «треугольник» и на них уже поступает номинальное напряжение); в) без возможности переключения обмоток, они уже соединены по схеме звезды и рассчитаны на подключение к 380В, для подключения, например, к однофазной сети такой двигатель необходимо вскрыть для вывода концов обмоток и соединения их в «треугольник»., как было показано на рис. 3 Рисунок 5 — различные варианты клеммников для 3 и 6 проводов

С напряжениями и схемами разобрались, идём дальше, чтобы понять, как собрать ту или иную схему. К шпилькам клеммников провода от начал и концов обмоток подключаются строго в определенном порядке, так, чтобы с помощью трёх перемычек можно (или двух перемычек) было собрать звезду или треугольник с минимальным количеством действий. Перемычки, конечно, зачастую стоят из куска провода, но с завода двигатели поставляются с небольшими шинками соответствующих размеров и формы, что мы рассмотрим далее.

Так чтобы была возможность легко и правильно соединить обмотки, их концы располагают следующим образом: начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй (вспомните схемы на рисунке 1).

Рисунок 6 – Расположение концов обмоток на шпильках клеммника и схемы соединения шпилек перемычками (в нижней части рисунка) для треугольника и звезды Рисунок 7 – На крышках брно многих двигателей есть обозначения соответствующих схем, как памятка (справа) Рисунок 8 — Фото положения перемычек для треугольника и звезды

Схема подключения

С выбором схемы соединения обмоток разобрались, идём дальше. В простейшем случае, двигатель может подключаться напрямую к автоматическому выключателю.

Рисунок 9 — Схема прямого пуска асинхронного двигателя

Но этот вариант не удобный и не надёжный, хотя бы потому что автоматический выключатель создан для защиты и аварийного выключения цепи, а не для её постоянного рабочего включения и выключения. Для этого есть специальный прибор, такой как контактор или магнитный пускатель.

Они бывают разными как по силе коммутируемого тока, так и по номинальному напряжению их катушки. Ниже будут приведены схемы для пускателей с катушкой на 220 вольт, схемы на 380 аналогичны, но один из проводов катушки следует соединить не с нулем, а со второй фазой.

Контактор – это электромагнитный коммутационный прибор. Работает, как и обычное реле: чтобы привести его контакты в движение нужно подать на катушку напряжение.

Рисунок 10 — Назначение элементов контактора, катушка обозначается буквами A1 и A2 (на рисунке она на 220В обратите внимание, где это обозначается), силовые контакты L1(1), L2(3), L3(5), T1(2), T2(4), T3(6), а блок контакты 13, 14 NO (normal open), если они нормально-разомкнутые или NC (normal closed), если нормально-замкнутые.

Пускатели и контакторы обычно включают через кнопочные посты, это одна или несколько кнопок без фиксации. В каждой кнопке есть две пары контактов — нормально-замкнутая и нормально-разомкнутая.

Рисунок 11 — Кнопочный пост

Рассмотрим первую самую простую схему. Здесь двигатель будет работать только пока нажата кнопка «ПУСК». Если вместо кнопки поставить тумблер, то двигатель будет вращаться пока тумблер включен — такое решение подходит для большей части применений.

Рисунок 12 —Нереверсивная схема магнитного пускателя без самоподхвата, здесь: QF — автоматический выключатель, КМ-1 (слева) – силовые контакты магнитного пускателя, КМ-1 (справа) — катушка пускателя

Но если вам нужно, чтобы двигатель запускался и останавливался от кнопок «ПУСК» и «СТОП», следует использовать схему с самоподхватом.

Рисунок 13 — Нереверсивная схема магнитного пускателя с самоподхватом, здесь: QF — автоматический выключатель, КМ-1 (слева) – силовые контакты магнитного пускателя, КМ-1 (справа) — катушка пускателя, КМ-1.1 — нормально-разомкнутый блок контакт пускателя

Принцип работы схемы:

Когда автоматический выключатель QF включен на силовых контактах контактора и цепи управления появляется напряжение. Через нормально-замкнутую кнопку «СТОП» подаётся напряжение на нормально-разомкнутую кнопку «ПУСК» и блок-контакт. При нажатии кнопки «ПУСК» подаётся напряжение на катушку, контактор срабатывает, замыкаются его силовые контакты, замыкается и блок контакт.

Когда кнопку пуск отпускают — контактор остаётся включенным, поскольку ток катушки течет через блок контакт КМ-1.1. Именно это и называется «самоподхват». Чтобы отключить двигатель — нужно разорвать цепь катушки, для этого нажимают на кнопку «Стоп».

Но далеко не во всех случаях достаточно вращения двигателя в одном направлении, есть ряд примеров, когда необходимо обеспечить реверс.

Для реверсирования трёхфазных асинхронных двигателей следует поменять местами две любые фазы (см. подключение цветных проводов на рис. 14).

Рисунок 14 — Реверсивная схема с самоподхватомТакую схему часто называют «реверсивная схема пускателя»

Фактически, реверсивная схема подключения трёхфазного двигателя– это две нереверсивных схемы. Разберем отличия.

Здесь добавлена блокировка на нормально-замкнутых контактах контакторов КМ-1.2 и КМ-2.2. Они подключаются в цепь катушки противоположного контактора (КМ2.2 в цепь катушки КМ-1 и наоборот), электрики называют это «защитой от дурака», она защищает от случайного включения контактора, отвечающего за движение в противоположную сторону (когда включен КМ-1 нельзя включать КМ-2 и наоборот).

Если включить оба контактора сразу — произойдет межфазное замыкание.

Второе отличие как раз с этим и связано. Обратите внимание, как подключены силовые контакты КМ-2, а именно на то, как подключен красный проводник. С помощью этого контактора и происходит смена чредования фаз в обмотках двигателя и, как следствие, вращение в другую сторону.

Для смены направления вращения нужно остановить двигатель кнопкой «СТОП» и снова запустить уже в другом направлении.

Соответственно для сборки такой схемы либо в контакторе должно быть две пары блок контактов (нормально-замкнутый и нормально-разомкнутый), либо устанавливать на такой контактор как был показан выше приставку с блок-контактами.

Рисунок 15 — Контактор и приставка с дополнительными контактами

Заключение

Встречаются и другие схемы, например, без самоподхвата, для подключения тельферов и грузоподъемных механизмов, с тепловыми реле и универсальными устройствами для защиты двигателя и рассмотреть их все в пределах одной статьи сложно, поэтому предлагаю поделиться опытом и обсудить эту тему в комментариях.

Источник: https://vk.com/@etm_company-shema-podkluchenie-trehfaznogo-dvigatelya

Трехфазный асинхронный двигатель

Дмитрий Левкин

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

ЭТО ИНТЕРЕСНО:  Как работает электролитический конденсатор

,

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°)

Вращающееся магнитное поле

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.

На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля.

Изменение тока в стержнях будет изменяться со временем.

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2

Источник: https://engineering-solutions.ru/motorcontrol/induction3ph/

Как подключить электродвигатель к однофазной и трехфазной сети: Схема Звезда, Треугольник

Подключение трехфазного электродвигателя АИР к трехфазной сети с напряжением 220/380В и 380/660 В — это упорядоченное, согласно схеме, соединение концов обмоток в клеммной коробке. От правильного монтажа напрямую зависит срок службы и эффективность оборудования.

https://www.youtube.com/watch?v=3V0zbYIOfZY

Выделяют три схемы подключения трехфазного электродвигателя:

  • «Звезда»
  • «Треугольник»
  • Комбинированное соединение

Также предусмотрено подключение асинхронного трехфазного электродвигателя к однофазной сети 220В при помощи конденсатора. Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке.

Как узнать, подключать Звездой или Треугольником?

У трехфазных двигателей АИР есть два номинальных напряжения: 220/380 в и 380/660В, которое указано на шильде. Это основной критерий выбора типа соединения асинхронных двигателей.

Схема подключения электродвигателя Напряжение
Звезда 380 В 660 В
Треугольник 220 В 380 В
  • Электродвигатели 220/380 — современные модели до 112 габарита — 7,5 кВт. Ранее выпускались до 315 габарита — до 132 кВт. Подключение к сети 220В треугольником, к 380В звездой.
  • Электродвигатели 380/660 — встречается в моделях, мощностью от 4 кВт. Схема для 380В — треугольник, для 660В — звезда.

«Звезда» предусматривает, что концы обмоток статора замыкаются в одной точке, называемой нулевой точкой или нейтралью, а начала подключаются своим фазам – L. Поэтому двигатели средней мощности принято запускать именно «звездой». Однако при этом невозможно достичь паспортной мощности электродвигателя.

Преимущества схемы подключения «Звезда»:

  • Плавный запуск
  • Более надежная работа двигателя
  • Допускается недлительная перегрузка

При подключении двигателя треугольником конец одной статорной обмотки последовательно соединяется с началом следующей. Однако подключение треугольником значительно увеличивает пусковые токи, что может привести к пробою изоляции; двигатель сильнее нагревается.

Преимущества схемы подключения «Треугольник»:

  • Рабочая мощность соответствует паспортной
  • Увеличенный крутящий момент
  • Улучшенное тяговое усилие

«Звезда-треугольник» (комбинированная)

В случае с мощными электромоторами (начиная с 5,5/3000) важно обеспечить плавный пуск без перегрузок и дальнейшую работу на максимальной мощности. Такие двигатели чаще соединяют по схеме звезда-треугольник. Она подходит только для моделей с пометкой (Δ/Y), которая свидетельствует о возможности соединения двумя способами.

Комбинированная схема подключения обезопасит мотор от высоких пусковых токов и обеспечит паспортную мощность двигателя. Практически выглядит так: электромотор запускается по схеме звезда, а набрав обороты переключается на схему треугольник, либо автоматически, либо с помощью дополнительных устройств. При этом возможны скачки тока.

Запуск посхеме «звезда / треугольник» подходит для моторов с большими маховымимассами, у которых при номинальной скорости сразу набрасывается нагрузка.

Скачать чертежи подключения звезда треугольник 380/660

Подключение двигателя к однофазной сети 220В через конденсатор

Для использования асинхронного электродвигателя от бытовой электрической сети 220В применяют фазосдвигающий конденсатор. Таким образом достигается мягкий запуск агрегата. Методы подключения конденсаторов к бытовой сети 220В:

  • с выключателем
  • напрямую, без выключателя
  • параллельное включение двух электролитов

Конденсатор для двигателя должен превышать его по напряжению как минимум в 1,5 раза. В противном случае возникнут скачки напряжения, что чревато поломками.

Расчет конденсатора для трехфазной сети

Правильный подбор конденсатора для подключения трехфазного двигателя к однофазной сети предполагает расчет емкости. Ее значение зависит от схемы подключения обмоток и других параметров.

Формула расчета емкости конденсатора для схемы «Звезда»

Формула расчета емкости конденсатора для схемы «Треугольник»

Где Емк — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В.

Проблемы с выбором и монтажом электродвигателя?

Менеджеры Слобожанского завода всегда готовы помочь купить асинхронный трехфазный электродвигатель любой мощности, разобраться с подключением и подобрать оптимальную схему под ваше оборудование и специфику применения.

Звоните и получите бесплатную консультацию в подключении электродвигателя от опытных специалистов СЛЭМЗ!

Источник: https://slemz.com.ua/news/vashno/shemy-podklyucheniya-elektrodvigatelya-zvezdoy-i-treugolnikom

Схема обмоток асинхронного трехфазного двигателя

страница » Электродвигатель асинхронный: схемы звезда треугольник

Электродвигатель асинхронный – электромеханическое оборудование, широко распространённое в различных сферах деятельности, а потому знакомое многим.

Между тем, даже учитывая тесную связь асинхронного электродвигателя с народом, редкий «сам себе электрик» способен раскрыть всю подноготную этих приборов.

Например, далеко не каждый «держатель пассатижей» может дать точный совет: как соединить обмотки электродвигателя «треугольником»? Или как ставить перемычки схемы соединения обмоток двигателя «звездой»? Попробуем раскрыть эти два простых и одновременно сложных вопроса.

Электродвигатель асинхронный: устройство

Как говаривал Антон Павлович Чехов:

Начать повторение темы электрических асинхронных двигателей логично детальным обзором конструкции. Двигатели стандартного исполнения построены на базе следующих конструктивных элементов:

  • алюминиевый корпус с элементами охлаждения и крепёжным шасси;
  • статор – три катушки, намотанные медным проводом на кольцевой основе внутри корпуса и размещённые противоположно одна другой под угловым радиусом 120º;
  • ротор – металлическая болванка, жёстко закреплённая на валу, вставляемая внутрь кольцевой основы статора;
  • подшипники упорные для вала ротора – передний и задний;
  • крышки корпуса – передняя и задняя, плюс крыльчатка для охлаждения;
  • БРНО – верхняя часть корпуса в виде небольшой прямоугольной ниши с крышкой, где размещается клеммник крепления выводов обмоток статора.

Структура мотора: 1 – БРНО, где размещается клеммник; 2 – вал ротора; 3 – часть общих статорных обмоток; 4 – крепёжное шасси; 5 – тело ротора; 6 – корпус алюминиевый с рёбрами охлаждения; 7 – крыльчатка пластиковая или алюминиевая

Вот, собственно, вся конструкция. Большая часть асинхронных электродвигателей являются прообразом именно такого исполнения. Правда, встречаются иногда экземпляры несколько иной конфигурации. Но это уже исключение из правил.

Обозначение и разводка статорных обмоток

Остаются в эксплуатации ещё достаточно большое число асинхронных электродвигателей, где обозначение статорных обмоток выполнено по устаревшему стандарту.

Таким стандартом предусматривалась маркировка символом «С» и добавлением к нему цифры — номера вывода обмотки, обозначающего её начало либо конец.

При этом цифры 1, 2, 3 – всегда относятся к началу, а цифры 4, 5, 6, соответственно, обозначают концы. Например, маркеры «С1» и «С4» обозначают начало и конец первой статорной обмотки.

Маркировка концевых частей проводников, выводимых на клеммник БРНО: А – устаревшее обозначение, но всё ещё встречающееся на практике; В – современное обозначение, традиционно присутствующее на маркерах проводников новых моторов

Современные стандарты изменили эту маркировку. Теперь отмеченные выше символы заменены другими, соответствующими международному образцу (U1, V1, W1 – начальные точки, U2, V2, W2 – концевые точки) и традиционно встречаются при работе с асинхронными движками нового поколения.

Проводники, исходящие от каждой из обмоток статора, выводятся в область клеммной коробки, что находится на корпусе электродвигателя и подключаются к индивидуальной клемме.

В общей сложности количество индивидуальных клемм равно числу выведенных начальных и конечных проводов общей намотки. Обычно это 6 проводников и такое же число клемм.

Таким выглядит клеммник движка стандартной конфигурации. Шесть выводов соединяются латунными (медными) перемычками перед подключением мотора под соответствующее напряжение

Между тем, встречаются также вариации развода проводников (редко и обычно на старых моторах), когда в область БРНО выведены 3 провода и присутствуют только 3 клеммы.

Как подключать «звезду» и «треугольник»?

Подключение асинхронного электродвигателя с выведенными на клеммную коробку шестью проводниками, выполняется стандартной методикой с помощью перемычек.

Размещая должным образом перемычки между индивидуальными клеммами, легко и просто установить необходимую схемную конфигурацию.

Так, чтобы создать интерфейс для подключения «звездой», следует начальные проводники обмоток (U1, V1, W1) оставить на индивидуальных клеммах одиночными, а клеммы концевых проводников (U2, V2, W3) соединить между собой перемычками.

Схема соединения «звезда». Отличается высокой потребностью линейного напряжения. Даёт плавный ход ротора в режиме запуска

Если же потребуется создать схему соединения «треугольник», вариант размещения перемычек изменяется. Для соединения статорных обмоток треугольником нужно соединить начальные и концевые проводники обмоток по следующей схеме:

  • начальная U1 – концевая W2
  • начальная V1 – концевая U2
  • начальная W1 – концевая V2

Схема соединения «треугольник». Отличительная черта – высокие пусковые токи. Поэтому зачастую моторы по этой схеме предварительно запускаются на «звезде» с последующим переводом в рабочий режим

Подключение для обеих схем, конечно же, предполагается в трёхфазную сеть с напряжением 380 вольт. Особой разницы при выборе того или иного схемного варианта нет.

Однако следует учитывать большую потребность в линейном напряжении для схемы «звезда». Эту разницу, собственно, показывает маркировка «220/380» на технической пластине моторов.

Вариант последовательного соединения «звезда-треугольник» в рабочем режиме видится оптимальным пусковым методом 3-фазного асинхронного электродвигателя переменного тока. Этот вариант часто используется для плавного пуска мотора при малых начальных токах.

Первоначально подключение организуется по схеме «звезды». Затем, через некоторый промежуток времени, моментальным переключением выполняется соединение на «треугольник».

Подключение с учётом технической информации

Каждый асинхронный электродвигатель обязательно оснащается металлической пластиной, которая закреплена на боковине корпуса.

Такая пластина является своего рода панелью-идентификатором оборудования. Здесь размещается вся необходимая информация, требуемая для корректной установки изделия в сеть переменного тока.

Техническая пластина на боковине корпуса движка. Здесь отмечаются все важные параметры, требуемые для обеспечения нормальной работы электродвигателя

Этими сведениями не следует пренебрегать, включая мотор в цепь питания электрическим током. Нарушения условий, отмеченных на информационной пластине – это всегда первые причины выхода моторов из строя.

Что указывается на технической пластине асинхронного электродвигателя?

  1. Тип мотора (в данном случае – асинхронный).
  2. Число фаз и рабочая частота (3Ф / 50 Гц).
  3. Схема включения обмоток и напряжение (треугольник/звезда, 220/380).
  4. Рабочий ток (на «треугольнике» / на «звезде»)
  5. Мощность и число оборотов (кВт / об. мин).
  6. КПД и COS φ (% / коэффициент).
  7. Режим и класс изоляции (S1 – S10 / А, В, F, H).
  8. Производитель и год выпуска.

Обращаясь к технической пластине, электрик уже предварительно знает на каких условиях допустимо включать мотор в сеть.

С точки зрения подключения «звездой» или «треугольником», как правило, существующая информация даёт электрику знать, что в сеть 220В корректно подключение «треугольником», а на линию 380В асинхронный электродвигатель следует включать «звездой».

Испытывать мотор либо эксплуатировать следует только при условии разводки через защитный автоматический выключатель. При этом внедряемый в цепь асинхронного электродвигателя автомат следует корректно подбирать по току отсечки.

Трёхфазный асинхронный электродвигатель в сети 220В

Теоретически и практически тоже, асинхронный электродвигатель, рассчитанный на подключение к сети через три фазы, может работать в однофазной сети 220В.

Как правило, этот вариант актуален лишь для моторов мощностью не выше 1,5 кВт. Объясняется сие ограничение банальным дефицитом ёмкости дополнительного конденсатора. На большие мощности требуется ёмкость под высокие напряжения, измеряемая сотнями мкФ.

Применяя конденсатор, можно организовать работу трёхфазного двигателя в сети 220 вольт. Однако при этом теряется практически половина полезной мощности. Уровень КПД снижается до 25-30%

Действительно, самый простой способ запуска трёхфазного асинхронного электродвигателя в однофазной сети 220-230В, это исполнение соединения через так называемый пусковой конденсатор.

То есть из трёх существующих клемм две объединяются в одну включением между ними конденсатора. Образованные таким образом две сетевых клеммы присоединяются к сети 220В.

Переключением сетевого провода на клеммах с подключенным конденсатором можно изменять направление вращения вала мотора.

Включением в трёхфазный клеммник конденсатора, схема подключения трансформируется в двухфазную. Но для чёткой работоспособности двигателя требуется мощный конденсатор

Номинальная ёмкость конденсатора рассчитывается по формулам:

Сзв = 2800 * I / U

C тр = 4800 * I / U

где: C – искомая ёмкость; I – пусковой ток; U – напряжение.

Однако простота требует жертв. Так и здесь. При подходе к решению задачи пуска с помощью конденсаторов отмечается существенная потеря мощности мотора.

Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости (50-100 мкФ) с рабочим напряжением не менее 400-450В. Но даже в этом случае удаётся набрать мощность не более 50% от номинала.

Поскольку подобные решения используются чаще всего для асинхронных электродвигателей, которые предполагается запускать и отключать с частой периодичностью, логично применять схему, несколько доработанную по сравнению с традиционным упрощённым вариантом.

Схема для организации работы в сети 220 вольт с учётом частых включений и отключений. Применение нескольких конденсаторов позволяет в какой-то степени компенсировать потери мощности

Минимум потерь мощности даёт схема включения «треугольником» в отличие от схемы «звезды». Собственно, на этот вариант указывает и техническая информация, что размещается на технических пластинах асинхронных движков.

Как правило, на бирке именно схема «треугольника» соответствует рабочему напряжению 220В. Поэтому на случай выбора способа соединения, прежде всего, следует взглянуть на табличку технических параметров.

Нестандартные клеммники БРНО

Изредка встречаются конструкции асинхронных электродвигателей, где БРНО содержит клеммник на 3 вывода. Для таких моторов применяется схема разводки внутреннего исполнения.

То есть, та же «звезда» либо «треугольник» схематично выстраиваются соединениями непосредственно в области расположения статорных обмоток, куда доступ затруднён.

Вид нестандартного клеммника, какие могут встречаться на практике. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине

Источник: http://crast.ru/instrumenty/shema-obmotok-asinhronnogo-trehfaznogo-dvigatelja

Определение начала и конца обмоток электродвигателя

Здравствуйте, дорогие посетители и постоянные читатели сайта «Заметки электрика».

ЭТО ИНТЕРЕСНО:  Что такое резистор и Реостат

Продолжаю серию статей из раздела «Электродвигатели». В прошлых статьях я рассказывал Вам про устройство асинхронного двигателя, соединение в звезду и треугольник его обмоток, провел эксперимент подключения трехфазного двигателя в однофазную сеть.

Бывают ситуации, когда Вы подходите к двигателю с целью подключить его в сеть, а в клеммной колодке находятся 6 проводов, совершенно без бирочек и маркировки.

Что делать в такой ситуации? 

Делается это не очень трудно. В качестве примера я покажу Вам наглядно как определить начало и конец обмоток электродвигателя АИР71А4.

 Шаг 1

Самым первым шагом в определении начала и конца обмоток асинхронного двигателя является написание бирочек (кембриков). Для этого воспользуемся трубкой ПВХ диаметром 5 (мм) и маркером.

Нарезаем из трубки ПВХ шесть отрезков одинаковой длины и подписываем их маркером.

Про маркировку обмоток трехфазного асинхронного двигателя я Вам рассказывал в статье про соединение звездой и треугольником. Кто забыл, то переходите по ссылке и читайте.

Вот что получилось.

 Шаг 2

Вы уже знаете, что обмотка статора асинхронного двигателя состоит из 3 обмоток, сдвинутых относительно друг друга на 120 электрических градуса. Так вот вторым шагом в определении начала и конца обмоток асинхронного двигателя  является определение принадлежности всех шести выводов к соответствующим обмоткам.

Как это делается?

Можно воспользоваться обычным омметром, но я предпочитаю использовать цифровой мультиметр. Кстати, скоро в свет выйдет интересная и подробная статья о том, как пользоваться мультиметром при проведении различных видов электрических измерений.

Чтобы не пропустить выход новых статей на сайте, Вам необходимо подписаться на получение новостей в конце статьи или в правой колонке сайта.

Итак, с помощью мультиметра определяем первую обмотку. Переключатель режима работы  мультиметра ставим в положение 200 (Ом).

Одним щупом встаем на любой из шести проводников. Вторым ищем его конец. Как только попадаем на искомый проводник, показания мультиметра покажут нам значение отличное от нуля. В моем примере это 14,7 (Ом).

Это и есть первая обмотка статора нашего электродвигателя. Одеваем на нее бирки U1 и U2 в произвольном порядке.

Аналогично продолжаем искать остальные две обмотки.

На найденные обмотки одеваем бирочки (кембрики), соответственно, V1, V2 и W1, W2.

В итоге получаем шесть проводов с надетыми на них бирочками (кембриками) в произвольной форме.

Шаг 3

Чтобы перейти к третьему шагу определения начала и концов обмоток трехфазного электродвигателя необходимо вкратце вспомнить теорию электротехники.

Кстати, кое-что Вы уже можете почитать в разделе «Электротехника». Правда этот раздел еще не наполнен статьями, все руки до него не доходят. Также можете почитать мой отзыв про курс электротехники от Михаила Ванюшина. Я его приобрел в свой архив и совсем не пожалел.

Итак, две обмотки, находящиеся на одном сердечнике, можно подключить либо согласовано, либо встречно.

При согласованном включении двух обмоток возникнет электродвижущая сила ЭДС, состоящая из суммы ЭДС первой и второй обмоток. Таким образом, в этих обмотках возникает процесс электромагнитной индукции, который наводит в рядом расположенной обмотке ЭДС, т.е. напряжение.

Если же две обмотки подключить встречно, то сумма ЭДС этих двух обмоток будет равна нулю, т.к. ЭДС каждой обмотки будут направлены друг на друга, и тем самым компенсируют друг друга. Поэтому в рядом расположенной обмотке ЭДС не наведется или наведется, но очень малой величины.

Перейдем к практике.

Берем первую катушку (U1и U2) и соединяем ее со второй (V1 и V2) следующим образом. Напоминаю, что эти обозначения у нас условные.

Эта же схема на моем примере.

На вывод U1 и V2 подаем переменное напряжение порядка 100 (В). Можно подать напряжение и 220 (В), но я ограничился 100 (В).

После этого с помощью вольтметра или мультиметра производим измерение переменного напряжения на выводах W1 и W2.

Если мультиметр покажет некоторое значение напряжения, то первая и вторая обмотки включены согласовано. Если напряжение на выводах будет равняться нулю или иметь совсем маленькое значение, то значит обмотки включены встречно.

Смотрим, что получилось в нашем случае.

Замеряю напряжения на выводах W1 и W2. Получаю значение около 0,15 (В). Это очень маленькое значение, поэтому я делаю вывод, что обмотки я подключил встречно. Поэтому на второй обмотке я меняю местами бирочки V1 и V2 и снова провожу измерение.

После замены на выводах W1 и W2 я измерил напряжение порядка 6,8 (В). Это уже что-то похожее на правду.

Делаю вывод, что первая (U1 и U2) и вторая (V1 и V2) обмотки подключены согласовано, а значит, данная маркировка их начал и концов верна.

Осталось дело за малым – это найти начало и конец у третьей обмотки (W1 и W2). Все делаем аналогично, только подключаем их согласно схемы, приведенной ниже.

Измерение переменного напряжения проводим на выводах V1 и V2.

Получилось напряжение 6,8 (В). Значит маркировка начала и конца третьей обмотки верна.

 Шаг 4

После определения начала и конца обмоток трехфазного асинхронного двигателя необходимо проверить себя. Для этого соединяем звездой или треугольником обмотки в зависимости от типа двигателя и напряжения сети. В нашем случае обмотки двигателя я соединил треугольником.

Подаю питающее трехфазное напряжение на обмотки – двигатель работает.

Можно сделать вывод, что начала и концы обмоток двигателя мы нашли правильно.

Существует еще несколько способов определения начала и концов обмоток электродвигателя, но лично я пользуюсь именно этим.

Для наглядности предлагаю посмотреть видео:

Источник: http://zametkielectrika.ru/opredelenie-nachala-i-konca-obmotok-elektrodvigatelya/

Определение выводов обмоток

17 июля 2013.
Категория: Электротехника.

Перед тем как выполнять соединение в звезду, треугольник, зигзаг, всегда приходится решать две задачи: определять, какие выводы принадлежат той или иной обмотке; определять, какой из них является началом обмотки, какой концом.

Определение принадлежности выводов к одной обмотке

На рисунке 1, а условно изображены обмотки трехфазного электродвигателя, выведенные на зажимы щитка 1. На щитке может не оказаться надписей, например 1Н, 2Н, 3Н (начала) и 1К, 2К и 3К (концы), а если надписи и есть, то, во всяком случае, полезно убедиться в том, что они правильны.

Рисунок 1. Определение выводов обмоток трехфазного двигателя.

Для этого вначале проверяют изоляцию каждого вывода относительно земли (рисунок 1, а), пользуясь мегаомметром 2. Один провод 3 от мегаомметра заземляют (присоединяют к корпусу электродвигателя), другой 4 поочередно присоединяют к каждому из шести зажимов щитка и, вращая рукоятку мегаомметра, убеждаются в исправности изоляции.

Затем провод 3 присоединяют к одному из выводов на щитке, например к выводу 2К (рисунок 1, б), и, вращая рукоятку мегаомметра, поочередно прикасаются к остальным пяти зажимам проводом 4.

В нашем примере на зажимах 1Н, 3Н, 1К и 3К мегаомметр покажет «изоляцию» и только в одном случае, а именно при присоединении к зажиму 2Н,– «короткое». Отсюда следует, что зажимы 2К и 2Н принадлежат одной и той же обмотке.

Так проверяют каждый вывод относительно всех остальных, и в итоге должны обнаружиться три пары зажимов, принадлежащих соответствующим обмоткам.

Если начала и концы обмоток выводятся на щиток электродвигателя, то расположение зажимов таково, что при установке вертикальных перемычек (рисунок 1, в) получается соединение в треугольник. Если установить перемычки горизонтально (рисунок 1, г), электродвигатель будет соединен в звезду.

Если сопротивление обмоток невелико, то аналогичную проверку можно выполнить с помощью лампочки и батарейки, тестера, звонка, от сети через лампочку и тому подобного.

Предупреждение.

Нужно иметь в виду следующее: а) обмотки электрических машин обладают большой индуктивностью, поэтому при испытании их даже от батарейки при ее отсоединении от обмотки может возникнуть импульс в несколько десятков вольт; б) обмотки имеют общий стальной магнитопровод, то есть представляют собой своеобразный трансформатор.

Значит, при работе с одной обмоткой не исключено появление напряжения на выводах других обмоток. При испытании постоянным током это будут импульсы, которые возникнут при включении и отключении, при испытании переменным током – напряжение переменного тока. Одним словом, прикасаясь к зажимам, нужно провод держать за изоляцию.

Определение выводов трансформаторов

Определять принадлежность выводов у обмоток трансформаторов нужно с помощью мегаомметра или другого источника постоянного тока. Переменный ток для этих целей применять ОПАСНО.

Почему? Потому что первичные и вторичные обмотки трансформаторов имеют разные числа витков, из-за чего в процессе испытания на выводах трансформатора может появиться опасное напряжение.

Пусть, например, испытывается трансформатор на напряжение 6600 / 220 В, коэффициент трансформации которого равен 30 (6600 / 220 = 30). Допустим, на вторичную обмотку через лампочку подано 40 В. На выводах первичной обмотки при этом окажется 40 × 30 = 1200 В.

Начала и концы обмоток

Обмотки могут навиваться в двух направлениях: по часовой стрелке и против часовой стрелки 1. Как они фактически навиты, не видно, но тем не менее при помощи простого опыта легко определить, какие выводы являются их началами, какие – концами.

Допустим, что обмотки навиты в одном, безразлично каком, направлении (рисунок 2, а). Переменный магнитный поток Ф индуктирует в каждой из них электродвижущие силы (э. д. с.) E1 и E2, пропорциональные соответственно числам витков.

Так как направление намотки одинаково, то нетрудно себе представить, что одна обмотка как бы является продолжением другой и, стало быть, в каждый момент направления э. д. с. в них совпадают.

Это значит, что верхние их выводы A и a или нижние X и x имеют потенциал одного и того же знака – положительный или отрицательный, что и обозначено на рисунке 2, а знаками + и –.

Рисунок 2. Определение взаимного направления намотки двух обмоток, расположенных на одном стержне.

Ясно, что при различном направлении намотки (рисунок 2, б) направления э. д. с. E1 и E2 прямо противоположны, то есть сдвинуты на 180°.

Отсюда следует практический вывод. Чтобы определить взаимное направление намотки двух обмоток, их соединяют между собой как показано на рисунке 2, в, а к свободным концам подводят переменное напряжение. Для предотвращения чрезмерно большого тока в схему введено добавочное сопротивление R. Измеряют общее напряжение UAa между выводами A и a, напряжение UAX на одной обмотке и напряжение на другой обмотке Uax и сравнивают их.

Рисунок 3. Меры безопасности при разметке зажимов.

Если UAa равно разности UAX и Uax, то обмотки навиты в одном направлении в их э. д. с. изображаются векторной диаграммой на рисунке 2, г, например UAa = 40 В, UAX = 100 В, Uax = 60 В.

Если UAa равно сумме UAX н Uax, то обмотки навиты в разных направлениях, например UAX = 100 В; Uax = 60 В; UAa = 160 В. Векторная диаграмма дана на рисунке 2, д.

Обращается внимание на необходимость подводить напряжение к свободным выводам обеих обмоток (A и a, если X и x соединены; X и x, если A и a соединены; A и X, если a и x соединены; a и x, если A и X соединены и так далее) и на недопустимость подводить напряжение только к одной обмотке 2.

Почему? Потому что, подводя напряжение к одной обмотке, мы рискуем получить на других обмотках высокое напряжение. Рассмотрим пример.

На рисунке 3 показано распределение напряжений при определении направления обмоток трансформатора с обмоткой низшего напряжения из 50 витков и с обмоткой высшего напряжения из 1500 витков.

Если напряжение 100 В подведено к свободным выводам, а обмотки навиты в одном направлении (рисунок 3, а), то при испытании напряжения будут равны примерно 3,3; 96,7 и 100 В. Если обмотки навиты в разных направлениях, напряжения будут примерно 3,4; 103,4 и 100 В (рисунок 3, б).

Если же напряжение 100 В подведено к обмотке низшего напряжения (рисунок 3, в), то между выводами обмотки высшего напряжения получится 3000 В, что, безусловно, опасно.

На рисунке 4, а показана схема определения взаимного направления обмоток с помощью постоянного тока. К обмотке, имеющей больше витков (по соображениям безопасности), подводят напряжение 2 – 12 В от батареи. При включении рубильника Р следят за отклонениями гальванометров Г1 и Г2. Если их стрелки отклоняются в одну и ту же сторону, значит, направление обмоток одинаково. Отклонения в разные стороны указывают на разные направления обмоток.

Рисунок 4. Определение взаимного направления обмоток с помощью постоянного тока.

Постоянным током удобно пользоваться для определения начал и концов обмоток электродвигателей. С этой целью предварительно определяют принадлежность выводов к той или другой обмотке.

Затем выводы одной обмотки условно обозначают 1Н (начало) и 1К (конец) и присоединяют к ним через рубильник Р источник постоянного тока напряжением 2 В, как показано на рисунке 4, б. К выводам другой обмотки присоединяют милливольтметр mV.

Если к условному началу 1Н присоединен плюс источника тока и если стрелка милливольтметра при отключении рубильника отклоняется вправо, то вывод обмотки, к которому присоединен зажим милливольтметра » + «, также является ее началом и должен быть обозначен 2Н.

Однако если к условному началу 1Н присоединен плюс источника постоянного тока, но стрелка гальванометра при отключении рубильника отклоняется влево, то вывод обмотки, к которому присоединен зажим милливольтметра «+», является ее концом и должен быть обозначен 2К. Этот случай на рисунке 4, б не рассматривается.

Определив начало 2Н и конец 2К второй обмотки, тем же способом определяют начало 3Н и конец 3К.

1 Иногда говорят «левая намотка» и «правая намотка».
2 На специальные испытания, проводимые персоналом электролабораторий, эти ограничения не распространяются.

Источник: https://www.electromechanics.ru/electrical-engineering/510-determination-of-the-findings-of-the-windings.html

Проверка обмоток электродвигателя. Неисправности и методы проверок

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:

  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

ЭТО ИНТЕРЕСНО:  Как выбрать резисторы

Проверка обмоток электродвигателя 3-фазного мотора. Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

Возможные неисправности

Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

  • Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
  • Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
  • Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
  • Пробиванием изоляции между корпусом статора и обмоткой.

Проверка обмоток электродвигателя на обрыв

Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

Проверка обмоток электродвигателя на короткое замыкание

При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

Проверка обмоток электродвигателя на межвитковое замыкание

Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

Проверка обмоток электродвигателя способом омметра

Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

Измерение тока в каждой фазе

Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

Проверка обмоток электродвигателя переменным током

Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

Проверка обмоток электродвигателя шариком

Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

Определение полярности обмоток электрическим методом

У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.

Чтобы определить маркировку, применяют некоторые способы:

  • Слабым источником постоянного тока и амперметром.
  • Понижающим трансформатором и вольтметром.

Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

Определение маркировки выводов обмотки амперметром и батарейкой

На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

Определение полярности вольтметром и понижающим трансформатором

Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).

Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/proverka-obmotok-elektrodvigatelia/

Как найти начало и конец обмотки электродвигателя — совет специалиста

В бытовой и промышленной технике, как правило, применяются асинхронные электродвигатели, рассчитанные на работу в сетях переменного тока.

Поскольку условия их работы предполагают постоянные механические нагрузки, воздействие электромагнитных полей, а порой и агрессивной внешней среды, статоры и роторы таких двигателей со временем неизбежно выходят из строя.

Диагностику неисправностей начинают с электрических цепей, поэтому важно знать, как найти начало и конец обмотки электродвигателя.

Теоретический метод

Большинство достаточно качественных электромоторов имеет на корпусе гравировку или бирку, указывающую фирму-изготовителя, код модели и номер партии. Зная эти данные, нетрудно отыскать паспорт детали, в котором, помимо прочего, содержатся чертежи и принципиальные схемы двигателя.

После разборки детали достаточно будет сопоставить расположение контактов и/или цвета проводов с номинальными, чтобы понять, к каким обмоткам они относятся. При этом важно учесть характер соединения обмоток. В сетях с малым напряжением (127/220 В) обычно применяется принцип треугольника, в промышленных сетях (220/380 В) — принцип звезды.

Поиск трансформации

На практике отыскать концы определённой обмотки можно, включив её в сеть и измерив параметры. Для этого достаточно выполнить следующие действия:

  1. К одной из фаз подключают вольтметр или лампу накаливания.
  2. Другие фазы соединяют последовательно.
  3. На последовательное соединённые фазы подают переменный ток.

Отклонение стрелки вольтметра или свечение лампы (даже незначительное) укажет на наличие в контрольной обмотке ЭДС. Это в свою очередь значит, что условное начало одной из замкнутых фаз соединено с условным концом второй. В противном случае ЭДС не возникнет.

Подбор фаз

Этот метод используют преимущественно для проверки маломощных моторов (до 5 кВт). Он предполагает следующую последовательность операций:

  1. Фазы произвольно соединяют в звезду, то есть сводят по одному концу от фазы в две общие точки.
  2. Двигатель устанавливают в корпус и включают в сеть.
  3. Анализируют характер роботы мотора: тихий ход означает, что сборка выполнена правильно, а гул свидетельствует о неправильном соединении фаз.

Если нужна коррекция подключения, фазы поочередно «переворачивают», то есть по одной подключают в обратной последовательности, пока работа двигателя не станет нормальной. Не забудьте пометить начальные и конечные выводы обмоток соответствующими бирками или цветами — это поможет при следующем обслуживании или ремонте двигателя.

Даже базовых знаний электротехники достаточно, чтобы отыскать концы фаз двигателя, особенно если у вас есть необходимые инструменты и материалы. Главное — не забывайте о технике безопасности.

Источник: https://elektro.guru/izmereniya-i-raschet/kak-nayti-nachalo-i-konec-obmotki-elektrodvigatelya.html

Как определить начало и конец обмотки в двигателе

В этой статье я расскажу способ, как определить начало и конец обмотки в асинхронном трёхфазном двигателе.

Когда вам может потребоваться данный материал? Только в том случае, если у вас имеется в коробке брно шесть проводов одинакового цвета и на них нет никаких обозначений. Или ваш двигатель был соединен треугольником, а вы хотите получить возможность соединить его звездой. Как это сделать я писал здесь. Чтобы проще было объяснять материал, сначала пройдемся по принятым маркировкам выводов обмоток двигателей.

Выводы асинхронного двигателя. Маркировка выводов асинхронного двигателя

Встречаются различные маркировки выводов обмоток двигателя. Отечественная маркировка от С1 до С6 и международная, которую вы видите на рисунке.

В наше время встречаются обе маркировки, но для «обучения» мы будем применять новые обозначения, как более наглядные. Ранее, я уже говорил, что начало и конец обмоток понятия абсолютно условные, главное условие, которое играет важную роль это такое соединение обмоток, когда магнитные потоки не направлены встречно. Если два одинаковых потока направить встречно, они как бы уничтожают друг друга.

Нам же надо получить согласованное направление магнитных потоков. В двигателе находятся три обмотки. Грубо говоря, двигатель, это трансформатор с тремя обмотками и сердечником в виде статора. Таким образом, обмотки в двигателе связывает магнитный поток, который протекает по статору, а его создает ток, который протекает по обмоткам.

Ротор – это лишь приятная «вкусняшка», наличие которой позволяет получить из электрической энергии механическую.

Начало и конец обмоток электродвигателя

Ну что ж, приступим. Прежде, чем начинать процедуру, вам нужно подготовиться. Для этого вам потребуются:

  • мультиметр или лампа накаливания (предпочтительнее, конечно же, мультиметр)
  • маркеры для проводов
  • знание техники безопасности, поскольку вы будете работать с опасным напряжением
  • обычная сетевая вилка с проводом
  • что-то, чем вы будете соединять провода, когда приступите к поиску выводов обмотки
  • ну и материал данной статьи.

В качестве маркеров можно использовать кембрики, бумагу с резинками, цветную изоленту и обычные перманентные маркеры, в общем, что угодно, что позволит вам промаркировать выводы. Вам потребуется шесть маркеров, на которых вы напишете обозначения начала и концов обмоток.

Первым делом нужно определить обмотки двигателя

Названия обмоток тоже абсолютно условны. Хотя, если принимать в расчёт такое понятие, как фазировка, то правильное включение дает точное представление о том, в какую сторону будет вращаться вал двигателя и не более того. Выставляете мультиметр в режим прозвонки, один щуп прикладываете к любому из шести проводов, вторым щупом находите конец, который будет прозваниваться. И эту пару звонящихся концов маркируете. Пусть это будут U1 и U2. Остается четыре конца.

Повторяете операцию и еще одну пару снова маркируете. Пусть это будут V1 и V2. Осталась еще пара концов, их проверяете на всякий случай, чтобы быть уверенными, что обмотка в исправном состоянии и тоже маркируете оставшимися маркерами W1 и W2. Теперь у вас есть три обмотки и вы знаете их выводы. Но не знаете, где начало, а где конец каждой обмотки.

Другими словами, вы не знаете, как направлены магнитные потоки этих обмоток согласно имеющейся маркировке, поскольку она сейчас носит случайный характер.

Как определить начало и конец обмоток

Приступаем к поиску концов. Снова предупрежу о технике безопасности, поскольку сейчас вы будете работать с опасным напряжением 220 вольт. Сама процедура очень простая. Вам надо на одну обмотку присоединить лампу или вольтметр (мультиметр, в режиме измерения напряжения), а две других обмотки соединить последовательно и подать на них напряжение. Теперь рассмотрим эту процедуру подробнее.

С присоединением лампы или вольтмера проблем не возникнет. Допустим это будет обмотка W1-W2. Остается две обмотки. Согласно имеющимся маркерам вы соединяете их в таком порядке, как это показано на рисунке, а именно соединяете между собой U2 и V1.

На выводы U1 и V2 подаете ПЕРЕМЕННОЕ напряжение 220 вольт. Обратите внимание, именно переменное, поскольку постоянное превратит наш двигатель в электромагнит, но при этом напряжение в третьей обмотке наводиться не будет.

На реальном двигателе это будет выглядеть, как на фотографии ниже:

Обратите внимание, я специально выделил одним цветом (зеленым) соединенные обмотки на схеме и на фотографии. Теперь, если магнитные потоки обмоток совпадут, то в третьей обмотке будет наведено напряжение. Если посчитать грубо, то чуть меньше 100 вольт. Следовательно, лампочка на третьей обмотке начнет светиться, но не в полный накал.

Если же магнитные потоки будут направлены встречно, то в третьей обмотке напряжение наводиться не будет и лампочка не загорится. Если лампочка загорелась, все отлично, придумайте, как навсегда промаркировать выводы обмоток и приступаем к третьей. Если лампочка не загорелась, значит меняем местами выводы любой обмотки.

Пусть это будет обмотка V1V2 (то есть, если раньше была схема U1→U2→V1→V2, то теперь будет схема  U1→U2→V2→V1) и снова проверяем.

Лампочка засветилась? Отлично! Но прежде чем переходить к третьей обмотке, поскольку мы определили условные начала и концы двух обмоток нужно придумать, как навсегда промаркировать эти выводы, чтобы в дальнейшем вам не пришлось возвращаться к данной процедуре. Теперь будем работать только с третьей обмоткой. Маркеры первых двух трогать уже не будем.

К любой из найденных обмоток подключаем третью, а на освободившуюся подключаем лампочку. То есть на обмотку (пусть будет) U1U2 мы теперь подключаем вольтметр или лампочку, а соединяем обмотки V1→V2→W1→W2. И все повторяем по новой. С одним условием, что маркеры обмоток U и V мы не трогаем. Если лампочка при проверке не загорается, то меняем маркеры только на обмотке W.

Как видите, процедура не слишком сложная и при необходимой сноровке займет не больше 15 минут.

Есть и другие методы определения начал и концов обмоток, но они более сложные и требуют стрелочного вольтметра или сборки несложной схемы, хотя с другой стороны, они более безопасные. Но этот метод наиболее простой. А если не боитесь электричества и внимательно прочитали технику безопасности, то вместо мультиметра прозванивать обмотки можно той же лампочкой. Для этого можно использовать такую схему, которую вы видите ниже:

 То есть, можно вообще обойтись без мультиметра. Достаточно одной лампочки на 220 вольт.

На этом всё!

С наилучшими пожеланиями, Я!

Источник: http://potomstvennyjmaster.100ms.ru/rubrik-site/sovetyi/nachalo-konets-obmotki-dvigatelya.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для чего применяют нейтральный провод при соединении в звезду

Закрыть
Для любых предложений по сайту: [email protected]