Как соединить резисторы для увеличения сопротивления

Мощность при параллельном и последовательном соединении резисторов

Как соединить резисторы для увеличения сопротивления

Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением.

Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при параллельном и последовательном соединении резисторов будет различной.

Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.

Свойства и технические характеристики резисторов

Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.

Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения.

Для делителей тока используется параллельное соединение резисторов, а для делителей напряжения – последовательное.

На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр.

Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом.

Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.

Для чего нужны переменные резисторы

Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.

Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.

Для соединения резисторов в схемах используются три разных способа подключения – параллельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

Мощность при последовательном соединение

При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять I = U/R = 100/390 = 0,256 A. На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I2 x R = 0,2562 x 390 = 25,55 Вт.

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

  • P1 = I2 x R1 = 0,2562 x 200 = 13,11 Вт;
  • P2 = I2 x R2 = 0,2562 x 100 = 6,55 Вт;
  • P3 = I2 x R3 = 0,2562 x 51 = 3,34 Вт;
  • P4 = I2 x R4 = 0,2562 x 39 = 2,55 Вт.

Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.

Мощность при параллельном соединение

При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.

Как научиться паять паяльником с нуля

Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:

  • 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
  • Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
  • Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
  • Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом: P = I2 x R = 6,0242 x 16,6 = 602,3 Вт.
  • Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов: P1 = U2/R1 = 1002/200 = 50 Вт; P2 = U2/R2 = 1002/100 = 100 Вт; P3 = U2/R3 = 1002/51 = 195,9 Вт; P4 = U2/R4 = 1002/39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1+Р2+Р3+Р4 = 50+100+195,9+256,4 = 602,3 Вт.

Таким образом, мощность при последовательном и параллельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.

Источник: https://electric-220.ru/news/moshhnost_pri_parallelnom_i_posledovatelnom_soedinenii_rezistorov/2016-10-31-1102

Мощность при параллельном соединении формула

Как соединить резисторы для увеличения сопротивления

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов

В жизни последовательное соединение резисторов имеет вид:

Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Общее номинальное сопротивление составного резистора обозначено как Rобщ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов

Можно соединять резисторы и параллельно:

Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Источник: https://crast.ru/instrumenty/moshhnost-pri-parallelnom-soedinenii-formula

Расчет параллельно / последовательно соединенных резисторов, конденсаторов и дросселей

Как соединить резисторы для увеличения сопротивления

Вычисление сопротивления и мощности при параллельном и последовательном соединении резисторов. (10+)

Расчет параллельно / последовательно соединенных резисторов, конденсаторов и дросселей

Оглавление :: ПоискТехника безопасности :: Помощь

Параллельное или последовательное соединение (включение) применяется обычно в нескольких случаях. Во-первых, если нет резистора номинала. Во-вторых, если есть потребность получить резистор большей мощности.

В-третьих, Если необходимо точно подобрать номинал детали, а устанавливать подстроечник нецелесообразно из соображений надежности. Большинство радиодеталей имеют допуски. Чтобы их компенсировать, например для резистора, последовательно с большим резистором устанавливают меньший в разы.

Подбор этого меньшего резистора позволяет получить точно нужное значение сопротивления.

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Ознакомьтесь также с:

расчетом резисторного делителя напряжения,

расчетом резисторно — конденсатороного (RC) делителя напряжения.

Соединяем последовательно

[Сопротивление последовательно соединенных резисторов, кОм] = [Сопротивление первого резистора, кОм] + [Сопротивление второго резистора, кОм]

[Мощность, рассеиваемая первым резистором, Вт] = [Сопротивление первого резистора, кОм] * [Сила тока, мА] 2 / 1000

[Мощность, рассеиваемая вторым резистором, Вт] = [Сопротивление второго резистора, кОм] * [Сила тока, мА] 2 / 1000

Получается, что из двух резисторов по 500 Ом на 2 Вт можно сделать один на 1 кОм, 4 Вт.

Включаем параллельно

[Сопротивление параллельно соединенных резисторов, кОм] = 1 / (1 / [Сопротивление первого резистора, кОм] + 1 / [Сопротивление второго резистора, кОм])

Эта формула интуитивно понятна, да и формально может быть выведена из следующего соображения. При заданном напряжении на резисторах через каждый из них независимо идет ток, равный напряжению, деленному на сопротивление. Итоговое сопротивление равно напряжению, деленному на суммарный ток. В формулах значение напряжения счастливым образом сокращается, и получается приведенная формула.

[Мощность, рассеиваемая первым резистором, Вт] = [Напряжение на резисторах, В] 2 / [Сопротивление первого резистора, кОм] / 1000

[Мощность, рассеиваемая вторым резистором, Вт] = [Напряжение на резисторах, В] 2 / [Сопротивление первого резистора, кОм] / 1000

Получается, что из двух резисторов по 500 Ом на 2 Вт можно сделать один на 250 Ом, 4 Вт.

(читать дальше) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Источник: https://gyrator.ru/parallel-serial-resistor

Параллельное соединение резисторов: формула и примеры расчета сопротивления, напряжения, тока и мощности

При проектировании электрических схем возникает необходимость использования последовательного и параллельного соединений резисторов. Соединения применяются также и при ремонтах электрооборудования, поскольку в некоторых ситуациях невозможно найти эквивалентный номинал резистора. Выполнить расчет просто, и справиться с этой операцией может каждый.

Типы проводников

Проводимость веществом электрического тока связана с наличием в нем свободных носителей заряда. Их количество определяется по электронной конфигурации. Для этого необходима химическая формула вещества, при помощи которой можно вычислить их общее число. Значение для каждого элемента берется из периодической системы Дмитрия Ивановича Менделеева.

Электрический ток — упорядоченное движение свободных носителей заряда, на которые воздействует электромагнитное поле. При протекании тока по веществу происходит взаимодействие потока заряженных частиц с узлами кристаллической решетки, при этом часть кинетической энергии частицы превращается в тепловую энергию. Иными словами, частица «ударяется» об атом, а затем снова продолжает движение, набирая скорость под действием электромагнитного поля.

Процесс взаимодействия частиц с узлами кристаллической решетки называется электрической проводимостью или сопротивлением материала. Единицей измерения является Ом, а определить его можно при помощи омметра или расчитать. Согласно свойству проводимости, вещества можно разделить на 3 группы:

  1. Проводники (все металлы, ионизированный газ и электролитические растворы).
  2. Полупроводники (Si, Ge, GaAs, InP и InSb).
  3. Непроводники (диэлектрики или изоляторы).

Проводники всегда проводят электрический ток, поскольку содержат в своем атомарном строении свободные электроны, анионы, катионы и ионы. Полупроводники проводят электричество только при определенных условиях, которые влияют на наличие или отсутствие свободных электронов и дырок.

ЭТО ИНТЕРЕСНО:  Как работает трехфазный асинхронный двигатель

К факторам, влияющим на проводимость, относятся следующие: температура, освещенность и т. д. Диэлектрики вообще не проводят электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда.

При выполнении расчетов каждый радиолюбитель должен знать зависимость сопротивления от некоторых физических величин.

Зависимость сопротивления

Значение электропроводимости зависит от нескольких факторов, которые необходимо учитывать при расчетах, изготовлении элементов резистивной нагрузки (резисторов), ремонте и проектировании устройств. К этим факторам необходимо отнести следующие:

  1. Температура окружающей среды и материала.
  2. Электрические величины.
  3. Геометрические свойства вещества.
  4. Тип материала, из которого изготовлен проводник (полупроводник).

К электрическим величинам можно отнести разность потенциалов (напряжение), электродвижущую силу (ЭДС) и силу тока. Геометрией проводника является его длина и площадь поперечного сечения.

Электрические величины

Зависимость величины электропроводимости от параметров электричества определяется законом Ома. Существует две формулировки: одна — для участка, а другая — для полной цепи. В первом случае соотношение определяются, исходя из значений силы тока (I) и напряжения (U) простой формулой: I = U / R. Из соотношения видна прямо пропорциональная зависимость тока от величины напряжения, а также обратно пропорциональная от сопротивления. Можно выразить R: R = U / I.

Вам это будет интересно  Устройство термопары, ее виды и принцип работы

Для расчета электропроводимости всего участка следует воспользоваться соотношением между ЭДС (e), силой тока (i), а также внутренним сопротивлением источника питания (Rвн): i = e / (R+Rвн). В этом случае величина R вычисляется по формуле: R = (e / i) — Rвн. Однако при выполнении расчетов необходимо учитывать также геометрические параметры и тип проводника, поскольку они могут существенно повлиять на вычисления.

Тип и геометрические параметры

Свойство вещества к проводимости электричества определяется структурой кристаллической решетки, а также количеством свободных носителей. Исходя из этого, тип вещества является ключевым фактором, который определяет величину электропроводимости. В науке коэффициент, определяющий тип вещества, обозначается литерой «р» и называется удельным сопротивлением. Его значение для различных материалов (при температуре +20 градусов по Цельсию) можно найти в специальных таблицах.

Иногда для удобства расчетов используется обратная величина, которая называется удельной проводимостью (σ). Она связана с удельным сопротивлением следующим соотношением: p = 1 / σ. Площадь поперечного сечения (S) влияет на электрическое сопротивление.

С физической точки зрения, зависимость можно понять следующим образом: при малом сечении происходят более частые взаимодействия частиц электрического тока с узлами кристаллической решетки.

Поперечное сечение можно вычислить по специальному алгоритму:

  1. Измерение геометрических параметров проводника (диаметр или длину сторон) при помощи штангенциркуля.
  2. Визуально определить форму материала.
  3. Вычислить площадь поперечного сечения по формуле, найденной в справочнике или интернете.

В случае когда проводник имеет сложную структуру, необходимо вычислить величину S одного элемента, а затем умножить результат на количество элементов, входящих в его состав. Например, если провод является многожильным, то следует вычислить S для одной жилы.

После этого нужно умножить, полученную величину S, на количество жил. Зависимость R от вышеперечисленных величин можно записать в виде соотношения: R = p * L / S. Литера «L» является длиной проводника.

Однако для получения точных расчетов необходимо учитывать температурные показатели внешней среды и проводника.

Температурные показатели

Существует доказательство зависимости удельного сопротивления материала от температуры, основанное на физическом эксперименте. Для проведения опыта нужно собрать электрическую цепь, состоящую из следующих элементов: источника питания, нихромовой спирали, соединительных проводов амперметра и вольтметра.

Приборы нужны для измерения значений силы тока и напряжения соответственно. При протекании электричества происходит нагревание нихромовой пружины. По мере ее нагревания, показания амперметра уменьшаются.

При этом происходит существенное падение напряжения на участке цепи, о котором свидетельствуют показания вольтметра.

Вам это будет интересно  Электротехника и электроника как основа физики

В радиотехнике уменьшение величины напряжение называется просадкой или падением. Формула зависимости р от температуры имеет следующий вид: p = p0 * [1 + a * (t — 20)]. Значение p0 — удельное сопротивление материала, взятого из таблицы, а литера «t» — температура проводника.

Температурный коэффициент «а» принимает следующие значения: для металлов — a>0, а для электролитических растворов — a

Источник: https://rusenergetics.ru/praktika/raschet-soprotivleniya-rezistorov

Что такое делитель напряжения и как он используется на резисторах?

Существуют два вида сопротивления – переменное и постоянное, а делитель напряжения на резисторах нужен для защиты электроприборов. Например, светодиодам необходим небольшой ток, в противном случае они могут перегореть. Для ограничения тока в электрическую цепь вставляется резистор, следовательно ток уменьшается и светодиоды работают в штатном режиме. Резистор – радиоэлемент для увеличения сопротивления электрической цепи. Его ставят с целью понижения напряжения или тока.

Постоянное сопротивление – резисторы, которые не изменяют свой номинал. Если подобное происходит, значит резистор вышел из строя. Переменные резисторы могут менять свое сопротивление в процессе своей работы. Они оснащены специальный бегунок, который и регулирует сопротивление. На основе их изготавливают самые различные регуляторы.

В статье будут подробно рассмотрены типы подключения и что такое делитель напряжения. Также в статье содержится видеоролик на данную тему и скачиваемый файл с дополнительной информацией.

Соединение резисторов

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике. Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов. Соединение резисторов может производиться последовательно, параллельно и смешанно.

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

  • U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
  • U2 = R2 * I = 800 Ом * 2А = 1600 В.

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В. Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток. R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом.

Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2 А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В. А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором — 1600 В.

При этом напряжение источника питания — 4000 В.

Смешанное соединение резисторов

Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением. На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно.

Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:

  • Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.
  • Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.
  • После расчета эквивалентных сопротивлений резисторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.
  • Рассчитывают сопротивления полученной схемы.

Первый закон

Ещё один очень важный закон — это закон Кирхгофа. Для участка цепи постоянного тока их два. Первый закон имеет формулировку: Сумма всех токов, входящих в узел и выходящих из него равна нулю.

Если посмотреть на схему, I1 — это ток, который заходит в узел, I2 и I3 — это электроны, которые вытекают из него. Применяя формулировку первого закона можно записать формулу по-другому: I1-I2+I3=0.

В этой формуле знаки плюс имеют значения, которые прибывают в узел, минус, который отходит от него.

Второй закон Кирхгофа

Если к цепи с включенными сопротивлениями подключен один источник ЭДС (батарея питания) тогда всё понятно, можно обойтись законом Ома. А, если, источников несколько и схема с различным схемным расположением элементов, тогда вступает в силу второй закон, который гласит: сумма токов всех источников питания для замкнутого контура, равна сумме падений напряжения на всех сопротивлениях участка в этом контуре.

Параллельное и последовательное соединение резисторов, решение задач

Алгоритм расчёта смешанных подключений находится в тех же правилах, что и в элементарных схемах расчета последовательного и параллельного соединения резисторов. Ничего нового нет: нужно правильно разбить предложенную схему на пригодные для расчета участки. Участки, с элементами, подключены поочередно либо параллельно.

Для решения задачи на последовательное и параллельное соединение резисторов необходимо правильно оценить цепи элементов. На схеме присутствует параллельная и последовательная часть соединения элементов. Для расчета очень важно аккуратно, шаг за шагом упрощать цепи и не брать сразу всю схему (рис.1).

Как же правильно определить параллельное и последовательное соединение резисторов?

Для примера расчета возьмем резисторы R3, R4, которые подключены параллельно. Эквивалентный резистор этих элементов, будет равенRэ. = 1/R34 =1/R3 + 1/R4, после преобразования формулы и приведения к одному знаменателю получим R34 = R3 · R4 / (R3 + R4). Э. = 1/3+1/4 /(3+4) =1,7 Ом.

Далее видно, что приведённая эквивалентное R эк и R6 соединены последовательно, чтобы узнать сопротивление их необходимо сложить, тогда общее сопротивление будет равно R346 = R34 + R6, тогда Rэк346 = 1,7 + 6 = 7, 7 Ом.

Заменяем на схеме одним общим элементом, теперь, позиция упрощается еще больше. Теперь образовалась ситуация — включение трех элементов в //. Как вычисляется такое соединение нам уже известно, 1/ R23465 = 1/ R2 +1/R346 + 1/R5 после вычисления правой части получаем 0,82 Ом.

После окончательного вычисления получаем R23465 = 2,1 Ом. Здесь следует обратить внимание, что общее сопротивление получилось меньше самого меньшего из трех. Заменяем эти сопротивление одним эквивалентным R23465. В конечном итоге все выглядит уже намного проще. Rц = Rэк + R1+ R2. R об.

= R ц = 1,21 +1 =9,21 Ом.

При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными.

Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение.

В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно.

На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.

Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

  • Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом.
  • Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом.

Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

Источник: https://vk.com/@chinagreat-chto-takoe-delitel-napryazheniya-i-kak-on-ispolzuetsya-na-re?ref=group_block

Параллельные резисторы формула – Формула расчета сопротивления при параллельном соединении резистора

Параллельные соединения резисторов, формула расчёта которых выводится из закона Ома и правил Кирхгофа, являются наиболее распространённым типом включения элементов в электрическую цепь. При параллельном соединении проводников два или несколько элементов объединяются своими контактами с обеих из сторон соответственно. Подключение их к общей схеме осуществляется именно этими узловыми точками.

Общий вид

Особенности включения

Включённые таким образом проводники нередко входят в состав сложных цепочек, содержащих, помимо этого, последовательное соединение отдельных участков.

Для такого включения типичны следующие особенности:

  • Общее напряжение в каждой из ветвей будет иметь одно и то же значение;
  • Протекающий в любом из сопротивлений электрический ток всегда обратно пропорционален величине их номинала.

В частном случае, когда все включённые в параллель резисторы имеют одинаковые номинальные значения, протекающие по ним «индивидуальные» токи также будут равны между собой.

Расчёт

Сопротивления ряда соединённых в параллель проводящих элементов определяются по общеизвестной форме расчёта, предполагающей сложение их проводимостей (обратных сопротивлению величин).

Протекающий в каждом из отдельных проводников ток в соответствие с законом Ома, может быть найден по формуле:

I= U/R (одного из резисторов).

После ознакомления с общими принципами обсчёта элементов сложных цепочек можно перейти к конкретным примерам решения задач данного класса.

ЭТО ИНТЕРЕСНО:  Какое напряжение подается на магнетрон в микроволновке

Пример №1

Нередко для решения стоящей перед конструктором задачи требуется путём объединения нескольких элементов получить в итоге конкретное сопротивление. При рассмотрении простейшего варианта такого решения допустим, что общее сопротивление цепочки из нескольких элементов должно составлять 8 Ом. Этот пример нуждается в отдельном рассмотрении по той простой причине, что в стандартном ряду сопротивлений номинал в 8 Ом отсутствует (есть только 7,5 и 8,2 Ом).

Решение этой простейшей задачи удаётся получить за счёт соединения двух одинаковых элементов с сопротивлениями по 16 Ом каждое (такие номиналы в резистивном ряду существуют). Согласно приводимой выше формуле общее сопротивление цепочки в этом случае вычисляется очень просто.

Из неё следует:

16х16/32=8 (Ом), то есть как раз столько, сколько требовалось получить.

Таким сравнительно простым способом удаётся решить задачу формирования общего сопротивления, равного 8-ми Омам.

Пример №2

В качестве ещё одного характерного примера образования требуемого сопротивления можно рассмотреть построение схемы, состоящей из 3-х резисторов.

Общее значение R такого включения может быть рассчитано по формуле последовательного и параллельного соединения в проводниках.

Пример

В соответствии с указанными на картинке значениями номиналов, общее сопротивление цепочки будет равно:

1/R = 1/200+1/220+1/470 = 0,0117;

R=1/0,0117 = 85,67Ом.

В итоге находим суммарное сопротивление всей цепочки, получаемой при параллельном соединении трёх элементов с номинальными значениями 200, 240 и 470 Ом.

Важно! Указанный метод применим и при расчёте произвольного числа соединенных в параллель проводников или потребителей.

Также необходимо отметить, что при таком способе включения различных по величине элементов общее сопротивление будет меньше, чем у самого малого номинала.

Расчёт комбинированных схем

Рассмотренный метод может применяться и при расчёте сопротивления более сложных или комбинированных схем, состоящих из целого набора компонентов. Их иногда называют смешанными, поскольку при формировании цепочек используются сразу оба способа. Смешанное соединение резисторов представлено на размещенном ниже рисунке.

Смешанная схема

В приведённом выше примере требуется посчитать суммарное значение номиналов цепи, состоящей из трех резисторов.

Для упрощения расчета сначала разбиваем все резисторы по типу включения на две самостоятельные группы. Одна из них представляет собой последовательное соединение, а вторая – имеет вид подключения параллельного типа.

Из приведённой схемы видно, что элементы R2 и R3 соединяются последовательно (они объединены в группу 2), которая, в свою очередь, включена в параллель с резистором R1, принадлежащим группе 1.

Для элементов из группы 2 значение общего сопротивления находится как сумма R2 и R3:

R (2+3) = R2 + R3.

Для получения окончательного результата приводим схему к виду, получаемому при параллельном соединении двух сопротивлений. После этого суммарное значение для всей схемы в целом вычисляется согласно уже рассмотренной ранее формуле.

В заключение отметим, что для проведения расчётных операций, относящихся к категории сложных соединений, можно воспользоваться теми же методиками. В их основу заложены всё те же закон Ома и правила Кирхгофа, известные ещё со школьной скамьи. Главное – это грамотно распорядиться всеми описанными выше формулами.

Источник: https://m-gen.ru/raznoe-2/parallelnye-rezistory-formula-formula-rascheta-soprotivleniya-pri-parallelnom-soedinenii-rezistora.html

Расчет токоограничивающего резистора для светодиода

В данной статье речь пойдет о расчете токоограничивающего резистора для светодиода.

Расчет резистора для одного светодиода

Для питания одного светодиода нам понадобится источник питания, например две пальчиковые батарейки по 1,5В каждая. Светодиод возьмем красного цвета, где прямое падение напряжения при рабочем токе 0,02 А (20мА) равно -2 В. Для обычных светодиодов максимально допустимый ток равен 0,02 А. Схема подключения светодиода представлена на рис.1.

Рис.1 – Схема подключения одного светодиода

Почему я использую термин «прямое падение напряжение», а не напряжение питания. А дело в том, что параметра напряжения питания как такового у светодиодов нет.

Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения.

Зная эту величину, можно определить оставшееся на светодиоде напряжение. Именно это значение нам нужно применять в расчетах.

Прямое падение напряжение для различных светодиодов в зависимости от длины волны представлено в таблице 1.

Таблица 1 — Характеристики светодиодов

Цветовая характеристика Длина волны, нМ Напряжение, В
Инфракрасные от 760 до 1,9
Красные 610 — 760 от 1,6 до 2,03
Оранжевые 590 — 610 от 2,03 до 2,1
Желтые 570 — 590 от 2,1 до 2,2
Зеленые 500 — 570 от 2,2 до 3,5
Синие 450 — 500 от 2,5 до 3,7
Фиолетовые 400 — 450 2,8 до 4
Ультрафиолетовые до 400 от 3,1 до 4,4
Белые широкий спектр от 3 до 3,7

Точное значение падения напряжения светодиода, можно узнать на упаковке к данному светодиоду или в справочной литературе.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд)/Iд = (3В-2В)/0,02А = 50 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд — прямое падение напряжения на светодиоде, В;
  • Iд – рабочий ток светодиода, А.

Поскольку такого сопротивления в стандартном ряду нет, выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 51 Ом.

Чтобы гарантировать долгую работу светодиода и исключить ошибку в расчетах, рекомендую при расчетах использовать не максимально допустимый ток – 20 мА, а немного меньше – 15 мА.

Данное уменьшение тока никак не скажется на яркости свечения светодиода для человеческого глаза. Чтобы мы заметили изменение яркости свечения светодиода например в 2 раза, нужно уменьшить ток в 5 раза (согласно закона Вебера — Фехнера).

В результате мы получим, расчетное сопротивление токоограничивающего резистора: R = 50 Ом и мощность рассеивания Р = 0,02 Вт (20мВт).

Расчет резистора при последовательном соединении светодиодов

В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.

Рис.2 – Схема подключения светодиодов при последовательном соединении

Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд1Uд3 — прямое падение напряжения на светодиодах, В;
  • Iд – рабочий ток светодиода, А.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.

Расчет резисторов при параллельно – последовательном соединении светодиодов

Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков. Если все светодиоды подключить последовательно через один резистор, то в таком случае напряжения на источнике питания нам не хватит. Решением данной проблемы является параллельно-последовательное соединение светодиодов, как это показано на рис.3.

Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.

Рис.3 – Схема подключения светодиодов при параллельно — последовательном соединении

Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.

Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.

Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.

Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!

Расчет резистора при параллельном соединении светодиодов

Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.

В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.

Рис.4 – Схема подключения светодиодов при параллельном соединении

Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.

Рис.5 – Схема подключения светодиодов и резисторов при параллельном соединении

Источник: https://raschet.info/raschet-tokoogranichivajushhego-rezistora-dlja-svetodioda/

Последовательное и параллельное соединение резисторов

Последовательное соединение – это соединение двух или более резисторов в форме цепи, в которой каждый отдельный резистор соединяется с другим отдельным резистором только в одной точке.

Общее сопротивление Rобщ

При таком соединении, через все резисторы проходит один и тот же электрический ток. Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него. Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается, и оно равно сумме всех сопротивлений.

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности. Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Электрический ток при параллельном соединении

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Закон ома параллельное и последовательное соединение проводников

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой.

Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка.

Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

ЭТО ИНТЕРЕСНО:  Сколько часов заряжать новый аккумулятор

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Источник: https://vemiru.ru/info/zakon-oma-parallelnoe-i-posledovatelnoe-soedinenie/

Соединение резисторов

Радиоэлектроника для начинающих

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/connection-of-resistors.html

Соединение резисторов — Основы электроники

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике.
Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов.
Соединение резисторов может производиться последовательно, параллельно и смешанно (то есть и последовательно и параллельно), что показано на рисунке 1.

Рисунок 1. Соединение резисторов.

Параллельное соединение резисторов (формула)

Параллельное соединение резисторов необходимо для уменьшения общего сопротивления и, как вариант, для увеличения мощности нескольких резисторов по сравнению с одним.

Расчет параллельного сопротивления

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Сопротивление издвух резисторов:   R =  R1 × R2
 R1 + R2

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

Сопротивление параллельных резисторов

 1    =    1  +  1  +  1  +
R R1 R2 R3

Как видно, вычислить сопротивление двух параллельных резисторов значительно удобнее.

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Например: десять резисторов номиналом 1 КОм и мощностью 1 Вт каждый, соединённые параллельно будут иметь общее сопротивление 100 Ом и мощность 10 Вт.
При последовательном соединении мощность резисторов также складывается. Т.е. в том же примере, но при последовательном соединении, общее сопротивление будет равно 10 КОм и мощность 10 Вт.

Источник: http://katod-anod.ru/articles/4

Что такое резистор

Резистор – это самый распространенный радиоэлемент, который используется в электронике. Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор. Резистор имеет важное свойство – он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.

Виды резисторов

Существует множество видов резисторов, которые используются в радио-электронной промышленности. Давайте разберем основные из них.

Постоянные резисторы

Постоянное резисторы выглядят примерно вот так:

Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа –  маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.

Вот так выглядит  постоянный резистор на электрических схемах:

Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят – буржуйский, используется в иностранных радиосхемах.

Вот так маркируются мощности на советских резисторах:

Далее мощность маркируется с помощью римских цифр. V – 5 Ватт, X – 10 Ватт, L  -50 Ватт и тд.

Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:

20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками

1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом

2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры;  SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор  в DIP корпусе

Переменные резисторы

Переменные резисторы выглядят так:

На схемах обозначаются так:

Соответственно отечественный и зарубежный вариант.

А вот  и их цоколевка (расположение выводов):

Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой  тока – реостатом. Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора. В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.

Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):

А вот  так  обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.

Термисторы

Термисторы – это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС – тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.

Этот коэффициент может быть как отрицательный, так и положительный.  Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором.  У термисторов  при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды  растет и сопротивление.

Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС

Источник: https://www.ruselectronic.com/resistors/

Калькулятор онлайн для параллельного соединения резисторов: общие сведения, формулы расчета

В каждой электрической схеме присутствует резистор, имеющий сопротивление электрическому току. Резисторы бывают двух типов: постоянные и переменные. Во время разработки любой электрической схемы и ремонта электронных изделий часто приходится применять резистор, обладающий необходимым номиналом.

Несмотря на то что для резисторов предусмотрены различные номиналы, может случиться так, что не будет возможности найти необходимый или же вообще ни один элемент не сможет обеспечить требуемый показатель.

Решением этой проблемы может стать применение последовательного и параллельного соединения. Ознакомившись с этой статьей, вы узнаете об особенностях выполнения расчета и подбора различных номиналов сопротивлений.

Параллельное соединение: общая информация

Часто при изготовлении какого-либо устройства используют резисторы, которые соединяются в соответствии с последовательной схемой. Эффект от применения такого варианта сборки сводится к увеличению общего сопротивления цепи. Для данного варианта соединения элементов создаваемое ими сопротивление рассчитывается как сумма номиналов. Если же сборка деталей выполняется по параллельной схеме, то здесь потребуется рассчитать сопротивление, используя нижеописанные формулы.

К схеме параллельного соединения прибегают в ситуации, когда стоит задача по снижению суммарного сопротивления, а, помимо этого, увеличения мощности для группы элементов, подключенных по параллельной схеме, которое должно быть больше, чем при их отдельном подключении.

Расчет сопротивления

В случае подключения деталей друг с другом, с применением параллельной схемы для расчета суммарного сопротивления, будет использоваться следующая формула:

R(общ)=1/(1/R1+1/R2+1/R3+1/Rn).

причем :

  • R(общ) – суммарное значение сопротивления;
  • R1- R3 и Rn – резисторы, подсоединенные по параллельной схеме.

Причем, если цепь создается на основе только двух элементов, то для определения суммарного номинального сопротивления следует использовать такую формулу:

R(общ)=R1*R2/R1+R2.

причем:

  • R(общ) – суммарное сопротивление;
  • R1 и R2 – резисторы, подсоединенные по параллельной схеме.

Пример расчёта сопротивления

Универсальная схема расчета

Применительно к радиотехнике следует уделить внимание одному важному правилу: если подключаемые друг к другу элементы по параллельной схеме имеют одинаковый показатель, то для расчета суммарного номинала необходимо общее значение разделить на число подключенных узлов:

R(общ)=R1.

причем :

  • R(общ) – суммарное значение сопротивления;
  • R – номинал резистора, подсоединенного по параллельной схеме;
  • n – число подключенных узлов.

Особое внимание следует обратить на то, что конечный показатель сопротивления в случае использования параллельной схемы подключения обязательно будет меньше по сравнению с номиналом любого элемента, подключаемого в цепь.

Пример расчёта

Для большей наглядности можно рассмотреть следующий пример: допустим, у нас есть три резистора, чьи номиналы соответственно равны 100, 150 и 30 Ом. Если воспользоваться первой формулой для определения общего номинала, то получим следующее:

R(общ)=1/(1/100+1/150+1/30)=

1/(0,01+0,007+0,03)=1/0,047=21,28Ом.

Если выполнить несложные расчеты, то можно получить следующее: для цепи, включающей в себя три детали, где наименьший показатель сопротивления составляет 30 Ом, результирующее значение номинала будет равно 21,28 Ом. Этот показатель будет меньше минимального значения номинала в цепи практически на 30%.

Важные нюансы

Обычно для резисторов параллельное соединение применяется тогда, когда стоит задача по созданию сопротивления большей мощности. Для ее решения потребуются резисторы, которые должны иметь равные показатели сопротивления и мощности.

При таком варианте определить общую мощность можно следующим образом: мощность одного элемента необходимо перемножить с суммарным числом всех резисторов, из которых состоит цепь, подсоединенных друг с другом в соответствии с параллельной схемой.

Скажем, если нами будут использоваться пять резисторов, чей номинал составляет 100 Ом, а мощность каждого равна 1 Вт, которые присоединены друг к другу в соответствии с параллельной схемой, то суммарный показатель сопротивления будет равен 20 Ом, а мощность составит 5 Вт.

Если взять те же резисторы, но подсоединить их в соответствии с последовательной схемой, то конечная мощность составит 5 Вт, а суммарный номинал будет равен 500 Ом.

Правильное подключение светодиодов

Параллельная схема подключения резисторов очень востребована по той причине, что часто возникает задача по созданию такого номинала, которого невозможно добиться при помощи простого параллельного соединения. При этом процедура расчета этого параметра отличается достаточной сложностью, где необходимо учитывать разные параметры.

Здесь важная роль отводится не только количеству подключаемых элементов, но и рабочим параметрам резисторов — прежде всего, сопротивлению и мощности. Если один из подключаемых элементов будет иметь неподходящий показатель, то это не позволит эффективно решить задачу по созданию требуемого номинала в цепи.

Источник: https://elektro.guru/izmereniya-i-raschet/onlayn-kalkulyator-dlya-parallelnogo-soedineniya-rezistorov.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как снять цоколь с люстры

Закрыть