Тиристор в качестве диода
Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.
Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.
Принцип действия
Рассмотрим работу тиристора по следующей простой схеме.
К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.
Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).
Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.
Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.
Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.
Особенности устройства
Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:
Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.
Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.
Основные параметры тиристоров
- Максимально допустимый прямой ток . Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
- Максимально допустимый обратный ток .
- Прямое напряжение . Это падение напряжения при максимальном токе.
- Обратное напряжение . Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
- Напряжение включения . Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
- Минимальный ток управляющего электрода . Он необходим для включения тиристора.
- Максимально допустимый ток управления .
- Максимально допустимая рассеиваемая мощность .
Динамический параметр
Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.
По способу управления разделяют на:
- Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
- Триодные тиристоры, или тринисторы. Они открываются током управления электродом.
Триодные тиристоры в свою очередь разделяются:
- Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
- Управление анодом – управляющее напряжение подходит на электрод и анод.
Запирание тиристора производится:
- Уменьшением анодного тока – катод меньше тока удержания.
- Подачей напряжения запирания на электрод управления.
По обратной проводимости тиристоры делятся:
- Обратно-проводящие – имеют малое обратное напряжение.
- Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
- С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
- Симистор – пропускает токи в двух направлениях.
Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность.
Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.
По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).
Разделение тиристоров по мощности
При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.
Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.
Простая сигнализация на основе тиристора
На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.
Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.
Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.
Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.
Регулятор мощности на тиристоре
Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.
Источник: https://schemy.ru/info/tiristor-v-kachestve-dioda/
Динистор
Радиоэлектроника для начинающих
Среди огромного количества всевозможных полупроводниковых приборов существует динистор.
В радиоэлектронной аппаратуре динистор встречается довольно редко, ходя его можно встретить на печатных платах широко распространённых энергосберегающих ламп, предназначенных для установки в цоколь обычной лампы. В них он используется в цепи запуска. В маломощных лампах его может и не быть.
Также динистор можно обнаружить в электронных пускорегулирующих аппаратах, предназначенных для ламп дневного света.
Динистор относится к довольно большому классу тиристоров.
Динисторы
Условное графическое обозначение динистора на схемах
Для начала узнаем, как обозначается динистор на принципиальных схемах. Условное графическое обозначение динистора похоже на изображение диода за одним исключением. У динистора есть ещё одна перпендикулярная черта, которая, судя по всему, символизирует базовую область, которая и придаёт динистору его свойства.
Условное графическое обозначение динистора на схемах
Также стоит отметить тот факт, что изображение динистора на схеме может быть и другим. Так, например, изображение симметричного динистора на схеме может быть таким, как показано на рисунке.
Возможное обозначение симметричного динистора на схеме
Как видим, пока ещё нет какого-либо чёткого стандарта в обозначении динистора на схеме. Скорее всего, связано это с тем, что существует огромный класс приборов под названием тиристоры. К тиристорам относится динистор, тринистор (triac), симистор, симметричный динистор. На схемах все они изображаются похожим образом в виде комбинации двух диодов и дополнительных линий, обозначающих либо третий вывод (тринистор) либо базовую область (динистор).
В зарубежных технических описаниях и на схемах, динистор может иметь названия trigger diode, diac (симметричный динистор). Обозначается на принципиальных схемах буквами VD, VS, V и D.
Чем отличается динистор от полупроводникового диода?
Во-первых, стоит отметить, что у динистора три (!) p-n перехода. Напомним, что у полупроводникового диода p-n переход всего один. Наличие у динистора трёх p-n переходов придаёт динистору ряд особенных свойств.
Принцип работы динистора
Суть работы динистора заключается в том, что при прямом включении он не пропускает ток до тех пор, пока напряжение на его выводах не достигнет определённого значения. Значение этого напряжения имеет определённую величину и не может быть изменено. Это связано с тем, что динистор является неуправляемым тиристором – у него нет третьего, управляющего, вывода.
Известно, что и обычный полупроводниковый диод также имеет напряжение открытия, но оно составляет несколько сотен милливольт (500 милливольт у кремниевых и 150 у германиевых). При прямом включении полупроводникового диода он открывается при приложении к его выводам даже небольшого напряжения.
Чтобы подробно и наглядно разобраться в принципе работы динистора обратимся к его вольт-амперной характеристике (ВАХ). Вольт-амперная характеристика хороша тем, что позволяет наглядно увидеть то, как работает полупроводниковый прибор.
На рисунке ниже вольт-амперная характеристика (англ. Current-voltage characteristics) импортного динистора DB3. Отметим, что данный динистор является симметричным и его можно впаивать в схему без соблюдения цоколёвки. Работать он будет в любом случае, вот только напряжение включения (пробоя) может чуть отличаться (до 3 вольт).
Вольт-амперная характеристика симметричного динистора
На ВАХ динистора DB3 наглядно видно, что он симметричный. Обе ветви характеристики, верхняя и нижняя, одинаковы. Это свидетельствует о том, что работа динистора DB3 не зависит от полярности приложенного напряжения.
График имеет три области, каждая из которых показывает режим работы динистора при определённых условиях.
- Красный участок на графике показывает закрытое состояние динистора. Ток через него не течёт. При этом напряжение, приложенное к электродам динистора, меньше напряжения включения VBO – Breakover voltage.
- Синий участок показывает момент открытия динистора после того, как напряжение на его выводах достигло напряжения включения (VBO или Uвкл.). При этом динистор начинает открываться и через него начинает протекать ток. Далее процесс стабилизируется и динистор переходит в следующее состояние.
- Зелёный участок показывает открытое состояние динистора. При этом ток, который протекает через динистор ограничен только максимальным током Imax, который указывается в описании на конкретный тип динистора. Падение напряжения на открытом динисторе невелико и колеблется в районе 1 – 2 вольт.
Получается, что динистор в своей работе похож на обычный полупроводниковый диод за одним исключением. Если пробивное напряжение или по-другому напряжение открытия для обычного диода составляет значение менее вольта (150 – 500 мВ), то для того, чтобы открыть динистор необходимо подать на его выводы напряжение включения, которое исчисляется десятками вольт. Так для импортного динистора DB3 типовое напряжение включения (VBO) составляет 32 вольта.
Чтобы полностью закрыть динистор, необходимо уменьшить ток через него до значения меньше тока удержания. При этом динистор выключиться – перейдёт в закрытое состояние.
Если динистор несимметричный, то при обратном включении («+» к катоду, а «-» к аноду) он ведёт себя как диод и не пропускает ток до тех пор, пока обратное напряжение не достигнет критического для данного типа динистора и он сгорит. Для симметричных, как уже говорилось, полярность включения в схему не имеет значения. Он в любом случае будет работать.
В радиолюбительских конструкциях динистор может применяться в стробоскопах, переключателях мощной нагрузки, регуляторах мощности и многих других полезных приборах.
» Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
- Транзистор. Обозначение на схемах.
- Электролитические конденсаторы.
Источник: https://go-radio.ru/dinistor.html
Диоды и тиристоры — это очень простоЧасть 3. Защита выпрямителей
Часть 1.
Часть 2.
Часть 3.
Часть 4.
Часть 5.
Снабберная схема с дополнительным диодным мостом
Для защиты трехфазных схем чаще всего используется одиночная RC-цепь, подключаемая через дополнительный диодный мост (пример такого решения показан на рис. 1). Номиналы R и C могут быть определены с помощью приведенных ниже выражений для снабберных цепей, размещаемых по входу выпрямителя.
Мощность резистора в такой схеме, как правило, не превышает 2 Вт. Диод D7 используется в некоторых случаях для снижения нагрузки на снаббер, вызванной протеканием гармонических токов, что актуально при фазовом управлении тиристорным мостом.
Резистор R1 нужен для быстрого разряда конденсатора после выключения устройства, его номинал и мощность рассеяния Pv определяются следующим образом:
Рис. 1. АС-снаббер с дополнительным диодным мостом
Максимально допустимое значение тока дополнительных диодов D1–D7 (время проводимости t = RC) должно в два раза превышать предельный ток нагрузки ILM, протекающий через конденсатор С при включении. Для наихудшего случая (запуск при пиковом напряжении) он определяется следующим образом: ILM = (Vv × √2)/R, хотя его реальное значение всегда будет меньше благодаря наличию активного и индуктивного сопротивления цепи.
В большинстве случаев дополнительный выпрямитель строится на основе маломощных диодов или моста с ударным током 150–300 А (в течение 10 мс), радиатор при этом не требуется, поскольку в продолжительном режиме мощность практически не рассеивается.
Выпрямители без гальванической развязки
Во многих практических применениях выпрямители подключаются к питающей сети через автотрансформаторы или дроссели. Кроме обеспечиваемой трансформатором гальванической изоляции, использование этих элементов позволяет ограничить токи короткого замыкания, устранить провалы питающего напряжения, снизить уровень перенапряжений и ограничить скорость их нарастания.
Для решения данных задач индуктивность дросселя L должна быть достаточно большой, обеспечивающей напряжение КЗ не менее 4% от величины Vv:
где Iv — эффективное значение фазного тока.
Если в схеме есть автотрансформатор, то установка дросселей не требуется, однако предельное положение движка должно быть ограничено таким образом, чтобы между сетью и выпрямителем всегда оставалась определенная индуктивность.
АС-снабберы в бестрансформаторных схемах нормируются по тем же правилам, выходная мощность PT рассчитывается на основе значений фазного тока и напряжения Vv и Iv для «воображаемого» трансформатора, таким же образом определяется и значение тока намагничивания ε.
Снабберные цепи для регуляторов тока (схема W1C)
Схема регулятора тока (АС-контроллера) W1C содержит два антипараллельных тиристора. Ячейка W1C всегда работает совместно со снаббером, в простейшем случае это RC-цепь (рис. 2), причем емкость с номиналом более 1 мкФ следует подключать через дополнительный диод. Если каждый тиристор имеет свой предохранитель, расчетные значения номиналов снаббера необходимо разделить на два.
Рис. 2. АС-контроллер: а) с RC-снаббером, б) с индивидуальным снаббером и предохранителем
Для расчета номиналов R и C можно использовать следующие формулы:
Мощность, рассеиваемая резистором:
Диодные и тиристорные сборки
Как уже было отмечено, для защиты диодных выпрямителей от перенапряжений достаточно использовать снаббер по DC-выходу (в случае, если сборка не подключена к низкоиндуктивному звену постоянного тока).
Параметры резисторов и конденсаторов нормируются в соответствии с указаниями, приведенными выше и в настоящем разделе, в зависимости от того, в какой цепи (АС или DC) необходимо подавить всплески напряжения.
Если мост может быть отключен от нагрузки, то по соображениям безопасности следует установить разрядный резистор.
Когда диодный выпрямитель имеет постоянную емкостную нагрузку, ее можно рассматривать как снаббер, и никаких дополнительных защитных цепей в этом случае не требуется. Однако если между выходом моста и емкостью установлен сглаживающий дроссель или предохранитель, то установка снабберной схемы необходима.
Для выпрямителей со средней точкой рекомендовано применение АС-снаббера с дополнительным мостом, первая половина которого уже образована плечом основного выпрямителя. Вторая половина состоит из дополнительных маломощных диодов, параметры которых (так же, как и номиналы R, C) нормируются по правилам, установленным для цепи переменного тока.
Как правило, для ограничения перенапряжений в тиристорных выпрямителях используются снабберы, устанавливаемые параллельно одиночным ключам и в АС-линиях. В отдельных случаях может появиться необходимость в установке защитной схемы в цепи постоянного тока, а когда не требуется защита одиночных ключей, то DC- и АС-снабберы могут использоваться совместно. В этом случае защита работает как емкостная нагрузка, обеспечивая тиристорам надежный запуск при любых условиях эксплуатации.
Наилучший эффект от использования снабберов достигается при выполнении следующих соотношений:
(см. рис. 18 в предыдущей части статьи: если R = RL, то С = LL/RL2), где LL — индуктивность нагрузки (мкГн); RL — активное сопротивление нагрузки (Ом); С — снабберный конденсатор (мкФ); R — демпфирующий резистор (Ом).
Во многих случаях можно использовать конденсатор меньшей емкости, при этом R следует пересчитать в соответствии с приведенной формулой. Мощность рассеяния определяется следующим образом:
где VALT — эффективное значение пульсаций напряжения в цепи постоянного тока, а fALT — частота пульсаций. Для нахождения номинала разрядного резистора R1 (Ом) и мощности рассеяния используются следующие формулы:
где f — рабочая частота, VD — напряжение DC-шины.
Варисторы
При производстве варисторов порошковый полупроводниковый материал подобно керамике прессуется и затем спекается в виде твердого диска. Нелинейность характеристики достигается за счет наличия большого количества хаотично расположенных p—n-переходов в контактных зонах между зернистыми элементами структуры. Как правило, варисторы производятся из оксида цинка ZnO, поэтому их часто называют металл-оксидными, или MOV (Metal-Oxide Varistors).
Нелинейное сопротивление варистора снижается с ростом сигнала, поэтому в сочетании с постоянным последовательным резистором он образует делитель, коэффициент ослабления которого увеличивается пропорционально приложенному напряжению.
Для подавления коротких всплесков сигнала вместо сопротивления можно применить индуктивность, в том числе индуктивность рассеяния обмотки трансформатора или реактора входного фильтра (при прямом подключении к сети).
Варисторы используются для подавления сетевых помех, перенапряжений в DC-цепях и даже в качестве одиночных снабберов.
Типовая характеристика MOV приведена на рис. 3, с ее помощью находится соответствующее значение предельного напряжения при определенном пиковом токе. Выбор и нормирование параметров варистора должны производиться в следующей последовательности:
- Выбор компонента с соответствующим рабочим напряжением (определенным производителем как эффективное значение): амплитуда сигнала несинусоидальной формы не должна превышать заданное в документации эффективное значение синусоидального напряжения. Это относится и к импульсам постоянного тока, а максимальное значение DC-сигнала определяется в документации отдельно.
- Нахождение напряжения ограничения по вольт-амперной характеристике варистора, для чего необходимо определить пиковое значение ударной нагрузки. Для трансформаторов это ток намагничивания, пересчитанный с учетом коэффициента трансформации; для индуктивностей — ток непосредственно перед разрывом цепи. Допустимая величина периодически повторяемого обратного напряжения защищаемого элемента должна быть выше уровня ограничения, найденного по приведенной методике.
- Определение мощности рассеяния и сравнение с допустимым значением, указываемым в документации при заданной температуре окружающей среды. Для металл-оксидных варисторов потерями мощности на сетевой частоте, как правило, можно пренебречь.
Рис. 3. Импульсная вольт-амперная характеристика ZnO варистора
Варисторы не способны снижать скорость нарастания сигнала, поэтому параллельно тиристорам с низким допустимым значением dv/dt следует устанавливать RC-снабберы.
Лавинные диоды
Кремниевые лавинные диоды отличаются от выпрямительных тем, что резкое нарастание обратного тока при превышении напряжением определенного уровня (VBR) у них обусловлено не пробоем по поверхности кремниевого кристалла, а лавинным эффектом всей области пространственного заряда p-n-перехода. Импульсы обратного тока малой плотности и длительности могут разрушить обычный диод, что вызвано концентрацией мощности в отдельных точках на поверхности чипа. Лавинные диоды способны нормально работать в условиях обратных токовых импульсов, создающих потери мощности в диапазоне до единиц киловатт.
Благодаря высокой стойкости к пробою лавинные диоды используются в качестве выпрямительных в широком диапазоне применений без защитных снабберов. В высоковольтных схемах они соединяются последовательно, при этом статическая и динамическая балансировка не требуется.
Производители диодов определяют напряжение пробоя VBR
Источник: https://power-e.ru/components/diody-i-tiristory-chast-3/
Тиристоры и динисторы, Принцип действия, режимы работы, характеристика и диагностика исправности,Управляемые выпрямители
Сразу хочу сказать, что здесь никакой воды про тиристоры, и только нужная информация. Для того чтобы лучше понимать что такое тиристоры,динисторы,тиристор,тиристоров,динистор,Вольтамперная характеристика тиристора,классификация тиристоров,Управляемые выпрямители , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база
Тиристор – полупроводниковый прибор на основе монокристалла с четырехслойной структурой с тремя p-n переходами и обладающий вентильными свойствами, т.е. прибор, позволяющий пропускать ток в одном направлении с возможностью управления его средним и действующим значением за счет управления фазой включения тиристора.
Тиристор — полупроводниковый прибор имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.
Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства.
Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости.
Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображенный на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).
Тиристор имеет нелинейную вольт-амперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности.
Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора).
После перехода тиристора в открытое состояние он остается в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.
1 Обозначение тиристора 2 Характеристики и параметры тиристоров и их значение 3 Достоинства тиристора 4 Устройство и основные виды тиристоров 5 Вольтамперная характеристика тиристора
6 Режимы работы триодного тиристора
7 Классификация тиристоров 8 Виды тиристоров и их особые свойства 9 Принцип работы тиристора
10 Управляемые выпрямители на тиристоре
11 Проверка работоспособности тиристора
1 Обозначение тиристора
Обозначения тиристоров
Наименование | Обозначение |
1. Тиристор диодный, запираемый в обратном направлении | |
2. Тиристор диодный, проводящий в обратном направлении | |
3. Тиристор диодный симметричный | |
4. Тиристор триодный. Общее обозначение | |
5. Тиристор триодный, запираемый в обратном направлении с управлением:по аноду | |
по катоду | |
6. Тиристор триодный выключаемый:общее обозначение | |
запираемый в обратном направлении, с управлением по аноду | |
запираемый в обратном направлении, с управлением по катоду | |
7. Тиристор триодный, проводящий в обратном направлении:общее обозначение | |
с управлением по аноду | |
с управлением по катоду | |
8. Тиристор триодный симметричный (двунаправленный) — триак | |
9. Тиристор тетроидный, запираемый в обратном направлении |
Примечание. Допускается обозначение тиристора с управлением по аноду изображать в виде продолжения соответствующей стороны треугольника.
Управляющий электрод позволяет управлять моментом включения тиристора даже при положительной разности потенциалов между анодом и катодом меньше пробойной, если через 1-й p-n переход создать прямой ток. Момент включения, или фаза включения, называется углом управления .
Общие параметры тиристоров
1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние. 2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода. 3.
Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии. 4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии. 5. Обратный ток — ток при максимальной обратном напряжении. 6. Максимальный ток управления электрода 7.
Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность
• Uвкл — напряжение включения • Iупр – ток управления • Uупр – напряжение управления • tвкл – время включения • tвыкл – время выключения • Uвкл макс, при Iупр=0
Важным параметром тиристора является ток управления Iупр – ток управляющего электрода, который обеспечивает переключение тиристора в открытое состояние.
Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:
- Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
- Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
- Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
- Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает. Пример характеристик
- Удерживающий ток. Если ток, протекающий через анод-катод ниже этого значения, устройство переходит в запертое состояние.
- Минимальный ток управляющего сигнала. При подаче тока ниже этого значения, элемент не откроется.
- Максимальный ток управления. Если превысить этот параметр, p-n переход выйдет из строя.
- Рассеиваемая мощность. Определяет величину подключаемой нагрузки.
Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.
3 Достоинства тиристора
Тиристоры получили широкое применение благодаря ряду преимуществ по сравнению с диодами: • высокая удельная мощность
• малые внутренние потери, то есть высокий КПД
• широкий диапазон рабочих температур (от –40 до +120 оС) • мгновенная готовность к работе • малые времена отпирания и восстановления запирающих свойств Промышленность выпускает тиристоры • на токи I от 2 до 150А
• на напряжение U от 50 до 1000В
4 Устройство и основные виды тиристоров
Рис. 1. Схемы тиристора: a) Основная четырехслойная p-n-p-n-структура b) Диодный тиристор с) Триодный тиристор.
Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырехслойный полупроводник структуры p-n-p-n, содержащий три последовательно соединенных p-n-перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнемуn-слою — катодом. В общем случае p-n-p-n-прибор может иметь до двух управляющих электродов (баз), присоединенных к внутренним слоям.
Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором. Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором илитринистором[1] (иногда просто тиристором, хотя это не совсем правильно).
В зависимости от того, к какому слою полупроводника подключен управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.
Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях.
В последнем случае соответствующие приборы называются симметричными (так как их ВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется также симистором или триаком (от англ. triac).
Следует заметить, что вместо симметричных динисторов, часто применяются их интегральные аналоги, обладающие лучшими параметрами.
Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.
5 Вольтамперная характеристика тиристора
Рис. 2. Вольтамперная характеристика тиристора
Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:
- Между точками 0 и (Vвo,IL) находится участок, соответствующий высокому сопротивлению прибора — прямое запирание (нижняя ветвь).
- В точке Vво происходит включение тиристора (точка переключения динистора во включенное состояние).
Источник: https://intellect.icu/tiristory-i-dinistory-293
Радио для всех-Стабилитрон,симистор, динистор и супрессор
|
Научно-популярный образовательный ресурс для юных и начинающих радиолюбителей — Popular science educational resource for young and novice hamsОсновы электричества, учебные материалы и опыт профессионалов — Basics of electricity, educational materials and professional experience |
Раздел Внимание Полезности ДЕТЯМ Книжки Интересно Друзья JR
JUNIOR RADIO |
Зенеровский диод или стабилитрон — сильно легированный кремниевый кристаллический диод, который пропускает ток в прямом направлении так же, как идеальный диод. Он также позволяет току протекать в обратном направлении, когда напряжение превышает определенное значение, известное как напряжение пробоя. Напряжение пробоя также известно как напряжение колена Зенера.
Устройство назвали в честь американского физика Кларенса Зенера, который описал свойство разрушения электрических изоляторов.
Устройство состоит из обращенного смещенного, сильно легированного диода pn-перехода, работающего в области пробоя. Обычные диоды и выпрямители никогда не работают в области пробоя, но диод Зенера можно безопасно использовать в этой точке.
Работа зенеровского диода
Когда обратное напряжение, приложенное к диоду Зенера, увеличивается, оно достигает напряжения пробоя, при котором ток Зенера увеличивается до большого значения.
В области пробоя дальнейшее увеличение обратного напряжения не будет увеличивать напряжение на диоде Зенера, оно только увеличивает ток.
Таким образом, постоянное напряжение, называемое стабилитронным напряжением (V z ), сохраняется на диоде Зенера при изменении напряжения питания. Следовательно, он действует как регулятор напряжения.
Обратная характеристика получена путем принятия обратного напряжения вдоль оси X и обратного тока вдоль -ve Y-оси. Когда обратное напряжение достигает определенного значения, обратный ток увеличивается до большого значения, но напряжение на диоде остается постоянным. Это напряжение пробоя V z .
Обычный обратный смещенный диод при воздействии его пробивного напряжения допускает значительное количество тока. Но когда это обратное напряжение пробоя превышает, диод испытывает лавинный пробой.
Лавинный пробой — это форма проводимости электрического тока, которая позволяет пропускать очень большой ток через хорошие изоляторы . Это может повредить обычный диод.
Зенеровский диод обладает теми же свойствами, за исключением того, что зенеровский диод разработан с уменьшенным пробивным напряжением. В отличие от обычного диода, стабилитрон имеет контролируемый пробой.
При приложении достаточного обратного смещения, как при обратном напряжении, валентные электроны в атомах полупроводников освобождаются под действием приложенного напряжения. Если приложенное напряжение является достаточно отрицательным, электроны, ускоряемые электрическим полем, освобождают другие электроны, вызывая цепную реакцию, приводящую к повышению тока.
Разбивка вызвана двумя эффектами: эффектом Лавины и эффектом Зинера. Эффект зенера доминирует в напряжениях до 5,6 вольт, и эффект лавинного излучения преобладает над этим.
Они оба являются похожими эффектами, разница в том, что эффект зенера является квантовым явлением, а лавинный эффект — движение электронов в валентной зоне, как в любом электрическом токе. Лавинный эффект также позволяет увеличить ток через диод, чем эффект зенера.
График ниже будет наглядно демонстрировать разницу между лавинным эффектом и эффектом зенера.
Зенеровские диоды обычно используются в качестве регуляторов напряжения в цепях, поскольку, как видно из графика, очень мало вариаций напряжения по сравнению с увеличением тока. И наоборот, очень небольшие изменения напряжения могут вызвать очень большие изменения тока. Зенеровские диоды можно также использовать в устройствах защиты от перенапряжений, которые мы прикрепляем к нашим холодильникам и телевизорам, чтобы защитить их от колебаний напряжения.
Читаем далее по теме
Условные обозначения диодной группы
Супрессор
Варистор
Тиристор
Симистор
Динистор
Источник: http://www.junradio.com/index/stabilitron_simistor_dinistor_supressor/0-83
Что такое диод, стабилитрон, варикап, тиристор, светодиод — их типы и применение
Полупроводниковые приборы применялись в радиотехнике еще до изобретения электронных ламп. Изобретатель радио А. С. Попов использовал для обнаружения электромагнитных волн вначале когерер (стеклянную трубку с металличеокими опилками), а затем контакт стальной иглы с угольным электродом.
Это был первый полупроводниковый диод — детектор. Позже были созданы детекторы с использованием естественных и искусственных кристаллических полупроводников (галена, цинкита, халькопирита и т. д.).
Такой детектор состоял из кристалла полупроводника, впаянного в чашечку-держатель, и стальной или вольфрамовой пружинки с заостренным концом (рис. 1). Положение острия на кристалле находили опытным путем, добиваясь наибольшей громкости передачи-радиостанции.
Рис. 1. Полупроводниковый диод — детектор.
В 1922 г. сотрудник Нижегородской радиолаборатории О. В. Лосев обнаружил замечательное явление: кристаллический детектор, оказывается, может генерировать и усиливать электрические колебания.
Это было настоящей сенсацией, но недостаточность научных познаний, отсутствие нужного экспериментального оборудования не позволили в то время глубоко исследовать суть процессов, происходящих в полупроводнике, и создать полупроводниковые приборы, способные конкурировать с электронной лампой.
Полупроводниковый диод
Полупроводниковые диоды обозначают символом, сохранившимся в общих чертах со времен первых радиоприемников (рис. 2,6).
Рис. 2. Обозначение и структура полупроводникового диода.
Вершина треугольника в этом символе указывает направление наибольшей проводимости (треугольник символизирует анод диода, а короткая черточка, перпендикулярная линиям-выводам,— его катод).
Этим же символом обозначают полупроводниковые выпрямители, состоящие, например, из нескольких последовательно, параллельно или смешанно соединенных диодов (выпрямительные столбы и т. п.).
Диодные мосты
Для питания радиоаппаратуры часто используют мостовые выпрямители. Начертание тажой схемы соединения диодов (квадрат, стороны которого образованы символами диодов) давно уже стало общепринятым, поэтому для обозначения таких выпрямителей стали иополикшать упрощенный символ — квадрат с символом одного диода внутри (рис. 3).
Рис. 3. Обозначение диодного моста.
В зависимости от значения выпрямленного напряжения каждое плечо моста может состоять из одного, двух и более диодов. Полярность выпрямленного напряжения на схемах не указивают так как ее однозначно определяет аимвол диода внутри квадрата.
Мосты конструктивно объединенные в одном корпусе, изображают отдельно показивая принадлежность к одному изделию в позиционном обозначены. Рядом с позиционным обозначением диодов, как и всех других полупроводниковых приборов, как правило, указывают их тип.
На основе символа диода построены условные обозначения полупроводниковых диодов с особыми свойствами. Для получения нужного символа используют специальные знаки, изВбражаемые либо на самом базовом символе, либо в непосредственной близости от него, а чтобы акцентировать внимание на некоторых из них, базовый символ помещают в круг — условное обозначение корпуса полупроводникового прибора.
Туннельные диоды
Знаком, напоминающим прямую скобку, обозначают катод туннельных диодов, (рис. 4,а). Их изготовляют из полупроводниковых материалов с очень большим содержанием примеси, в результате чего полупроводник превращается в полуметалл.
Благодаря необычной форме вольт-амперной характеристики (на ней имеется участок отрицательного сопротивления) туннельные диоды используют для усиления и генерирования электрических сигналов и в переключающих устройствах.
Важным достоинством этих диодов является то, что они могут работать на очень высоких частотах.
Рис. 4. Тунельный диод и его обозначение.
Разновидность туннельных диодов — обращенные диоды, у которых при малом напряжении на р-п переходе проводимость в обратном направлении больше, чем в прямом.
Источник: https://radiostorage.net/339-chto-takoe-diod-stabilitron-varikap-tiristor-svetodiod-ih-tipy-i-primenenie.html
Диод
Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.
обратный клапан
Диод – это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:
А некоторые выглядят чуточку по-другому:
Есть также и SMD исполнение диодов:
Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.
На схемах диод обозначается так
Он может пропускать электрический ток только от анода к катоду.
Из чего состоит диод
В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.
После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.
Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.
строение диода
Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.
Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.
диод Д226
Вот это и есть тот самый PN-переход
PN-переход диода
Как определить анод и катод диода
1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса
2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.
Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).
Диод в цепи постоянного тока
Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.
прямое включение диода
Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.
диод в прямом включении
Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.
обратное включение диода
Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.
обратное включение диода
Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.
Диод в цепи переменного тока
Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.
Мой генератор частоты выглядит вот так.
генератор частот
Осциллограмму будем снимать с помощью цифрового осциллографа
Генератор выдает переменное синусоидальное напряжение.
синусоидальный сигнал
Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.
переменное напряжение после диода
Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.
А что будет, если мы поменяем выводы диода? Схема примет такой вид.
переменый ток после диода
Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.
переменный ток после диода
Ничего себе! Диод срезал только положительную часть синусоиды!
Характеристики диода
Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”
Для объяснения параметров диода, нам также потребуется его ВАХ
1) Обратное максимальное напряжение Uобр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока при обратном подключении диода.
При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.
2) Максимальный прямой ток Iпр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.
3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.
Стабилитроны
Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие.
Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.
В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца.
Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax).
Измеряется в Амперах.
Выглядят стабилитроны точно также, как и обычные диоды:
На схемах обозначаются вот так:
Светодиоды
Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.
Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше.
Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор.
Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.
Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.
Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.
На схемах светодиоды обозначаются так:
Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления
Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах
Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:
Как проверить светодиод можно узнать из этой статьи.
Тиристоры
Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы.
У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья.
Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.
а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:
На схемах триодные тиристоры выглядят вот таким образом:
Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.
Диодный мост и диодные сборки
Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты – одна из разновидностей диодных сборок.
На схемах диодный мост обозначается вот так:
Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.
Очень интересное видео про диод
Источник: https://www.ruselectronic.com/poluprovodnikovyj-diod-i-jego-vidy/
Отличие светодиода от диода
21 июня 2015.
Категория: Лампы.
Светодиод – это разновидность диода, электронного прибора обладающего односторонней проводимостью электрического тока. Диод, или как его еще называют выпрямительный диод, обладая своими уникальными свойствами изменять электрическое сопротивление в зависимости от полярности приложенного к нему напряжения, применяют для выпрямления переменного тока. Конструкция выпрямительного диода может строиться как на базе радиоэлектронных ламп, так и на базе полупроводниковых кристаллов.
Принцип действия светодиода
В отличие от выпрямительного диода светодиод выполняется только на базе полупроводниковых кристаллов. Принцип действия у обоих электронных приборов основан на инжекции (диффузии) электронов и дырок в области p-n перехода, то есть области контакта двух полупроводников с разным типом проводимости.
Под инжекцией подразумевается переход избыточных электронов из области n-типа в область p-типа, а также переход избыточных дырок из области p-типа в область n-типа, где существует их недостаток. В результате инжекции в обеих областях, возле границы перехода, образуются не скомпенсированные слои электронов и дырок. На стороне n-перехода слой дырок, а на стороне p-перехода слой электронов.
Эти слои образуют так называемый запирающий слой, внутреннее электрическое поле которого препятствует дальнейшей инжекции (рисунок 1).
Рисунок 1. Запирающий слой p-n перехода
Наступает определенное равновесие.
При подаче отрицательного напряжения к области кристалла с проводимостью n-типа и положительного напряжения к области кристалла с проводимостью p-типа под действием внешнего электрического поля направленного против запирающего поля открывается путь основным носителям через p-n переход. Запирающий слой становится тоньше и его сопротивление уменьшается. Происходит массовое перемещение свободных электронов из n-области в p-область и дырок из p-области в n-область. В цепи возникает электрический ток (рисунок 2).
Рисунок 2. Включение в прямом направлении
Если подать обратное напряжение, то запирающий слой становится толще и электрическое сопротивление значительно увеличивается. Электрический ток при подаче обратного напряжения практически отсутствует (рисунок 3).
Рисунок 3. Включение в обратном направлении
Нужно помнить, что допустимая величина обратного напряжения у светодиодов, при которой не происходит его пробоя, значительно ниже, чем у выпрямительных диодов. Зачастую эта величина равна максимальному значению прямого напряжения.
Поэтому, включая светодиод в электрическую цепь переменного тока, не следует забывать про амплитудное значение напряжения. Для синусоидального напряжения частотой 50 Гц его амплитудное значение в 1,41 раза больше чем действующее.
Такие включения используются редко, так как назначение светодиода все-же «светиться», а не «выпрямлять». Обычно светодиод включается на постоянное напряжение.
1. Полупроводники
При перемещении свободных электронов через p-n переход электроны и дырки излучают фотоны по причине их перехода с одного энергетического уровня на другой. Не все полупроводниковые материалы эффективно излучают свет при инжекции. Например, диоды, выполненные из кремния, германия, карбида кремния, свет практически не излучают. А диоды, выполненные из арсенида галлия или сульфида цинка, обладают наилучшими излучающими способностями.
Излучаемый свет не когерентен и лежит в узком спектре. В связи с этим у каждого светодиода свой спектр волн, со своей длиной и частотой, которые могут быть видны или не видны человеческому глазу.
В качестве примера применения светодиодов с не видимым спектром излучения, можно привести светодиоды, применяемые в пультах дистанционного управления любой современной радио-электронной аппаратуры. Для того чтобы увидеть излучение возьмите пульт дистанционного управления и любой сотовый телефон имеющий фото-видео камеру.
Переведите телефон в режим съемки видео, направьте объектив камеры на передний край пульта и нажмите на пульте любую из кнопок. При этом на экране телефона вы будете наблюдать свечение светодиода.
Спектр излучения зависит от химического состава кристалла полупроводника. Каждый спектр излучения имеет свой цвет. Поэтому светодиоды излучающие свет в видимом человеческому глазу спектре, воспринимаются разноцветными, красными, зелеными, синими.
История создания светодиодов
Свечение твердотельного диода впервые обнаружил британский экспериментатор Генри Раунд (Henry Round). В 1907 году, проводя свои исследовательские работы он случайно заметил, что вокруг точечного контакта работающего диодного детектора возникает свечение. Однако вывода о практическом применении этого явления им сделано не было.
Через несколько лет, в 1922 году, Олег Владимирович Лосев во время своих ночных радиовахт, точно также как и Генри раунд, случайно стал наблюдать за возникающим свечением кристаллического детектора. Для получения устойчивого свечения кристалла, он подавал на точечный контакт диодного детектора напряжение от гальванической батарейки и тем пропускал через него электрический ток. Это была первая попытка найти практическое применение работы светодиода.
В 1951 году в США начались исследовательские работы по разработке «полупроводниковых лампочек», действие которых было основано на «эффекте Лосева». В 1961 году, была открыта и запатентована технология изготовления инфракрасного светодиода, авторами которой стали Роберт Байард и Гари Питтман.
Тем не менее, технология получилась перспективной и получила дальнейшее развитие.
Следующим шагом в развитии светодиодной техники явилось изобретение желтого светодиода. Бывший ученик Ника Холоньяка — Джордж Крафорд, в 1972 году вместе с изобретением желтого светодиода, увеличил в 10 раз яркость свечения красных и красно-оранжевых светодиодов.
Практически одновременно с этими изобретениями, в начале 70-х годов, были получены светодиоды зеленого цвета. Свое применение они нашли в калькуляторах, наручных часах, электронных приборах, световых указателях и дорожных светофорах.
Значительного увеличения светового потока, до 1 люмена (Лм), красных, желтых и зеленых светодиодов смогли достичь только к 1990 году.
В 1993 году, японский инженер, работник компании Nichia, Суджи Накамура (Shuji Nakamura), смог получить первый светодиод высокой яркости который излучал синий цвет. Это изобретение стало революцией в развитии светодиодной техники, так как были получены светодиоды трех основных цветов, красного, зеленого и синего. С этого момента можно было получить свечение любого цвета, включая белого.
В 1996 году появились первые белые светодиоды. Они состояли из двух светодиодов – синего и ультрафиолетового с люминофорным покрытием.
Светодиоды белого цвета
К 2011 году были построены конструкции светодиодов белого свечения, которые обеспечивали светоотдачу до 210 Лм/Вт. Каким же образом ученые и инженеры добились таких успехов. Для этого рассмотрим известные на сегодняшний день способы получения светодиодов белого цвета.
Известно, что все цвета и оттенки складываются из трех основных цветов – красного, зеленого, синего. Белый свет не исключение. Существует четыре варианта получения излучения светодиодами белого цвета (рисунок 4).
Рисунок 4. Получение светодиодов излучающих белый свет
Первый вариант – использование в конструкции светодиода трех отдельных p-n переходов излучающих красный, зеленый и синий свет. При этом варианте для каждого p-n перехода требуется свой собственный источник питания. Регулируя напряжение на каждом p-n переходе добиваются создания белого свечения со своим оттенком (цветовой температурой).
Второй вариант – при этом варианте в конструкции светодиода используется один p-n переход синего свечения, покрытый желтым или желто-зеленым люминофором. Такой вариант применяется чаще всего, так как для работы светодиода требуется один источник питания. Однако цветовые характеристики этого светодиода уступают характеристикам светодиодов получаемых другими способами.
Третий вариант – здесь также используется один p-n переход синего свечения, но покрытый слоями люминофоров двух цветов – красного и зеленого. Конструкции светодиодов, изготавливаемые данным способом, позволяют получить лучшие цветовые характеристики.
Четвертый вариант – конструкция светодиода при этом варианте строится на основе ультрафиолетового светодиода покрываемого тремя слоями люминофоров красным, зеленым и синим. Конструкции таких светодиодов самые не экономичные, так как преобразование коротковолновых ультрафиолетовых лучей в длинноволновые видимые лучи, во всех трех слоях люминофора, сопровождается потерями энергии.
Значение светоотдачи сверхярких светодиодов белого цвета в 210 Лм/Вт пока было достигнуто только в лабораторных условиях. Максимальная же светоотдача ярких светодиодов доступных для общего применения не превышает 120 Лм/Вт. Такие светодиоды очень дороги и используются редко. Основная масса светодиодов имеет светоотдачу 60 – 95 Лм/Вт.
Светоотдача светодиода, так же как и любого другого источника света работающего под действием электрической энергии, зависит от величины проходящего через него тока. Чем больше ток, тем больше светоотдача.
Но также как и любого другого источника света, большая часть энергии в нем превращается в тепло. Нагрев светодиодов сопровождается падением их светоотдачи.
В связи с этим производители вынуждены использовать массивные металлические корпуса для охлаждения кристалла и рассеивания выделяющегося тепла в окружающую среду. Такие меры позволяют несколько повысить эффективность его использования.
Если сравнивать энергоэффективность различных источников света то выяснится, что светодиоды имея коэффициент полезного действия 40 – 45% являются самыми экономичными. К примеру, лапы накаливания имеют КПД равный 2 – 5%, люминесцентные лампы – 15 – 25%, газоразрядные лампы высокого давления – 24 – 30%.
Режим работы светодиода, когда кристалл имеет температуру близкую к комнатной, несомненно, благоприятно сказывается на его сроке службы. При таких режимах работы светодиод способен работать до 50000 часов не теряя светоотдачи.
Если ставится цель повысить светоотдачу увеличивая ток, то это само собой пагубно сказывается на его сроке службы. В первую очередь к концу срока службы значительно падает светоотдача. Падение происходит плавно и достигает 70% от начального значения.
Реле поворотов под светодиоды своими руками
Во вторых увеличивается вероятность его полного выхода из строя.
Этот факт говорит о том, что выбирая светильники и лампы при разработке проектов освещения необходимо каждый раз оценивать какой из них более выгоден с экономической точки зрения.
Источник: https://1000eletric.com/otlichie-svetodioda-ot-dioda/
Московский Политех — Тема 1: Элементы электронных схем
Элементной базой электронных устройств являются полупроводниковые приборы, резисторы, конденсаторы и другие элементы.
Основным показателем совершенства электронной аппаратуры является плотность упаковки, т.е. количество элементов схемы в 1 см3 действующего устройства.
Технология изготовления интегральных схем обеспечивает плотность упаковки в несколько тысяч элементов в 1 см3.
Резисторы
Резисторы являются наиболее распространенными элементами и имеют следующее условное графическое обозначение (УГО):
Резисторы изготавливаются из проводящего материала: графита, тонкой металлической пленки, провода с невысокой проводимостью.
Резистор характеризуется величиной сопротивления: R = U / I, а также мощностью, которую резистор рассеивает в пространство, допуском, температурным коэффициентом, уровнем шума. Промышленность выпускает резисторы с сопротивление от 0,01 Ом до 1012 Ом и мощностью от 1/8 до 250 Вт с допуском от 0,005% до 20%. Резисторы используются в качестве нагрузочных и токоограничительных сопротивлений, делителей напряжения, добавочных сопротивлений, шунтов.
Конденсаторы
Конденсатор – устройство с двумя выводами и обладающее свойством:
Q = C · U,
- где
- С – емкость в фарадах;
- U – напряжение в вольтах;
- Q – заряд в кулонах.
УГО конденсатора следующее:
Промышленность выпускает керамические, электролитические и слюдяные конденсаторы с емкостью от 0,5 пФ до 1000 мкФ и максимальным напряжением от 3В до 10 кВ.
Конденсаторы используются в колебательных контурах, фильтрах, для разделения цепей постоянного и переменного тока, в качестве блокировочных элементов. В цепях переменного тока конденсатор ведет себя как резистор, сопротивление которого уменьшается с ростом частоты.
Катушки индуктивности
Катушка индуктивности – устройство, обладающее свойством:
U = L · dI / dt,
- где
- L – индуктивность в генри (или мГн, или мкГн);
- U – напряжение в вольтах;
- dI/dt – скорость изменение тока.
УГО катушки индуктивности следующее:
Катушка индуктивности – свернутый в спираль изолированный проводник, обладающий значительной индуктивностью при относительно малой емкости и малом активном сопротивлении. Материалом сердечника служит обычно железо или феррит в виде бруска, тора.
В цепях переменного тока катушка ведет себя как резистор, сопротивление которого растет с увеличением частоты.
Трансформатор – это устройство, состоящие из двух индуктивно связанных катушек индуктивности, называемой первичной и вторичной обмоткой.
УГО трансформатора с магнитопроводом:
Коэффициент трансформации:
n = w1 / w2
где w1 и w2 – число витков
Трансформаторы служат для преобразования переменных напряжений и токов, а также для изолирования от сети.
Полупроводниковые приборы
Действие полупроводниковых приборов основано на использовании свойств полупроводников.
Количество известных в настоящее время полупроводниковых материалов довольно велико. Для изготовления полупроводниковых приборов применяются простые полупроводниковые вещества – германий, кремний, селен – и сложные полупроводниковые материалы – арсенид галлия, фосфит галлия и другие. Значения удельного электрического сопротивления в чистых полупроводниковых материалах лежат от 0,65 Ом·м (германий) до 108 Ом·м (селен).
Полупроводники или полупроводниковые соединения бывают собственными (чистыми) и с примесью (легированными) В чистых полупроводниках концентрация носителей заряда – свободных электронов и дырок составляет лишь 1016 – 1018 на 1 см3 вещества.
Для снижения удельного сопротивления полупроводника и придания ему определенного типа электропроводности – электронной при преобладании свободных электронов или дырочной при преобладании дырок – в чистые полупроводники вносят определенные примеси. Такой процесс называется легированием.
В качестве легирующих примесей используют элементы 3 и 5 групп периодической системы элементов Д. И. Менделеева.
Легирующие элементы 3 группы создают дырочную электропроводность полупроводниковых материалов и называются акцепторным примесями, элементы 5 группы – электронную электропроводность называют донорными примесями.
Собственные полупроводники – это полупроводники, в которых нет примесей (доноров и акцепторов). При Т = 0 в собственном полупроводнике свободные носители заряда отсутствуют, а концентрация носителей заряда равна Nn = Np = 0 и он не проводит ток. При Т > 0 часть электронов забрасывается из валентной зоны в зону проводимости.
Эти электроны и дырки могут свободно перемещаются по энергетическим зонам. На практике применяются легированные полупроводники. Удельное электрическое сопротивление легированного полупроводника существенно зависит от концентрации примесей.
При концентрации примесей 1020 – 1021 на см3 вещества оно может быть снижено до 5 · 10-6 Ом·м для германия и 5 · 10-5 Ом·м для кремния.
При приложении электрического поля к легированному полупроводнику в нем протекает электрический ток.
Полупроводниковые резисторы
Полупроводниковым резистором называют полупроводниковый прибор с двумя выводами, в котором используется зависимость электронного сопротивления полупроводника от напряжения, температуры, освещенности и других управляющих параметров.
В полупроводниковых резисторах применяется полупроводник, равномерно легированный примесями. В зависимости от типа примесей и конструкции удается получить различные зависимости от управляющих параметров.
Линейный резистор – полупроводниковый резистор, в котором применяется слаболегированный материал типа кремния или арсенида галлия.
Удельное электрическое сопротивление такого полупроводника мало зависит от напряженности электрического поля и плотности электрического тока. Поэтому сопротивление линейного полупроводникового резистора остается практически постоянным в широком диапазоне напряжений и токов. Полупроводниковые линейные резисторы широко применяют в интегральных микросхемах.
Вольт-амперная характеристика линейного резистора
Нелинейные резистивные элементы
УГО нелинейного резистивного элемента показано на рисунке:
Ток I, протекающий через нелинейный элемент, напряжение U на нем. Зависимость U(I) или I(U) называется вольт-амперной характеристикой.
Варисторы
Резистивные элементы, сопротивления которых зависит от напряженности электрического поля, называются варисторами. Варисторы изготавливают из прессованных зерен карбида кремния. Электропроводимость материала, в основном, обусловлена пробоем оксидных пленок, покрывающих зерна. Она определяется напряженностью приложенного электрического поля, т.е. зависит от величины приложенного напряжения.
Условное графическое изображения варистора и его вольт-амперная характеристика показаны на рисунке:
Варисторы характеризуются номинальным напряжением Uном, номинальным значением тока Iном, а также коэффициентом нелинейности β. Этот коэффициент равен отношению статического сопротивления к дифференциальному в точке характеристики с номинальными значениями напряжения и тока:
,
где U и I – напряжение и ток варистора. Коэффициент нелинейности для различных типов варисторов в пределах 2 – 6
Термисторы
Большую группу нелинейных резистивных элементов представляют управляемые нелинейные элементы. К ним относятся терморезисторы (термисторы) – нелинейные резистивные элементы, вольт-амперные характеристики которых существенно зависят от температуры.
В некоторых типах терморезисторов температура меняется за счет специального подогревателя. Терморезисторы выполняют или из металла (медь, платина), сопротивления которого существенно изменяется при изменении температуры, или из полупроводников.
В полупроводниках терморезисторах зависимость сопротивления от температуры описывается аналитической функцией
.
Здесь R(T0) – значение статического сопротивления при температуре T0 = 293 К, где Т – абсолютная температура, а В – коэффициент. Условное графическое обозначение термистора, его температурная характеристика, вольт-амперная характеристика показана на рисунке:
Различают два типа терморезисторов: термистор, сопротивление которого с ростом температуры падает, и позистор, у которого с сопротивление с повышением температуры возрастает. Буквенное обозначение термистора с отрицательным температурным коэффициентом – ТР, а с положительным коэффициентом – ТРП. Температурный коэффициент ТКС = , где R1 — сопротивление при номинальной температуре, ΔR- изменение сопротивления при изменении температуры на величину Δt.
Конструктивно термисторы выполняют в виде бусин, шайб, дисков.
Фоторезисторы
Фоторезистор – это полупроводниковый резистор, сопротивление которого зависит от светового потока, падающего на полупроводниковый материал или от проникающего электромагнитного излучения. Наибольшее распространение получили фоторезисторы с положительным фотоэффектом (например, СФ2-8,СФ3-8). УГО такого элемента показано на рисунке:
В фоторезисторах сопротивление изменяется в результате облучения пластины из полупроводникового материала световым потоком в видимом, ультрафиолетовом или инфракрасном диапазоне. В качестве материала используется сульфиды таллия, теллура, кадмия, свинца, висмута.
Вольт-амперные характеристики фоторезисторов представляют собой линейные функции, угол наклона которых зависит от величины светового потока. В координатах I – U (ток по вертикали) угол, составляемый прямой с горизонтальной осью (ось напряжения), тем больше, чем больше световой поток. Темновое сопротивление резисторных оптронов составляет 107 – 109 Ом. В освещенном состоянии оно снижается до нескольких сотен Ом. Быстродействие их невелико и ограничивается значениями в несколько килогерц.
Магниторезисторы
Магниторезисторы – полупроводниковые материалы, электрическое сопротивление которых зависит от величины напряженности магнитного поля, действующего на материал. В качестве материала используется висмут, германий и др. Сопротивление магниторезистора описывается зависимостью
,
где R(0) – сопротивление при Н = 0; α – коэффициент, Н – напряженность магнитного поля, в которое помещен магниторезистор.
Полупроводниковые диоды
Полупроводниковые диоды являются одним из наиболее распространенных подклассов полупроводниковых приборов. Их отличает разнообразие основополагающих физических принципов, разнообразие используемых полупроводниковых материалов, многообразие конструктивных и технологических реализаций. Полупроводниковые диоды по функциональному назначению могут быть разделены на:
- Выпрямительные (включая столбы, мосты, матрицы), импульсные, стабилитроны, варикапы, управляемые вентили (тиристоры, симметричные тиристоры – симисторы, динисторы);
- СВЧ-диоды: детекторные, смесительные, параметрические, pin-диоды, лавинопролетные, туннельные, диоды Ганна;
- Оптоэлектронные: фотодиоды, светодиоды, ИК-излучатели, лазерные диоды на основе гетероструктур;
- Магнитодиоды.
Слаболегированные полупроводники используются для изготовления маломощных диодов, а сильнолегированные – для изготовления мощных и импульсивных диодов.
Основное значение для работы полупроводниковых диодов имеет электронно-дырочный переход, который для краткости называется р-n переходом.