Какое сопротивление у термистора

Ардуино: терморезистор NTC 100K

Какое сопротивление у термистора

Терморезистор (или термистор) — это такой резистор, который меняет свое электрическое сопротивление в зависимости от температуры.

Существует два вида термисторов: PTC — с положительным температурным коэффициентом, и NTC — с отрицательным. Положительный коэффициент означает, что с повышением температуры сопротивление термистора растёт. NTC-термистор ведет себя противоположным способом.

Также термисторы отличаются номинальным сопротивлением, которое соответствует комнатной температуре — 25 C°. Например, популярными являются термисторы с номиналом 100 кОм и 10 кОм. Такие термисторы часто используют в 3D-принтерах.

В этом уроке мы будет использовать термистор NTC 100K в стеклянном корпусе. Вот такой:

Подключение термистора к Ардуино

Чтобы измерить сопротивление термистора, подключим его в качестве нижнего плеча делителя напряжения. Среднюю же точку делителя подключим к аналоговому входу Ардуино — A0. Подобный способ использовался в уроке про фоторезистор.

Подробно об аналоговых входах Ардуино мы говорили на уроке: Аналого-цифровые преобразования — АЦП

Принципиальная схема

Внешний вид макета

Какое сопротивление должен иметь резистор в верхнем плече делителя? Как правило, используют резистор с сопротивлением, совпадающим по порядку с номиналом термистора. В нашем уроке мы используем резистор на R1 = 102 кОм, его легко получить последовательным соединением двух резисторов на 51 кОм.

Программа для вычисления сопротивления термистора

Первая программа, которую мы напишем, будет вычислять сопротивление термистора в Омах.

#define SERIAL_R 102000 // сопротивление последовательного резистора, 102 кОм const byte tempPin = A0; void setup() { Serial.begin( 9600 ); pinMode( tempPin, INPUT );} void loop() { int t = analogRead( tempPin ); float tr = 1023.0 / t — 1; tr = SERIAL_R / tr; Serial.println(tr); delay(100);}

Результат работы программы:

Можно заметить, что измеренное сопротивление термистора меньше 100 кОм, значит температура окружающей среды ниже 25 C°. Следующий шаг — вычисление температуры в градусах Цельсия.

Программа для вычисления температуры на термисторе

Чтобы вычислить значение температуры используют формулу Стейнхарта — Харта:

Уравнение имеет параметры A,B и C, которые нужно брать из спецификации к датчику. Так как нам не требуется большой точности, можно воспользоваться модифицированным уравнением (B-уравнение):

В этом уравнении неизвестным остается только параметр B, который для NTC термистора равен 3950. Остальные параметры нам уже известны:

  • T0 — комнатная температура в Кельвинах, для которой указывается номинал термистора; T0 = 25 + 273.15;
  • T — искомая температура, в Кельвинах;
  • R — измеренное сопротивление термистора в Омах;
  • R0 — номинальное сопротивление термистора в Омах.

Модифицируем программу для Ардуино, добавив расчет температуры:

#define B 3950 // B-коэффициент#define SERIAL_R 102000 // сопротивление последовательного резистора, 102 кОм#define THERMISTOR_R 100000 // номинальное сопротивления термистора, 100 кОм#define NOMINAL_T 25 // номинальная температура (при которой TR = 100 кОм) const byte tempPin = A0; void setup() { Serial.begin( 9600 ); pinMode( tempPin, INPUT );} void loop() { int t = analogRead( tempPin ); float tr = 1023.0 / t — 1; tr = SERIAL_R / tr; Serial.print(«R=»); Serial.print(tr); Serial.print(«, t=»); float steinhart; steinhart = tr / THERMISTOR_R; // (R/Ro) steinhart = log(steinhart); // ln(R/Ro) steinhart /= B; // 1/B * ln(R/Ro) steinhart += 1.0 / (NOMINAL_T + 273.15); // + (1/To) steinhart = 1.0 / steinhart; // Invert steinhart -= 273.15; Serial.println(steinhart); delay(100);}

Результат:

Уже лучше! Программа показывает нам температуру в градусах Цельсия. Как и ожидалось, она немного ниже 25 C°.

Задания

  1. Термометр с дисплеем. Подключим к схеме символьный ЖК дисплей, и напишем программу, которая каждые 100 миллисекунд будет выводить на него температуру.
  2. Сигнализация перегрева. Добавим в схему зуммер и напишем программу, которая будет непрерывно вычислять температуру. В программе также должно быть условие: если температура превышает 70 C°, то включаем зуммер.

Изменено: 21 Май, 2017 18:12

Источник: https://robotclass.ru/tutorials/arduino-thermistor-100k/

Какой термистор выбрать: пять лучших терморезисторов (NTC и PTC)

Какое сопротивление у термистора

Если говорить простым языком, термисторы – это резисторы, сопротивление которых зависит от температуры. Термин термистор фактически является некоторым сокращением от «терморезистор».

Эти устройства бывают двух основных разновидностей в зависимости от того, уменьшается или увеличивается их сопротивление с температурой.

Те, у которых сопротивление уменьшается, известны как термисторы с отрицательным температурным коэффициентом (NTC), а те, у которых увеличивается, являются термисторами с положительным температурным коэффициентом (PTC).

Вы с большей вероятностью увидите, что NTC термисторы используются чаще, чем PTC, хотя оба типа имеют полезные приложения. Они оба обычно кодируются в соответствии с сопротивлением, которое они показывают при 25 °C. Например, термистор 10k NTC имеет сопротивление 10 кОм при 25 °C и имеет обратнопропорциональную зависимость между температурой и сопротивлением. А термистор PTC 100k имеет сопротивление 100 кОм при 25 °C и имеет прямопропорциональное соотношение температуры и сопротивления.

Если вы выбираете термистор для своего следующего проекта, рассмотрите следующие требования:

  1. Температурный диапазон. При каких температурах ваше устройство должно работать? Учитывайте минимальное и максимальное значения, а также время реакции на колебания.
  2. Точность. Будут ли ваши измерения точными или в широком диапазоне, и какой предел погрешности приемлем?
  3. Использование в зависимости от назначения. Использование вашего устройства также может повлиять на то, подойдет вам PTC или NTC термистор.

Далее приведем пять наиболее популярных и качественных термисторов, доступных сегодня на рынке.

Наиболее точный термистор: PR203J2

Разработанный Littelfuse, PR203J2 представляет собой сверхточный терморезистор NTC 20k. Он обеспечивает точность до ± 0,05 °C. Диапазон его сопротивления составляет от 6000 до 25000 Ом, и пользователи используют его в основном для точного измерения температуры.

Лучший термистор 10k: NTC0805J10K

Этот термистор NTK 10k в корпусе поверхностного монтажа обеспечивает точность ±5 процентов в широком диапазоне рабочих температур от -55 до + 125 °C. Он предназначен для использования в приложениях с температурной компенсацией.

Лучший PTC термистор: B59219J130A20

Основное назначение термистора PTC – ограничение входного тока путем увеличения сопротивления при нагреве резистора. Эта модель от Epcos идеально подходит для данного типа применения, и она имеет следующие особенности:

  • Максимальное номинальное напряжение 800 В постоянного тока
  • Сопротивление 100 Ом при 25 °C
  • Максимальное сопротивление 300 Ом
  • Широкий диапазон рабочих температур от -40 до + 125 °C

Лучший зонд-термистор: TO103J2J

Эта модель представляет собой еще один терморезистор NTK 10 кОм, но этот компонент в виде зонда подходит для использования в качестве термометра сопротивления. Он эффективен в широком диапазоне температурных измерений и имеет рабочий диапазон от -55 до + 150 °C.

Лучший термистор 100k: 104RG1J

Высокоомный термистор с исключительным диапазоном рабочих температур, эта модель от Littelfuse имеет сопротивление 100000 Ом при 25 °C. Он также может работать в температурных условиях от -55 до + 220 °C. Этот термистор NTC имеет диапазон сопротивления от 25 кОм до 120 кОм.

digitrode.ru

Источник: http://digitrode.ru/articles/1744-kakoy-termistor-vybrat-pyat-luchshih-termorezistorov-ntc-i-ptc.html

Энциклопедия электроники

Какое сопротивление у термистора

Терморезистор (термометр сопротивления, thermistor) – элемент, сопротивление которого меняется в зависимости от температуры.

Важное замечание: существуют еще так называемые термометры сопротивления – датчики температуры, выполнены из металла (медь или платина), изменяющие свое сопротивление при изменении температуры. В отличие от терморезисторов у них линейная характеристика. В данном материалы они не рассматриваются.

Условно графическое обозначение (УГО)

Внешний вид терморезисторов определяется согласно ГОСТ 2.728-74 «ЕСКД. Обозначения условные графические в схемах. Резисторы, конденсаторы». Размеры прямоугольника такие же как и у постоянного резистора.

Классификация

По характеру изменения сопротивления при изменении температуры терморезисторы делятся на две группы:

  • Термистор (Thermistor NTC), терморезистор с отрицательным ТКС – сопротивление уменьшается при нагреве;
  • Позистор (Thermistor PTC), терморезистор с положительным ТКС – сопротивление увеличивается при нагреве.

По способу подогрева терморезисторы делятся на две группы:

  • прямого подогрева – сопротивление которого изменяется при прохождении непосредственно через ЧЭ;
  • косвенного подогрева – сопротивление изменяется при прохождении тока через специальный подогреватель, расположенный в непосредственной близости от ЧЭ.

Принципиальное отличие терморезистора косвенного подогрева от прямого – гальваническая изоляция цепи нагрева от измерительной цепи.

Конструкция и принцип действия

Принцип действия терморезисторов основан на изменении сопротивления в зависимости от температуры.

Для создания темрорезисторов применяются полупроводниковые материалы с высокой зависимостью сопротивления от температуры.

Термисторы в основном выполняют из смеси окислов переходных металлов, способных изменять в соединениях свою валентность. Для термисторов применяются оксиды металлов:

  • оксид кобальта (Co3O4)
  • оксид никеля (NiO);
  • оксид магния (MgO);
  • диоксид титана (TiO2),
  • оксид марганца (Mn3O4);
  • оксид меди (CuO);
  • оксид ванадия (V2O5);
  • оксид железа (Fe2O3).

Например, советские терморезисторы ММТ-1, ММТ-4 созданы на основе окислов CuO – Mn3O4.

Для позисторов применяются оксиды бария и стронция. Например, советсвие позисторы СТ6 созданы на основе титаната бария (BaTiO3).

Электрические свойства терморезисторов определяются множеством параметров: соотношение исходных материалов, структура материала, расположение и валентность катионов в кристаллической решетке и других. Производство терморезисторов происходит в следующей последовательности:

  • смесь окислов металлов смешивают и прессуют для придания формы (диска, цилиндра и т.д.);
  • заготовки подвергают обжигу в печи (время нахождения в печи – несколько часов при температуре около 1400 °C);
  • прикрепляют контактные выводы к заготовкам;
  • термочувствительный элемент терморезисторов покрывают лаком или помещают в герметичную оболочку.

У терморезисторов зависимость выходного сопротивления от температуры нелинейная. Реальный график зависимости сопротивления от температуры показан на рисунке.

Для применения терморезисторов производители приводят таблицу значений «отношение сопротивлений – температура». Под отношением сопротивлений принимается отношение текущего сопротивления к номинальному (при температуре 25 °С), так как номенклатура номинальных сопротивлений большая и не стандартизирована.

Для термисторов производители так же приводят коэффициенты для уравнения Стейнхарта — Харта (Steinhart-Hart):

, где: — сопротивление при текущей температуре T;
— текущая температура, К;
— коэффициенты.

В формуле используется четыре коэффициента A, B, C, D. Обычно в расчетах коэффициент C равен нулю и производители указывают только три коэффициента.

Практически можно пользоваться упрощенной формулой:

Вольт амперная характеристика (ВАХ) термистора и позистора показана на рисунке. Вид ВАХ зависит от многих параметров, таких как: материал резистора, конструкции, габаритов, температуры и т.д. Нелинейность ВАХ объясняется нагревом терморезистора за счет проходящего через него тока.

Основные параметры терморезисторов

Номинальное сопротивление – сопротивление терморезистора при температуре 25 °C (редко при 20 °C). В отличие от постоянных резисторов номинальное значения не берется из стандартизованного ряда.

Точность (tolerance) – допустимое отклонение он номинального сопротивления при температуре 25 °C.Допустимое отклонение современных терморезисторов составляет ±1%±20 % (типовые значения ±10 % и ±20 %).

Максимальная мощность рассеяния – максимальная мощность, которую может непрерывно рассеивать терморезистор без изменения эксплуатационных характеристик. Единица измерения — Вт.

Коэффициент рассеяния (Dissipation factor) – мощность, рассеиваемая на терморезисторе, при которой температура элемента повышается на 1 °C по отношению к температуре окружающей среды. Единица измерения — мВт/К.

Постоянная времени τ (Thermal time constant) – время, за которое собственная температура терморезистора изменится на 63,2% от разницы между начальной и конечной температурой при скачкообразном измерении температуры (например, при переносе терморезистора в помещение с другой температурой). Единица измерения с.

Коэффициенты A, B, C, D – коэффициенты зависимости сопротивления от температуры (более подробно про зависимость указано ранее).

Маркировка терморезисторов

Стандартов на маркировку терморезисторов не существует. Каждый производитель самостоятельно определяет каким образом маркировать терморезисторы.

Серии терморезисторов

Отечественной промышленностью выпускались следующие серии терморезисторов прямого подогрева.

  • СТ1 – термисторы медно-марганцевые (ранее — ММТ);
  • СТ2 – термисторы кобальто-марганцевые (ранее — КМТ);
  • СТ3 – термисторы медно-кобальто-марганцевые;
  • СТ4 – термисторы никель-кобальто-марганцевые;
  • СТ5 – позисторы на основе титана бария, легированного германием;
  • СТ6 – позисторы на основе титаната бария (BaTiO3);
  • СТ8 – термисторы на основе полутораокиси ванадия и ряда поликрсталлических твердых растворов в системах V2O3-Me2O3 (Me=Ti; Al, Cr);
  • СТ9 – термисторы на основе двуокиси ванадия VO2;
  • СТ10 – Позисторы на основе системы (Ba, Sr)TiO3;
  • СТ11 – Позисторы на основе системы (Ba, Sr)(Ti, Sn)O3 легированной цернем.

Типоразмеры терморезисторов

Терморезисторы выпускаются различного исполнения:

  • цилиндрические и дисковые с выводами для установки в отверстия платы;
  • поверхностного монтажа на плату(типоразмера SMD, MILF);
  • резьбового крепления;
  • дисковые.

Применение терморезисторов

Назначение терморезисторов в схемах можно условно поделить на два типа: измерение температуры и использование в качестве нелинейного элемента.

Благодаря малым размерам и низкой стоимости терморезисторы применяются повсеместно в сложных устройствах для контроля температуры: мобильные телефоны, компьютерная техника и т.д.

Широкое применение позисторы нашли в промышленности для защиты асинхронных электродвигателей от перегрева обмоток. В аварийных режимах работы (недостаточное охлаждение, заклинивание ротора и прочие) обмотка может сильно нагреваться, в результате чего происходит разрушение изоляционного слоя обмотки с последующим замыканием обмотки.

Для защиты от перегорания в каждую обмотку укладывают позистор. Позисторы соединяют последовательно между собой.

Для измерения температуры и отключения электродвигателя применяют специализированные приборы термисторные реле. Принцип действия этих реле основан на постоянном измерении сопротивления позисторов. При превышении заданного порога контакты реле переключаются и отключают электродвигатель. На рисунке показано подключение электродвигателя: силовые выводы U, V, W; вывод термосопротивления: T1, T2.

Большое распространение термисторы нашли во входной цепи импульсных блоков питания. При включении блока питания в сеть начинается заряд конденсаторов. В этот момент может протекать значительный ток на входе. Для ограничения тока во входную цепь устанавливают термистор TR1. При прохождении тока термистор постепенно нагревается, его сопротивление падает и соответственно снижается потеря напряжения на нем.

ЭТО ИНТЕРЕСНО:  Как соединить конденсаторы чтобы увеличить вольтаж

Для мощных устройств (например, 2 кВт) параллельно термистору устанавливают контакт реле. После запуска на катушку реле поступает питание и его контакты шунтируют термистор для снижения потерь при работе устройства.

Позисторы применяются в телевизорах с электронно-лучевой трубкой (ЭЛТ). Со временем кинескоп начинает намагничиваться, из-за этого на экране кинескопа появляются цветные пятна. Для размагничивания кинескопа сзади него проложена петля размагничивания. Петля включается в цепь питания телевизора после позистора. По мере нагрева позистора его сопротивление увеличивается и ток по петле уменьшается до приемлемых значений.

Для поддержания позистора в нагретом состоянии применяют сдвоенные позисторы в одном корпусе. Позистор, включенный последовательно с петлей снижает ток после размагничивания, позистор включенный параллельно петле поддерживает нагрев, когда телевизор работает. Стоит отметить особенность данной схемы: размагничивание происходит только в момент включения телевизора кнопкой на телевизоре.

Если все время выключатель телевизор с пульта, то размагничивание происходить не будет.

Позисторы применяются в цепи запуска бытовых компрессоров холодильников. В момент пуска необходимо подать питание на рабочую и пусковую обмотку. После запуска компрессора питание с пусковой обмотки нужно снять.

Для этого пусковую обмотку подключают через позистор к рабочей. После подачи питания ток проходит к рабочей и пусковой обмотке, по мере работы компрессора позистор нагревается и его сопротивление повышается, снижая ток через пусковую обмотку.

Для таких схем применяются дисковые позисторы, которые имеют большой максимальный ток.

Источник: http://l7805cv.ru/resistor-termoresistor.html

Измерение температуры с помощью термистора NTC

Узнайте о термисторах и о том, как запрограммировать Arduino для измерения их данных.

Вы когда-нибудь задумывались над тем, как некоторые устройства, такие как термостаты, нагревательные площадки 3D принтеров, автомобильные двигатели и печи измеряют температуру? В этой статье вы можете это узнать!

Знать температуру может быть очень полезно. Знание температуры может помочь регулировать температуру в помещении до комфортного значения, гарантировать, что нагревательная площадка 3D принтера была достаточно горячей, чтобы такие материалы, как ABS, прилипали к ее поверхности, а также предотвратить перегрев двигателя или не допустить сжигания приготавливаемой еды.

В данной статье мы рассматриваем только один тип датчика, способного измерять температуру. Этот датчик называется термистором.

Термистор обладает сопротивлением, которое намного сильнее зависит от температуры, чем сопротивление других типов резисторов.

Мы буде использовать Arduino для измерения и обработки показаний термистора, после чего мы преобразуем эти показания в удобный для чтения формат единиц измерения температуры.

Ниже приведена фотография термистора, который мы собираемся использовать:

Терморезистор

Комплектующие

  • Arduino (Mega или Uno или любая другая модель);
  • несколько перемычек;
  • паяльник и припой (возможно, понадобится, если ваш термистор не будет влезать в разъемы на плате Arduino).

Теория

При типовом использовании резистора вы не хотите, чтобы его сопротивление менялось при изменении температуры. Это не реально в реальной жизни, можно лишь обеспечить небольшое изменение сопротивления при большом изменении температуры. Если бы это было не так, то резисторы странно влияли бы на работу схем, например, светодиод мог бы светиться намного ярче или тусклее по мере изменения температуры окружающей среды.

Но что, если вы действительно хотите, чтобы яркость светодиода была функцией температуры? Здесь появляется термистор. Как вы могли догадаться, у термистора сопротивление сильно изменяется при небольшом изменении температуры. Чтобы проиллюстрировать это, ниже приведена кривая изменения сопротивления термистора:

График зависимости сопротивления термистора от температуры

На рисунке показаны лишь единицы измерения без фактических значений, так как диапазон сопротивлений зависит от типа конкретного термистора. Как вы можете заметить, по мере увеличения температуры сопротивление терморезистора уменьшается. Это является отличительным свойством резистора с отрицательным температурным коэффициентом (Negative Temperature Coefficient), или, кратко, NTC термистора.

Источник: https://radioprog.ru/post/185

Термисторная защита электродвигателей и реле термисторной защиты двигателя

Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя.

 Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC).

Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

Термочувствительные защитные устройства: термисторы, позисторы

В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) — полупроводниковые резисторы, изменяющие свое сопротивление от температуры.

Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя.

Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).

Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера.

Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 — открывается.

Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.

Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

  • Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
  • Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
  • Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
  • Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Виды термисторных реле различных производителей:

Реле термисторной защиты двигателя TER-7 ELCO (Чехия)

  • контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
  • в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
  • функция ПАМЯТЬ — реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET) RESET ошибочного состояния: a) кнопкой на передней панелиb) внешним контактом (на расстоянии по двум проводам)
  • функция контроля короткого замыкани или отключения сенсора , состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
  • выходной контакт 2x переключ. 8 A / 250 V AC1
  • состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
  • универсальное напряжение питания AC/ DC 24 — 240 V
  • клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2

Реле термисторной защиты электродвигателя РТ-М01-1-15 (МЕАНДР, Россия)

  • контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом — РТС резисторы), встроенные в обмотку двигателя ( производителем).
  • коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
  • индикация рабочих состояний:
  • (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
  • напряжение питания АС 220, 100, 380 (по исполнениям)

Реле контроля температуры двигателя E3TF01 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)

  • контролируемая величина PTC (контр. температуры двигателя  на повышение) от 6 PTC датчиков
  • диапазон измерения общее сопр. холодн.

Источник: http://vserele.ru/article/termistornaya-zashchita-elektrodvigateley-rele-termistornoy-zashchity-dvigatelya

Датчики

Терморезисторы (термисторы) — это полупроводниковые элементы, сопротивление которых логарифмически зависит от температуры. Существуют терморезисторы с отрицательным (NTC) и положительным (PTC) температурным коэффициентом. В первом случае сопротивление уменьшается с увеличением температуры, во втором случае — увеличивается.

Не следует путать терморезисторы с термосопротивлениями (термометрами сопротивления, RTD). Термосопротивления имеют практически линейную зависимость R(T), работают в более широком диапазоне температур, превосходят терморезисторы по надежности и повторяемости, однако их стоимость значительно выше по сравнению с терморезисторами.

NTC-терморезисторы от компании Sencera — это бюджетные датчики для работы с температурами до +110 °C. Выпускаются SMD-датчики и элементы для монтажа в отверстия с жесткими или гибкими выводами.

СЕРИЯ CT — ТЕРМОРЕЗИСТОРЫ ДЛЯ ПОВЕРХНОСТНОГО МОНТАЖА

Миниатюрные элементы для поверхностного монтажа, которые выпускаются в корпусах трех типов — 1206, 0805 и 0603.

Обозначение Размер, мм
1206 3.2 x 1.6
0805 2.0 x 1.25
0603 1.6 x 0.8

Коэффициент рассеяния составляет 1 мВ/°С, а постоянная времени t = 7 сек. Другие характеристики термисторов серии CT представлены в таблице.

Термистор Номинальное  сопротивление  при t = 25°C, кОм B (при t=25°C — 85°C), K Разброс  номинального сопротивления
СT302В1 3 3510   1%
СT302В3 3%
СT302В5 5%
СT502С1 5 3324   1%
СT502С3 3%
СT502С4 5%
СT103C1 10 3435 1%
СT103C3 3%
СT103C5 5%
CT103D1 10 3950   1%
CT103D3 3%
CT103D5 5%
CT203D1 20 3950   1%
CT203D3 3%
CT203D5 5%
CT473D1 47 3965   1%
CT473D3 3%
CT473D5 5%
CT104D1 100 4040   1%
CT104D3 3%
CT104D5 5%

СЕРИЯ TS — ТЕРМОРЕЗИСТОРЫ С ДЛИННЫМИ ГИБКИМИ ВЫВОДАМИ

Терморезисторы серии TS представляют собой «бусинки», покрытые гипоксидной смолой и оснащенные двумя гибкими изолированными выводами, оголенными на конце.

L = 100±3 мм

W = 1,6 мм (максимум)

Рабочий температурный диапазон серии TS — от -40 до +90 °C.

Коэффициент рассеяния составляет 0.7 мВ/°С, постоянная времени t = 3.2 .. 3.4 сек. Другие характеристики термисторов серии TS представлены в таблице.

Термистор Номинальное  сопротивление  при t = 25°C, кОм Коэффициент температурной чувствительности B  (при t=25°C — 85°C), K Разброс  номинального сопротивления
TS212D3 2.1 3850 3%
TS402B3 4.0 3100 3%
TS582D3 5.8 3641 3%
TS902C3 9.0 3470 3%
TS103C1 10.0 3435 1%
TS103C3 3%
TS103C5 5%
TS203D 20.0 3950 3%
TS303D 30.0 3950 3%
TS403D 40.0 3525 3%
TS413D 41.0 3435 3%
TS503D1 50.0 3965 1%
TS503D3 3%
TS503D5 5%
TS593D 59.0 3617 3%
TS833D 83.0 4013 3%
TS104D 100 4040 3%
TS224D 220 4021 3%
TS234D 230 4274 3%

Серии hat и ht — терморезисторы с жесткими выводами

Терморезисторы серии HAT и HT имеют два жестких вывода и предназначены для ручного монтажа на плату.

Главное отличие датчиков HAT и HT — размеры элемента. 

Кроме того, эти серии еще отличаются рядом электрических характеристик. Например, коэффициент рассеяния для серии HAT составляет 3 мВ/°C, а для серии HT — 2 мВ/°C; постоянная температуры для HAT составляет 12 секунд, а для HT — 15 секунд. Другие характеристики элементов приведены в таблице.

ЭТО ИНТЕРЕСНО:  Что представляет собой статор электродвигателя
Термистор Номинальное  сопротивление  при t = 25°C, кОм Коэффициент температурной чувствительности B (при t = 25°C .. 85°C), K Разброс  номинального сопротивления Рабочий температурный диапазон
HAT102B1 1 3100 1% -50 +90°C  
HAT102B3 3%
HAT102B5 5%
HT102B1 1%
HT102B3 3%
HT102B5 5%
HAT202B1 2 3182 1%
HAT202B3 3%
HAT202B5 5%
HT202B1 1%
HT202B3 3%
HT202B5 5%
HAT502C1 5 3324 1% -50 +110°C
HAT502C3 3%
HAT502C5 5%
HT502C1 1%
HT502C3 3%
HT502C5 5%
HAT103C1 10 3435 1%
HAT103C3 3%
HAT103C5 5%
HT103C1 1%
HT103C3 3%
HT103C5 5%
HAT103D1 10 3977 1%
HAT103D3 3%
HAT103D5 5%
HT103D1 1%
HT103D3 3%
HT103D5 5%
HAT203D1 20 1%
HAT203D3 3%
HAT203D5 5%
HT203D1 1%
HT203D3 3%
HT203D5 5%
HAT473D1 47 1%
HAT473D3 3%
HAT473D5 5%
HT473D1 1%
HT473D3 3%
HT1473D5 5%
HAT503D1 50 1%
HAT503D3 3%
HAT503D5 5%
HT503D1 1%
HT503D3 3%
HT503D5 5%

Источник: http://efo-sensor.ru/ntc-termorezitori-termistori-ot-kompanii-sencera.html

Термосопротивление

> Теория > Термосопротивление

Термосопротивление, термистор или терморезистор – это три названия одного и того же прибора, сопротивление которого меняется в зависимости от его нагрева или охлаждения.

Достоинства терморезистора:

  • простота изготовления;
  • отличная работоспособность при больших нагрузках;
  • стабильная работа;
  • небольшие размеры изделия позволяют использовать его в миниатюрных датчиках;
  • малая тепловая инертность.

Миниатюрные терморезисторы

Типы термисторов и принцип их действия

Основой датчика является резистивный элемент, для изготовления которого используют полупроводники, металлы или сплавы, то есть элементы, у которых наблюдается выраженная зависимость сопротивления от температуры. Все материалы, которые используются при их создании, должны иметь высокий удельный температурный коэффициент сопротивления.

Для производства терморезисторов применяют следующие материалы и их оксиды:

  • платина;
  • никель;
  • медь;
  • марганец;
  • кобальт.

Также могут применяться галогениды и халькогениды определённых металлов.

Если используется металлический резистивный элемент, то он изготавливается в виде проволоки. Если полупроводниковый, то – чаще всего в виде пластинки.

Важно! Материалы, из которых изготавливается термосопротивление, должны обладать большим температурным отрицательным (NTC) или положительным (PTK) коэффициентом сопротивления.

Если коэффициент отрицательный, то при нагревании сопротивление термистора падает, если положительный – увеличивается.

Металлические терморезисторы

Ток в металлах образуется за счёт движения электронов. Их концентрация при нагреве не увеличивается, но возрастает скорость хаотического движения. Таким образом, при нагревании растёт величина удельного сопротивления проводника.

Зависимость сопротивления металлов от температуры нелинейная и имеет вид:

Rt = R0(1 + А·t + В·t2 + ), где:

  • Rt и R0 – сопротивление проводника при температуре t и 0°С соответственно,
  • A, B – коэффициенты, которые зависят от материала. Коэффициент А называют температурным коэффициентом.

Если температура не превышает 100°С, то сопротивление проводника рассчитывают по следующей формуле:

Rt = R0(1 + A·t),

а остальными коэффициентами пренебрегают.

У каждого типа термисторов есть определённые ограничения для использования. Так, например, медные датчики можно использовать в температурном диапазоне от -50°С до +180°С, платиновые – от -200 до +650°С, никелевые приборы – до 250-300°С.

Условное изображение терморезистора на схеме

Полупроводниковые термисторы

Для изготовления терморезисторов используются оксиды CuO, CoO, MnO и т.д. При изготовлении порошок спекают в деталь нужной формы. Чтобы в процессе работы резистивный элемент не был повреждён, его покрывают защитным слоем.

В полупроводниковых приборах зависимость удельного сопротивления от температурных показателей также не является линейной. При её повышении в датчике резко падает значение R из-за увеличения концентрации носителей электрического заряда (дырок и электронов).

В этом случае говорят о датчиках с отрицательным температурным коэффициентом. Однако, имеются терморезисторы с положительным коэффициентом, которые при нагревании ведут себя как металлы, т.е. R увеличивается. Такие датчики называются позисторами (PTC датчики).

Формула зависимости сопротивления полупроводникового термистора от температуры имеет вид:

где:

  • A – постоянная, характеризующая сопротивление материала при t = 20°С;
  • T – абсолютная температура в гра­дусах Кельвина (T = t + 273);
  • B – постоянная, зависящая от физических свойств полупроводника.

Конструкция металлических терморезисторов

Существует два основных типа конструкции прибора:

  • намоточная;
  • тонкоплёточная.

Закон Ома для неоднородного участка цепи

В первом случае датчик выполняется в виде спирали. Проволоку либо наматывают на цилиндр, выполненный из стекла или керамики, либо размещают внутри него. Если намотка выполняется по цилиндру, то сверху она обязательно покрывается защитным слоем.

Во втором случае используют тонкую подложку из керамики, сапфира, оксида меди, циркония и т.д. На неё напыляется металл тонким слоем, который сверху дополнительно изолируется. Металлический слой выполняется в виде дорожки и называется меандр.

К сведению. Для защиты терморезистора его размещают в металлическом корпусе или сверху покрывают специальным изолирующим слоем.

Типы металлических терморезисторов

Принципиальных различий в работе обоих видов датчиков нет, но плёночные приборы работают в более узком температурном диапазоне.

Сами приборы могут быть выполнены не только в виде стержней, но и бусинок, дисков и т.д.

Применение термисторов

Если термосопротивление разместить в какой-либо среде, то его температура будет зависеть от интенсивности теплообмена между ним и средой. Это зависит от ряда факторов: физических свойств среды (плотность, вязкость и т.д.), скорости движения среды, изначального соотношения температурных показателей среды и термистора и т.д.

Таким образом, зная зависимость сопротивления проводника от температуры, можно определять количественные показатели самой среды, например, скорость, температуру, плотность и т.д.

Одной из важных характеристик терморезистора является его точность измерения, то есть насколько реальные показания термистора отличаются от лабораторных. Точность прибора характеризуется классом допуска, который определяет величину максимального отклонения от заявленных показателей. Класс допуска задаётся как функция, зависящая от температуры. Например, значения допуска платиновых датчиков класса АА составляют ± (0,1 + 0,0017 |T|), класса А – ±(0,15 + 0,002 |T|).

Важно! Естественно, что при создании термосопротивления разработчики стремятся к тому, чтобы при работе минимизировать потери, связанные с теплопроводностью и лучеиспусканием самого прибора.

Термисторы нашли широкое применение в радиоэлектронике, системах теплового контроля, пожарных системах и т.д.

Источник: https://elquanta.ru/teoriya/termosoprotivlenie.html

Терморезисторы. Виды и устройство. Работа и параметры

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

Устройство и работа

Они имеют простую конструкцию, выпускаются разных размеров и формы.

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

Основные параметры

  • ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.

Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды.

Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью.

При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Применение позисторов

  • Защита от короткого замыкания в двигателях.
  • Защита от оплавления при токовой перегрузке.
  • Для задержки времени включения импульсных блоков питания.
  • Мониторы компьютеров и кинескопы телевизоров для размагничивания и предотвращения нарушения цвета.
  • В пускателях компрессоров холодильников.
  • Тепловая блокировка трансформаторов и двигателей.
  • Приборы измерения.
  • Автоматика управления техникой.
  • Устройства памяти информации.
  • В качестве нагревателей карбюраторов.
  • В бытовых устройствах: закрывание дверки стиральной машины, в фенах и т.д.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/termorezistory/

Термисторы применяются для измерения температуры. Температурные датчики

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы — электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

ЭТО ИНТЕРЕСНО:  Какой нужен кабель для подключения бойлера

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике — познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора — это его ТКС . ТКС — это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор — контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его «потроха». Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев

По способу нагрева терморезисторы делят на две группы:

    Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

    PTC-термисторы (они же позисторы).

Давайте разберёмся, какая между ними разница.

Своё название NTC-термисторы получили от сокращения NTC — Negative Temperature Coefficient, или «Отрицательный Коэффициент Сопротивления». Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.

Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР»а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 — VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его.

После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить «плавный запуск» электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в «подогретом» состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы

Термисторы, сопротивление которых при нагреве растёт

Источник: https://soferblog.ru/socialnye-seti/termistory-primenyayutsya-dlya-izmereniya-temperatury-temperaturnye.html

Терморезистор прямого подогрева ТРП68-01

Терморезисторы ТРП68-01 предназначены для  применения в качестве чувствительного  элемента устройств автоматического управления, контроля и защиты при  превышении  температуры в процессе  эксплуатации  извещателей  пожарных, изделий бытового и производственно-технического назначения, в том числе трансформаторов, электродвигателей и других   электротехнических и электронных изделий.

Терморезисторы имеют релейную (пороговую) зависимость сопротивления от температуры.

  • Гистерезис менее 7 °С;
  • Высокая надежность.

Принцип действия

В качестве термочувствительного элемента в терморезисторе используется пленка из двуокиси ванадия (VO2) — соединения, обладающего фазовым переходом металл-полупроводник (ФПМП).

При температуре ниже температуры ФПМП (68 °С) зависимость сопротивления терморезистора от температуры характерна для полупроводниковых материалов с температурным коэффициентом сопротивления (ТКС) около 3% К -1.

Вблизи температуры ФПМП сопротивление терморезистора уменьшается «скачкообразно», при этом ТКС достигает величины 2000% К-1.

При температуре выше температуры ФПМП сопротивление практически не изменяется.

Габаритные и установочные размеры

Длина проволочного вывода L, мм Длина лепестка L1, ммОбщая длина L2, мм
13,5±1 23,0±1 25,0 33,5По согласованию допускается длина лепестка из диапазона 10,033,0 мм Общая длина L2 определяется как сумма длин проволочного вывода L и лепестка L1, уменьшенная на длину соединения, которая не может быть менее 4,0 мм

Технические характеристики

Параметр Значение
Температура срабатывания (68±1) °С
Гистерезис температурный (зона неопределенности) (5±2) °С
Тепловая постоянная времени не более 4 сек
Сопротивление терморезистора:
-при плюс (23±3) °С, R23 не менее 1000 кОм
-при плюс (50±1) °С, R50 не менее 250 кОм
-при плюс (75±1) °С, R75 не более 0,2 кОм
Предельное рабочее напряжение 36 В
Максимальная мощность рассеяния терморезистора в диапазоне температур окружающей среды:
— от минус 50 до плюс 60 °С 60 мВт
— от плюс 51 до плюс 80 °С 40мВт
Коэффициент рассеяния мощности терморезистора при температуре окружающей среды плюс (25±10) °С не менее 1,5 мВт/°С
Климатическое исполнение УХЛ3.1
Температура эксплуатации -50+100 °С

Обозначение при заказе

Источник: http://www.sibkip.ru/product/relsib/uztrelsib/trp68/

Как проверить позистор мультиметром: пошаговая инструкция

» Электрические измерения

Неприхотливость и относительная физическая устойчивость позисторов позволяет их использовать в роли датчика для автостабилизирующихся систем, а также реализовать защиту от перегрузки. Принцип работы этих элементов заключается в том, что их сопротивление увеличивается при нагреве (в отличие от термисторов, где оно уменьшается). Соответственно, при проверке тестером или мультиметром позисторов на работоспособность, необходимо учитывать температурную корреляцию.

Различные виды позисторов и их графическое изображение в принципиальных схемах

Определяем характеристики по маркировке

Широкая сфера применения РТС-термисторов подразумевает их обширный ассортимент, поскольку характеристики этих устройств должны соответствовать различным условиям эксплуатации. В связи с этим для тестирования очень важно определить серию элемента, в этом нам поможет маркировка.

Для примера возьмем радиокомпонент С831, его фотография показана ниже. Посмотрим, что можно определить по надписям на корпусе детали.

Позистор С831

Учитывая надпись «РТС», можно констатировать, что данный элемент является позистором «С831». Сформировав запрос в поисковике (например, «РТС С831 datasheet»), находим спецификацию (даташит).

Из нее мы узнаем наименование (B59831-C135-A70) и серию (B598*1) детали, а также основные параметры (см. рис. 3) и назначение.

Последнее указывает, что элемент может играть роль самовосстанавливающегося предохранителя, защищающего схему от КЗ (short-circuit protection) и перегрузки (overcurrent).

Расшифровка основных характеристик

Кратко рассмотрим, данные приведенные в таблице на рисунке 3 (для удобства строки пронумерованы).

Рисунок 3. Таблица с основными характеристиками серии B598*1

Краткое описание:

  1. значение, характеризующее максимальный уровень рабочего напряжения при нагреве устройства до 60°С, в данном случае он соответствует 265 В. Учитывая, что нет определения DC/AC, можно констатировать, что элемент работает как с переменным, так и постоянным напряжением.
  2. Номинальный уровень, то есть напряжение в штатном режиме работы – 230 вольт.
  3. Расчетное число гарантированных производителем циклов срабатывания элемента, в нашем случае их 100.
  4. Значение, описывающее величину опорной температуры, после достижения которой происходит существенное увеличение уровня сопротивления. Для наглядности приведем график (см. рис. 4) температурной корреляции.

Рис. 4. Зависимость сопротивления от температуры, красным выделена точка температурного перехода (опорная температура) для С831

Как видно на графике, R резко возрастает в диапазоне от 130°С до 170°С, соответственно, опорной температурой будет 130°C.

  1. Соответствие номинальному значению R (то есть допуск), указывается в процентном соотношении, а именно 25%.
  2. Диапазон рабочей температуры для минимального (от -40°С до 125°С) и максимального (0-60°С) напряжения.

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).

Спецификация модельного ряда серии B598*1

Краткая расшифровка:

  1. Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
  2. Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
  3. Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
  4. Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
  5. Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
  6. Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
  7. Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).

Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Определение исправности по внешнему виду

В отличие от других радиодеталей (например, таких как транзистор или диод), вышедший из строя РТС-резистор часто можно определить по внешнему виду. Это связано с тем, что вследствие превышения допустимой мощности рассеивания нарушается целостность корпуса. Обнаружив на плате позистор с таким отклонением от нормы, можно смело выпаивать его и начинать поиск замены, не утруждая себя процедурой проверки мультиметром.

Если внешний осмотр не дал результата, приступаем к тестированию.

Пошаговая инструкция проверки позистора мультиметром

Для процесса тестирования, помимо измерительного прибора, потребуется паяльник. Подготовив все необходимое, начинаем действовать в следующем порядке:

  1. Подключаем тестируемую деталь к мультиметру. Желательно, чтобы прибор был оснащен «крокодилами», в противном случае припаиваем к выводам элемента проволоку и накручиваем ее на разные иглы щупов.
  2. Включаем режим измерения наименьшего сопротивления (200 Ом). Прибор покажет номинальную величину R, характерную для тестируемой модели (как правило, менее одного-двух десятков Ом). Если показание отличается от спецификации (с учетом погрешности), можно констатировать неисправность радиокомпонента.
  3. Аккуратно нагреваем корпус тестируемой детали при помощи паяльника, величина R начнет резко увеличиваться. Если она осталась неизменной, элемент необходимо менять.
  4. Отключаем мультиметр от тестируемой детали, даем ей остыть, после чего повторяем действия, описанные в пунктах 1 и 2. Если сопротивление вернулось к номинальному значению, то радиокомпонент с большой долей вероятности можно признать исправным.

Обсудить на форуме

Источник: https://www.asutpp.ru/kak-proverit-pozistor-multimetrom.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Что представляет собой якорь машины постоянного тока

Закрыть