Как выбрать резисторы

Как подобрать резистор по назначению и принципу работы

Как выбрать резисторы

Резисторы – радиоэлементы, без которых нельзя построить ни одну электрическую схему. На их долю приходится примерно половина всех монтируемых в схеме деталей. Резисторы позволяют контролировать, ограничивать и распределять ток между другими элементами. Их основной характеристикой является сопротивление, измеряемое в Ом.

Обозначение резисторов

Графический знак резистора, принятый среди наших соотечественников, – прямоугольник. За рубежом его изображают в виде ломаной линии, напоминающей букву W.

На схемах рядом с графическим изображением указывают буквенно-цифровую маркировку, которая включает букву R, число, которое обозначает номер элемента на схеме, значение сопротивления. Если к номеру позиции элемента добавлен значок «*», то это означает, что величина сопротивления указана приблизительно.

Точное значение придется подбирать при настройке устройства. Поэтому постоянные резисторы для данной области применения не пригодны. Внутри графического символа может указываться номинальная мощность рассеивания.

Виды резисторов

Производители предлагают широчайший ассортимент резисторов, из которого нужно подобрать деталь, подходящую по конструкции, назначению и цене. Рассмотрим характеристики самых распространенных видов этих радиоэлементов. По материалу резистивного элемента различают изделия проволочные, непроволочные, металлофольговые.

Проволочные

Это традиционная разновидность, применяемая нашими папами и дедушками. Токопроводящую проволоку с большим удельным сопротивлением изготавливают на основе сплавов из меди, никеля, марганца – манганина, константана, никелина. В ходе работы могут нагреваться.

Непроволочные

В конструкцию входят: диэлектрическое основание и покрытие, обладающее определенным сопротивлением. Такое покрытие называют резистивом, оно может быть пленочным или объемным. Пленочные бывают:

  • Тонкопленочными. Их толщина измеряется в нанометрах. Резистив наносят вакуумным напылением на диэлектрическую подложку. Стоимость такой продукции выше стоимости толстопленочных аналогов. Ее преимущества: хороший температурный коэффициент сопротивления, невысокие – паразитная индуктивность и уровень шума. Востребованы в основном для устройств СВЧ, в которых требуется точность и стабильность.
  • Толстопленочными. Эти изделия имеют толщину в десятых долях миллиметра. Бывают – лакосажевые, керметные, на базе токопроводящих пластмасс. Это недорогие резисторы, их отклонение от номинального значения составляет 1-2%.

Сопротивление пленочных резисторов регулируют за счет толщины покрытия. Основные характеристики этих изделий: стабильность, точность, широкий диапазон значений сопротивления – от нескольких Ом до МОм.

Классификация резисторов по принципу работы

В зависимости от области применения, используют резисторы:

  • Постоянные. Эти элементы лишены способности менять сопротивление во время эксплуатации.
  • Подстроечные. Такие элементы имеют три вывода. Сопротивление между двумя выводами постоянное. Если третий связывают с подвижным контактом, то получают делитель напряжения. Используются для настройки чувствительности датчиков и другой аппаратуры.
  • Переменные, называемые «потенциометрами». С их помощью регулируют работу аппаратуры путем изменения сопротивления.

Разновидности полупроводниковых резисторов

В категорию полупроводниковых резисторов входят:

  • Терморезисторы. Сопротивление таких элементов изменяется, в зависимости от температуры окружающей среды.
  • Варисторы. Изменение сопротивления происходит в соответствии с изменением величины напряжения. Используйте эти детали, если хотите защитить основные элементы схемы от скачков напряжения в сети.
  • Фоторезисторы – очень популярная продукция, используемая в электронных схемах часов, управления уличным освещением. Реагирует на степень освещенности. При ее низком уровне сопротивление этого элемента достигает 1 мОм, при ярком освещении оно резко падает.

Параметры, учитываемые при покупке резисторов

При покупке этих деталей учитывают:

  • Самый важный параметр – сопротивление, которое определяется нормативной документацией. Его номинальное значение указывается на корпусе детали. Значения до 999 Ом выражаются в Ом, 1000-99000 Ом – в кОм, от 1 000 000 Ом – в МОм. Помимо сопротивления, необходимо правильно подобрать допуск на точность, который может находиться в пределах 0,5-10%. При выборе величины допуска следует помнить: чем выше точность, тем меньше эксплуатационный температурный интервал.
  • Номинальная мощность – это максимально допустимая мощность, рассеиваемая на резисторном элементе, при которой рабочие характеристики резистора сохраняются в течение всего установленного эксплуатационного периода. Например, если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может составить 90-110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью замера омметром или мультиметром.
  • Температурный коэффициент сопротивления. Эта величина характеризует относительное изменение сопротивления детали при повышении или понижении температуры на 1°C. ТКС для одного резистора в разных температурных интервалах может иметь разное значение.
  • Электрическая прочность. Указывает на предельное напряжение, при котором элемент может функционировать без выхода из строя на протяжении всего установленного срока службы.

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Источник: https://www.radioelementy.ru/articles/kak-podobrat-rezistor/

Как проверить резистор мультиметром на исправность: инструкция

Как выбрать резисторы

Электрическая цепь невозможна без наличия в ней сопротивления, что подтверждается законом Ома. Именно поэтому резистор по праву считается самой распространенной радиодеталью. Такое положение вещей говорит о том, что знание тестирования таких элементов всегда может пригодиться при ремонте электротехники. Рассмотрим ключевые вопросы, связанные с тем, как проверить обычный резистор на исправность, пользуясь тестером или мультиметром.

Основные этапы тестирования

Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:

  1. внешний осмотр;
  2. радиодеталь тестируется на обрыв;
  3. осуществляется проверка соответствия номиналу.

Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.

Виды маркировок

На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.

Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск

Цветовое обозначение

Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.

Рис. 2. Пример цветовой маркировки

Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.

Маркировка SMD элементов

Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т.д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две — это значение, а последняя — множитель (см. рис. 3).

Рис. 3. Пример расшифровки номинала SMD резистора

Внешний осмотр

Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.

Рисунок 4. Яркий пример того, как может сгореть резистор

Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

Проверка на обрыв

Действия производятся в следующем порядке:

  1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1».Рис. 5. Установка режима (1) и подключение щупов (2 и 3)
  2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

Проверка на номинал

Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.

Алгоритм наших действий следующий:

  1. Подключаем щупы, так как на предыдущем тестировании.
  2. Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К».Рисунок 6. Диапазоны измерения сопротивления (отмечены красным)
  3. Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента. Здесь необходимо сделать небольшое пояснение.

Что такое допуск, и насколько он важен?

Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.

Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.

  1. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

Как тестировать переменный резистор?

Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.

Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)

Алгоритм следующий:

  1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
  2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
  3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

Как проверить резистор мультиметром, не выпаивая на плате?

Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.

Источник: https://www.asutpp.ru/kak-proverit-rezistor-multimetrom-na-ispravnost.html

Danfoss Drives

Как выбрать резисторы

Приводы кранов, конвейеров и другого промышленного оборудования, работающего в повторно-кратковременных режимах с частыми включениями, отключениями и реверсами, оснащают тормозными устройствами, которые обеспечивают быструю остановку электродвигателя. Для этого используются электродинамический и механический метод.

Электродинамическое торможение достигается:

  • Подачей постоянного напряжения на обмотки статора. При этом возникает неподвижное магнитное поле, создающее тормозной момент.
  • Изменением порядка подключения фаз. Магнитное поле начинает вращаться в направлении, противоположном направлению вращения ротора электрической машины.

В обоих случаях на валу электродвигателя возникает отрицательный момент, обеспечивающий быструю остановку. Это необходимо для инерционных механизмов с высокой нагрузкой.

Электродинамическое торможение при помощи ПЧ

Большинство частотно-регулируемых приводов обеспечивают динамическое торможение асинхронного электродвигателя. При помощи ПЧ можно реализовать схемы торможения постоянным током и противовключением.

Электродинамическое торможение обладает следующими преимуществами:

  • Высокая скорость торможения, что необходимо для точного позиционирования груза.
  • Простота аппаратной реализации. Для этого требуются частотный преобразователь с тормозным прерывателем и резистор.
  • Упрощение кинематической схемы оборудования.

При принудительной остановке электродвигателя, электроэнергия рассеивается в цепи, вызывая избыточный нагрев и срабатывание тепловой защиты. Для того чтобы избежать этого, применяют тормозные резисторы, обеспечивающие падение генерируемого напряжения и эффективное рассеивание тепла.

Электродинамическое торможение без дополнительных сопротивлений возможно для оборудования с нечастыми пусками, реверсами и остановками. Для грузоподъемных механизмов, рольтангов, лифтов необходим тормозной резистор.

Частотные преобразователи Данфосс с функцией динамического торможения комплектуются встроенным модулем Brake Choppe. Это устройство представляет собой электронный ключ на транзисторах IGBT, встроенный в звено постоянного тока. Возможна также опциональная комплектация этим блоком. Подключение тормозного резистора без прерывателя недопустимо.

Выбор тормозного резистора

Характеристики резисторов должны отвечать параметрам электропривода, типу частотного преобразователя, режимам пуска и эксплуатации двигателя. Компания Данфосс выпускает широкий модельный ряд добавочных сопротивлений для приводов разной мощности и марок. Тормозные резисторы выбирают:

  • По циклу торможения (от 10% номинального момента, применяемых для вентиляторов, до 50% для механизмов с высоким моментом инерции).
  • Числу фаз (одно- трехфазные).
  • Номинальному напряжению.
  • Классу защиты от пыли от влаги IP.
  • Максимальной и номинальной мощности.
  • Сопротивлению.
  • Режиму работы электродвигателя.

Расчет характеристик делается по специальной методике на стадии проектирования привода или при его модернизации.

Расчет тормозного резистора

Исходными данными для вычисления параметров тормозных резисторов служат номинальное напряжение, мощность и частота вращения электродвигателя, момент инерции на валу, время остановки и т.д.

Расчет делается в несколько этапов:

  • Определение максимального момента торможения. Эта величина определяется по формуле:
  • Где n1, n2 начальная и конечная скорость замедления, J – сумма все моментов инерции на валу, t – проектное время замедления.

  • Расчет механической мощности торможения по формуле:
  • где n1, n2 начальная и конечная скорость замедления, t – проектное время замедления, М- максимальный момент торможения.

  • Вычисление электрической мощности торможения по формуле:
  • Расчет максимального тормозного сопротивления по формуле:
  • где U – напряжение звена постоянного тока, Р – электрическая мощность торможения.

  • Определение номинальной мощности резистора. Значение мощности добавочного сопротивления рассчитывается по формуле:
  • Выбор тормозного резистора из таблицы, представленной на сайте производителя.

При расчете также учитывается коэффициент уменьшения нагрузки, который зависит от мощности привода, к.п.д. редуктора. Если передаточный механизм не включен в состав электропривода, значение к.п.д. редуктора принимается равным единице.

При необходимости управления торможением без добавочного сопротивления, при программировании ПЧ указываем отсутствие тормозного резистора или выбираем торможение противовключением на низкой частоте.

Компания Данфосс выпускает резисторы с рабочим циклом от 10% до 40%, класса пылевлагозащищенности IP20, IP65. Мощные устройства комплектуют термодатчиками и устройствами защиты от перегрева.

Источник: https://drives.ru/stati/tormoznoj-rezistor-dlya-chastotnogo-preobrazovatelya/

Рб тормозные резисторы

При торможении асинхронный двигатель отдает энергию назад в преобразователь частоты (работает в генераторном режиме) вследствие чего напряжение в звене постоянного тока повышается. Интенсивность торможения в этом случае зависит от потерь мощности в преобразователе и двигателе.

ЭТО ИНТЕРЕСНО:  Как подключить рабочий и пусковой конденсатор

ПЧВ можно тормозить с мощностью около 20% от номинальной за счет собственных потерь двигателя и преобразователя. Этого обычно достаточно для не инерционных нагрузок, т.е. там, где кинетическая энергия невелика или время торможения не критично.

Если требуется произвести быстрое торможение, необходимо использовать тормозной ключ и резистор. При торможении электропривода тормозной резистор подключается к шине постоянного тока внутри преобразователя частоты, и на нем рассеивается энергия от электродвигателя. Это защищает преобразователь от блокировки по причине перенапряжения в звене постоянного тока и, соответственно, от остановки привода.

Все преобразователи частоты ОВЕН ПЧВ1,2 мощностью 1,5 кВт и более имеют встроенные тормозные ключи для подключения тормозных резисторов.

Тормозные резисторы являются необходимой опцией ПЧВ для работы с подъемно-транспортными механизмами (краны, лифты, наклонные транспортеры, подъемники), высокоинеционными применениями (дымососы, центрифуги, рольганги, тягодутьевые механизмы, транспортные тележки), некоторыми станочными применениями (токарно-винторезные, сверлильные, шлифовальные станки и др.)

Компания ОВЕН предлагает пользователям несколько типов тормозных резисторов.

Бюджетная линейка тормозных резисторов РБ1

Резисторы РБ1 представляют собой проволочные балластные резисторы с керамическим корпусом и степенью защиты IP00. Линейка включает в себя 2 типа резисторов:

  • 80 Ом, 1 кВт
  • 400 Ом, 200 Вт

Для каждого номинала мощности ПЧВ может быть использован один резистор или группа резисторов в параллельном включении для обеспечения необходимой мощности торможения. Выбираются исходя из продолжительности включения (ПВ) 10% от времени цикла. 

Промышленные линейки тормозных резисторов РБ2, РБ3, РБ4

Резисторы РБ2,3,4 представляют собой балластные резисторы с алюминиевым или керамическим корпусом и степенью защиты IP54 или IP20. Линейка включает в себя 2 типа резисторов на каждый номинал мощности ПЧВ для ПВ 10% и 40%.

Резисторы этих линеек имеют исполнение для вертикального и горизонтального монтажа.

Тормозные резисторы промышленных линеек рекомендуются, если требуется:

  1. Компактный монтаж тормозного резистора
  2. Использование в тяжелых условиях работы (увеличенная мощность, выделяемая при торможении)
  3. Монтаж тормозного резистора вне шкафа управления (требуется высокая степень IP)

Источник: https://owen.ru/product/tormoznie_rezistori_oven_rb

Конвертер величин

Резистор — пассивный электрический элемент, создающий электрическое сопротивление в электронных схемах. Резисторы можно найти практически во всех электронных устройствах.

Они используются для различных целей, в частности, для ограничения тока в цепях, в качестве делителей напряжения, для обеспечения напряжения смещения для активных элементов электрических цепей, в качестве терминаторов (согласованных нагрузок) линий передачи, в резистивно-емкостных цепях в качестве времязадающего элемента Список можно продолжать бесконечно.

Декадный магазин сопротивлений

Электрическое сопротивление резистора или любого проводника является мерой его противодействия протеканию электрического тока. В СИ сопротивление измеряется в омах. Сопротивление имеет практически любой материал кроме сверхпроводников, имеющих нулевое сопротивление. Подробнее о сопротивлении, удельном сопротивлении и проводимости.

Допустимое отклонение от номинального значения

Конечно, можно сделать резистор с очень точным значением сопротивления, однако он будет очень дорогим. К тому же, очень точные и дорогие резисторы бывают нужны достаточно редко, например, в качестве делителей напряжения в мультиметрах. Здесь мы поговорим о недорогих и не очень точных резисторах, используемых в электронных устройствах. В большинстве случаев точность ±20% вполне допустима.

Для резистора сопротивлением 1 кОм это означает, что любой резистор с сопротивлением в диапазоне от 800 Ом до 1200 Ом будет считаться резистором 1 кОм. Допуск на некоторые особо критичные компоненты может быть ±1% или даже ±0.05%. В то же время следует отметить, что в наше время сложно найти резисторы с допуском 20%. Обычными являются 5-процентные и 1-процентные резисторы.

Когда-то, во времена ламповых и первых транзисторных радиоприемников, такие резисторы были очень дорогими и обычными были 20-процентные резисторы.

Сравнение 0,1-ваттных резисторов для поверхностного монтажа в корпусе 1608 (1,6 × 0,8 мм) с 10-ваттным керамическим резистором сопротивлением 1 Ом

Рассеиваемая мощность

Если через резистор проходит электрический ток, электрическая энергия преобразуется в тепловую и резистор нагревается. Тепло рассеивается в окружающую среду. Причем, тепловая энергия должна быть передана в окружающую среду так, чтобы температура резистора и окружающих его элементов оставалась в пределах нормы. Мощность, выделяемая на резисторе, определяется по формуле:

Здесь V — напряжение в вольтах на резисторе сопротивлением R в омах, I — протекающий через резистор ток в амперах.

Мощность, которую резистор может рассеивать без ухудшения параметров в течение длительного периода времени, называется предельной рассеиваемой мощностью. В общем случае, чем больше корпус резистора, тем большую мощность может он рассеивать.

Выпускаются резисторы различной мощности и можно встретить резисторы от 0,01 Вт до сотен ватт. Углеродистые резисторы обычно выпускаются мощностью 0,125–2 Вт.

Резисторы с цветовой кодировкой мощностью 0,125, 0,25, 0,5 и 1 Вт в компьютерном блоке питания

Ряды предпочтительных величин электронных компонентов

Источник: https://www.translatorscafe.com/unit-converter/ru-RU/calculator/resistor-color-code/?r=0.56amp;ru=ohmamp;p=7

Резистор в цепи затвора или как делать правильно

Всем доброго времени суток! Эта небольшая статья возможно станет шпаргалкой для начинающих разработчиков, которые хотят проектировать надежные и эффективные схемы управления силовыми полупроводниковыми ключами, обновит и освежит старые знания опытных специалистов или может хотя бы где-то поцарапает закрома памяти читателей. Любому из этих случаев я буду очень рад.

В этой заметке я попробую описать наиболее распространенные вопросы выбора затворных резисторов для силовых электронных устройств. Она базируется на знаниях, почерпнутых мной из разной литературы, апноутов от TOSHIBA, Infineon, Texas Instruments а также из скромной практики. Стоит заметить, что эта информация не дает прямо универсальных рекомендаций для каждого силового ключа.

Тем не менее, можно проанализировать какие предположения могут быть важны и какое влияние они могут оказать на выбор резисторов затвора для дискретных силовых транзисторов, а также для силовых модулей.

Основы

Затворный резистор расположен в цепи между драйвером силового транзистора и затвором самого транзистора, как показано на изображении в шапке статьи.

Открыт или закрыт полевой ключ (IGBT/MOSFET) зависит от приложенного к затвору напряжения.

Изменение этого напряжения заряжает или разряжает затворные емкости силового устройства, которые состоят из емкостей затвора-коллектора и затвора-эмиттера и небольшой емкости самого затвора.

Заряд входных емкостей ключа включит его (ток ), а разряд выключит (ток ).

Резистор в данной цепи ограничивает ток заряда/разряда входных емкостей, помимо этого, правильно подобранный резистор не даст ключу самопроизвольно открываться, что иногда может случиться, из-за быстрого изменения напряжения на силовых выводах ключа например, такое может случиться, когда в полумостовой топологии соседний ключ открывается. В таком случае емкость перезаряжается и ток, протекающий через затворный резистор вызывает на нем падение напряжения, которое и может открыть ключ. К тому же порог открывания ключа часто сильно опускается при росте температуры кристалла полупроводника.

Что нужно знать и как выбрать “правильный” резистор

1. Максимальный ток заряда/разряда выхода драйвера Любая микросхема драйвера имеет такой параметр, как максимальный выходной ток. Если ток затвора при открытии/закрытии ключа превысит значение максимального выходного тока, то драйвер может выйти из строя, поэтому, в данном случае, затворный резистор ограничит выходной ток драйвера.

Можно составить эквивалентную модель цепи, по которой и рассчитать необходимое значение резистора: Следуя несложным умозаключениям, можем получить формулы для расчета тока драйвера, и подобрать резистор затвора таким, чтобы не превысить максимально допустимые параметры драйвера: 2. Рассеиваемая мощность Также одна из важных функций затворного резистора — рассеивать мощность выходного каскада микросхемы драйвера.

В соответствии с моделью выше, рассеиваемую мощность можно посчитать с помощью следующих формул:
Тут — заряд затвора ключа, а — частота коммутации.
После расчета и подбора резистора важно соблюдать следующее условие: где — собственное потребление драйвера.

Тут еще есть небольшое примечание, в большинстве даташитов на ключи указывают заряд затвора при определенных условиях, например при напряжении управления затвором +15В-15В, если же в Вашей схеме другое напряжение управления, например +15В0В, или же +15-8В, то достаточно точно определить заряд затвора помогут следующие соотношения: 3.

Скорость включения и электромагнитная совместимость Давайте рассмотрим потери на переключение, как функцию от сопротивления затворного резистора. Я возьму ключ, который я недавно использовал в своем небольшом проекте — IKW40N120 от любимых Infineon: Как можно заметить, при увеличении сопротивления затвора, скорость переключения уменьшается и потери на переключения растут.

Соответственно это повлияет на эффективность системы в целом. Напротив, если применять меньшее сопротивление затвора, переключение станет более быстрым и потери уменьшаться, но при этом шум, вызванный быстрым нарастанием тока и напряжения, будет увеличиваться, что может быть критично, когда нужно отвечать требованиям электромагнитной совместимости поэтому значение сопротивления затвора нужно выбирать очень аккуратно. 4.

То самое “паразитное” включение В начале, когда я писал о функциях затворного резистора, я упоминал о возможности ключа самопроизвольно включиться. Чтобы такого не случилось, можно рассчитать напряжение, которое может появиться на затворе транзистора, посмотрим на изображение ниже и запишем две небольшие формулы: И не стоит забывать, что напряжение открытия ключа сильно зависит от температуры кристалла, и это тоже нужно учитывать.

Заключение

Теперь у нас есть формулы для оптимального (в какой-то степени) подбора с первого взгляда такого простого элемента силовой схемы, как затворный резистор. Вполне возможно вы не нашли тут ничего нового, но я надеюсь, что хоть кому-то эта заметка окажется полезной.

Также для расширения кругозора в том числе в области управлении силовыми ключами очень советую выделять часик-два в неделю на прочтение всяких статей и апноутов от именитых производителей силовой электроники, в особенности о применении микросхем драйверов. Уверен, найдёте там очень много интересностей.

Для старта, и чтобы углубится в рассмотренную тему предлагаю вот эту.

Спасибо за прочтение!

Источник: https://habr.com/ru/post/451152/

Расчет сопротивления резистора для светодиода

Светодиодные изделия потихоньку заменяют привычные лампы накаливания. Пусть стоимость их несколько выше, зато работу свою они осуществляют на порядок качественнее, чем стандартные элементы освещения.

Логично предположить, что структура светодиода намного сложнее, чем той же лампочки накаливания.

Резистор для светодиода, по мнению экспертов, является острой необходимостью. Однако далеко не каждый потребитель вообще понимает, о чем идет речь. Что такое резистор и почему он так необходим, мы разберем в данной статье.

Общие характеристики и устройство сопротивления для светодиодов

Чтобы ответить на все поставленные вопросы, для начала попробуем разобраться в работе самого светодиода. Это токовый прибор, соответственно, он требует подачи определенного напряжения от источника.

Если источник дает напряжение выше, то светодиод попросту сгорает. Как раз во избежание такого эффекта при подаче тока и существует резистор, сопротивление которого необходимо рассчитать, выступающий для ослабления питания до нужного размера.

Резистор может быть подключенодин на всю цепочку. Но подключение, при этом, должно быть последовательным.

В противном же случае, при параллельном подключении, которое, к слову, встречается значительно реже, светодиоды требуют каждый своего резистора.

Важно учитывать то, накакоенапряжениерассчитан светодиод. Указывается, как правило, напряжение падения. Учтите, что оно высчитано довольно приблизительно. Это число играет роль при выборе и подборе резистора.

Менее важную роль резистор играет только в случае самых современных моделей светодиодов ярко-белого или разноцветных оттенков. Их, по словам экспертов, можно подключать напрямую без опаски, так как они уже приспособлены к подаче энергии из источника и не выйдут из строя.

Что касается полярности, которую важно учитывать при подключении, резистор ее не имеет. Играет принципиальную роль внутреннее сопротивление.

Учесть необходимо и номинальную мощность рассеивания, поскольку в случае превышения допустимого ее предела резистор перегревается и выходит из строя.

Некоторыесветодиоды требуют резисторов нестандартных показателей. В продаже такие изделия найти очень сложно.

В этом случае стоит приобрести резистор большего сопротивления, чем тот, который получен в расчетах. Яркость свечения будет несколько снижена, но это не заметно, зато сам светодиод прослужит дольше.

Резистор для светодиодов, например на 12 вольт, может быть смонтирован самостоятельно. Однако в настоящее время имеются модели, где этот важный элемент уже встроен.

Типология резисторов для светодиодов

Если говорить о классификации, которой можно подвергнуть светодиоды, в этом случае опираться стоит на показатели сопротивления. Именно они и разнятся между собой, позволяя подразделить светодиодные резисторы на какие-либо категории.

Кроме того, важную роль играет типоразмер резисторов. В настоящее время на рынке комплектующих для осветительных приборов можно найти следующие изделия:

  • Резисторы с типоразмеров 0805;
  • С типоразмером 0603;
  • С типоразмером 1206;
  • С типоразмером 0402;
  • С типоразмером 0201;

Также светодиодные резисторы различаются и покомплектациинабора, который поступает в продажу. Представлены варианты с конденсаторами и без, в разном количественном показателе и разнообразном форм-факторе.

Как было сказано ранее, светодиодные резисторы могут быть присоединены пользователем самостоятельно. Однако есть и встроенные варианты. Такое отличие тоже может послужить параметром для классификации.

К содержанию 

Преимущества и недостатки резисторов для светодиодов

К числу преимуществ использования резистора относят:

  • резистор позволяет светодиоду отслужить отведенный ему срок без каких-либо проблем;
  • помогает смонтировать интересные и оригинальные конструкции со светодиодами;
  • снижает нагрузку на сеть, правильно распределяя ток по точкам;
  • поскольку обеспечивает правильность работы светодиода, сокращает расходы на замену перегоревших ламп.

Имеются и отрицательные стороны использования:

  • подобрать необходимый по показателям резистор не всегда возможно;
  • наборы резисторов по стоимости довольно дороги;
  • требуют недюжинных знаний в электрике для правильного подключения;
  • необходимость предварительного расчета для выбора правильной модели;
  • подключение с ними возможно только последовательно.

Как видно, перечень недостатков несколько больше, чем достоинств. Однако, стоит отметить, без этого элемента собрать действительно правильно работающую светодиодную систему довольно трудно.

Области применения светодиодных резисторов

Помимо стандартных вышеназванных требований в перечень областей, в которых применение светодиодных резисторов находится в приоритете, довольно широк.

  • Во-первых, активно используются они вмоддинге, то есть, в области преобразования электронной техники. Приверженцы моддинга часто формируют очень сложные светодиодные цепи, в которых резисторам отведена значительная роль.
  • Во-вторых, автолюбители также заменяют лампы накаливания в салоне на светодиоды 12в. Из-за специфики подачи энергии резистор в данном случае не заменим.
  • В-третьих, наконец, в домашних условиях в целях реализации интересных дизайнерских решений тоже нередко делаются светодиодные цепи, отличающиеся особой привлекательностью. И в этом случае резисторы необходимы.

Расчет резистора для светодиода, калькулятор

Светодиод имеет очень небольшое внутреннее сопротивление, если его подключить напрямую к блоку питания, то сила тока будет достаточной высокой, чтобы он сгорел. Медные или золотые нити, которыми кристалл подключается к внешним выводам, могут выдерживать небольшие скачки, но при сильном превышении перегорают и питание прекращает поступать на кристалл. Онлайн расчёт резистора для светодиода производится на основе его номинальной рабочей силы тока.

  • 1. Онлайн калькулятор
  • 2. Основные параметры
  • 3. Особенности дешёвых ЛЕД
ЭТО ИНТЕРЕСНО:  Что такое номинальная мощность электродвигателя

Онлайн калькулятор

Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление  в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал.

Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W.

При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.

Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла.  Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь.

Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Основные параметры

Отличие характеристик кристаллов для дешевых ЛЕД

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми.  Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно.

Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло.  Чем равномернее они горят, тем меньше разброс.

Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB  диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от  10W до 100W снижение растёт с 12В до 36В.

Этот параметр должен быть указан в технических характеристиках LED чипа  и зависит от назначения:

  • цвета синий, красный, зелёный, желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный, теплый и холодный белый.

Особенности дешёвых ЛЕД

Источник: http://led-obzor.ru/raschet-rezistora-dlya-svetodioda-kalkulyator

Переменный резистор: назначение, устройство, виды, проверка мультиметром

В аппаратуре часто присутствуют подстраиваемые параметры. Для реализации используют переменный резистор. В зависимости от подключения они позволяют менять ток или напряжение в цепи. 

Что такое резистор с изменяемым (переменным) сопротивлением

Среди радиоэлементов существуют детали, которые могут изменять свой основной параметр. Именно такими являются переменные или регулируемые резисторы. Они отличаются от постоянных тем, что их сопротивление можно плавно менять практически от нуля до определенного значения. Изменение происходит путем механического перемещения ползунка.

Регулируемые или переменные резисторы — виды и размеры разные

Есть у переменных резисторов разновидности — подстроечные и регулировочные. Чем отличаются переменные резисторы от подстроечных? Тем что подстроечные рассчитаны на небольшое количество регулировок. У некоторых моделей их количество может исчисляться сотнями или десятками (например, у НР1-9А перемещать ползунок можно не более 100 раз). Если посмотреть на таблицу ниже, можно увидеть что у некоторых подстроечных SMD резисторов циклов регулировки всего 10.

Пример характеристик подстроечных резисторов SMD

У переменных резисторов этот показатель значительно выше. Количество перемещений регулятора может исчисляться десятками и даже сотнями тысяч. Так что использовать подстроечные резисторы вместо переменных явно не стоит.

Основной недостаток переменных резисторов — их недолговечность. Контакт между резистивным слоем и щеткой постепенно ухудшается. Для акустической аппаратуры это может выражаться во все усиливающихся шумах, при подстройке частоты в радиоприемниках все тяжелее «поймать»  нужную длину волны и т.д.

Анимация дает понять, как работает переменный резистор и почему выходит из строя

Способы производства

Переменный резистор может быть двух типов: проволочным и пленочным. У проволочных на диэлектрическую трубку намотана проволока, вдоль нее перемещается металлический передвижной контакт — ползунок. Его местоположение и определяет сопротивление элемента. Витки проволоки уложены вплотную друг к другу, но они разделены слоем лака с высокими диэлектрическими свойствами.

Ползунковые переменные резисторы проволочного типа

Переменные проволочные резисторы — это необязательно трубка с намотанной на нее проволокой как на фото выше. Такие элементы выпускались в основном несколько десятков лет назад. Современные мало чем отличаются от пленочных, разве что корпус чуть выше, так как проволока все-таки занимает больше места, чем пленка.

Со снятой крышкой видна проволочная спираль и бегунок

У пленочных переменных резисторов на диэлектрическую пластину (обычно выполнена в виде подковы) нанесен слой токопроводящего углерода. В этом случае контакт тоже подвижный, но он закреплен на стержне в центре подковы и чтобы изменить сопротивление, надо повернуть стержень.

Пленочный регулируемый резистор

Регулировочное переменное сопротивление может быть и проволочным, и пленочным, а подстроечные, в основном, делают пленочными. Есть у них внешнее отличие: нет стержня с ручкой, а есть плоский диск с отверстием под отвертку. Сопротивления этого типа используются только для наладки параметров при пуске или техническом обслуживании аппаратуры.

Переменные резисторы SMD

Кроме способа производства есть еще две формы выпуска: для обычного навесного монтажа и SMD-элементы для поверхностного монтажа. SMD резисторы отличаются миниатюрными размерами, выполнены по пленочной технологии.

Схематическое обозначение  и цоколевка

В отличие от постоянных резисторов, у регулируемых не два вывода, а как минимум три.  Почему как минимум? Потому что есть модели с дополнительными выводами — их может быть несколько.

На электрических схемах  переменные и подстроечные резисторы обозначаются прямоугольниками как постоянные, но имеют дополнительный вывод, который схематически представлен как ломанная линия, упирающаяся в середину изображения.

Чтобы можно было отличить переменный от подстроечного, у переменного на конце третьего ввода рисуют стрелку, подстроечный изображается более длинной перпендикулярной линией без стрелки.

Обозначение на схемах переменных и подстроечных резисторов

Если говорить о расположении выводов, то средний вывод подключен к ползунку, крайние — к началу и концу резистивного элемента.

Цоколевка переменного резистора

Виды и особенности применения

Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.

Переменные резисторы бывают разных видов

Характер изменения сопротивления

Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:

  • сопротивление изменяется по логарифмическому закону;
  • по показательному типу (обратному логарифмическому).Характер изменения сопротивления в переменных резисторах

В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.

Сдвоенные, тройные, счетверенные

В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:

  • С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
  • С раздельным изменением параметров. Называются еще соосными,  так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.Сдвоенный регулируемый резистор и его обозначение

Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева).

Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа).

Буквенное обозначение такое же.

Так выглядят сдвоенные и тройные переменные сопротивления

Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного —  R15.1 и R15.2.

Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.

Дискретный переменный резистор

Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.

Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме

Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.

С выключателем

Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.

Переменный резистор с выключателем в одном корпусе: внешний вид и обозначение на схемах

На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.

Способы подключения: реостат и потенциометр

Любое регулируемое сопротивление может подключаться как реостат или потенциометр. Реостат изменяет силу тока в цепи, для этого подключается подвижный контакт и один из крайних выводов.

Переменный резистор может использоваться как реостат или потенциометр

Потенциометр изменяет напряжение, при подключении задействуют все контакты, получая таким образом делитель напряжения.

Как проверить переменный резистор при помощи тестера

Проверка переменных резисторов не слишком отличается от тестирования обычных. Нужен будет мультиметр с функцией омметра. Положение щупов стандартное, диапазон измерений выбираем в зависимости от измеряемого параметра.

Если меряем минимальное сопротивление, имеет смысл поставить самый малый диапазон. Для измерения максимального сопротивления, подбираем в зависимости от заявленной характеристики.

При измерениях положение щупов произвольное, так как полярность подаваемого тестового напряжения неважна.

Как проверить переменное сопротивление тестером

Провести надо будет несколько несложных замеров:

  • Максимальное сопротивление измеряется между крайними выводами.
  • Чтобы измерить минимальное сопротивление, бегунок переводят в крайнее левое положение. Измерения проводят между крайним левым и средним (первым и вторым выводами). Полученные измерения сравнивают с заявленным диапазоном. Обычно бывают отклонения в ту или другую сторону. Это не страшно, если величина отклонений находится в рамках допуска (зависит от точности).
  • проблема переменных резисторов — ухудшение контакта между щеткой и токопроводящим элементом. Подключаем мультиметр в режиме омметра к одному из крайних выводов и центральному, затем медленно вращаем ось резистора и наблюдаем за показаниями мультиметра. Если резистор исправен, но показания должны изменяться плавно. Проверку рекомендуется повторить переключив мультиметр ко второму крайнему выводу резистора (см. видео ниже).

Источник: https://elektroznatok.ru/info/elektronika/peremennyj-rezistor

Резистор

Радиоэлектроника для начинающих

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах.

Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом).

Про множители и приставки «кило», «мега» можете почитать здесь.

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов

  • Номинальное сопротивление.Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.
  • Рассеиваемая мощность.Более подробно о мощности резистора я уже писал здесь.При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.
  • Допуск.При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,250,05%.
  • Температурный коэффициент сопротивления (ТКС).Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.
ЭТО ИНТЕРЕСНО:  Чем тиристор отличается от диода

Первые три параметра основные, их надо знать!

Перечислим их ещё раз:

  • Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм)
  • Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт)
  • Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.

В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 23 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

Таблица цветового кодирования

Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/resistance.html

РЕЗИСТОРЫ

Электрика »Схемотехника »Схемы подключения »Резисторы

Резистор — это электротехническое изделие, вносящее в электрическую цепь определенное сопротивление.

Основными параметрами резистора являются мощность и сопротивление. Кроме того, резистор обладает некоторой емкостью, индуктивностью, зависимостью сопротивления от температуры, собственными шумами и пр., но достаточно часто этим можно пренебречь.

На резисторе указывается его номинальное сопротивление. На практике резистор может иметь сопротивление, отличное от указанного на величину допустимого отклонения, которая измеряется в процентах: ±20%; ±10%; ±5%.

Сопротивление резистора измеряется в Омах (Ом), также применяются производные единицы: 1 кОм=103Ом, 1 мОм=106Ом. Конкретные номиналы резисторов определяются рядами номинальных сопротивлений.

Номинальная мощность рассеяния — мощность, которую резистор может рассеивать на протяжении длительного времени без недопустимо большого перегрева, приводящего к необратимым изменениям сопротивления.

Мощность резистора, вернее мощность, которая выделяется на резисторе (Р) определяется законом Ома и может быть рассчитана по формулам:

P=I2*R — (1) или P=U2/R — (2), где

  • R — сопротивление резистора
  • U — напряжение на нем
  • I — ток, протекающий через резистор

Обратите внимание, чтобы получить мощность в Ваттах (Вт) следует применять следующие единицы измерения:

  • сопротивление — Ом,
  • напряжение — Вольт (В),
  • ток — Ампер (А).

На практике это бывает не всегда удобно, поэтому для формулы (1) можно использовать следующие размерности: сопротивление — кОм (1кОм=103Ом), ток — миллиампер (1 мА=10-3А).

Обозначения резисторов

Условные обозначения резисторов на схемах приведены на рисунке 1.

В верхнем ряду показаны:

  1. общее обозначение;
  2. резистор мощностью 0,125 Вт;
  3. 0,25 Вт;
  4. 0,5 Вт;
  5. 1 Вт.

Мощность резистора 1 Вт и более на схемах указывается размещением внутри его обозначения соответствующего римского числа.

Кроме того, на схеме рядом с обозначением могут указываться (второй ряд, слева направо):

  • буквенное обозначение резистора и его порядковый номер,
  • номинальное значение сопротивления,
  • буквенное обозначение и номинал,
  • мощность резистора в комбинации со всеми перечисленными вариантами.

Ряды номинальных сопротивлений

Значения сопротивлений производимых резисторов подчиняются определенной закономерности, которая ниже приведена в таблице.

Там должно быть все ясно, поясню только, что:

  1. номер ряда определяет количество базовых значений сопротивлений и их допустимое отклонение,
  2. получив при расчете какое — либо значение, по приведенной таблице Вы можете выбрать максимально близкий номинал и его допуск.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/rezistor.html

Номиналы резисторов. Таблица, онлайн калькулятор

В 1952 году IEC (IEC — международная электротехническая комиссия) утвердила стандартные значения для резисторов, называемый номинальный ряд резисторов.

История создание номинального ряда резисторов началась в первые годы прошлого века, в то время когда большинство резисторов были углеродно-графитовыми с относительно большими производственными допусками (отклонениями).

Идея создания номинального ряда довольно простая — установить стандартные значения для резисторов на основе допусков, с которыми они могут быть изготовлены.

Номиналы резисторов

Рассмотрим это на простом примере. Допустим, есть группа резисторов имеющих 10% отклонение от номинала (как в большую, так и в меньшую сторону).

Предположим, что первое предпочтительное значение должно быть равно 100 Ом. Следовательно, не имеет смысла изготавливать резистор, например на 105 Ом, так как резистор с сопротивлением 105 Ом падает в 10% диапазон допуска резистор на 100 Ом (90110 Ом).

Поэтому следующее рациональное значение сопротивления должно быть в районе 120 Ом, поскольку резисторы на 100 Ом с допуском 10% имеют значение где-то между 90 Ом и 110 Ом, резистор 120 Ом имеет значение в диапазоне между 108 и 132 Ом, перекрывая тем самым диапазон между 100 и 120 Ом.

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS

Мультиметр — RICHMETERS RM101

Richmeters RM101 — удобный цифровой мультиметр с автоматическим изменен

Мультиметр — MASTECH MY68

Измерение: напряжения, тока, сопротивления, емкости, частоты

Следуя этой логике, стандартные номиналы резисторов с отклонением 10% в диапазоне между 100 и 1000 Ом будут следующие: 100, 120, 150, 180, 220, 270, 330 и так далее (с соответствующим округлением). Это серия резисторов, имеющая маркировку E12, приведена в таблице ниже.

Номиналы резисторов — таблица

Буква «Е» обозначает, что резистор из номинального ряда EIA. Идущее после буквы «Е» число указывает на количество логарифмических шагов в диапазоне от 100 до 1000.

Ниже, в таблице номиналов резисторов, приведены значения сопротивления в диапазоне 1001000. Сопротивление в любом другом диапазоне (Ом, кОм, мОм) могут быть получены простым делением или умножением данных из таблицы на 10.

Отличия между сериями:

  • Е6 — допуск 20%,
  • E12 — допуск 10%
  • E24 — допуск 5% (и 2%)
  • Е48 — допуск 2%
  • E96 — допуск 1%
  • E192 — допуск 0,5, 0,25, 0,1% и выше

Номиналы резисторов — онлайн калькулятор

Для удобства приводим калькулятор для быстрого подбора сопротивления из стандартного номинального ряда резисторов.

Примечание: в окошко «Введите необходимое сопротивление» вписывайте значение без префиксов (кОм, МОм). Например, для поиска ближайшего значения для сопротивления 38 Ом – вводим 38. То же самое справедливо и для 38 кОм – вводим 38 (не забывая, что результат относится к кОм)

Источник: http://www.joyta.ru/7993-nominaly-rezistorov-tablica-onlajn-kalkulyator/

Резистор тока

Резистор тока выполняет сразу несколько очень важных задач: служит ограничителем электрического тока в цепи, создает падение напряжения на отдельных ее участках и разделяет пульсирующий ток.

Помимо номинального сопротивления, одним из наиболее важных параметров резистора является рассеиваемая мощность. Она зависима от напряжения и тока. Мощность – это то тепло, которое выделяется на резисторе, когда под воздействием протекающего тока он нагревается. При пропуске тока, превышающего заданное значение мощности, резистор может сгореть.

Мощность постоянного тока может быть рассчитана по простой формуле P(Вт) = U(В) * I(А),

где

  • P(Вт) – мощность,
  • U(В) – напряжение,
  • I(А) – ток.

Чтобы избежать сгорания резистора тока, необходимо учитывать его мощность. Соответственно, если схема указывает на замену резистора с мощностью 0,5 Ватт – 0,5 Ватт в данном случае – минимум.

Мощность резистора может зависеть от его размеров. Как правило, чем меньше резистор — тем меньше мощность его рассеивания. Стандартный ряд мощностей резисторов тока состоит из значений:

  • 0.125 Вт
  • 0.25 Вт
  • 0.5 Вт
  • 1 Вт
  • 2 Вт
  • Более 2 Вт

Рассмотрим на примере: номинальное сопротивление нашего резистора тока – 100 Ом. Через него течет ток 0,1 Ампер. Чтобы узнать мощность, на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом), 

где

  • P(Вт) – мощность,
  • R(Ом) – сопротивление цепи (в данном случае резистора),
  • I(А) – ток, протекающий через резистор.

Внимание! При расчётах следует соблюдать размерность. Например, 1 кА= 1000 А . Это же касается и других величин.

Итак, рассчитаем мощность для нашего резистора тока: P(Вт) = 0,12(А) *100 (Ом)= 1(Вт)       

Получилось, что минимальная мощность нашего резистора составляет 1 Ватт. Однако в схему следует установить резистор с мощностью в 1,5 – 2 раза выше рассчитанной. Соответственно идеальным для нас будет резистор тока мощностью 2 Вт.

Бывает, что ток, протекающий через резистор неизвестен. Для расчёта мощности в таком случае предусмотрена специальная формула:

Соединение цепи может быть последовательным и параллельным. Однако никакого труда не составляет рассчитать мощность резистора тока как в параллельной, так и в последовательной цепи. Следует учитывать лишь то, что в последовательно цепи через резисторы течет один ток.

Например, нам необходимо произвести замену резистора тока сопротивлением 100 Ом. Ток, протекающий через него – 0,1 Ампер. Соответственно, его мощность – 1 Ватт. Следует рассчитать мощность двух соединенных последовательно резисторов для его замены. Согласно формуле расчёта мощности, мощность рассеивания резистора на 20 Ом – 0,2 Вт, мощность резистора на 80 Ом – 0,8 Вт. Стандартный ряд мощностей поможет выбрать резисторы тока:

R2 – 80 Ом (1 Вт)

Из всего вышесказанного можно сделать вывод, что разное сопротивление резисторов гарантирует их разную выделяемую мощность, так как она распределяется между резисторами разных номиналов. Если не учитывать это обстоятельство, то можно столкнуться с большим количеством трудностей. Если один из резисторов выбран неправильно – второй работает в тяжелом температурном режиме. Также присутствует угроза возгорания резистора из-за несоблюдения правил мощности.

Для того, чтобы сэкономить время и не рассчитывать мощность каждого отдельного резистора тока нужно запомнить одно простое правило: мощность заменяемого резистора должна быть равна мощности каждого резистора, составляющего параллельную или последовательную цепь. То есть при замене резистора мощностью 0,5 Вт надо следить за тем, чтобы каждый из резисторов для замены имел мощность не менее 0,5 Вт.

При параллельном соединение резисторов важно помнить, что чем меньше сопротивление резистора, тем больший ток через него протекает, а значит на нем будет рассеяна большая мощность.

Источник: https://www.calc.ru/Rezistor-Toka.html

Понравилась статья? Поделиться с друзьями:
Электро Дело