IT News
Дата Категория: Физика
Открыв, что электрические токи создают магнитные поля, ученые разработали магниты, работающие на электричестве, которые, в отличие от постоянных, можно легко включать и выключать. Как показано на рисунке справа, такой электромагнит может состоять из электрической батареи, подсоединенной к проволочной катушке (соленоиду), внутри которой размещен ферромагнитный сердечник (обычно железный).
Магнитное поле, образованное текущим по проволоке электрическим током, намагничивает металлический сердечник точно так же, как постоянный магнит намагничивает кусок железа.
До тех пор, пока электрический ток течет по проволоке, электромагнит ведет себя аналогично постоянному магниту: силовые линии магнитного поля идут по дуге из северного полюса электромагнита в южный (как правило, под прямым угломна-правлению электрического тока, в соответствии с законами электромагнетизма).
Если направление электрического тока изменяется на противоположное, магнитные полюсы меняются местами и силовые линии также разворачиваются в противоположном направлении. Однако общая форма магнитного поля не изменяется. Конфигурация силовых линий магнитного поля остается постоянной, пока не изменится форма самой проволоки.
Электродвигатели, генераторы и многие другие виды электрооборудования используют в своей работе законы электромагнетизма.
Формы магнитных полей
Электрический ток, текущий вверх по прямолинейному проводнику, создает магнитное поле, силовые линии которого образуют концентрические окружности, направленные против часовой стрелки. Изменение направления тока приведет к развороту силовых линий магнитного поля, и они станут направлены по часовой стрелке.
Одинарный виток проволоки с током, текущим против часовой стрелки, создает магнитное поле, силовые линии которого проходят непосредственно через свободный центр витка, затем идут вверх или в стороны и назад, образуя концентрические окружности.
Магнитное поле многовитковой катушки
Каждый виток проволочной катушки с током (соленоида) ведет себя аналогично одинарному витку. Общая конфигурация магнитного поля, окружающего соленоид, складывается из индивидуальных магнитных полей, создаваемых витками.
Определение направления поля
Для определения направления силовых линий магнитного поля вокруг проволочной катушки с током физики представляют, что обхватывают ее правой рукой так, чтобы ток входил в катушку со стороны ребра ладони. Отогнутый большой палец указывает направление магнитного поля.
Источник: http://information-technology.ru/sci-pop-articles/23-physics/232-kak-rabotaet-elektromagnit
Принцип работы электромагнитного ( соленоидного) клапана
Запорный элемент электромеханического действия, выполняющий функцию дистанционного автоматического контроля направлений движения жидкой и газообразной рабочей среды внутри трубопровода. С помощью электромагнитной катушки происходит дозированная подача необходимых объемов потока в определенный момент времени.
Широко применяется на бытовом уровне и в крупных промышленных конструкциях в широком диапазоне рабочих температур. В трубопроводах жилищно-коммунального хозяйства клапан выполняет регулирование среды внутри водопроводной или канализационных систем, центрального отопления. Используется на технологических линиях химических и нефтеперерабатывающих предприятиях, фильтрационных гидропроводах. Применим в сельском хозяйстве: поливочных конструкциях, системах дозирования и смешения.
Принцип работы электромагнитного клапана
Для производства электромагнитных клапанов используются материалы, соответствующие требованиям ГОСТ и международным стандартам. Электромагнитный клапан состоит из нескольких основных элементов:
- Корпус. Может изготавливаться из нержавеющей стали, чугуна, коррозионностойкой латуни, химических полимеров.
- Индукционная катушка с сердечником (соленоид). Располагается в герметичном корпусе, обмотка выполнена из высокопрочной технической меди.
- Уплотнитель. Для обеспечения максимальной герметичности используется полимер политетрафторэтилен (тефлон), термостойкая резина, силикон, каучук, фторопласт.
- Функциональные элементы: плунжер, пружина, шток из нержавеющей маркированной стали.
Как работает электромагнитный клапан
Принцип работы электромагнитного клапана основан на работе элемента управления — электромагнитной катушки. При отсутствии постоянного или переменного тока под механическим давлением пружины, мембрана (поршень) клапана расположены в седле устройства.
При подаче электрического напряжения различной мощности к клеммам соленоида, сердечник вовлекается внутрь катушки, обеспечивая открытие или закрытие протокового отверстия. Обесточивание соленоида приводит к закрытию створок.
Конструктивные особенности устройства соленоидного клапана могут меняться, в зависимости от его типа.
Типы электромагнитных клапанов
Электромагнитные клапаны распределены на несколько категорий.
По типу рабочего положения выделяют:
- Нормально-открытые клапаны. По умолчанию, затворный элемент находится в открытом положении и не создает препятствий движению потоков.
- Нормально-закрытые клапаны. Отсутствие напряжения на катушке характеризуется закрытой позицией затвора.
- Бистабильные клапаны. Способны переключаться в открытое или закрытое положение под воздействием электрического импульса.
По принципу действия электромагнитные клапаны разделяют на:
- Клапан прямого действия. смена положений затворного компонента осуществляется под воздействием движения сердечника, при подаче электронапряжения.
- Клапан непрямого действия. Воздействие энергии рабочей среды приводит к открытию и закрытию условного прохода. Управляется дистанционно, под действием пилотного клапана, срабатывающего при подаче электрического тока к катушке.
- Бистабильные клапаны. Регулирование затвора осуществляется по принципу поднятия мембраны соленоидного клапана.
По типу присоединения к трубопроводу:
- Муфтовые. Монтаж производится при помощи внутренней трубной резьбы цилиндрической формы, с различным диаметром условного прохода и резьбовым шагом. Условное обозначение диаметра соленоидного клапана указывается в техническом паспорте изделия.
- Фланцевые. Присоединение к трубопроводу с помощью парных фланцев с отверстиями для болтов и шпилек. Применяется в трубопроводах крупного диаметра. При монтаже используется уплотнительное кольцо или прокладка из паронита.
По типу уплотнительной мембраны:
- Мембрана FKM (фтористый каучук). Стандартное уплотнение, применяется для большинства неагрессивных рабочих сред.
- Мембрана NBR (бутадиен-нитрильный каучук). Используется в средах продуктов нефтепереработки: бензин, масла, керосин, диз.топливо.
- Мембрана EPDM (этилен-пропиленовый каучук). Характеризуется повышенной устойчивостью к температурам, работает в среде химических растворов и соединений: щелочей, спиртов, гликолей, кетона, воды и др.
Правила монтажа и эксплуатации
Любые монтажные работы с клапаном проводятся при отсутствии рабочей среды в системе и обесточивании электрической цепи. Перед началом работ следует очистить трубопровод от механических частиц и взвесей.
Как подключить электромагнитный клапан соленоидный. Подключение электромагнитных клапанов в системе производится в горизонтальном положении, катушкой вверх.
- Для правильной работы устройства направление движения среды должно соответствовать указательной стрелке на корпусе.
- Установка электромагнитного клапана производится в месте, доступном для последующего ремонта или обслуживания.
- Запрещена установка клапана в местах с высокими показателями конденсации или вибрации, участках с возможным обледенением трубы, вблизи течей и порывов.
- Установка дополнительных сетчатых фильтров подходящего типоразмера защитит клапан от попадания загрязнений, и, как следствие, снижения его гидравлических характеристик.
Преимущества электромагнитных клапанов
- Автоматический тип работы
- Высокое быстродействие
- Возможность удаленного управления
- Компактность (малые габаритные и весовые показатели)
- Длительный срок эксплуатации
- Простота монтажа и обслуживания
Причины поломок и методы устранения
Правильная эксплуатация и соблюдение технических параметров, указанных в паспорте изделия обеспечат надежную и длительную работу устройства. В некоторых случаях преждевременные неисправности электромагнитного клапана возможны по нескольким причинам.
- Снижение герметичности изделия может быть вызвано попаданием механических частиц на седло устройства. Рекомендуется демонтаж и чистка устройства с последующей установкой в системе сетчатого фильтра до клапана.
- Выход из строя индукционной катушки может быть обусловлен неправильной мощностью напряжения, подаваемого к клеммам или превышением граничных параметров температуры и давления внутри трубопровода. Следует провести демонтаж устройства и заменить катушку. Попадание влаги на катушку может вызвать короткое замыкание и поломку устройства.
- Неполное открытие/закрытие клапана может стать следствием загрязнения управляющего отверстия, дефектами мембраны или прокладки, остаточным напряжением на соленоиде и др.
Ремонт электромагнитного клапана должен производиться квалифицированным специалистом, имеющим допуск к работе с электрическими сетями.
Производство соленоидных клапанов осуществляется на специализированных заводах трубной арматуры, расположенные практически в каждой стране Европы. Одни из ведущим мировым производителем электромагнитных клапанов являются SMART HYDRODYNAMIC SYSTEMS.
Стоимость электромагнитного клапана зависит от его функций, конструктивного типа, диаметра резьбы и фирмы- производителя электромагнитных (соленоидных) клапанов.
Для определения необходимого вида устройства можно проконсультироваться со специалистами или посмотреть видео электромагнитного клапана.
В нашем магазины вы можете купить электромагнитный клапан по выгодной цене оптом и в розницу со склада в Москве с доставкой по России. Быстрые отгрузки в города: Санкт-Петербург, Екатеринбург, Казань, Краснодар, Самара, Воронеж, Нижний Новгород, Волгоград, Ростов-на-Дону, Челябинск, Новосибирск, Омск, Уфа, Красноярск, Пермь.
Источник: http://valvesale.ru/elektromagnitnyy-klapan-solenoidnyy
Управление соленоидами с помощью ШИ-регулятора
Схема разрабатывалась на заказ для экспериментов в управлении соленоидами автопогрузчика с помощью штатного джойстика автопогрузчика. Задача заключалась в том, что бы преобразовать выходной сигнал схемы джойстика, изменяемый в зависимости от направления движения рукоятки (вверх-вниз), в плавное изменение тока через пару соленоидов, регулируемых раздельно направлением рукоятки джойстика.
Движение рукоятки джойстика вверх должно вызывать нарастание тока в соленоиде L1 (в соответствии с положением рукоятки), движение вниз – ток увеличивается в L2. В нейтральном положении джойстика оба соленоида должны быть обесточены.
Автор понятия не имеет, каким образом и насколько успешно была использована данная конструкция после изготовления (заказчик не возвращался), но надеется, что кому-либо схемное решение, описанное ниже, может пригодиться для управления чем-либо (от осветительных приборов до электродвигателя сервопривода, например).
Рис.1 Принципиальная схема схемы управления соленоидами
Принципиальная схема устройства управления соленоидами приведена на рис.1. Джойстик Joy содержит встроенный преобразователь положения рукояти – в напряжение. Нейтральное положение рукояти соответствует уровню +2,5В на выходе джойстика, максимальное «верх» — +5В, максимально «вниз» — 0В.
Выходные уровни 0+2,5В+5В изменяются плавно и, соответственно, так же плавно должен изменяться ток в обмотках соленоидов.
Следует учитывать и то, что минимальное отклонение рукояти джойстика в любом из двух направлений должно обеспечивать ток, при котором поле, создаваемое внутри соленоидов, обеспечивало бы определенную магнитную «тягу».
Для отслеживания уровня выходного напряжения Joy и, была построена схема повторителей уровней на сдвоенном ОУ (U1), преобразующим входные «разнополярные» изменения (относительно +2,5В на выходе Joy) в однополярные, приводящие к одинаковым изменениям при противоположных смещениях рукояти Joy на входах DIC ШИ-регуляторов U3, U4. Изменения на этих входах задаются транзисторами Q1, Q2, образующими управляемый делитель напряжения для входов DIC каждого из регуляторов U3, U4.
Оба регулятора выполнены на микросхемах TL494CN, которые в данном включении практически не имеют компонентов «обвязки» (только времязадающие компоненты встроенного генератора микросхемы — C4, R6).
С выходов U3, U4 прямоугольный сигнал с регулируемой скважностью посредством эмиттерных повторителей на транзисторах Q3, Q4 подается на затворы мощных полевых транзисторов Q5, Q6, непосредственно управляющих током через обмотки соленоидов.
Таким образом, при смещении рукоятки джойстика (Joy) вверх от начала смещения до максимального отклонения, нарастание тока происходит в соленоиде L1, оставляя соленоид L2 обесточенным. При движении рукояти джойстика вниз ток увеличивается в обмотке соленоида L2, обмотка L1 – обесточена.
При настройке регулятора визуализация возможна с помощью ламп накаливания, включенных вместо катушек соленоидов.
Резисторами PR2-PR5 подбираются границы регулировки на каждом из выходов ОУ U1 и идентичность диапазонов для каждого из направлений рукояти Joy, резисторами PR6, PR7 – начальная скважность импульсной последовательности, определяющая начальный ток соленоидов при минимальном смещении рукояти джойстика в одном из направлений, на выходах U3, U4 (с помощью осциллографа). Частота генерации определяется номиналами C4, R6 и может быть в диапазоне 0,1-1кГц.
Схема была разработана практически экспромтом под диктовку заказчика, поэтому монтаж компонентов, выполненный на небольшой перфорированной плате (фото на рис.2), содержит избыточное количество компонентов. Внешний вид макета устройства с подключенным джойстиком показан на рис.3. Печатная плата разрабатывалась «начисто» (изображена на рис.4), без лишних деталей, в полном соответствии принципиальной схеме (рис.1).
Список радиоэлементов
Резистор | 100 кОм | 2 | Поиск в Aliexpress | В блокнот |
Резистор | 2K2 | 1 | Поиск в Aliexpress | В блокнот |
Резистор | 30 кОм | 2 | Поиск в Aliexpress | В блокнот |
Резистор | 10k-51k | 1 | Поиск в Aliexpress | В блокнот |
Резистор | 1K8 | 2 | Поиск в Aliexpress | В блокнот |
Резистор | 100 | 2 | Поиск в Aliexpress | В блокнот |
Электролитический конденсатор | 100uF | 1 | Поиск в Aliexpress | В блокнот |
Электролитический конденсатор | 3.3uF | 1 | Поиск в Aliexpress | В блокнот |
Конденсатор | 1 мкФ | 1 | Поиск в Aliexpress | В блокнот |
Конденсатор | 0.15uf-0.33uF | 1 | Поиск в Aliexpress | В блокнот |
Подстроечный резистор | 10k | 2 | Поиск в Aliexpress | В блокнот |
Подстроечный резистор | 200k | 2 | Поиск в Aliexpress | В блокнот |
Подстроечный резистор | 100k | 2 | Поиск в Aliexpress | В блокнот |
Биполярный транзистор | 2N5401 | 4 | Поиск в Aliexpress | В блокнот |
Транзистор | IRF3710 (IRF540) | 2 | Поиск в Aliexpress | В блокнот |
Выпрямительный диод | 1N4148 | 2 | Поиск в Aliexpress | В блокнот |
ШИМ контроллер | TL494 | 2 | Поиск в Aliexpress | В блокнот |
Операционный усилитель | LM358 | 1 | Поиск в Aliexpress | В блокнот |
Линейный регулятор | L7805AB | 1 | Поиск в Aliexpress | В блокнот |
Добавить все |
Скачать список элементов (PDF)
Прикрепленные файлы:
Источник: https://cxem.net/promelectr/promelectr44.php
Принцип работы гидроблока АКПП и что это такое
В современных конструкциях гидроблок АКПП совмещён с электронной платой управления (ТСМ). Вместе этот «мозг» регулирует гидравлическое давление в коробке автомат, направляя потоки жидкости в нужный компонент. Если возникнет необходимость заменить гидроплиту, то придётся перенастраивать модуль управления. Чтобы избежать серьёзного ремонта, нужно понимать, как устроен и как работает гидроблок АКПП.
Устройство и назначение гидроблока АКПП
Что такое гидроблок АКПП — это распределительная плита со множеством каналов, в которых установлены регулирующие клапаны, датчики, гидроаккумуляторы, соленоиды, фильтры. Сложное устройство обусловлено задачами, которые выполняет узел:
- регулирует давление в общей магистрали коробки передач;
- направляет жидкость для охлаждения соединений;
- управляет включением и отключением блокировки гидротрансформатора;
- направляет потоки масла к поршням тормозной системы для переключения передач;
- гасит повышенное давление, обеспечивая мягкую последовательную работу АКПП.
Соленоиды АКПП работают по сигналу ТСМ и бывают разных типов:
- «On-Off» работают в положении открыт-закрыт;
- соленоиды PWM, VBS, VFS открываются постепенно, и могут регулировать давление жидкости.
Остальные клапаны золотниковые. Плунжер открывает путь потоку, смещаясь под давлением жидкости. После снижения давления клапан возвращается в исходное положение за счёт пружины.
Принцип работы гидравлического блока АКПП
Принцип работы гидроблока заключается в распределении ATF, подаваемой маслонасосом, к исполняющим органам автомата. Например, переключение скоростей происходит следующим образом:
- ТСМ получает данные с внешних и внутренних датчиков. В зависимости от температуры, давления и других показателей модуль рассчитывает и подаёт ток, необходимый для управления соленоидом переключения. Каждый электромагнитный клапан получает определённый ток.
- Соленоид открывает проход для масла к золотниковым клапанам.
- По лабиринту каналов жидкость поступает к гидроаккумулятору, который управляет поршнем тормозной ленты. За счёт плавного давления фрикционы сжимаются безударно, а водитель не ощущает толчков при смене передачи.
- Одновременно стравливается давление с тормозной муфты предыдущей передачи.
Селектор переключения передач АКПП: виды, разбор и ремонт
На переключение скоростей в 6- и 8-ступенчатых АКПП у гидроблока уходит менее 0,3 с. Это достигается инженерными расчётами, конструктивными размерами и точным подбором деталей, способных поддерживать давление жидкости в контрольных точках. Показатель давления зависит от режима работы двигателя, включенной передачи, скорости автомобиля, т.е. неисправность гидроблока отражается на комфорте и динамике движения.
Наиболее распространенные поломки гидроблока
Настройки компьютера оптимизированы под экономию топлива и быстрые разгоны. В 6- и 8- скоростных автоматах, роботах, вариаторах водитель может выжать из двигателя максимум даже в агрессивных режимах. Но такая свобода выбора оплачивается быстрым износом блока клапанов и всей АКПП.
Происходит это из-за быстрого истирания фрикциона блокировки гидротрансформатора. Пыль, клеевые смолы распространяются по всей коробке вместе с маслом. Жидкость теряет свои свойства, не успевает охлаждаться.
Каналы гидроблока и клапаны забиваются грязью. Пружины не возвращают плунжеры в исходное положение Соленоиды не могут открыть залипший клапан. Отсюда появляются толчки и рывки при переключении передач. Металлический абразив истирает сепараторную платину и каналы плиты, меняя их геометрию. Появляются протечки масла.
Технические характеристики АКПП, виды и их отличие друг от друга
От перегрева плавится проводка и элементы платы, поскольку температура растёт выше 120℃. Выходят из строя соленоиды. Перегреваются датчики. Тонко настроенная электроника блокирует работу неисправного узла, и АКПП уже не может включать определённую передачу.
Но даже при своевременной замене масла и хорошем охлаждении не стоит забывать о расходниках: бумажные прокладки, забитые фильтры, ослабленные пружины, задубевшая резина дают о себе знать к 100 000 км. Замена расходников часто решает проблемы с переключением передач «возрастных» АКПП.
Похожие симптомы и типичные неисправности распространены и в DSG. На проблемы в блоке мехатроника указывают:
- переключение передач с толчками и ударами;
- вибрации из-за резкого сцепления дисков;
- протечки масла;
- переход в аварийный режим.
Соленоиды включения сцеплений получают обратно из барабана масло с фрикционной пылью, металлической крошкой. Длительная работа в таком режиме снижает ресурс клапанов.
Признаки поломки гидроблока
Поскольку гидроблок управляет переключениями передач, то от его исправности зависит качество работы АКПП. Поломку блока можно распознать по следующим признакам:
- снижение быстроты реакции на нажатие педали газа или тормоза;
- толчки, пинки, рывки при переключении передач и режимов;
- пробуксовка при трогании;
- отсутствие переключений с 1 на 2, со 2 на 3 и т.д.;
- утечки масла через изношенные прокладки;
- ошибки на панели компьютера.
Почему так важна диагностика
Диагностика помогает выявить неисправности агрегата и определить место поломки. Без полной диагностики АКПП ни один мастер не сможет начать ремонт. Обследование начинается со сбора информации:
- о возрасте и пробеге машины;
- об истории замен масла;
- о капремонтах автомата;
- о симптомах неполадки «на холодную», «на горячую», в разных режимах.
Ремонт своими руками АКПП BTR M11
На следующем этапе снимают и расшифровывают коды ошибок автоматической коробки, чтобы определить неисправен гидроблок или другой узел АКПП. Затем проверяют уровень и качество трансмиссионной жидкости, снимают для осмотра поддон.
При лёгких затупах замена масла, фильтра, чистка соленоидов решает проблемы переключения передач. Игнорирование симптомов приводит к общему падению давления в коробке, а затем к износу муфты блокировки гидротрансфоратора, истиранию фрикционов, разрушению втулок и подшипников. Чем дольше клапаны гидроблока работают в металлической крошке, тем сильнее истирается корпус. Превышение допусков износа влечёт замену всей плиты.
Стоит ли выполнять самостоятельный ремонт
Ремонт гидроблока своими руками представляет собой переборку, промывку всех деталей и замену расходников. Проверить давление в каналах и восстановить плиту без специального оборудования и опыта работы не получится. Поэтому лечить клапанную плиту нужно на раннем этапе, пока это можно сделать самостоятельно и недорого.
Для ремонта гидроблока своими руками нужно изучить мануалы и форумы по разборке своей АКПП. Запастись схемами расположения соленоидов и клапанов. Учесть, что ремонт может занять от нескольких часов до пары дней, если что-то пойдёт не так.
Как выполнить ремонт гидроблока своими руками
Перед началом ремонта гидроблока АКПП нужно собрать коды ошибок. Изучить устройство, типичные проблемы данной модели. Заказать расходники, например готовый ремкомплект Мастеркит, Оверолкит, Транстек и др.
В комплекте должны быть прокладка для гидроблока и поддона, уплотнительные кольца для сливной и заливной пробок. Без замены фильтра АКПП вся идея ремонта окажется бессмысленной. Но в необслуживаемых моделях автомата, например TF-80SC, придётся снимать всю коробку.
Причины перехода АКПП в аварийный режим и способы сброса ошибки
Из инструментов и материалов понадобятся:
- ключи для откручивания заливной и сливной пробок;
- трещотка и головки Torx для снятия поддона и гидроблока;
- трансмиссионное масло;
- ёмкость для слива;
- воронка со шлангом для залива жидкости;
- поднос с секциями или самодельная гармошка.
- чистая тряпка без ворса.
Важные советы:
- Каждый этап нужно фотографировать, чтобы не забыть обратную последовательность сборки.
- Все снятые детали складывать в гармошку в порядке демонтажа.
- Снимать поддон, фильтр, гидроблок нужно аккуратно — польётся горячая жижа. Всё масло нужно собрать в общую жидкость, чтобы учесть слитый объём.
Общая последовательность ремонта гидроблока АКПП:
- Слить старую жидкость.
- Открутить поддон. Некоторые умельцы ставят поддон на герметик, экономя на прокладке, а отдирать его шпателем или обстукивать пластиковым молотком то ещё удовольствие. Кроме того, фрагменты герметика могут попасть в поддон, а оттуда в масло АКПП.
- Протереть плоскость прилегания поддона.
- Промыть поддон и магниты. Поставить новую прокладку.
- Снять старый фильтр.
- Отсоединить разъёмы соленоидов. Отключить датчики.
- Открутить болты гидроблока.
- Отвинтить и вынуть соленоиды.
- Располовинить гидроплиту. Вытащить пружины, плунжеры, шарики в соответствии с мануалом.
- Промыть все детали, осмотреть их целостность.
- При необходимости проверить сопротивление соленоидов.
- Установить клапаны по схеме. Поставить новую прокладку. Собрать гидроблок.
- Закрутить соленоиды на место.
- Собрать коробку с новым фильтром.
- Залить новую жидкость в объёме слитой с добавлением 0,1 — 0,3 л в качестве компенсации пролитой. Разогреть АКПП. Проверить уровень ATF.
После сборки проверить работу коробки в разных режимах.
Порядок замены гидроблока
При сильном износе гидроплиты, принимают решение о замене на новую или восстановленную — «ребилд». Процедура несложная, но требует обновления всех расходников и промывки АКПП. Отложения и грязь внутри коробки быстро забьют новый гидроблок, поэтому от них нужно избавиться.
При пробегах свыше 100 000 км аппаратная чистка не рекомендуется. Высокое давление поднимет накопленную взвесь, которая ещё больше забьёт фильтра и каналы. Чтобы промыть АКПП используют метод вытеснения: поочередно сливают старую жижу из патрубка радиатора охлаждения и заливают новую.
Для замены гидроплиты понадобится ремкомплект уплотнений для данной модели АКПП, ключи, свежая жидкость, ёмкость для слива, воронка со шлангом, тряпка без ворса. Общие рекомендации к работе аналогичны процедуре ремонта:
- Слить старую жижу.
- Открутить болты и снять поддона. Посадочное место протереть тряпкой.
- Помыть крышку от налипших продуктов износа, очистить магниты от металлических ёжиков. Установить новую прокладку.
- Снять старый фильтр.
- Осмотреть доступные части АКПП, при возможности заменить резинки.
- Отсоединить разъёмы соленоидов. Отключить датчики.
- Открутить гидроблок.
- Поставить новый гидроблок.
- Подключить проводку, датчики.
- Поставить новый фильтр и чистый поддон.
- Влить новую жидкость в количестве слитой.
- Промыть АКПП методом вытеснения.
- Проверить уровень масла.
- Закрутить пробки с новыми уплотнительными кольцами.
Адаптивные АКПП при замене жидкости и узлов требуют переобучения.
Заключение
Блок клапанов управляет всей АКПП и сочетает в себе работу гидравлики и электроники. С появлением множества режимов, ростом количества передач, гидроблок становится капризней и требовательней. Длительная эксплуатация в грязном масле снижает ресурс гидроплиты, что отражается на комфорте движения и приводит к сложному ремонту.
Источник: https://akppoff.ru/korobka-avtomat/gidroblok-akpp
Замена соленоидов в АКПП
В первых автоматических коробках для управления переключением передач и некоторыми другими функциями использовалась сложная и громоздкая система гидравлических насосов, клапанов и исполнительных механизмов. С внедрением электроники делать это стало значительно проще, поскольку стало возможно использовать соленоид АКПП – специальный электрогидравлический узел, позволяющий управлять потоками масла с помощью электрических сигналов.
Что из себя представляет соленоид
Это электрический клапан, способный при подаче на него напряжения перекрывать прохождение гидравлической жидкости или, наоборот, разрешать её протекание через свой канал.
Более продвинутые устройства могут регулировать потоки, менять их интенсивность, давление или перераспределять движение масла между разными направлениями.
Всё это необходимо для управления исполнительными механизмами коробки, которые уже непосредственно воздействуют на фрикционные пакеты, тормозные ленты, блокируют гидротрансформатор или открывают весь поток масла через гидроблок и радиатор охлаждения.
Разобравшись, что такое соленоид в АКПП, можно перейти к рассмотрению конкретных конструктивных исполнений деталей и более подробному анализу их работы.
Соленоид является важной деталью коробки передач
Как устроен реальный соленоид
Электромагнитный принцип работы заключается в наличии обмотки из тонкого провода с большим количеством витков, при протекании по которой электрического тока возникает сильное магнитное поле.
Внутри катушки помещён металлический шток, который намагничивается и начинает перемещаться в поле катушки. Со штоком связан гидравлический клапан шарикового или золотникового типа, который таким образом открывается или закрывается.
Обратный ход клапана после снятия управляющего напряжения обеспечивает входящая в его состав пружина.
Примерный алгоритм, описывающий как работает соленоид в АКПП, выглядит следующим образом:
- Блок управления коробкой принимает решение на переключение передачи и подаёт напряжение на соответствующий клапан.
- В обмотке появляется магнитное поле, которое сдвигает золотник соленоида, управляющее давление поступает на исполнительный механизм.
- Блок фрикционов зажимается поршнем и в планетарном механизме выбирается нужное передаточное число.
Точно так же под управлением электронного мозга коробки задействуются и все прочие функции гидроблока по той же схеме:
- принятие решения;
- выдача электрической команды;
- преобразование её соленоидом в гидравлическое воздействие;
- выполнение команды;
- получение обратной связи от датчиков коробки и двигателя.
Но некоторые автоматы уже устроены несколько сложнее. Там в одной детали объединено несколько функций.
Типы соленоидов
По описанному выше принципу работы соленоидов АКПП действуют самые простые устройства, имеющие два состояния — включено и выключено. Они и сейчас применяются, лишь получив несколько более усовершенствованную конструкцию для более надёжной работы.
Но параллельно создавались клапаны посложнее, например, если рядом работают два соленоида в противофазе, то почему бы не применить один переключающий? Так и было сделано, появились двухканальные клапаны. Или трёхканальные, если считать входную магистраль.
Такой соленоид может перебрасывать давление рабочей жидкости из одного выходного канала на другой, например, чтобы снять поток с поршня фрикционов передачи и сбросить жидкость в картер.
Следующим по сложности устройством стал регулируемый клапан. Он не имеет два положения «открыто-закрыто», а способен плавно изменять сечение проходного канала.
Для этого на него подаётся изменяющееся по величине напряжение, обычно для этих целей используется ключевое регулирование по широтно-импульсному методу, как обеспечивающее наибольший коэффициент полезного действия и минимальный нагрев электронного управляющего ключа.
Такая конструкция позволяет более плавно переключать передачи, делая этот процесс незаметным для водителя.
Расположение соленоидов
Признаки и причины неисправностей
Как следует из принципа работы, проблемы с управляющими клапанами будут проявляться в моменты переключения передач.
Коробка начнёт «пинаться», то есть пропадёт плавность изменения передачи, начнутся непредсказуемые и ненужные переключения или автомат может зависнуть на одной из передач. Потеряется адекватность управления.
Чаще всего это бывает связано с потерявшим качество или загрязнённым маслом в АКПП. Такой продукт, проходя через клапаны, будет засорять и их, после чего тонкая гидравлика золотников и плунжеров плавно работать уже не сможет.
Обычно управляющая электроника сразу замечает неправильные реакции на свои команды, поскольку штатная модель работы АКПП зашита у неё в памяти в виде программы встроенного микропроцессора.
И если контроллер хочет одного, а происходит совсем другое, он сам заметит признаки неисправности соленоидов АКПП и отреагирует зажиганием лампы неисправности на приборной панели водителя.
Надо разбирать коробку и проверять гидроблок, хотя в отдельных случаях удаётся обойтись заменой масла и фильтра.
Зачем нужно менять соленоиды
Не всегда замена будет необходима. Иногда вполне возможно произвести ремонт соленоида АКПП своими руками. Для этого даже существуют ремкомплекты, хотя конечно далеко не с каждой деталью получится так поступить. Замена вместо ремонта – это общемировая тенденция в автомобильной технике.
Тем не менее, если клапан удастся разобрать, то можно его проверить путём прозвонки электрической части, обмотки и подводящей проводки с разъёмами, очистить детали от грязи и металлической стружки, попавшей туда с маслом, и убедиться в восстановлении его нормальной работы.
На чистом масле деталь ещё поработает.
Чистка соленоидов АКПП вряд ли потребуется, если регулярно заменять масло в коробке, даже вопреки заверениям производителя, что она этого не требует на протяжении всего срока службы. Оно так и есть, только срок этот окажется очень коротким. В пределах заводской гарантии на автомобиль. На самом деле коробка может прожить гораздо дольше, только надо почаще удалять продукты износа от тонких деталей гидравлики путём регулярной замены масла.
Как и все прочие детали автомобиля, они не могут вечно работать без отказов или ухудшения своей функциональности. А от них в коробке многое зависит, эти клапаны руководят работой узлов, несущих большую нагрузку крутящим моментом двигателя.
И малейшие отклонения в управляющей гидравлике откликнутся большими проблемами с коробкой в целом. Неуверенная работа фрикционов приведёт к их повышенному износу, продукты которого разлетятся с маслом по всему агрегату, разрушая все прочие детали. И замена масла поможет только временно.
Поэтому отработавшую своё деталь лучше заменить вовремя.
Зная, как проверить соленоид АКПП, можно принять наилучшее решение, менять его или попытаться восстановить.
Порядок проверки и замены соленоидов
Работа достаточно сложная, доступна только при хорошем знании материальной части.
- При прогретом масле открутить сливную пробку и дождаться полного слива жидкости из картера.
- Открутив болты по периметру фланца поддона снять нижнюю часть картера и масляный фильтр, если он расположен между поддоном и гидроблоком. Иногда фильтр при таком разборе недоступен или вообще отсутствует.
- Отсоединив электрические разъёмы и освободив крепёж, снять плиту гидроблока.
- Проверить подозрительные соленоиды на электрическое сопротивление, подав на них напряжение выяснить состояние механической части, срабатывание клапанов.
- Если принято решение о замене, выбрать по каталогу точно соответствующую деталь и после тщательной промывки всех деталей, гидроблока и поддона установить взамен изношенной.
- При сборке заменить фильтр, его уплотняющее кольцо и прокладку поддона.
- Заменить масло в АКПП, установив его уровень в соответствии с инструкцией на конкретный автомобиль.
Наверное можно рекомендовать проводить эти операции профилактически при каждой замене масла, но сомнительно, что кто-то захочет этим заниматься. Хотя такие процедуры способны в разы увеличить срок службы коробки и всех её деталей. Но даже просто регулярная замена масла даст вполне сопоставимый эффект.
Источник: https://tolkavto.ru/remont-i-obsluzhivanie/zamena-solenoidov-v-akpp.html
Электромагнитный клапан для стиральной машины как один из главных элементов
Электромагнитные клапана для подключения различных устройств к системам водоснабжения используются довольно часто. Такие устройства имеют электромеханический принцип действия и представляют собой вид запорной аппаратуры. Специалисты называют их соленоидными (соленоид — магнит).
Соленоидные запорные элементы часто встречаются в различных отраслях промышленности, в системах обеспечения водой и газом. В соответствии со своими функциями, в стиральных машинах это устройство, называют заливным или впускным клапаном.
Назначение впускного клапана
Все стиральные машины такие как Indesit, Samsung, Ariston, Zanuzzi и другие модели, в обязательном порядке оснащаются электромагнитным клапаном.
Это устройство имеет два рабочего состояния: открытого и закрытого. Как только будет выбрана программа стирки, механизм электромагнитного устройства сработает и откроется, после чего начнет поступать вода. Объем воды контролируется за счет электронного модуля, который в свою очередь управляет работой прессостата и впускного электроклапана. Срабатывание заливного устройства происходит за счет подачи питания от блока управления на катушку данного устройства.
Клапан подачи воды для стиральной машины, выполняет роль запорной арматуры, по сути крана, открывающего и перекрывающего поступление воды в стиральный бак, через контейнер с моющими средствами в нужное время, согласно режиму стирки.
Устройство клапана подачи воды
Впускной электроклапан бытового стирального агрегата является небольшим устройством состоящим из:
- корпуса;
- электромагнитной катушки с сердечником;
- пружины;
- диска, установленного на сердечнике, перекрывающего поток воды, поступающей из водопровода.
Материалом корпуса в большинстве случаев являются различные виды термостойких полимерных материалов, реже латунь или нержавеющая сталь. Для изготовления мембран, прокладок и уплотнений применяют термостойкую резину, каучук, фторопласт или силикон. Во втягивающей катушке устанавливаются электрические магниты с жестко закрепленными частями (соленоиды).
По количеству соленоидов могут быть одно, двух, или трех-катушечными. Число катушек соответствует количеству секций устройства, по которым в дозатор поступает водопроводная вода.
Электромагнитные клапана стиральных машин разных фирм могут отличаться по материалам изготовления, внешнему виду или количеству катушек, однако принцип работы всех подобных элементов одинаков.
Принцип работы клапана подачи воды
Впускной клапан стиральной машины контролируется модулем управления. В неподвижном положении, когда на катушку не подается напряжение, клапан закрыт, а его мембрана за счет пружины находится в герметическом контакте с седлом устройства, надежно перекрывая находящуюся под давлением воду в водопроводе.
При подаче процессором электрического сигнала на катушку, шток под действием электрического поля втягивается в нее, увлекая за собой поршень. Устройство из статического положения «закрыт» переходит в положение «открыт». При прерывании подачи электрического тока, шток возвращается в прежнюю позицию и подача воды прерывается.
Все катушки бытовых стиральных агрегатов рассчитаны на обычное напряжение 220 В и тактовой частотой 50 Гц.
Устаревшие в техническом плане образцы оснащались однокатушечным электроклапаном, в котором поступление воды в различные секции пластикового дозатора осуществлялось посредством рычага механического командоаппарата.
В современных машинах оснащенных двух- или трехкатушечными видами, под управлением процессора происходит включение одной из катушек, обеспечивающих подачу воды в необходимую секцию дозатора.
В двухкатушечных вариантах для подачи воды в третью секцию дозатора одновременно включаются обе катушки.
При поступлении в бак стирального агрегата необходимого количества воды, специальное устройство называемое прессостатом, посылает электрический сигнал на управляющий модуль. Получив сигнал, модуль отключает напряжение от катушки или катушек устройства. Клапан закрывается, перекрывая поступление воды. На всех режимах стирки процесс повторяется.
Виды впускных клапанов
Клапана подачи воды для стиральных машин LG, Samsung или Indesit могут иметь различные технические отличия. Практически все производители устанавливают на свои агрегаты нормально закрытые клапана. К нормально закрытым относятся клапана, открытие которых происходит при подаче напряжения на электромагнитную катушку.
Заливные электроклапана стиральных машин можно разделить:
По количеству электромагнитных катушек
- однокатушечные (устаревшие стиральные агрегаты);
- двухкатушечные (большинство бюджетных моделей);
- четырех и пятикатушечные (некоторые модели);
2. По материалам изготовления корпуса
- пластиковые;
- металлические.
3. По размерам водоподводящих штуцеров
В продаже также имеется универсальный заливной клапан для стиральных машин имеющий маркировку 1/90, что означает наличие одного выхода, расположенного под углом 90 градусов по отношению к входящему штуцеру.
Металлическая пластина крепления такого клапана съемная и может переставляться под разным углом. Диаметр соска электроклапана составляет 10,5 мм, а входящего штуцера ¾ дюйма.
Такой универсальный электроклапан подходит к стиральным агрегатам большинства производителей, на которых установлен однокатушечный вариант устройства.
Неисправности впускных клапанов и их замена
Если стиральный агрегат продолжительное время простоял без работы, а в стиральном барабане скопилась водопроводная вода, скорее всего требуется замена впускного клапана. Если стиральный агрегат, по какой-то причине простоял в помещении с минусовой температурой, то из-за замерзания скопившейся в нем воды может треснуть корпус устройства. В этом случае его также меняют целиком.
При плохом поступлении воды, иногда для восстановления работы достаточно очистить фильтрационную сетку. Для этого необходимо перекрыть воду и снять водоподводящий шланг и устранить загрязнение, вытащив сетку плоскогубцами и поставив затем на место.
Основной неисправностью электромагнитных клапанов является нарушение работы электромагнитной катушки. Если катушка перегорела и не втягивает шток, вода в стиральный бак не набирается вовсе.
Большая часть современных агрегатов комплектуются электроклапанами, имеющими неразборную конструкцию, поэтому ремонту они не подлежат. Замену лучше производить с привлечением мастера.
Можно осуществить ремонт и своими руками, приобретя новый наливной электроклапан, аналогичный вышедшему из строя. Для этого необходимо:
- обесточить стиральный агрегат;
- перекрыть подачу воды и отсоединить водоподводящий шланг;
- снять крышку или боковую стенку (для машин с вертикальной загрузкой) стиральной машины;
- отсоединить электропроводку и шланг (или шланги) связанные с отделом дозатора;
- открутить болты фиксирующей пластины;
- снять устройство;
- проверить работоспособность при помощи мультимметра. Обмотка однокатушечного клапана должна «звониться» на 3,8 кОм (на старых моделях Samsung 4,5 кОм), для двойных и тройных катушек этот показатель составляет от 2-х до 4-х кОм;
- заменить электроклапан на новый, осуществив сборку в обратном порядке.
Как устроена 5-ст. АКПП Honda (MCTA) и надёжна ли она?
201 | 30.04.2020
Компания Honda самостоятельно выпускает автоматические коробки передач с 1970-х годов. И все эти «автоматы» не имеют планетарных передач. В основе их механизмов – несколько параллельных валов с шестернями передач, которые включаются многодисковыми сцеплениями. Отметим, что в конце 1990-х компания Daimler вдохновилась такими АКПП и создали особую трансмиссию для первого поколения А-класса, о которой мы уже рассказывали.
Сейчас мы рассмотрим одну из модификаций первой 5-ступенчатой АКПП Honda. Все это семейство коробок передач называется H5, а точное каталожное обозначение рассматриваемой модификации – MCTA. Эта конкретная коробка передач предназначена для Honda Accord и Acura TSX, выпущенных с 2003 года. У этой 5-ст. трансмиссии несколько десятков модификаций, и далеко не все они взаимозаменяемые.
На нашем -канале вы можете посмотреть разборку «автомата» MCTA, снятого с Honda Accord 2004 года выпуска.
Надёжность АКПП Honda
Автоматические трансмиссии Honda очень надёжные и долговечные. Они не имеют проблем с электроникой – блок управления и вся электронная часть сделаны очень хорошо.
Проблемы в этой коробке начинаются тогда, когда давление масла в системе отклоняется от нормы. Отклонения происходят из-за засорения масла продуктами износа. В первую очередь, это продукты износа гидротрансформатора. При эксплуатации коробки с убитым гидротрансформатором она засоряется не фрикционным осадком, а алюминиевой пудрой. В этом случае, коробка катастрофически изнашивается. Но это довольно редкий сценарий.
Также снижение давления масла возможно из-за сильного засорения внутреннего фильтра. В этом случае коробка сначала начнет пинаться при включении передач, а потом просто «перестанет ехать», т.к. усилия для сжатия пакета фрикционов просто не хватит. В этом случае следует эвакуироваться на ремонт, чтобы не сжечь сцепления и не довести трансмиссию до дорогого ремонта.
Вообще в большинстве случаев устранить пинки и просто продлить ресурс трансмиссии Honda помогает замена масла. Следующим этапом, если пинки не прошли, меняют внешние соленоиды. В частности, парный соленоид.
Если и после этого «автомат» Honda продолжает пинаться, то его следует разбирать и ремонтировать.
Выбрать и купить АКПП для автомобилей Honda, вы можете в нашем каталоге контрактных КПП.
Масло для АКПП Honda
АКПП Honda очень чувствительна к чистоте масла и его уровню. Загрязненное и старое масло ухудшает плавность переключения передач и быстро приводит к износу клапанов соленоидов и каналов гидроблока.
В трансмиссию Honda нужно заливать трансмиссионную жидкость ATF-Z1. Она подлежит замене каждые 60 000 км. Но при замене из поддона удается слить только 3 литра ATF. Полный заправочный объем – около 9 литров.
Можно делать промывку, сливая масло через шланг обратки и доливая новое масло. Уровень масла контролируется на прогретой трансмиссии. При замене ATF также подлежит замене внешний масляный фильтр. Будет совсем не лишним вскрыть старый фильтр и изучить отфильтрованный им осадок.
При наличии металлической пудры стоит задуматься о ремонте данной трансмиссии.
Конструкция АКПП Honda
Трехвальная автоматическая трансмиссия Honda соединена с двигателем при помощи классического гидротрансформатора. Он оснащен муфтой блокировки, которая задействуется в режиме D на всех передачах, кроме 1-й, а в ручном режиме – на передачах 3, 4 и 5.
Гидротрансформатор «питается» той же гидравлической жидкостью, на которой работает коробка передач. Это значит, что как и на классических АКПП, гидротрансформатор «пылит», т.е. загрязняет ATF фрикционной пылью. На тяжелых моделях Honda в гидротрансформаторе нередко разрушается игольчатый подшипник, иглы которого попадают на алюминиевое турбинное колесо и откалывают от него частички, которые попадают в масло и в жизненно важные гидравлические узлы и каналы.
Механическая часть 5-ступенчатой АКПП Honda состоит из трех валов, на которых находятся шестерни и пакеты сцеплений всех 5 передач переднего хода. Шестерни задней передача здесь устроены как в обычной МКПП. То есть, задняя включается муфтой и вилкой, приводимой сервоприводом. В конструкции многих 5-ступенчатых АКПП Honda присутствует обгонная муфта, но в трансмиссии MCTA её нет.
На первичном валу находится сдвоенный барабан со сцеплениями 4- и 5-й передач. На вторичном валу находится сдвоенный барабан 1- и 3-й передач, а также барабан 2-й передачи. Между этими валами расположен промежуточный вал с парными шестернями всех передач переднего хода, шестерни и муфта включения задней передачи, а также парковочная шестерня.
Гидроблок
Гидроблок «автомата» Honda находится глубоко внутри самой коробки и доступен при снятии. В нем установлены 4 или, как в случае трансмиссии MCTA, 5 шифтовых соленоидов. Однако снаружи на корпусе трансмиссии находятся 3 соленоида. Эти соленоиды линейно управляют давлением гидравлической жидкости, подаваемом к 3-м соленоидам гидроблока и к муфте блокировки гидротрансформатора.
Блокировка гидротрансформатора активируется внутренним шифтовым соленоидом E, а непосредственное управление степенью блокировки выполняет внешний линейный соленоид А.
В гидроблоке находится регулятор давления (он же корпус аккумуляторов), сквозь который проходит входной вал. Из регулятора внутрь вала подается давление к пакетам сцеплений.
На возрастных коробках, эксплуатируемых с изношенным гидротрансформатором, возникает выработка на втулке регулятора давления. Тефлоновые кольца входного вала выцарапывают борозды, через которые происходят утечки давления масла.
При этом коробка начинает буксовать на 4- и 5-й передачах. В случае такой неисправности приходится менять дорогой корпус регулятора.
Подшипники задней крышки трансмиссии
Ранние экземпляры 5-ступенчатой автоматической трансмиссии Honda страдали от износа подшипников задней крышки ее корпуса. Хотя и на последующих вариантах этой АКПП подшипники могут загудеть при пробегах более 200 000 км, особенно если водитель периодически «летает» на высоких скоростях.
Тут важно вовремя обратить на гул подшипников. Он слышен снаружи неподвижной машины в момент переключения режимов работы трансмиссии. Для замены подшипников в задней крышке не нужно снимать АКПП с автомобиля.
Если упустить первые симптомы, то можно довести коробку до износа валов и ее крышки – изношенный подшипник повредит все контактирующие с ним детали.
Барабан 3-й передачи
Барабан 3-й передачи на 5-ст. коробках Honda для легких моделей практически никогда нареканий не вызывает. Но у любителей изобразить «драйг-рейсинг» этот барабан довольно быстро разбивается. Аналогичная ситуация, но уже по вине значительного крутящего момента, происходит на тяжелых Honda, типа модели Pilot и пикапа Ridgeline. Также может лопнуть витая пружина этого барабана. Первые симптомы износа данного барабана – это пробуксовки на 3-й передаче под высокой нагрузкой.
Выбрать и купить АКПП для любых марок автомобилей вы можете в нашем каталоге контрактных КПП.
Здесь по ссылкам вы можете посмотреть наличие на авторазборке конкретных автомобилей Honda и заказать с них автозапчасти.
Источник: https://autostrong-m.by/post/kak-ustroena-5-st-akpp-honda-mcta-i-nadyozhna-li-ona
Электроклапаны газового оборудования на автомобиле
Последнее обновление — 2 апреля 2020 в 07:52
Для управления подачей топлива, в системе газового оборудования на автомобиле, предусмотрен электромагнитный клапан ГБО. Основной его функцией является открытие и закрытие поступления газа от баллона к редуктору испарителю.
В этой статье мы рассмотрим виды, устройство, варианты установки, основные неисправности и способы ремонта электроклапана газобаллонной установки.
Типы клапанов
Устройством ГБО 2 поколения, на карбюраторном двигателе, предусматривается наличие двух электроклапанов:
- бензиновый (для подачи/перекрытия штатного топлива);
- газовый клапан (ЭГК).
Схемой газовой системы для инжекторных моторов (ГБО 2-4 поколений), где подача бензина в цилиндры осуществляется при помощи форсунок, предполагается наличие только газового клапана.
Газовый и бензиновый клапаны
Устройство и принцип работы
Конструкция у всех ЭГК идентична:
- Электромагнитная катушка (соленоид).
- Гильза (трубка сердечника).
- Пружина.
- Сердечник (якорь).
- Резиновая манжета.
- Уплотнительные кольца.
- Корпус клапана с седлом.
- Входное и выходное отверстие.
- Фильтр грубой очистки топлива.
Устройство газового клапана ГБО
Принцип работы всех устройств также одинаков. Разница лишь в том, что управление электроклапаном ГБО 4 поколения происходит при помощи ЭБУ газовой системы (электронный блок управления). Во втором поколении сигналы на ЭГК поступают от кнопки включения оборудования.
При отсутствии питания на контактах катушки, сердечник под воздействием пружины прижимает манжету к седлу, так клапан находится в закрытом состоянии. Как только на клеммах соленоида появляется напряжение (12 V), под влиянием магнитного поля якорь перемещается по гильзе, тем самым отпирая клапан.
Установка и подключение
По типу расположения газовые клапаны бывают:
Выносной электроклапан ГБО, как правило, монтируют в подкапотном пространстве автомобиля, либо ставят непосредственно на газовый редуктор через переходник. Встраиваемый, расположен в корпусе испарителя.
Встроенный и выносной электроклапаны
Иногда, для большей безопасности устанавливают сразу два клапана, после мультиклапана (в расходной магистрали до испарителя) и на редукторе.
Подключение происходит при помощи проводки газового оборудования, согласно схеме, которая прилагается в комплекте ГБО. При установке 2-го поколения жгут прокладывается от кнопки управления к соленоиду. В ходе установки 4-го поколения, кабель идёт от блока управления ГБО к клапану. Разницы, куда подключать клеммы на катушке, нет.
Возможные неисправности
Часто из-за поломок газового электроклапана, в работе газобаллонного оборудования происходят сбои. Такие как:
Причины неисправностей, из-за которых узел не держит и пропускает газ:
- засоренный фильтр грубой очистки;
- заклинивание/залипание сердечника;
- износ (потеря свойств, ослабление) возвратной пружины;
- выход из строя резинового уплотнения или седла клапана;
- неисправность катушки.
В карбюраторной схеме, где присутствует бензиновый эл. клапан, ко всему прочему может добавиться завышенный расход/утечка бензина или отказ работы двигателя на штатном топливе.
Выявить утечку можно сняв бензошланг с карбюратора на заведенном авто или методом продувки клапана (в закрытом состоянии) насосом/компрессором.
Ремонт электромагнитного клапана ГБО своими руками
Для ремонта электроклапана необходимо предварительно запастись ремкомплектом и набором инструмента.
Однако в некоторых случаях помогает обычная прочистка/промывка якоря соленоида.
Итак, чтобы выполнить ремонт газового клапана, первым делом надо закрутить вентиль мультиклапана для перекрытия подачи топлива из баллона. Затем спустить остатки газа из расходной магистрали, снять узел.
Далее удерживая (в тисках) механизм, демонтировать:
- крышку фильтрующего элемента и вынуть сам элемент;
- катушку;
- гильзу соленоида с сердечником.
После прочистки всех деталей, нужно выполнить их дефектовку и при необходимости заменить.
Важно, если в системе используются медные магистрали, частицы окиси таких трубок чаще всего являются причиной залипания якоря соленоида.
Также не стоит забывать о периодичности замены фильтрующего элемента. Рекомендуется менять фильтр один раз за 7-10 тысяч км. пробега.
Желательно проверить сопротивление катушки с помощью мультиметра и сверить параметры с указанными на ее корпусе (норма около 9-13 Ом). К тому же резиновые уплотнители и седло клапана имеют свой ресурс.
Источник: https://gbomotor.ru/komplektuyuschie/elektroklapan-gbo
Бомбы, которые не взрываются: что такое виркатор
«ПМ» уже не раз писала об электромагнитном оружии. В ударно-волновых и взрывомагнитных генераторах частоты в электромагнитное излучение преобразуется энергия взрывчатых веществ. Однако существует и другая разновидность электромагнитного оружия — невзрывные источники излучения.
Первое боевое применение подобного оружия можно датировать 17 января 1991 года, когда американские войска использовали модифицированные крылатые ракеты Tomahawk. При приближении к цели двигатели ракет последние несколько секунд уже не поддерживали горизонтальный полет, а работали как источники питания генераторов мощного излучения.
Оно должно было вывести из строя радиолокаторы иракской системы ПВО, что значительно облегчило бы достижение превосходства в воздухе.
Было ли применение электромагнитного оружия успешным, мы никогда не узнаем: может, приемники радаров и вышли из строя, но излучатели — нет, поэтому американские военные, желая подстраховаться, применили ракеты, разнесшие радары в клочья.
Бомба из карандашей
При движении электронов с ускорением возникает электромагнитное излучение, поэтому достаточно, например, просто искривить траекторию электрона (любое движение, отличное от равномерного и прямолинейного, есть движение с ускорением). Это можно сделать с помощью магнитного поля — именно так устроен магнетрон, основа любой СВЧ-печки. Но по удельной (на единицу объема) мощности их превосходит так называемый виркатор.
Устроен виркатор очень просто: представьте себе электронную лампу, у которой есть два электрода — эмиттер и сетка. При приложении к ним импульса высокого напряжения формируется облако электронов, которое движется к сетке, пролетает сквозь ее ячейки и колеблется относительно сетки вплоть до полной нейтрализации заряда, излучая радиочастотное ЭМИ. Облако электронов выполняет роль «виртуального катода», от которого, собственно, и происходит название «виркатор».
Генерация гигаваттной мощности требует такого числа электронов, которое можно получить лишь при взрывной эмиссии (не имеющей никакого отношения к взрывчатке): на микроостриях поверхности эмиттера под действием поля высокой напряженности происходит сильный местный разогрев вещества и оно превращается в плотную плазму (то есть взрывается). Интересно, что нужная плотность микронеровностей (в сочетании с нужной проводимостью) получается на сломе графита, поэтому один из самых удобных материалов для эмиттера — сломанные грифели карандашей.
«Потрошение» карандашей — не основная трудность создания виркатора. Взрывная эмиссия эффективна лишь при огромных (около мегавольта) напряжениях, и, чтобы избежать пробоя в излучателе, приходится увеличивать размеры до кубометров.
Высокое напряжение, характерное для работы источников вакуумной электроники, не позволяет значительно снизить габариты, поэтому отношение энергии генерируемого радиочастотного электромагнитного излучения (РЧЭМИ) к объему у таких источников мало (микроджоули на кубический сантиметр).
Малый разброс энергий электронов, а значит, узкий частотный диапазон генерируемого вакуумными излучателями РЧЭМИ позволяет сделать излучение остронаправленным, но избежать наличия боковых лепестков, которые могут сжечь систему наведения основного пучка, все равно нельзя: происходит «фратрицид», то есть «пожирание собратьев», — термин заимствован из сленга биологов.
«Гибрид»: виркатор плюс ВМГ Нагрузкой спирального ВМГ (на рисунке слева) служит коаксиал из центрального проводника 1 и цилиндра 2 из тонкой фольги. Коаксиальная нагрузка малоиндуктивна, поэтому при срабатывании ВМГ ток и энергия быстро возрастают.
В конечной фазе срабатывает цилиндрическая разводка 3, формируя в кольцевом заряде 4 сходящуюся детонационную волну. Взрывом цилиндр 2 из фольги разрушается на много частей при продавливании в пазы между ребрами изоляционной катушки 5.
Разрыв токового контура приводит к генерации напряжения, которое прикладывается от точек разрыва к эмиттеру и сетке виркатора. Оно равно отношению магнитного потока ко времени, за которое произошел разрыв контура.
Это время — порядка микросекунды, а электропрочность катушки 5 достаточно высока: изоляцию обеспечивают электроотрицательные газообразные продукты взрыва (окислы углерода и азота), сжатые до огромных (порядка 1 г/см3) плотностей. Такой взрывной трансформатор имеет меньшие габариты, чем традиционный.
Полезное свойство вакуумного излучателя — возможность многократных срабатываний: его конструкция не превращается взрывом в крошево, летящее в разных направлениях.
Однако реализация этого свойства дается дорогой ценой: вакуумный излучатель не заработает при включении в розетку с напряжением в 220 вольт, для его энергообеспечения необходимы высоковольтные формирователи, трансформаторы, обострители.
Они тоже имеют немалые габариты — тем большие, чем больше потребляемая энергия. Объемы мощных излучателей измеряются кубометрами, масса — десятками тонн.
Полицейское оружие
Понятно, какими удобными целями для противника будут на поле боя такие мастодонты. Да и по дальности поражения целей направленные излучатели РЧЭМИ на основе вакуумных источников всегда проиграют равным по габаритам «направленным» огневым средствам — реактивной и ствольной артиллерии.
А уж габариты равного по мощности взрывного излучателя будут меньше в сотни раз, потому что для его работы характерен большой ток, но малое напряжение. Надо искать области применения, где недостатки не столь уж важны, а достоинства используются максимально.
К таким относится применение в полицейских и миротворческих целях.
Уже несколько лет в США испытывается машина с «микроволновой пушкой» — направленным источником РЧЭМИ, предназначенным для «отпугивания» демонстрантов на дистанции в сотню метров легкими ожогами. Эта машина вполне может быть тяжелой и неповоротливой, наводить источник за сотню метров можно без использования электроники, а работать он будет, пока хватит солярки для генератора.
Вакуумные источники могут также «прикрыть» бронетехнику от современных управляемых боеприпасов, поражающих танки сверху. РЧЭМИ рассеивается в пределах большого телесного угла, что делает ненужным наведение. Но против обычных подкалиберных снарядов или даже противобортовых мин эта система совершенно бесполезна.
Несколько лет назад было предложено создать на основе вакуумного источника РЧЭМИ специализированную машину разминирования, которая могла бы проделывать проходы в минных полях, «ослепляя» неконтактные мины.
Но достаточно одной «низкотехнологичной» мины с механическим взрывателем — и эффективность этого метода падает до нуля.
Лабораторное оружие
Можно ли избавиться от громоздкой и капризной вакуумной и высоковольтной техники? Да, если воспользоваться некоторыми свойствами высокотемпературных сверхпроводников.
Сверхпроводниковый излучатель — одновитковый соленоид из меди, размещенный внутри него диск из искусственного сапфира, на который напылено кольцо из сверхпроводящей керамики. Когда рабочие напряжения близки к мегавольтным, проблемы предотвращения пробоя — всегда важнейшие, и не только в конструкции собственно излучателя, где могут применяться эффективные изоляторы. РЧЭМИ с высокой плотностью мощности тоже способно вызывать разряд в окружающем воздухе.
Понятно, что изменить состав земной атмосферы, сделав ее более электропрочной, нереально, и, если плотность потока мощности/энергии РЧЭМИ на выходе из излучателя превысит пробивное значение, то излучение будет бесполезно нагревать образованную им же плазму.
Чем короче импульс РЧЭМИ, тем выше плотность потока энергии, соответствующая пробою, поэтому излучатели, формирующие сверхкороткие (менее наносекунды) импульсы, имеют лучшие военные перспективы (к тому же, такие импульсы более эффективно воздействуют на облучаемую электронику).
Пробой — фундаментальное физическое ограничение, существование которого диктует жесткую связь габаритов излучателя с максимально достижимым для него уровнем мощности, а для данного уровня мощности — определяет минимальное значение телесного угла, в пределах которого может формироваться РЧЭМИ. Один из способов преодолеть это ограничение — применение распределенной сети сравнительно маломощных управляемых направленных источников небольших габаритов.
Сверхпроводниковый излучатель — очень простое устройство: одновитковый соленоид из меди и размещенный внутри него диск из искусственного сапфира, на который напылено кольцо из керамики YBa2Cu3O7. При охлаждении жидким азотом кольцо становится сверхпроводящим.
Теперь подадим в соленоид импульс тока (с длительностью фронта меньше микросекунды и амплитудой 30−50 килоампер). Индуктивность соленоида в начальный момент времени очень мала благодаря наличию сверхпроводящего вкладыша внутри, и ток быстро нарастает.
Наступает момент, когда внешнее поле превышает критическое значение и в кольце возникает фазовый переход, фронт которого движется от периферии к оси кольца и за которым сверхпроводимость исчезает.
Скорость этого движения — километры в секунду (или миллиметры в микросекунду), и при ширине кольца в несколько миллиметров за время менее микросекунды (пока поле «ест» сверхпроводимость) можно «накачать» энергию в единицы джоулей в излучатель. В момент, когда фронт фазового перехода достигает внутренней границы кольца, ток и его магнитный момент скачкообразно меняются, при этом генерируется импульс РЧЭМИ.
Для такого сверхпроводникового излучателя характерны большие токи и сравнительно малые напряжения, а значит, и небольшие габариты. Однако и ему присущи серьезные недостатки, которые препятствуют боевому применению: необходимость использовать жидкий азот, а самое главное — сравнительно низкий уровень генерируемой мощности (мегаватты). Зато в лабораторных исследованиях реакции электроники различных типов на сверхширокополосные импульсы РЧЭМИ ему нет равных.
Гибридное оружие
Система энергообеспечения вакуумных излучателей характеризуется большими габаритами и массой. Так почему бы не совместить виркатор с взрывной системой энергообеспечения — например, достаточно компактным спиральным взрывомагнитным генератором?
Однако ВМГ — источник тока, а не напряжения, поэтому для формирования высоковольтного импульса питания вакуумного излучателя требуется трансформатор. При детонации нескольких килограммов взрывчатки в ВМГ излучатель вряд ли уцелеет, поэтому нет нужды беречь и трансформатор — его тоже можно сделать одноразовым, получив высокое напряжение при высвобождении магнитного потока.
Концепция «гибридного» боеприпаса противоречива. С одной стороны, виркатор формирует направленное излучение и, следовательно, требует наведения на цель, а ведь преимущество РЧЭМИ перед другими поражающими факторами — как раз в большей энергетической эффективности, которая делает возможным отказ от систем наведения.
С другой стороны, в таком боеприпасе используется взрывчатка, поэтому ни о какой возможности длительной работы излучателя речь не идет — его срабатывание однократно.
Тем не менее 26 марта 2003 года, во время второй войны с Ираком, американские военные сбросили на один из телецентров двухтонную бомбу с «гибридной» боевой частью, снабженной направленным электромагнитным излучателем. Бомба была управляемой, а значит, круговое вероятное отклонение директрисы облучения от точки прицеливания было меньше десятка метров.
Результатом стало отключение телевещания более чем на час. На какое же время прекратилось бы вещание после попадания двухтонной управляемой бомбы, если бы она была не электромагнитной, а фугасной? На этот вопрос любой из читателей «ПМ» может ответить самостоятельно.
Автор статьи с 1984 по 1997 год возглавлял лабораторию специальных боеприпасов ЦНИИХМ (химии и механики). В 1994 году его доклад «Радиочастотное оружие на поле боя будущего» на конференции в Бордо привел к пересмотру классификации электромагнитного оружия. С тех пор на Западе боеприпасы с прямым преобразованием радиочастотной энергии называют «устройствами Прищепенко» (Prishchepenko-type)
Источник: https://www.popmech.ru/weapon/7865-bomby-kotorye-ne-vzryvayutsya-chto-takoe-virkator/
Соленоид АКПП
2938 Просмотров
- 1 Назначение
- 2 Принцип работы
- 3 Резюме
Большинство современных автомобилей уже не комплектуются механическими коробками передач.
В основном в роли трансмиссии выступает либо АКПП, либо вариатор, который не имеет ступеней и передач. Одна из составляющих АКПП — это блок соленоидов, без которых работа этого сложного агрегата оказалась бы невозможной.
Сегодня мы расскажем о том, что такое блок соленоидов, расположенный в АКПП, и как он работает на автомобиле.
Назначение
Блок соленоидов, располагающийся в корпусе АКПП, так же важен, как и любая другая составляющая автоматической коробки передач. Однако функция блока соленоидов является фактически ключевой, поскольку именно от этой составляющей зависит, как быстро и эффективно будут переключаться передачи, и, таким образом, насколько комфортно и предсказуемо будет вести себя машина при разгонах и торможениях.
Чтобы стало лучше понятно, зачем в АКПП встраивается блок соленоидов, поясним, из чего состоит современная коробка передач, и каким образом происходит ее функционирование.
Основой АКПП является блок фрикционов. Фрикционы — это диски, которые имеют шероховатую поверхность и постоянно находятся в соприкосновении друг с другом. Это свойство позволяет дискам вращаться синхронно, когда механизм пружин, к которому они присоединены, прижимает их друг к другу.
АКПП имеет в себе несколько валов, на которые наварены фрикционы. Эти фрикционы подвижны вдоль вала и при необходимости соединяются друг с другом в стопки, называемые пакетами. Чем больше фрикционов вращаются в пакете, тем выше передача и тем меньший крутящий момент, и тем выше будет конечная скорость при минимальных оборотах.
Чтобы осуществлять переключение и соединение фрикционов друг с другом, в блоке АКПП циркулирует масло, находящееся под давлением. Его задача — не просто осуществить смазку подвижных механизмов, но и управление ими. С этой целью в блоке автомата предусмотрены масляный насос и система каналов, каждый из которых имеет свой клапан, открывающийся и закрывающийся по команде электроники.
Таким клапаном и является соленоид. Современные соленоиды работают таким образом, что способны в течение долей секунды управлять пропускной способностью канала, тем самым позволяя фрикционам перемещаться и изменять передающие характеристики АКПП.
Принцип работы
Несмотря на то, что автоматическая трансмиссия является достаточно сложным конструктивно устройством, сам блок соленоидов устроен просто, и понять его принцип работы может даже непрофессионал.
Чтобы понять, как устроен современный электромагнитный клапан, стоит вспомнить школьный курс физики. Работа основывается на известном уже сотню лет явлении, когда при подаче напряжения на обмотку катушки в ней создается электрическое поле, способное толкать находящийся в катушке стержень в одном из направлений.
В электромагнитном клапане этот эффект реализован частично. Это позволило сэкономить электроэнергию, которая требуется для переключения скоростей, и увеличить ресурс механизмов автоматической трансмиссии.
В направлении открытия действительно работает магнитное свойство обмотки: по сигналам, получаемым с датчиков, электронная начинка коробки передает напряжение на клапан. Обмотка создает магнитное поле, и плунжер мгновенно выталкивается наружу, открывая путь нагнетаемому маслу. Как только напряжение перестает подаваться, под действием возвратной пружины клапан закрывается, и масло перестает циркулировать внутри канала.
Резюме
Соленоид — это крайне простое и надежное устройство, которое обеспечивает стабильную и слаженную работу автоматической трансмиссии. Несмотря на его простоту, замены клапану пока не нашлось, поэтому все современные автомобили оборудуются исключительно им, благодаря чему ремонт трансмиссии требуется крайне редко и лишь в особых случаях.
Источник: https://portalmashin.ru/service/transmission/solenoid-akpp.html