Как устроен автотрансформатор

Какие бывают автотрансформаторы? Автотрансформатор как работает

Как устроен автотрансформатор

ТрансформаторАвтотрансформатор как работает

Трансформаторные устройства обеспечивают нормальное функционирование различной электротехники. Лабораторный автотрансформатор (ЛАТР) выполняет функции своеобразного блока питания для напряжения сети переменного типа. Что такое ЛАТР, каковы его особенности и основной принцип работы, будет рассмотрено далее.

Особенности

Рассматривая, что это такое ЛАТР, следует отметить, что это разновидность автотрансформаторов. Он характеризуется невысокой мощностью, ему не требуется госреестр. Принцип работы, которым обладает лабораторный регулировочный автотрансформатор, заключается в настройке напряжения переменного типа однофазной(слева на фото) или трехфазной сети(справа).

Схема ЛАТРа включает в себя стальной сердечник тороидального типа. На нем присутствует всего один контур. Двух отдельных обмоток у этого устройства нет. Контуры совмещены. Одна часть может быть отнесена к виткам первичного типа, а другая – к виткам вторичного типа.

Регулировочный автотрансформатор ЛАТР имеет достаточно простую схему. Пользователь может самостоятельно настраивать количество витков вторичной обмотки. Это отличает представленную разновидность агрегатов от других трансформаторов.

О том как собрать ЛАТР своими руками мы писали здесь.

Конструкция

Регулировать представленный агрегат становится возможным посредством наличия в конструкции поворотной ручки. С ее помощью задается количество витков вторичного контура. Ручка связывается с угольной щеткой. Регулируемые автотрансформаторы позволяют управлять обмотками после включения аппаратуры. При этом щетка, согласно инструкции, скользит вдоль контура, задавая показатель трансформации.

С угольной щеткой соединяется один из выходов вторичной обмотки. Другой ее конец подведен к входной стороне сети. Потребители подсоединяются к выходным клеммам, а они, в свою очередь, подключаются к электросети. Это делает применение оборудования эффективным и удобным.

На лицевой панели прибора устанавливается вольтметр. Он снимает показания вторичной цепи. Это позволяет оперативно реагировать на перегрузки. Вольтметр предоставляет возможность производить регулировку точно.

На корпусе есть вентиляционная решетка. Это обеспечивает естественное охлаждение магнитопривода.

Разновидности

Существует оборудование, рассчитанное на регулировку напряжения трехфазной или однофазной сети. Во втором варианте электронный ЛАТР имеет одну обмотку и один сердечник. Трехфазный агрегат включает в свою конструкцию три сердечника. На каждом из них есть по одной обмотке.

ЛАТРы могут как понижать, так и повышать напряжение. Это их основная особенность. Однофазные разновидности создают напряжение в сети от 0 до 250 В. ЛАТР трехфазный (380 В в сети) может регулировать диапазон от 0 до 450 В.

Следует отметить, что КПД обеих разновидностей приборов высокий. Он достигает 99%. При этом создается выходное напряжение синусоидной формы.

Применение

ЛАТРы применяют в исследовательских центрах, лабораториях для проведения тестирования оборудования переменного тока. Иногда подобные приборы необходимы для стабилизации сетевого напряжения. Например, в момент недостаточного его уровня в сети в данный момент.

Однако сфера его применения ограничена. Если в сети наблюдаются постоянные перепады, скачки, применение автотрансформатора будет бессмысленным. В этом случае потребуется установить стабилизатор. Главным предназначением ЛАТРа является точная настройка напряжения для выполнения различных исследовательских задач, тестов.

Подобное оборудование может потребоваться в процессе наладки приборов промышленного назначения, высокочувствительной аппаратуры, радиоэлектроники. Они обеспечивают правильное питание техники, работающей на низком напряжении. Также их применяют при выполнении зарядки аккумуляторов.

Рассмотрев основные особенности лабораторных автотрансформаторов, можно правильно применять агрегат в различных целях, повышая эффективность и удобство настройки различного оборудования.

protransformatory.ru

На сегодняшний день широко используются следующиетипы автотрансформаторов :

· Первый тип — ВУ-25-Б, предназначен для уравнивания вторичных токов в схемах дифференциальных защит трансформаторов.

· Второй тип – АТД, имеет мощность на уровне 25 ват, долго-насыщающийся, так как имеет устаревшую конструкцию и практически не используется.

· Третий тип – ЛАТР-1, предназначен для использования при напряжении на уровне 127В.

· Четвертый тип – ЛАТР-2, предназначен для использования при напряжении на уровне 220В.

· Пятый тип – ДАТР-1, предназначен для использования при небольшой нагрузке.

· Шестой тип – РНО, предназначен для использования при высоких нагрузках.

· Седьмой тип – РНТ, предназначен для использования при значительных нагрузках.

· Восьмой тип – АТЦН, предназначен для использования в телеизмерительных устройствах.

Автотрансформаторы по уровню мощности делятся на следующие виды:

1. невысокой мощности, до 1кВт;

2. средней мощности, более 1кВт;

3. силовые.

Режимы работы автотрансформаторов

Автотрансформаторы работают в таких режимах, как:

· трансформаторный;

· автотрансформаторный;

· комбинированный.

При нормальном режиме работы автотрансформатор, может работать долгое время без перегревов и неисправностей. Для этого нужно соблюдать все требования по условиям эксплуатациии следить за тем, чтобы верхние слои масла не нагревались до температуры свыше 75°С.

Автотрансформаторы применяются в телефонных аппаратах, радиотехнических устройствах, для питания выпрямителей и т. д.

Достаточно широкое применение автотрансформаторы получили в СССР: для ручной стабилизации питающего напряжения ламповый телевизор подключался к сети через ЛАТР и перед включением самого телевизора производилась ручная регулировка напряжения до номинального значения.

Причиной этому было то, что в электросетях зачастую регулярно наблюдалось пониженное напряжение, которое могло повредить дорогостоящий телевизионный приёмник.

Коэффициент выгодности

Отношение типовой мощности к номинальной называется коэффициентом выгодности автотрансформатораKат.

Для понижающего (U1 >U2) автотрансформатора

Для повышающего (U2 >U1) автотрансформатора

где К =UBH/UHH – коэффициент трансформации (отношение большего-напряжения к меньшему).

коэффициент выгодности равен разности первичного и вторичного напряжений, отнесенной к наибольшему из этих напряжений. Это означает, что типовая мощность автотрансформатора, определяющая его размеры и вес активных материалов, может быть выбрана в 1/Kат раз меньше его проходной мощности.

Если взять для примера понижающий автотрансформатор с коэффициентом трансформации 220/127 в, т. е. у которого К = 220/127 = = 1,73, то коэффициент выгодности в этом случае будет

.

Это значит, что типовая мощность такого автотрансформатора будет составлять всего 0,42 от его проходной мощности.

В случае большего коэффициента трансформации, например:

К =20000/400=50 — коэффициент выгодности будет уже

и выгоды от применения автотрансформатора уже почти никакой не будет.

С другой стороны, при больших значениях К применение автотрансформаторов становится недопустимым.

Это происходит потому, что первичная и вторичная цепи электрически соединены между собой, вследствие чего уровень изоляции сети низшего напряжения (не имеющей заземленной нулевой точки) и всех присоединенных к ней электрических приборов, машин и аппаратов должен быть таким же, как и для сети высшего напряжения, что совершенно нецелесообразно. Кроме того, по условиям безопасности электрических установок недопустима связь низковольтных сетей, доступных для прикосновения человека, с сетями, находящимися под высоким напряжением.

Для крупных силовых автотрансформаторов согласно ОСТ 11677–65 предусмотрено их трехобмоточное исполнение, при котором обмотки ВН и СН выполнены по автотрансформаторной схеме, а обмотка НН – отдельной, т. е. не связанной с обмотками ВН и СН. Причем в трехфазном автотрансформаторе обмотка НН соединена в схему треугольник для гашения третьей гармоники магнитного потока.

Трехобмоточные автотрансформаторы применяются на распределительных подстанциях с подключением к трем линиям электропередачи с разными напряжениями.

cyberpedia.su

Схема автотрансформатора с регулированием напряжения. Автотрансформатор АТДЦТН-125000/330/110

А́втотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только магнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные электрические напряжения[1].

Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно.

Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью.

В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Распространены аббревиатуры:

ЛАТР — Лабораторный АвтоТрансформатор Регулируемый. РНО — Регулятор Напряжения Однофазный. РНТ — Регулятор Напряжения Трёхфазный.

Принцип работы автотрансформатора[ | код]

Схема автотрансформатора.

Предположим, что источник электрической энергии (сеть переменного тока) подключен к виткам ω1{\displaystyle \omega _{1}} обмотки автотрансформатора, а потребитель — к некоторой части этой обмотки ω2{\displaystyle \omega _{2}}.

При прохождении переменного тока по обмотке автотрансформатора возникает переменный магнитный поток, индуцирующий в этой обмотке электродвижущую силу, величина которой прямо пропорциональна числу витков обмотки.

Следовательно, если во всей обмотке автотрансформатора, имеющей число витков ω1{\displaystyle \omega _{1}}, индуцируется электродвижущая сила E1{\displaystyle E_{1}}, то в части этой обмотки, имеющей число витков

ru-wiki.ru

Источник: https://szemp.ru/transformator/avtotransformator-kak-rabotaet.html

Автотрансформаторы (ЛАТР). Типы и работа. Применение

Как устроен автотрансформатор

Для плавной регулировки напряжения переменного тока в различных работах, связанных с электротехникой, служат автотрансформаторы (ЛАТР). Их чаще всего используют для изменения напряжения в бытовых приборах, строительстве.

Автотрансформатор – это один из видов трансформаторов. Две обмотки в этом приборе имеют между собой прямое соединение. Вследствие этого между ними появляются два вида связи, одна из которых электромагнитная, а другая электрическая. Катушка имеет несколько выводов с разными значениями выхода напряжения. Отличие от обычного трансформатора состоит в повышенной эффективности, вследствие частичного изменения мощности.

Конструктивные особенности

Трансформаторами называют электроаппаратуру с наличием более 2-х и более обмоток, которые имеют индуктивную связь, служащую для изменения электроэнергии по напряжению.

Обмотка может быть одна только у автотрансформатора, либо несколько обмоток, охваченных магнитным потоком, намотанных на сердечник с ферромагнитными свойствами, у других трансформаторов.

Сегодня приобрели популярность 1-фазные трансформаторы (ЛАТР). Это лабораторный вариант трансформатора, в котором обе обмотки между собой не изолированы, а имеют прямое соединение, поэтому кроме электромагнитной связи у них имеется электрическая связь. Такая общая катушка оснащена несколькими выводами. На их выходе можно получить разное по величине напряжение.

Принцип работы

Благодаря особенности конструкции автотрансформаторы могут выдавать как пониженное напряжение, так и повышенное. На рисунке показаны схемы автотрансформаторов с понижением и повышением напряжения.

Если подключить источник переменного тока к Х и «а», то создается магнитный поток. В этот момент в витках катушки индуцируется разность потенциалов одинакового значения. В итоге, между Х и «а» появляется ЭДС, равная значению ЭДС 1-го витка, умноженного на число витков обмотки, находящихся в промежутке между этими точками.

При подключении нагрузки потребителя к катушке к клеммам Х и «а», ток вторичной катушки пойдет по участку обмотки между этими точками. Имея ввиду то, что первичный и вторичный токи между собой накладываются друг на друга, между Х и «а» будет проходить незначительный ток.

Из-за такой особенности работы автотрансформатора основную часть обмотки выполняют из провода малого поперечного сечения, что уменьшает его стоимость. Если необходимо изменить напряжение в небольших пределах, то целесообразно применять такие автотрансформаторы (ЛАТР).

Нашли применение несколько типов автотрансформаторов:

  • ВУ–25 — Б, служит для сглаживания вторичных токов в защитных схемах трансформаторов.
  • АТД — мощность 25 ватт, долгонасыщаемый, имеет старую конструкцию и мало используется.
  • ЛАТР — 1, служит для применения с напряжением 127 вольт.
  • ЛАТР — 2, применяется с напряжением 220 вольт.
  • ДАТР — 1, служит для слабых потребителей.
  • РНО – для мощной нагруженности.
  • АТЦН применяется в измерительных телеустройствах.

Автотрансформаторы также подразделяют по мощности:

  • Малой мощности, до 1000 вольт;
  • Средней мощности, свыше 1000 вольт;
  • Силовые.

Лабораторные автотрансформаторы

Такой вариант исполнения используют в сетях низкого напряжения для регулировки напряжения в условиях лабораторий. Такие однофазные ЛАТР выполнены из ферромагнитного сердечника в виде кольца, на которое намотан один слой медного провода в изоляции.

В нескольких местах обмотки сделаны выводы в виде ответвлений. Это дает возможность применять такие устройства в качестве автотрансформаторов с возможностью повышения, либо понижения напряжения с неизменным коэффициентом трансформации. Сверху на обмотке выполнена узкая дорожка, на которой очищена изоляция. По ней двигается роликовый или щеточный контакт, позволяющий плавно изменять вторичное напряжение.

Витковых коротких замыканий в таких лабораторных автотрансформаторах не случается, так как ток нагрузки и сети в обмотке направлены навстречу друг другу и близки по значению. Мощности ЛАТР выполняют от 0,5 до 7,5 кВА.

Трехфазные трансформаторы

Кроме других вариантов исполнений существуют еще и трехфазные варианты автотрансформаторов. У них бывает, как три, так и две обмотки.

Фазы в них чаще всего соединяют в виде звезды с отдельной точкой нейтрали. Соединение звездой дает возможность понизить напряжение, рассчитанное для изоляции прибора. Для уменьшения напряжения питание подводят к клеммам А, В, С, а выход получают на клеммах а, b, с. Для повышения напряжения все делается наоборот. Такие трансформаторы используют для уменьшения уровня напряжения при запуске мощных электромоторов, а также для регулировки напряжения по ступеням в электрических печах.

Высоковольтные автотрансформаторы применяют в высоковольтных системах сетей. Использование автотрансформаторов оптимизирует эффективность энергетических систем, дает возможность уменьшить стоимость транспортировки энергии, однако при этом способствует повышению токов коротких замыканий.

Режимы работы

  • Автотрансформаторный.
  • Комбинированный.
  • Трансформаторный.

При соблюдении требований эксплуатации автотрансформаторов, в том числе соблюдения контроля температуры масла, он может функционировать длительное время без перегрева и поломок.

Можно выделить такие преимущества:

  • Преимуществом можно назвать высокий КПД, потому что преобразуется лишь малая часть мощности трансформатора, а это имеет значение, когда напряжения выхода и входа отличаются на малую величину.
  • Уменьшенный расход меди в катушках, а также стали сердечника.
  • Уменьшенные размеры и вес автотрансформатора позволяют создать хорошие условия перевозки к месту монтажа. Если необходима большая мощность трансформатора, то его можно изготовить в пределах допустимых ограничений габаритов и массы для перевозки на транспорте.
  • Низкая стоимость.
  • Плавность съема напряжения с подвижного токосъемного контакта, подключенного к обмотке.

Недостатки автотрансформаторов:

  • Чаще всего катушки подключают звездой с нейтралью, которая заземлена. Соединения по другим схемам также возможны, но при их выполнении возникают неудобства, вследствие чего используются редко. Производить заземление нейтрали необходимо через сопротивление, либо глухим методом. Но нельзя забывать, что сопротивление заземления не должно допускать превышения разности потенциалов на фазах в тот момент, когда какая-либо одна фаза замкнула накоротко на землю.
  • Повышенный потенциал перенапряжений во время грозы на входе автотрансформатора делает необходимым монтаж разрядников, которые не отключаются при выключении линии.
  • Электрические цепи не изолированы друг от друга (первичная и вторичная).
  • Зависимость низкого напряжения от высокого, вследствие чего сбои и скачки высокого напряжения оказывают влияние на стабильность низкого напряжения.
  • Низкий поток рассеивания между первичной и вторичной обмоткой.
  • Изоляцию обеих обмоток приходится выполнять для высокого напряжения, так как присутствует электрическая связь обмоток.
  • Нельзя применять автотрансформаторы на 6-10 киловольт в качестве силовых с уменьшением напряжения до 380 вольт, потому что к такому оборудованию имеют доступ люди, а вследствие аварии напряжение с первичной обмотки может попасть на вторичную.
ЭТО ИНТЕРЕСНО:  Какие бывают виды сварочных аппаратов

Автотрансформаторы имеют широкую область использования в разных сферах деятельности человека:

  • В устройствах малой мощности для настройки, питания и проверки промышленного и бытового электрооборудования, приборов автоматического управления, в лабораторных условиях на стендах (ЛАТРы), в устройствах и приборах связи и т.д.
  • Силовые варианты исполнений 3-фазных автотрансформаторов применяют для снижения тока запуска электродвигателей.
  • В энергетике мощные образцы автотрансформаторов применяют для осуществления связи сетей высокого напряжения с близкими по напряжению сетями. Коэффициент трансформации в таких устройствах обычно не превосходит 2 – 2,5. Чтобы изменять напряжение в еще больших размерах, требуются другие устройства, а применение автотрансформаторов становится нецелесообразным.
  • Металлургия.
  • Коммунальное хозяйство.
  • Производство техники.
  • Нефтяное и химическое производство.
  • Учебные заведения применяют ЛАТРы для показа опытов на уроках физики и химии.
  • Стабилизаторы напряжения.
  • Вспомогательное оборудование к станкам и самописцам.

Как выбрать автотрансформатор

Для начала определите, где будет использоваться автотрансформатор. Если для испытаний силового оборудования на предприятии, то необходима одна модель, а для питания автомагнитолы во время ремонта, то совсем иная.

При выборе лучше следовать некоторым советам:

  • Мощность. Необходимо рассчитать нагрузку всех потребителей. Их общая мощность не должна быть больше мощности автотрансформатора.
  • Интервал регулировки. Этот параметр зависит от действия прибора, то есть, на повышение или на понижение. Чаще всего приборы относятся к виду с понижением напряжения.
  • Напряжение питания. Если вы хотите подключить автотрансформатор к домашней сети, то лучше приобрести прибор на 220 вольт, а если для 3-фазной сети, то на 380 вольт.

С таким прибором вы можете изменить значения напряжения сети и выставить те значения, которые нужны для конкретного вида нагрузки.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/avtotransformatory-latr/

Как устроен трехфазный трансформатор

Как устроен автотрансформатор

» Статьи » Как устроен трехфазный трансформатор

Трансформатор представляет собой магнитное устройство, заряженное статическим электричеством. Он нужен для преобразования напряжений электрического тока. При этом его частота остаётся неизменной. Существует несколько видов подобных устройств. Один из них-это трёхфазный трансформатор.

Особенности в конструкции устройства

Трансформаторы состоят из следующих частей:

  • Обмотка в каркасе.
  • Магнитопровод.
  • Изоляция.
  • Охлаждающая система.
  • Элементы для установки и защиты аппарата.
  • Приспособления, обеспечивающие доступ к выводам обмотки.

Около стержня трансформатора располагаются обмотки низшего напряжения, на которых размещаются провода с высоким напряжением. Их фазы снабжаются пометками, которые предотвращают неправильное соединение.

Фазы и обмотки аппарата

Среди электромагнитных устройств данного типа выделяется трёхфазный трансформатор. Он имеет магнитную и гальваническую связи фаз. Наличие схемы первого типа обусловлено соединением магнитопроводов в одну систему.

При этом потоки магнитного воздействия расположены относительно друг друга под углом 120 °. Стержень в данной системе не нужен, так как при объединении центров трёх фаз сумма электромагнитных русел равняется нулю вне зависимости от времени.

Благодаря этому схема с шестью стержнями преобразуется в трёхстержневую.

В соединении обмоток устройства можно использовать схемы трёх типов:

  • Соединение в виде звезды может осуществляться с выводом от общих точек или же без него. Здесь каждую обмотку соединяют с нейтральной точкой.
  • По треугольной схеме фазы соединяются последовательно.
  • Зигзаг-это схема, которая чаще всего применяется во время отвода от общей точки. В ней соединяются три обмотки, расположенные на разных стержнях магнитопроводов.

Применение трёхфазного трансформатора является более экономичным, чем использование соединённых однофазных конструкций. Наш сайт предлагает приобрести надёжную аппаратуру, качество которой подтверждено сертификатами. Благодаря этому покупатель может быть уверенным в безопасности и долговечности приобретаемого товара.

← Назад к списку новостей

Источник: https://www.ruselt.ru/articles/kak-ustroen-trekhfaznyy-transformator/

Что такое автотрансформатор(ЛАТР)

Автотрансформатор – это разновидность трансформатора, имеющего одну обмотку на многослойном сердечнике. Он похож на двухобмоточный трансформатор, но отличается тем, что часть обмотки является общей как для первичной, так и для вторичной сторон. В состоянии нагрузки часть тока передаётся непосредственно от источника питания, а оставшаяся часть – от действия самого устройства. Таким образом, прибор действует в качестве регулятора напряжения.

Лабораторный автотрансформатор(ЛАТР)

Конструкция и принцип работы

Автотрансформатор используется для регулировки линейных напряжений, чтобы либо изменить значение, либо сохранить его постоянным. Если регулировка производится на небольшую величину, то коэффициент трансформации также невелик, а токи в первичной и вторичной обмотках практически одинаковы. Следовательно, та часть обмотки, которая обуславливает разницу между двумя токами, может быть изготовлена ​​из проводника намного меньшего размера.

Диапазон управления, значение индуктивности рассеяния и габаритный размер (из-за того, что вторая обмотка отсутствует) автотрансформатора при необходимой величине реактивной или активной мощности меньше, чем у трансформаторов, у которых присутствует двойная обмотка.

Обе обмотки – первичная и вторичная – соединены между собой как электрически, так и магнитно, а также имеют общий магнитопровод. Часть первичной части обмотки соединяется с источником питания переменного тока. Таким образом, в результате простого реверсирования соединений можно легко повышать или понижать напряжения питания.

При протекании исходного тока через одну обмотку в одном направлении, ток во вторичной обмотке движется в противоположную сторону. Автотрансформатор имеет несколько точек отбора потенциала вдоль обмотки.

Конструкция однофазного автотрансформатора

Режимы работы

  1. В автотрансформаторных режимах (а) возможна передача номинальной мощности из обмотки ВН в обмотку НН или наоборот. В обоих режимах последовательная и общая обмотки загружены типовой мощностью, что допустимо.
  2. В трансформаторных режимах возможна передача мощности из обмотки НН в обмотку СН или ВН, причем обмотку НН можно загрузить не более чем на Sтип. В этих режимах АТ недогружен, что допустимо, но неэкономично.
  3. В комбинированном режиме (б) возможна передача мощности не более S тип из сети НН в сеть ВН и при этом ( Sном ­Sтип) автотрансформаторным путем из сети СН в сеть ВН. Этот режим является допустимым и экономичным, т.к. общей обмотки может в пределе равной 0, а через АТ в сумме передается Sном.

Также читайте:  КТПН — комплектная трансформаторная подстанция наружная

Выбор оптимального режима работы важен для трёхфазных устройств.

Они используются для непрерывной регулировки параметров с малыми потерями. Этот компонент обеспечивает пользователям наилучшую точность регулировки при минимальных потерях и, следовательно, при пониженном тепловыделении. Для трёхфазного тока данный эффект достигается с помощью механических соединений трёх управляющих трансформаторов.

Конструкция скользящих токосъёмников выполняется такой, чтобы обеспечить надёжный выходной контакт и – при срабатывании – одновременную очистку контактной дорожки. Используются угольные щётки, которые могут вращаться или перемещаться возвратно-поступательно.

Переменный автотрансформатор имеет несколько первичных обмоток для создания вторичного напряжения, которое регулируется в диапазоне от нескольких вольт до долей вольт за оборот. Это достигается благодаря тому, что угольная щётка или ползунок находятся в контакте с одним или несколькими витками первичной обмотки. Поскольку витки первичной катушки равномерно распределены по её длине, то выходное значение пропорционально угловому вращению щётки.

Классификация видов

Как правило, рассматриваемые устройства используются в промышленных и бытовых применениях, которые рассчитаны на низкое энергопотребление. Они эффективны также для соединения систем, работающих при разных значениях напряжения. Этим объясняется разнообразие видов автотрансформаторов.

Рассматриваемые изделия различают:

  1. По степени внешней защиты корпуса – устройства, предназначенные для функционирования снаружи, снабжаются водонепроницаемым корпусом.
  2. По техническим характеристикам – диапазону рабочих частот, значениям максимального первичного и вторичного напряжения, наибольшему вторичному току, мощности и температуре.
  3. По типу электрической сети, в которой они функционируют – одно – или трёхфазной.

    Однофазный(слева) и трёхфазный(справа)

  4. По значению выходного напряжения автотрансформаторы могут быть повышающими или понижающими. Особый класс образуют устройства со скользящими отводами. Важной характеристикой, которую учитывают при выборе, является тип сердечника – ламинированный, сплит и тороидальный.

    1а – трансформатор, 1б – понижающий, 1в – повышающий

Основные виды автотрансформаторов

  • ВУ-25-Б —  служит для уравнивания вторичных токов в дифференциальных защитах силовых трансформаторов.
  • АТДмощность 25 Вт, долго насыщается, имеет старую конструкцию и поэтому используется очень редко.
  • ЛАТР-1 —  предназначен в сетях с напряжением 127 В.
  • ЛАТР-2 — применяется с напряжением 220 В.
  • ДАТР-1 —  предназначен для малых нагрузок.
  • РНО — предназначен для больших нагрузок.
  • АТЦН —  применяется в измерительных телеустройствах.

Расшифровка основных параметров

Обмотки обозначаются, как правило, заглавными буквами (А, B, C и т.д.), в то время как общее нейтральное соединение обозначается N или n. Для вторичных ответвлений номера цифровых индексов используются для всех точек ответвления вдоль первичной обмотки. А индексы обычно начинаются с цифры «1» и продолжаются с возрастанием.

Обозначение бытовых автотрансформаторов отечественного производства, изготавливаемых по ГОСТ 7518-83, включает в себя:

  • Буквенные индексы, которые определяют класс устройства – переходные (АПБ) или регулировочные (АРБ);
  • Номинал реактивной мощности, кВА, на которую рассчитаны обмотки.

ГОСТ 7518-83 предусматривает указание наибольшего напряжения на вторичной обмотке отдельно при отсутствии и наличии внешней нагрузки.

Отдельная маркировки принята для лабораторных автотрансформаторов – ЛАТРов: после буквенного обозначения указывается номинальная мощность прибора в кВт.

Как определить цену

На стоимость влияют следующие характеристики – реактивная мощность, количество отводов, диапазон регулирования напряжения, класс точности прибора.  При этом переменные автотрансформаторы стоят дороже, чем устройства со стационарными отводами. Ценовые интервалы, действительные на текущий год таковы:

  • Для переходных – 800012000 руб.;
  • Для регулировочных – 25008000 руб.;
  • Для ЛАТРов – 35008200 руб.

Где используются

Основными областями применения устройств являются:

  1. Компенсация падения потенциала в распределительных системах, которое производится повышением значений напряжения питания.
  2. Системы управления асинхронных и синхронных двигателей, где наличие автотрансформатора с несколькими ответвлениями облегчает запуск.
  3. В условиях исследовательских лабораторий, когда требуется варьировать электрические переменные в широких пределах.

Данные устройства используются также для регулировки яркости света; такие приборы называют диммерами. В этих случаях особое внимание уделяют правильному подбору предохранителей, в противном случае более высокое напряжение питания может оказаться на вторичных клеммах.

Преимущества и недостатки

Автотрансформатор использует только одну обмотку на фазу. Этим объясняются его достоинства и ограничения.

Преимущества:

  1. Для коэффициента трансформации, равного двум, габариты изделия будет приблизительно вполовину меньше, чем соответствующие размеры двухобмоточного трансформатора. С уменьшением коэффициента трансформации снижение габаритных размеров будет меньше.
  2. Автотрансформатор эффективнее, чем обычный двухобмоточный. Это происходит из-за меньших значений омических потерь и потерь в сердечнике.
  3. Трансформаторы описываемого класса отличаются лучшим регулированием напряжения, что связано со сниженным падением напряжения, и с уменьшением реактивного сопротивления в одиночной обмотке.

Недостатки:

  1. Из-за наличия электрической проводимости в первичной и вторичной обмотке нагрузка на низковольтную цепь возрастает. Чтобы избежать пробоя, приходится проектировать устройство с достаточным запасом по передаваемой мощности.
  2. Поток рассеяния между первичной и вторичной обмотками мал и, следовательно, полное сопротивление – низкое. При возникшей неисправности это приведёт к более сильным токам короткого замыкания.
  3. Соединения на первичной и вторичной обмотке должны быть одинаковыми (за исключением случаев использования соединений типа «звезда»). Таким образом, при реализации другого типа соединения – «треугольник-треугольник»  – возникнут осложнения, обусловленные  изменением угла первичной и вторичной фазы.
  4. В случае соединения по схеме «звезда-звезда» при общей нейтрали её заземление возможно только с одной стороны. Это усложняет уравновешивание электромагнитного баланса обмотки при наличии нескольких отводов разного напряжения.

Автотрансформаторы эффективнее в применении с устройствами, выходная реактивная мощность которых при эксплуатации мало изменяется. В этом случае для их изготовления требуется меньше дефицитной меди, потери в сердечнике невелики, а изменение напряжения происходит быстрее, чем у двухобмоточных приборов той же мощности.

Источник: https://ofaze.ru/elektrooborudovanie/latr

Автотрансформатор: устройство, принцип действия, схема, типы

С развитием энергетики и связанных с ней электрических сетей для передачи переменного тока, как источника питания для различных устройств, возникла необходимость в приборах, изменяющих величину напряжения. Такими универсальными электромагнитными устройствами, позволяющими повышать или понижать исходное напряжение до требуемой величины, стали трансформаторы.

Со временем, для обеспечения стабильной работы электроприборов, преимущественно бытового назначения, возникла необходимость плавного регулирования напряжения. Это стало возможным после того, как был изобретён автотрансформатор – устройство, в котором вторичная обмотка является составной частью первичных витков.

Что такое автотрансформатор?

Из школьного курса физики известно, что простейший трансформатор состоит из двух катушек, намотанных на железные сердечники. Магнитным полем переменного тока, запитанного через выводы первичных обмоток, возбуждаются электромагнитные колебания во второй катушке, с аналогичной частотой.

При подключении нагрузки, к выводам рабочей обмотки, она образует вторичную цепь, в которой возникает электрический ток. При этом напряжение в образованной электрической цепи связано прямо пропорциональной зависимостью с количеством витков обмоток. То есть: U1/U2 = w1/w2 , где U1, U2 – напряжения, а w1, w2 – количество полных витков в соответствующих катушках.

Рисунок 1. Схема обычного трансформатора и автотрансформатора

Немного по-другому устроен автотрансформатор. Он, по сути, состоит из одной обмотки, от которой сделано один или несколько отводов, образующих вторичные витки. При этом все обмотки образуют между собой не только электрическую, но и магнитную связь.

Поэтому, при подаче электрической энергии на вход автотрансформатора, возникает магнитный поток, под действием которого происходит индукция ЭДС в обмотке нагрузки. Величина электродвижущей силы связана прямой пропорциональностью с числом витков, образующих нагрузочную обмотку, с которой снимается напряжение.

ЭТО ИНТЕРЕСНО:  Кто может осуществлять эксплуатацию электроустановок потребителей в организации

Таким образом, формула, приведённая выше, справедлива и для автотрансформатора.

Из основной обмотки можно отводить большое количество выводов, что позволяет создавать комбинации для снятия различных по величине напряжений. Это очень удобно на практике, так как понижение напряжения часто требуется для питания нескольких блоков электроприборов, использующих различные напряжения.

Отличие автотрансформатора от обычного трансформатора

Как видно из описания автотрансформатора, главное его отличие от обычного трансформатора – отсутствие второй катушки с сердечником. Роль вторичных обмоток выполняют отдельные группы витков, имеющих гальваническую связь. Эти группы не требуют отдельной электрической изоляции.

У такого устройства есть определённые преимущества:

  • сокращён расход цветных металлов, используемых на изготовление такого оборудования;
  • передача энергии осуществляется путём воздействия электромагнитного поля входного тока, и благодаря электрической связи между обмотками. Следовательно, потеря энергии оказывается ниже, поэтому у автотрансформаторов наблюдаются более высокие КПД;
  • малый вес и компактные габариты.

Несмотря на конструкционные различия, принцип работы этих двух типов изделий остаётся неизменным. Выбор типа трансформатора зависит, прежде всего, от целей и задач, которые приходится решать в электротехнике.

Типы автотрансформаторов

В зависимости от того в каких сетях (однофазных или трёхфазных) требуется изменить напряжение, используют соответствующий тип автотрансформаторов. Они бывают однофазными либо трёхфазными. Для трансформации тока с трёх фаз можно установить три автотрансформатора, предназначенных для работы в однофазных сетях, соединив их выводы треугольником или звёздочкой.

Схема соединений обмоток трансформатора

Существуют типы лабораторных автотрансформаторов, позволяющих плавно изменять значения по выходному напряжению. Такой эффект достигается путём перемещения ползунка по поверхности открытой части однослойной обмотки, наподобие принципа работы реостата. Витки проволоки наносятся вокруг кольцеобразного ферромагнитного сердечника, по окружности которого и перемещается контактный ползунок.

Автотрансформаторы подобного типа массово применялись на просторах СССР в эпоху массового распространения ламповых телевизоров. Тогда напряжение сетей было нестабильно, что вызывало искажения изображений. Пользователям этой несовершенной техники приходилось время от времени подстраивать напряжение до уровня 220 В.

До появления стабилизаторов напряжения, единственной возможностью достичь оптимальных параметров питания для бытовой техники того времени, было применение ЛАТР. Данный тип автотрансформаторов используется и сегодня в различных лабораториях и учебных заведениях. С их помощью осуществляется наладка электротехнического оборудования, тестируется аппаратура с высокой чувствительностью и выполняются другие задачи.

В специальном оборудовании, где нагрузки незначительны, применяются модели автотрансформаторов ДАТР.

Автотрансформатор ЛАТР

Существуют также автотрансформаторы:

  • малой мощности, для работы в цепях до 1 кВ;
  • среднемощные агрегаты (больше 1 кВ);
  • высоковольтные автотрансформаторы.

Следует заметить, что с целью безопасности ограничено использование автотрансформаторов в качестве силовых трансформаторов, для снижения до 380 В напряжений, превышающих 6 кВ. Это связано с наличием гальванической связи между обмотками, что не безопасно для конечного потребителя. При авариях не исключено, что высокое напряжение попадёт на запитанное оборудование, что чревато непредсказуемыми последствиями. В этом кроется основной недостаток автотрансформаторов.

Обозначение на схемах

Отличить автотрансформатор на схеме от изображения обычного трансформатора очень легко. Признаком является наличие единственной обмотки связанной с одним сердечником, обозначенным жирной линией на схемах. По одну или по обе стороны этой лини схематически изображены обмотки, но в автотрансформаторе все они соединены друг с другом. Если на схеме витки изображены автономно, то речь идёт об обычном трансформаторе (см. рисунок 1).

Устройство и конструктивные особенности

Как было отмечено выше, автотрансформатор состоит из одной катушки. Её наматывают на обычный или на тороидальный сердечник.

Тороидальный трансформатор

В силу конструктивных особенностей у него отсутствуют гальванические развязки между цепями, что может привести к поражению высоковольтным током. Поэтому понижающий автотрансформатор, ввиду его повышенной опасности, требует принятия дополнительных мер по защите от поражения электротоком. Работа с ним допускается при условии строгого соблюдения правил безопасности.

Принцип действия автотрансформатора

Несмотря на особенности строения обмоточной части агрегата, его принцип действия очень напоминает работу обычного трансформатора. По такому же принципу во время циркуляции переменного тока возникает магнитный поток в сердечнике. Его действие на обмотку характеризуется появлением на каждом отдельном витке равновеликой электродвижущей силы. Суммарная ЭДС на отрезке обмотки равна сумме величин токов всех отдельно взятых витков.

Особенностью является то, что по обмотке циркулирует ещё и первичный ток, который оказывается в противофазе к индукционному потоку. Результирующие значения этих токов на участке обмотки, предназначенной для потребителя, получаются меньшими (для понижающего тр.) чем параметры поступающего электричества.

Схема понижающего автотрансформатора

Соотношение величин ЭДС выражается формулой: E1/E2 = w1/w2 = k , где E – ЭДС, w – количество витков, k – коэффициент трансформации.

Учитывая то, что падение напряжений в обмотках трансформатора невелико – его можно не учитывать. В таком случае равенства: U1 = E1; U2 = E2 можно считать справедливыми. Таким образом, приведённая выше формула приобретает вид: U1/U2 = w1/w2 = k, то есть, соотношение напряжений к числу витков такое же, как и для обычного трансформатора.

Не вдаваясь в подробности, заметим, что отношение силы тока верхней катушки к току нагрузки, как и для обычного трансформатора, выражается формулой: I1/I2 = w2/w1 = 1/k. Отсюда следует, что поскольку в понижающем трансформаторе w2 < w1, то I2 < I1. Другими словами ток на выходе значительно меньше величины входящего тока. Таким образом, расходуется меньше энергии на нагревание проволоки, что позволяет использовать провода меньшего сечения.

Примечательно, что мощность нагрузки образуют токи электромагнитной индукции и электрической составляющей. Электрическая мощность ( P = U2*I1 ) довольно ощутима, в сравнении с индукционной составляющей, поступающей во вторичную цепь. Поэтому, чтобы получить требуемую мощность, используются меньшие значения сечений для магнитопроводов.

Области применения

Автотрансформаторы по сей день занимают прочные позиции в различных областях, связанных с электротехникой. Без них не обходятся:

  • различные выпрямители;
  • радиотехнические устройства;
  • телефонные аппараты;
  • сварочные аппараты;
  • системы электрификации железных дорог и многие другие устройства.

Трёхфазные автотрансформаторы используют в высоковольтных электросетях. Их применение повышает КПД энергосистем, что сказывается на снижении затрат, связанных с передачей электроэнергии.

Лабораторный автотрансформатор (ЛАТР)

Очень часто в среде электриков и электронщиков звучит аббревиатура ЛАТР. Помните, мы как-то с вами рассматривали блок питания и даже делали его сами. Блок питания выдавал нам постоянное напряжение от нуля и до какого-то конечного значения, которое, конечно же, зависело от крутизны блока питания. Согласитесь, очень удобная штука. Но есть  один минус  –  он нам выдает только постоянное напряжение.

Но, раз есть блок питания на постоянное напряжение, то должен быть блок питания и на переменное напряжение. И называется такой блок питания лабораторный автотрансформатор или сокращенно ЛАТР. Что это за вещь и с чем ее едят?

ЛАТР – это тот же трансформатор. Он преобразовывает переменное напряжение одной величины в переменное напряжение другой величины. Но вся фишка в том, что мы можем  менять при необходимости напряжение на выходе ЛАТРа.

Однофазные

Такой типа ЛАТРов выдает однофазное переменное регулируемое напряжение. Он очень часто используется радиолюбителями, так как позволяет подобрать любое низковольтное переменное напряжение.

Трехфазные

Такой тип ЛАТРов используется в промышленной электронике. На его вход подается трехфазное напряжение, а на выходе получаем те же самые три фазы, но уже меньшей амплитуды. Этот ЛАТР позволяет изменять амплитуду напряжения всех трех фаз одновременно. Грубо говоря, это три однофазных ЛАТРа, которые находятся в одном корпусе и которые одинаково изменяют напряжение.

Описание работы ЛАТРа РЕСАНТА

Давайте рассмотрим однофазный ЛАТР латвийского производства РЕСАНТА (читается по-русски) марки TDGC2-0.5 kVA.

Сверху наш ЛАТР выглядит вот так:

Мы видим регулятор, с помощью которого можем выставить нужное нам напряжение.

На лицевой стороне видим какое-то подобие вольтметра переменного напряжения. На клеммы слева заводим напряжение из сети 220 В, а с клемм справа – напряжение, которое требуется нам на данный момент.

Как работает ЛАТР на практике

Давайте проведем опыты с лампочкой накаливания в 95 Ватт 220 Вольт. Для этого цепляем ее к выходным клеммам справа.

Интересно, при каком напряжении начнет светится спираль лампочки? Давайте узнаем! Крутим регулятор, пока не заметим слабое свечение лампочки.

Смотрим на шкалу регулятора. 35 Вольт!

А вы знаете, что в США  сетевое напряжение 110 Вольт? Интересно, как бы светилась тогда наша лампочка? Выставляем 110 Вольт.

Светится, как говорится, в пол накала.

А теперь сравните, как она светится при 220 В

Дальше повышать напряжение нет смысла. Лампочка может перегореть.

Если хотите выставить напряжение с большой точностью, то конечно же, здесь не обойтись без мультиметра. Для этого ставим крутилку мультиметра  на положение измерения переменного напряжения

Цепляемся и меряем переменное напряжение. Заодно подгоняем с помощью регулятора ЛАТРа. Ровно 110 Вольт!

Техника безопасности при работе с ЛАТРом

Хочется также добавить пару слов о технике безопасности. Есть ЛАТРы без гальванической развязки. Это означает, что фазный провод из сети идет прямо на выход такого ЛАТРа. Схема ЛАТРа без гальванической развязки выглядит вот так:

В этом случае на выходной клемме ЛАТРа может появиться напряжение сети 220 Вольт с вероятностью 50/50. Все зависит от того, как вы воткнете сетевую вилку ЛАТРа в розетку 220 Вольт.

Если присмотреться к схемотехническому изображению на самой лицевой панели ЛАТРа Ресанта, то можно увидеть, что клемма “Х” и “х”  (те, которые два нижних) связаны между собой проводником.

То есть если на клемме “Х” фаза, то и на клемме “х” тоже будет фаза! Вы ведь не будете каждый раз замерять фазу в розетке, чтобы воткнуть правильно вилку? Поэтому БУДЬТЕ крайне ОСТОРОЖНЫ! Старайтесь не задевать голыми руками выходные клеммы ЛАТРа!

В принципе я задевал и ничего со мной такого не произошло. Дело оказалось в том, что у меня деревянный пол, который почти является диэлектриком. Замерял напряжение между мной и фазой – вышло около 40 Вольт. Поэтому я и не чувствовал эти 40 Вольт. Если бы я взялся одной рукой за батарею или встал бы голыми ногами на землю, а другой рукой взялся бы за выход “х” ЛАТРа, то меня тряхануло бы очень и очень сильно, так как через меня бы прошли  все полноценные 220 Вольт.

Разделительный трансформатор и ЛАТР

Есть также более безопасные виды ЛАТРов. В своем составе они имеют развязывающий трансформатор. Схема такого ЛАТРа выглядит примерно вот так:

Как мы видим, фазный провод изолирован от выходных клемм такого ЛАТРа, благодаря трансформатору, принцип работы которого вы можете прочитать в этой статье. В этом случае нас может тряхануть, если мы на выходе  ЛАТРа с помощью крутилки выставим высокое напряжение и возьмемся сразу за два выходных провода ЛАТРа. То есть здесь типичная гальваническая развязка.

Заключение

ЛАТР – прибор очень полезный.  Я бы посоветовал начинающему электронщику ЛАТР на 500 ВА. Такие ЛАТРы очень компактные и удобные. Работает ЛАТР по принципу трансформатора. Чем меньше витков во вторичной обмотке, тем меньше напряжение  на выходе. Когда мы крутим регулятор, мы добавляем витки, а следовательно и напряжение. Думаю, говорить про применение ЛАТРа нет смысла, так как он используется везде, где надо понизить переменное напряжение.

Где купить ЛАТР

ЛАТР выгоднее всего купить либо в ближайшем радиомагазине, либо все-таки заказать в российском интернет-магазине, так как тяжелые товары из Китая обойдутся дороже. Можете присмотреть по этой ссылке.

Источник: https://www.ruselectronic.com/latr-laboratornyj-avtotransformator/

Автотрансформаторы | Устройство и принцип действия

Автотрансформатор — это устройство для изменения напряжения переменного тока при сохранении его частоты, основанное на эффекте электромагнитной индукции, которое имеет одну общую обмотку на магнитопроводе и не менее трёх выводов от неё.

Если простыми словами, то автотрансформаторы – это разновидность обычных трансформаторов напряжения, в которых есть всего одна обмотка, часть витков которой выполняют функцию первичной обмотки, а часть вторичной.

Для лучшего понимания, давайте рассмотрим устройство наиболее распространенного типа автотрансформаторов.

Устройство автотрансформатора

Чаще всего стандартный автотрансформатор представляет собой тороидальный магнитопровод – сердечник, сделанный из электротехнической стали в виде кольца, на который намотана медная проволока – называемая обмоткой.

Кроме того, чтобы эта конструкция служила именно автотрансформатором, у неё есть дополнительная «отпайка» — отвод от этой обмотки, всего контактов получается, как минимум три.

Устройство автотрансформатора достаточно наглядно показано на изображении ниже:

В данном примере, вы можете видеть автотрансформатор, к крайним контактам которого подключается источник напряжения переменного тока, к A – фаза, к X – ноль. Все витки проволоки между этими точками считаются первичной обмоткой.

Нагрузка, какой-нибудь электроприбор, которому для работы требуется меньшее напряжение, чем поступает из сети, подключается к выводам a2 и X – витки между этими контактами – это уже вторичная обмотка.

Как видите, у автотрансформатора есть всего одна обмотка, но при этом напряжение, если замерять в различных точках подключения, будет разным, почему оно меняется и как определить насколько (коэффициент трансформации) мы рассмотрим ниже.

Обозначение автотрансформатора на схемах

Кстати, вы довольно легко на любой схеме определите автотрансформатор и отличите его от обычного трансформатора, чаще всего он обозначается вот так:

Как видите, схематически у автотрансформатора показаны все его основные элементы: прямая линия — это стальной сердечник, с одной стороны которого расположена единственная обмотка – в виде волнистой линии, от которой идёт несколько отводов.

Перепутать с обычным трансформатором не получится, ведь у него на схеме будет как минимум две обмотки по сторонам от сердечника.

Более подробно о принципиальных различиях автотрансформатора и обычного трансформатора напряжения, я расскажу во второй части этой статьи.

Принцип работы автотрансформатора

А сейчас, для лучшего понимания основного принципа работы автотрансформаторов, рассмотрим процессы, которые в них происходят.

В качестве примера, мы возьмем автотрансформатор, который может как повышать напряжение на выходе, так и уменьшать его, относительно начального. Общее количество витков медного провода у него, для удобства расчетов, равно 20, выглядит он следующим образом:

ЭТО ИНТЕРЕСНО:  Что такое холостой ход трансформатора

Как видите, у такой модели, есть уже четыре точки подключения к общей обмотке: A1, a2, a3 и X.

К контактам A1 и N – подключается источник переменного электрического тока, например, питание стандартной городской электросети, с напряжением(U1), в нашем случае это стандартные 220В. Всего между этими точками 18 витков медной проволоки, этот участок спирали обозначен как W1, он считается первичной обмоткой автотрансформатора.

Что происходит при подаче напряжения на автотрансформатор

При протекании переменного тока по обмотке, в сердечнике (магнитопроводе) автотрансформатора, образуется переменный магнитный поток, который циркулирует по замкнутому магнитному сердечнику, пронизывая ВСЕ витки обмотки.

Проще говоря, при подключении тока к первичной обмотке – в нашем примере к 18 виткам, магнитный поток протекая по сердечнику пронизывает всю обмотку, все 20 витков. Напряжение же на первичной обмотке (в точках подключения A1 и X) остаётся 220В или, если распределить на каждый виток 220/18 = 12.222 Вольта на каждый.

Теперь, чтобы узнать какое напряжение образуется на всех 20 витках, к точкам a2 и X, подключим нагрузку, какой-нибудь электроприбор – это будет вторичная обмотка автотрансформатора. На схеме условно обозначим нагрузку, некий электроприбор подключеный к этой обмотке, напряжение U2, а число витков между контактами W2 = 20.

Зависимость между обмотками у автотрансформатора, выражается следующей формулой:

U1/w1 = U2/w2, где U1 напряжение на первой обмотке, U2 напряжение на второй обмотке, w1 число витков первой обмотки, w2 число витков второй обмотки.

Из этой формулы следует что напряжение на вторичной обмотке изменяется относительно напряжения первичной обмотки, пропорционально разнице витков. В нашем примере на один виток первичной обмотки приходится 12.22.. Вольт, у вторичной же обмотки витков больше на 2, соответственно общее напряжение обмотки выше на 24.44..Вольта.

Это доказывает нехитрый расcчет:

U1/w1 = U2/w2,

220 Вольт/18 Витков=U2/20 Витков,

U2 = 220*20/18 = 244.44В

Автотрансформатор, у которого на вторичной обмотке напряжение увеличивается называется повышающий.

Зная зависимость между обмотками, мы можем вычислить коэффициент трансформации, величину, которая позволяет легко определять, изменение входящих параметров (напряжения, сопротивления, силы тока) на вторичной обмотке.

Коэффициент трансформации вычисляется по следующей формуле:U1/U2=w1/w2

В нашем случае получается 220/244,44=18/20=0,9

Теперь давайте посмотрим, как изменится напряжения на оставшихся контактах.

Подключаем нагрузку к контактам a3 и X нашего автотрансформатора, число витков w3 у этой обмотки равно 16, напряжение обозначим как U3.

Следуя той же формуле, рассчитываем напряжение:

U1/w1 = U3/w3 = 220/18=U3/16, от сюда следует, что U3 =220*16/18 = 195,55.. Вольт, а коэффициент трансформации U1/U3=w1/w3=220/195,55=18/16=1,125 , эта обмотка понижающая.

Автотрансформатор, у которого на вторичной обмотке напряжение уменьшается называется понижающий.

Теперь, зная коэффициенты трансформации на всех выводах автотрансформатора мы легко сможем определять, например, какое будет напряжение на вторичной обмотке, если изменится напряжение источника электрического тока:

Так, например, при напряжении источника переменного тока на первичной обмотке 200В, у этого трансформатора:

— на контактах a2 и X, при коэффициенте трансформации k1=0,9 напряжением будет U2=200В/0,9= 222,22 В

— на контактах a3 и X, при коэффициенте трансформации k2=1,125 напряжение равняется U3=200/1,125=177,77 В

ПРАВИЛО: Если коэффициент трансформации k>1 – то трансформатор понижающий, если же k

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/183-avtotransformatory-ustrojstvo-i-printsip-dejstviya

Как выбрать автотрансформатор | «Энергия»

Автотрансформатор – необходимая вещь в быту и на предприятиях, где есть необходимость поддерживать стабильное напряжение для работы электроприборов, но изменить его нужно в узких пределах. С такими условиями лучше всего справляется именно автотрансформатор.

Однообмоточный прибор, которым является автотрансформатор, отлично справляется там, где коэффициент трансформации невелик и близок к единице. Это объясняется тем, что величина токов будет практически одинаковой в первичной и вторичной обмотках. Поэтому эти две обмотки объединены в одну. Такова схема автотрансформатора.

Автотрансформатор – это тот же трансформатор, но имеющий специальное назначение. Он отличается от последнего тем, что обмотка высшего и низшего напряжения является единым целым, поэтому в автотрансформаторе возникает и магнитная, и электрическая связь.

С помощью автотрансформатора можно повысить или понизить напряжение в сети. Их целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток, что позволяет выполнить ее более тонким проводом и сэкономить цветной металл.

Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора. Дело в том, что в трансформаторе энергия передается только за счет магнитного поля, образующегося в магнитопроводе. Автотрансформатор передает энергию не только магнитным полем, но и через электрическую связь, которая возникает между объединенными обмотками.

Автотрансформатор может работать лучше, и он выгоднее к покупке, чем трансформатор, если коэффициент трансформации не превышает 1,5 или 2 единиц. Если коэффициент достигает 3 единиц, то автотрансформатор будет работать неэффективно.

Относительно деталей и конструкции автотрансформатор практически ничем не отличается от обычного трансформатора.

Однофазные автотрансформаторы (ЛАТРы)

Автотрансформаторы нашли свое применение и как лабораторные регуляторы, рассчитанные на небольшую мощность. Регулировка в ЛАТРах осуществляется за счет контакта, «скользящего» по виткам обмотки.

ЛАТРы – однофазные автотрансформаторы, которые состоят из кольцевого магнитопровода со слоем медного провода. В системе имеются постоянные отводы, позволяющие держать коэффициент трансформации на одном уровне, а устройствам работать и на понижение, и на повышение.

Регулировка производится плавно от нуля и до 250 В. Номинальная мощность лабораторных автотрансформаторов составляет от 0,5 до 7,5 кВА. В нашем интернет-магазине вы можете выбрать прибор необходимой вам мощности по цене от производителя и с быстрой доставкой.

Какие бывают автотрансформаторы

На сегодняшний день широко используются следующие типы автотрансформаторов:

  • первый тип — ВУ-25-Б, предназначен для уравнивания вторичных токов в схемах дифференциальных защит трансформаторов;
  • второй тип – АТД, имеет мощность на уровне 25 ват, долго-насыщающийся, так как имеет устаревшую конструкцию и практически не используется;
  • третий тип – ЛАТР-1, предназначен для использования при напряжении на уровне 127В;
  • четвертый тип – ЛАТР-2, предназначен для использования при напряжении на уровне 220В;
  • пятый тип – ДАТР-1, предназначен для использования при небольшой нагрузке;
  • шестой тип – РНО, предназначен для использования при высоких нагрузках;
  • седьмой тип – РНТ, предназначен для использования при значительных нагрузках;
  • восьмой тип – АТЦН, предназначен для использования в телеизмерительных устройствах.

По уровню мощности автотрансформаторы делятся на устройства:

  • невысокой мощности, до 1кВ;
  • средней мощности, более 1кВ;
  • силовые.

Автотрансформаторы работают в таких режимах, как:

  • трансформаторный;
  • автотрансформаторный;
  • комбинированный.

При нормальном режиме работы автотрансформатор может работать долгое время без перегревов и неисправностей. Для этого нужно соблюдать все требования по условиям эксплуатации и следить за тем, чтобы верхние слои масла не нагревались до температуры свыше 75°С.

Трехфазные автотрансформаторы

Трехфазные автотрансформаторы бывают двух и трехобмоточными. Фазы в них, как правило, объединены в виде звезды, где имеется нейтральная точка. Манипулируя зажимами, электроэнергию либо повышают, либо понижают.

Чаще всего трехфазные автотрансформаторы применяют для понижения напряжения в момент запуска мощного мотора, для регулирования напряжения при работе электропечей. Трехфазные трехобмоточные автотрансформаторы используют в работе высоковольтных сетей.

Автотрансформаторы позволяют:

  • улучшить КПД работающего оборудования;
  • уменьшить стоимость передачи электроэнергии.

Минусы автотрансформаторов

Как и у любых других устройств, у автотрансформаторов есть свои недостатки. Например, у обеих обмоток прибора должна быть изоляция при большом напряжении, поскольку существует электрическая связь между ними.

К недостатку относится и возникновение гальванической связи между обмотками, так как устройства становятся непригодны к использованию в сетях 600-1000 В как силовые трансформаторы, если напряжение понижается до 0,38 кВ. Это небезопасно для людей, работающих на оборудовании, куда подводится напряжение в 380 В.

В случае аварии цепь в автотрансформаторе может замкнуть, что приведет к пробою изоляции присоединенного к устройству оборудования.

В нашем интернет-магазине представлен большой выбор ЛАТРов для различных целей и условий эксплуатации. Вы можете заказать любой необходимый вам прибор, сделав заявку на сайте. Если у вас остались вопросы, позвоните нам.

Источник: https://www.stabilizator.spb.ru/pozvolte-pomoch/stati/drugie-tovary/kak-vybrat-avtotransformator.html

Что собой представляет автотрансформатор, как собирается ЛАТРа своими руками и схема

На изготовление лабораторного автотрансформатора (ЛАТРа) своими руками многих толкает избыток на электрорынке некачественных регуляторов. Можно использовать и экземпляр промышленного типа, правда, подобные образцы имеют слишком большие размеры и дорого стоят. Именно из-за этого применение их в домашних условиях затруднено.

Что собой представляет электронный ЛАТР?

Автотрансформаторы нужны, чтобы плавно изменять напряжение тока частотой 50—60 Гц во время проведения разных электротехнических работ. Еще их нередко используют, когда требуется уменьшить либо увеличить переменное напряжение для бытового или строительного электрооборудования.

Трансформаторами выступает электрическая аппаратура, которая оснащена несколькими обмотками соединенными индуктивно. Применяется она для преобразования электрической энергии по уровню напряжения или тока.

Кстати, широко использовать электронный ЛАТР начали 50 лет тому назад. Раньше прибор оснащали токосъемным контактом. Его располагали на вторичной обмотке. Так получалось плавно настраивать выходное напряжение.

Когда подключались различные лабораторные устройства, присутствовал вариант оперативного изменения напряжения. Скажем, при желании можно было менять степень нагрева паяльника, настраивать обороты электромотора, яркость освещения и прочее.

В настоящее время ЛАТР имеет разные модификации. В целом он представляет собой трансформатор, преобразующий переменное напряжение одной величины в другую. Подобное устройство служит стабилизатором напряжения. Его главным отличием является возможность регулировки напряжения на выходе из оборудования.

Существуют разные виды автотрансформаторов:

Последний тип — установленные в единой конструкции три однофазных ЛАТРа. Однако мало кто желает стать его владельцем. И трехфазные, и однофазные автотрансформаторы оборудованы вольтметром и регулировочной шкалой.

Область применения ЛАТРа

Автотрансформатор используют в различных сферах деятельности, среди них:

  • Металлургическое производство;
  • Коммунальное хозяйство;
  • Химическая и нефтяная промышленности;
  • Производство техники.

Кроме этого, он нужен для следующих работ: изготовления бытовых приборов, исследования электрооборудования в лабораториях, наладки и проверки техники, создания телевизионных приемников.

Вдобавок ЛАТР часто используют в учебных заведениях для проведения опытов на уроках химии и физики. Его можно даже обнаружить в составе устройств некоторых стабилизаторов напряжения. Также применяется в качестве дополнительного оборудования к самописцам и станкам. Почти во всех лабораторных исследованиях в виде трансформатора используют именно ЛАТР, поскольку он имеет простую конструкцию и несложен в эксплуатации.

Автотрансформатор в отличие от стабилизатора, который применяется лишь в нестабильных сетях и на выходе создает напряжение 220В с разной погрешностью в 2—5%, выдает точное заданное напряжение.

По климатическим параметрам разрешается использование этих приборов при высоте 2000 метров, но ток нагрузки приходится снижать на 2,5% при подъеме на каждые 500 м.

Основные минусы и плюсы автотрансформатора

Главное преимущество ЛАТРа — это более высокий КПД, ведь только некоторая часть мощности трансформируется. Особенно важно, если входное и выходное напряжения немного отличаются.

Их минусом является то, что отсутствует между обмотками электрическая изоляция. Хотя в промышленных электросетях нулевой провод обладает заземлением, поэтому такой фактор особой роли играть не будет, к тому же для обмоток используется меньше меди и стали для сердечников, как следствие, меньший вес и габариты. В результате можно хорошо сэкономить.

Первый вариант — прибор изменения напряжения

Если вы начинающий электрик, то лучше попробовать сначала сделать простую модель ЛАТРа, которая будет регулироваться устройством напряжения — от 0—220 вольт. По такой схеме автотрансформатор имеет мощность — от 25—500 Вт.

Чтобы увеличить мощность регулятора до 1,5 кВт, нужно тиристоры VD 1 и 2 поставить на радиаторы. Подключают их параллельно нагрузке R 1. Эти тиристоры ток пропускают в противоположных направлениях. При включении прибора в сеть они закрыты, а конденсаторы C 1 и 2 начинают заряжаться от резистора R 5. Еще им при необходимости изменяют величину напряжения во время нагрузки. Вдобавок этот переменный резистор вместе с конденсаторами образовывает фазосдвигающую цепь.

Такое техническое решение дает возможность пользоваться сразу двумя полупериодами переменного тока. В итоге для нагрузки применяется полная мощность, а не половинная.

Единственный недостаток схемы в том, что форма переменного напряжения во время нагрузки из-за специфики работы тиристоров оказывается не синусоидальной. Все это приводит к помехам по сети. Для исправления в схеме проблемы достаточно встроить фильтры последовательно нагрузке. Их можно вытащить из сломанного телевизора.

Второй вариант — регулятор напряжения с трансформатором

Не вызывающий помех в сети и дающий синусоидальное напряжение прибор, собирать труднее предыдущего. ЛАТР, схема которого имеет биополярный VT 1, в принципе тоже получится сделать самостоятельно. Причем транзистор служит регулирующим элементом в устройстве. Мощность в нем зависит от нагрузки. Работает он как реостат. Такая модель позволяет изменять рабочее напряжение не только при реактивных нагрузках, но и активных.

Однако представленная схема автотрансформатора тоже не идеальна. Ее минус в том, что функционирующий регулирующий транзистор выделяет очень много тепла. Для устранения недостатка понадобится мощный теплоотводящий радиатор, площадь которого равна не менее 250 см ².

В этом случае применяется трансформатор T 1. Он должен иметь вторичное напряжение около 6—10 В и мощность примерно 12—15 Вт. Диодный мост VD 6 осуществляет выпрямление тока, который впоследствии проходит к транзистору VT 1 в любом варианте полупериода через VD 5 и VD 2. Базовый ток транзистора регулируется переменным резистором R 1, изменяя тем самым характеристики тока нагрузки.

Вольтметром PV 1 контролируют размеры напряжения на выходе из автотрансформатора. Он используется с расчетом напряжения от 250—300 В. Если появляется необходимость увеличить нагрузку, тогда стоит заменить диоды VD 5- VD 2 и транзистор VD 1 на более мощные. Естественно, за этим последует расширение площади радиатора.

Как видно, собрать своими руками ЛАТР, возможно, нужно только иметь немного знаний в данной области и закупить все необходимые материалы.

Источник: https://stanok.guru/oborudovanie/akkumulyatory-i-bloki-pitaniya/latra-svoimi-rukami-i-sposoby-sborki.html

Чем отличается автотрансформатор от трансформатора, устройство, назначение, принцип действия

У обычного трансформатора первичные и вторичные обмотки электрически не связаны, энергия между ними передается посредством магнитного поля. Автотрансформатор фактически имеет одну обмотку, от которой отходят выводы. Помимо электромагнитной связи, обмотки автотрансформатора связаны электрически.

Понравилась статья? Поделиться с друзьями:
Электро Дело
Сколько киловатт на 25 ампер

Закрыть