Почему Трансформатор напряжения работает в режиме холостого хода

Ответы на вопросы о трансформаторах

Почему Трансформатор напряжения работает в режиме холостого хода

За время работы нашей компании, а это, на минуточку, более 15 лет, нами был накоплен ценный опыт, который помогает в решении повседневных сложных задач наших заказчиков, и которым мы бы хотели поделиться с пользователями нашего сайта.

Благодаря рубрике «Вопрос-ответ» мы производим обратную связь с нашими клиентами, и некоторые вопросы нам показались интересными.

Одни вопросы задают очень часто, другие – не очень, однако, в любом случае, мы приняли решение осветить в данной статье те моменты, которые, безусловно, являются очень важными в процессе повседневной эксплуатации трансформаторов.

Итак, начнем с вопросов, которые являются ключевыми. На эти вопросы мы отвечали не раз, однако, они по-прежнему волнуют многих наших посетителей:

— На каком принципе основывается работа трансформатора?

Ответ: В основе принципа действия любого трансформатора лежит явление электромагнитной индукции. Т.е. явлении, связанном с возникновением электрического тока в замкнутом контуре трансформатора.

— Что такое анцапфа?

Ответ: Анцапфа – это, так называемый, переключатель ПБВ (сокр., переключение без возбуждения). В силовом трансформаторе такой переключатель устанавливается со стороны высшего напряжения (ВН) и предназначается, в первую очередь, для изменения коэффициента трансформации.

При изменениях высшего напряжения в пределах +- 10% от номинального значения, анцапфа позволяет поддерживать напряжение на вторичной обмотке постоянным.

Переключение положения ПБВ (анцапфы) необходимо производить только при отключенном трансформаторе (снимая напряжение на стороне ВН).

— Почему сердечник трансформатора изготавливают из нескольких изолированных пластин, а не из цельного куска стали?

Ответ: Сердечник трансформатора изготавливается с использованием изолированных пластин для уменьшения или практически полного исключения потерь, вызываемых протеканием вихревых токов.

Таким образом, благодаря сердечнику из изолированных пластин, общая сумма потерь, будет в разы ниже, чем потери при использовании цельного сердечника.

Стоит отметить, что сердечник может быть изготовлен цельным, однако, обязательным условием является высокое удельное сопротивление материала (это могут быть, например, ферритовые сплавы).

— Зачем пластины сердечника трансформатора стягиваются шпильками?

Ответ: Сделано это для того, чтобы обеспечить максимально плотное прилегание изолированных пластин друг к другу, а также, чтобы сделать пакет пластин сердечника прочным и достаточно устойчивым к механическим повреждениям.

— Что такое холостой ход трансформатора? Как трансформатор работает в этом режиме?

Ответ: Режим холостого хода трансформатора — это такой режим работы трансформатора, при котором одна из его обмоток запитана от источника переменного тока (напряжения) (линия электропередач), а цепи остальных обмоток разомкнуты. В реальности, такой режим работы встречается у трансформатора, в случае, когда он подключен к сети, а нагрузка, запитываемая от его вторичной обмотки, ещё не подключена.

За время ведения рубрики «Вопрос-ответ» нам не раз приходилось вникать в тонкости частных проблем, возникающих у пользователей. Часто, вопросы задают студенты, или просто люди сомневающиеся, как, например, в следующих вопросах:

— Что происходит на вторичных обмотках трансформатора в случае понижения напряжения на первичной обмотке трансформатора?

Ответ: Напряжение на вторичных обмотках трансформатора снижается строго пропорционально коэффициенту трансформации.

— Мы имеем в собственности шесть смежных земельных участков без электричества, однако, рядом проходит ЛЭП на 380В. Для целей электропитания будущих строений, мы собираемся приобрести понижающий трансформатор. Пожалуйста, подскажите какой выбрать?

Ответ: Для начала, необходимо определить планируемую суммарную мощность потребления. Здесь, следует учесть возможность увеличения количества потребителей (и соответственно увеличения потребления). Затем присылайте заявку нам, а мы, по Вашим данным, подберем подходящий вариант понижающего трансформатора.

Нам также задают вопросы, которые косвенно касаются выбора трансформатора. Можно назвать их «вопросы от любознательных». И хотя информацию по таким вопросам, часто, можно найти в открытом доступе, мы охотно идем навстречу:

— От чего зависит межповерочный интервал трансформаторов тока?

Ответ: Сроки межповерочных интервалов трансформаторов устанавливаются, непосредственно, заводом-изготовителем, исходя из характеристик данной конкретной модели трансформатора. Как правило, межповерочный интервал трансформатора составляет 4 года.

— Что означают обозначения обмоток защиты 5Р и 10Р на трансформаторе?

Ответ: Обозначения 5Р и 10Р применяются для отображения погрешности релейной защиты в 5% и 10% соответственно.

— Трансформатор тока и трансформатор оперативного тока – в чем разница?

Ответ: Главное отличие состоит в назначении этих трансформаторов. Трансформаторы тока предназначаются для преобразования тока до таких значений, которые были бы удобны для измерения, а, следовательно, используются для подключения различного измерительного оборудования. Трансформатор оперативного тока предназначается для питания различных цепей управления оборудованием (реле, приводы, и т.п.), автоматики, а также сигнализации и защиты.

— Чем отличаются трансформаторы с изолированной нейтралью и глухо заземленной нейтралью?

Ответ: В цепях трансформаторов с глухозаземленной нейтралью, вторичную обмотку соединяют по схеме «звезда с нулевым выводом», и поэтому такой трансформатор имеет 4 вывода. Один из выводов – нулевой. При этом, он соединен с контуром заземления.

В цепях трансформаторов с изолированной нейтралью, используют схему соединения вторичной обмотки — «звезда», выводов при этом получается 3.

Трансформаторы с глухозаземленной нейтралью, при обрыве одной из фаз – безопаснее, а с изолированной – не прекращают подачу электроэнергии.

Источник: https://www.tdtransformator.ru/podderzhka/stati/preobrazovateli-davleniya-i-sily/

Трансформаторы напряжения: устройство, принцип действия, виды

Почему Трансформатор напряжения работает в режиме холостого хода

Для передачи электроэнергии на большие расстояния напряжения электрического тока с помощью силовых трансформаторов повышают до сотен тысяч вольт. Поскольку высокие напряжения очень опасны, то для работы электроприборов используют ток после силового понижающего трансформатора. Однако на всей протяженности ЛЭП установлено множество защитных устройств. Для отделения напряжений цепей этих приборов от потенциалов линий электропередач применяют трансформатор напряжения (ТН).

Приборы этого типа часто используются для безопасного способа подключения измерительных приборов. Задача ТН состоит в преобразовании высоковольтных токов линий (свыше 6 кВ) до безопасного уровня. Применение таких трансформаторов удешевляет эксплуатацию энергосистем за счет снижения затрат на изоляцию оборудования, работающего в низковольтных сетях.

Устройство и принцип действия

Конструктивно ТН особо не отличается от других типов преобразующих устройств. Его устройство:

  • магнитный сердечник, шихтованный из пластин электротехнической стали;
  • первичная катушка;
  • одна или две вторичные обмотки;
  • защитный кожух (для конструкций уличного типа).

Внешний вид и схематическое изображение изделия смотрите на рис.1. На картинке изображено устройство с одной (основной) вторичной обмоткой. На некоторых моделях есть дополнительная вторичная обмотка, которая может использоваться, например, для подключения приборов измерения.

Рис. 1. Трансформатор напряжения. Строение

Обратите внимание на то, что между выводами первичных обмоток и вторичными катушками отсутствует гальваническая связь. Это главное отличие измерительных трансформаторов от конструкции обычного понижающего трансформатора.

Защитные кожухи изготовляются из разных материалов. В моделях, используемых для обслуживания высоковольтных ЛЭП, применяют диэлектрики, изготовленные из фарфора (рис. 2),

Рис. 2. ТН на 110 кВ

Для охлаждения обмоток таких высоковольтных агрегатов применяют специальные трансформаторные масла.

В сетях средней мощности применяют модели с корпусами на основе эпоксидных смол (рис. 3).

Рис. 3. ТН наружного типа

Трехфазные ТН с нулевыми выводами выполняются на магнитопроводе с пятью стержнями. Такая конструкция защищает обмотки от перегрева, так как при однофазных замыканиях в цепях высоковольтных проводов цепь линий суммарного магнитного потока в самом трансформаторе замыкается по стали сердечника.

Принцип действия также мало отличается от работы силового понижающего трансформатора. Магнитный поток, возникающий в первичной катушке, распространяется по магнитопроводу, вызывая напряжение ЭДС во вторичной обмотке. Величина напряжения зависит от соотношения числа витков в катушках. Поскольку вторичные обмотки состоят из малого количества витков, то и выходное напряжение небольшое (обычно оно не превышает 100 В).

Принцип работы ТН объясняет схема на рисунке 4.

Рис. 4. Принцип работы трансформатора напряжения

Важной задачей при изготовлении трансформаторов данного типа является выполнение требований по достижению необходимых амплитудных и угловых параметров синусоиды, определяющих соответствующий класс точности: 0,5; 1; 3. В эталонных образцах применяется класс точности 0,2. Для измерительных приборов важно чтобы класс точности был максимально высоким. Чем он выше, тем меньшая погрешность измерения прибора.

Точность параметров преобразованных переменных токов зависит от нагрузки. Чем выше нагрузка вторичной цепи, тем больше погрешность трансформатора напряжения (снижается класс точности). Оптимальные параметры напряжения на выходе трансформатора достигаются при номинальных нагрузках. В этом режиме эффективность преобразования тока возрастает по мере приближения к номинальному коэффициенту трансформации.

Работа ТН эффективна при малых номинальных мощностях во вторичных цепях. Для этих устройств длительное состояние в режиме холостого хода является нормой. Поэтому они эффективно используются в системах защиты линий, которые большую часть времени находятся в режиме ожидания и потребляют мало тока.

Разновидности

По конструкции и способам подключения трансформаторы напряжения классифицируются следующим образом:

  • двухобмоточный ТН (состоит из первичной катушки и основной вторичной обмотки);
  • трехобмоточный (имеет две вторичные обмотки. Одна из них является основной, а другая – дополнительной);
  • заземляемый (конструкция однофазных ТН у которых один вывод первичной обмотки уходит на землю.В моделях трехфазных ТН наглухо заземлены все нейтрали);
  • незаземляемый;
  • тип каскадных трансформаторов (первичную обмотку образуют каскады из секций);
  • семейство емкостных трансформаторов, конструкция которых содержит элементы емкостных делителей;
  • модели антирезонансных трансформаторов (см. рис. 5).

Рис. 5. Модель антирезонансного ТН

Можно отдельно выделить низковольтные конструкции, которые используются в некоторых электронных устройствах. Данный класс электронных трансформаторов применяют в тех случаях, когда в электронных схемах необходима развязка, отделяющая цепи высоких напряжений от низких.

Расшифровка маркировки

Для различения разновидностей моделей к ним применяют буквенную маркировку:

  • Н – трансформатор напряжения;
  • Т – трехфазная модель;
  • О – однофазный ТН;
  • С – сухой (воздушное охлаждение);
  • М – масляный;
  • А – антирезонансные модели;
  • К – каскадные устройства;
  • Ф – фарфоровый тип корпуса;
  • И – пятистержневой трансформатор, содержащий обмотку для контроля изоляции;
  • Л – конструкции в литом корпусе;
  • ДЕ – емкостные;
  • З – заземляемые (первичную катушку необходимо заземлять).

Технические параметры

Основные сведения указываются на шильдике трансформатора напряжения.

Рис. 6. Шильдик трансформатора

Технические параметры трансформаторов:

  • величина напряжения на первичном фазном входе;
  • напряжение на выводах вторичных фазных обмоток;
  • коэффициенты мощности;
  • максимальные напряжения короткого замыкания.

К важным сведениям относится параметры номинальной частоты и класс точности для номинального коэффициента трансформации. На некоторых моделях изготовители указывают угловые погрешности и допустимые погрешности напряжений.

Схемы подключения

Простейшая схема подключения применяется в пунктах обслуживания линий под напряжением 6 – 10 кВ. Подключенные по такой схеме трансформаторы используются для включения вольтметра и подачи напряжений на реле устройства АВР. Пример такой схемы показан на рис. 7.

Рис. 7. Простая схема подключения трансформатора напряжения

На рисунке 8 приведена схема, применяемая для включения однофазных трансформаторов с целью подачи безопасного напряжения на нагрузки, запитанные от вторичных обмоток. В данной схеме использовано группу однофазных трансформаторов, катушки которых соединены по принципу звезды. Обратите внимание, что первичные обмотки соединены с глухозаземленной нейтралью.

Рис. 8. Еще пример схемы подключения

Данная схема применяется в сетях 0,5 – 10 кВ для подключения измерительных приборов, счетчиков. По аналогичной схеме подключаются вольтметры, используемые для контроля изоляции.

Схема эффективна для приема сигналов, свидетельствующих об однофазных замыканиях на землю. Существуют и другие схемы подключений, в частности по типу соединения открытого треугольника. Особенность таких схем в том, что мощность группы из двух ТН меньше мощности трех устройств соединенных по схеме полного треугольника не в 1,5 раза, а в √3 раз.

В некоторых схемах применяется комбинированное соединение обмоток. Для этого подходит соединение «треугольник – звезда». В работе таких схем номинальное напряжение составляет 173 В. Указанный способ подключения применяется в системах регулирования возбуждения обмоток генераторов и компенсаторов.

Применение

Основное применение первичных преобразователей напряжений – подача питания на обмотки измерительных приборов и подключение реле защиты в сетях 380 В и выше. Трансформаторы позволяют расширить диапазоны измерений и изоляцию реле от высоких межфазных потенциалов. Включение выводов первичных обмоток между фазой и землей дает возможность градуировать шкалы приборов с учетом коэффициента трансформации, что позволяет контролировать первичные параметры линий ЛЭП.

Изменение параметров напряжений в первичных цепях влияет на поведение переменных магнитных потоков. Эти возмущения фиксируются вторичными обмотками, которые реагируют изменением амплитуды тока и частоты колебаний. Сигналы поступают на различные защитные устройства, которые автоматически отключают участки линий с КЗ и с другими критичными отклонениями.

Источник: https://www.asutpp.ru/transformatory-napryazheniya.html

Определение холостого хода трансформатора

Почему Трансформатор напряжения работает в режиме холостого хода

Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать мощность, напряжение электричества в соответствии с требованиями потребителей.

В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.

Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря  электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

ЭТО ИНТЕРЕСНО:  Как подсоединить конденсатор к мотору

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

К = Е1/Е2 = W1/W2

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым  классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Измерение тока

При опытном измерении тока холостого хода мастер применяет амперметры. Их необходимо подсоединять к первичной обмотке последовательно. Напряжение в контуре должно равняться номинальному значению.

Если проводится исследование работы трехфазного промышленного агрегата, замер выполняет для всех фаз одновременно или последовательно. При этом испытания производятся только для установок от 1000 кВА.

Измерение потерь

Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.

При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.

Применение ваттметра

Ваттметр позволяет произвести замер с учетом коэффициента мощности. Это дает возможность получить более точный результат. Расчет выполняется по следующей формуле:

Cos φ = P1/U1*L0

Далее необходимо создать на основе полученного результата векторную диаграмму. По каждой фазе учитываются установленные потери. Для этого чаще всего строится таблица. При этом используется схема, которая изначально применялась производителем при создании оборудования.

Полученный результат не подлежит сравнению с нормативами. Показатели сравнивают только с характеристиками предыдущих проверок. Если потери с течением времени только возрастают, это говорит о нарушении изоляции пластин магнитопривода или появлении иных нарушений. Обратить этот процесс невозможно.

Проведение замеров холостого хода позволяет оценить состояние аппаратуры, а также определить потребность в необходимости планового или аварийного ремонта. Поэтому регулярные испытания позволяют правильно спланировать работу установки, предотвратить ее непредвиденное отключение.

Интересное видео: Описание основ работы трансформатора.

Источник: https://protransformatory.ru/raschety/holostoj-hod-transformatora

Назначение и принцип действия измерительных трансформаторов

Назначение и принцип действия измерительных трансформаторов

На предприятиях в энергетических установках требуется постоянный контроль режимов функциональности оборудования. Контроль выполняют с помощью учета электроэнергии и наблюдением за показаниями приборов нагрузки и рабочего и сетевого напряжения.

Приборы для измерения тока нагрузки, рабочего напряжения в высоковольтных установках подключаются через трансформаторы тока и напряжения. Кроме измерения трансформаторы нужны для присоединения защитных устройств и реле. 

Для чего нужны измерительные трансформаторы тока и напряжения 

Трансформатор принадлежит к классу статических электромагнитных аппаратов, который преобразует ток одного напряжения в переменный ток другого напряжения. Измерительные трансформаторы признаны одними из самых надежных элементов в системе энергообеспечения. 

Помимо определения показателей нагрузки и напряжения служат для присоединения аппаратуры автоматического регулирования и защитных устройств. С помощью измерительных трансформаторов:

  • снижают габариты и вес приборов измерения;
  • повышают уровень безопасного обслуживания оборудования;
  • предупреждают последствия от ошибочных действий электротехнического персонала;
  • расширяют пределы измерения переменного тока.

Назначение трансформаторов напряжения

Подобное оборудование относится к однофазным устройствам, через которые присоединяют киловольтметры, фазометры для обозначения правильности чередования фаз, ваттметры для определения мощности и для подключения защитных реле в цепях напряжения 3, 6, 10 кВ промышленной частоты.

Обмотки первичного и вторичного напряжения трансформатора ТН отличаются сопротивлением большой величины и малой мощностью. Работа происходит в режиме холостого хода. Стандартное номинальное напряжение вторичной обмотки не бывает более 100 В и имеет рабочий ток от 1 до 5 А. 

Рис. №1. Трансформатор напряжения масляный 6 кВ. НТМИ

Рассмотрим какие бывают трансформаторы напряжения.

Классификация трансформаторов напряжения

Типы измерительных трансформаторов напряжения включают в линейку изделия, классифицируемых следующим образом:

  • однофазные трансформаторы с одним заземленным концом первичной обмотки. К заземляемым относятся и трехфазные тр-ры с заземленной нейтралью катушки первичного напряжения;
  • незаземляемые тр-ры напряжения с полностью изолированными от «земли» участками, зажимами «первички»;
  • каскадный тип с обмоткой первичного напряжения, разделенной на несколько последовательных секций. В конструкции предусмотрены обмотки, выравнивающие напряжение. В наличии есть связующая катушка, которая служит для передачи мощности к обмотке вторичного напряжения;
  • емкостный ТН с делителем;
  • двухобмоточный ТН с одной обмоткой вторичного напряжения;
  • трехобмоточный ТН с двумя обмотками: основного напряжения и дополнительной.

Рис. №2. Трансформатор напряжения, литого типа, опорный с заземленным выводом первичной обмотки, 3НОЛ-СВЭЛ-6. Используется для КРУН, КРУ, КСО

Рис. №3. Трехфазный антирезонансный масляный трансформатор для сетей с изолированной нейтралью

Чтобы понять для каких задач нужны измерительные трансформаторы рассмотрим назначение и разберем принцип действия оборудования.  

Устройство трансформаторов напряжения

Конструкцию ТН рассмотрим на примере лабораторных трансформаторов НЛЛ, используемыми для проверки работы большинства трансформаторов измерения и приборов. 

Трансформаторы напряжения на 3, 6 или 10 кВ имеет магнитопровод с конструкцией из электротехнической стали в основном стержневого типа. На магнитопроводе расположена внутренняя вторичная обмотка. Первичка представляет собой две секции, которые соединены между собой. 

Изоляции представляет собой заливку компаудом, что создает монолитный блок с высокой степенью электрической прочности от попадания влаги и внешних повреждений.

Выводы первичной обмотки размещаются вверху корпуса трансформатора.

С торца трансформатора на клеммнике размещены выводы вторичной обмотки и контакты заземления.

Измерительные трансформаторы напряжения, условия безопасной эксплуатации

Для обеспечения рабочих условий эксплуатации клеммы вторичной обмотки присоединяют к измерительными приборам или защитному оборудованию. Одну из клемм и основание оборудования заземляют.

Цепи при вторичной работе не замыкают, иначе может произойти термическое разрушение.

Если существует не использованная вторичная обмотка ее оставляют открытой, заземлив одну из клемм. Разомкнутая треугольная цепь должна включать резистор соответствующего напряжения и номинальной мощности вторички. Заземление цепи производится по техническим рекомендациям.

Нейтральный вывод первичной обмотки однофазного трансформатора заземляется только в нейтральную систему замыкания.

Будьте уверены, что правильный выбор и эксплуатация измерительных трансформаторов приведут вас к объективным показателям нагрузки и качества электрической сети. 

Рис. №6. Схема подключения трансформатора напряжения где: 1 – первичная обмотка, 2 – магнитопровод, 3 – обмотка вторичного напряжения

Рис. №7. Размещение трансформатор напряжения в ячейке КРУН, подключение к питающей сети через предохранители

Назначение и принцип действия трансформаторов тока

Трансформаторы тока преобразуют первичный ток во вторичный ток меньшей величины в процессе гальванического разделения цепи. Они служат для включения амперметров и токовых катушек приборов измерения, отличающихся очень малым сопротивлением. 

Трансформаторы тока постоянно работают в режиме короткого замыкания. Вторичная цепь защищается от сильных токов за счет эффекта насыщения стального сердечника.  

Применяются ТТ там, где затруднительно произвести замеры токовых величин напрямую. 

С использованием измерительных трансформаторов выполняют учет потребления электроэнергии.

О измерительных трансформаторах напряжения иы вкратце узнали. За более подробной информацией обращайтесь к менеджеру компании «КубаньЭлектрощит»  Задавайте вопросы на сайте. Мы ответим в самые короткие сроки.

Классификация трансформаторов тока

Типы измерительных трансформаторов тока подразделяют на следующие классы:

  • по функциональности: на измерительные и защитные;
  • по току: постоянного и переменного тока;
  • по коэффициенту трансформации: одно и многодиапазонные;
  • по способу монтажа: внутреннего и наружного размещения, встроенные, накладные;
  • по напряжению: низкого и среднего;
  • по типу изготовления и диэлектрическому материалу: газо- и маслонаполненные, сухие.

Рис. №4. Внешний вид трансформатора тока ТОЛ-СЭЩ-20 

Рис. №5. Опорный трансформатор тока ТОЛ-СЭЩ-10, внешний вид

Измерительные подключают напрямую к считывающему, записывающему и вычисляющему измерительному оборудованию. Также их подключают к защите от сверхтоков. Разделяются на однопроводниковые ТТ и трансформаторы с первичной обмоткой. Однопроводниковый трансформатор – это устройство с проемом для первичной цепи, он устанавливается на первичный проводник. 

Мощность трансформаторов тока зависит от коэффициента трансформации и поперечного сечения сердечника. 

При низком токе первичной обмотки применяется трансформатор тока с высокой пропускной способностью. Для того чтобы получить трансформатор тока с первичной обмоткой через однопроводниковый трансформатор несколько раз пропускают первичный проводник.

Маркировка клемм первичной обмотки: Р1 (К) и Р2 (L), вторичной S1 (k) S2 (i). Полярность соответствует направлению прохождению тока.

Трансформатор постоянного тока

Трансформатор для измерения постоянного тока работает по принципу магнитного усилителя и включает в свою конструкцию ферромагнитный сердечник и две обмотки постоянного и переменного тока. 

Устройство трансформаторов тока

Большинство измерительных трансформаторов тока выполнены в виде литой и опорной конструкции. Изоляция, например, как у трансформаторов тока ТОЛ-СЭЩ-10-IV выполнена из циклоалифатической смолы, защищающей обмотки от влаги и всех внешних повреждений. Катушки первичного напряжения выполнены из 2, 3 или 4 магнитопроводов со вторичными обмотками. 

Эксплуатационные условия для трансформаторов тока

Важно. Трансформаторы тока запрещено включать в линию без измерительного прибора. 

Для безопасной эксплуатации

  1. Чтобы увеличить степень надежности ТТ и обеспечить безопасную эксплуатацию кожух трансформатора и одну из клемм «вторички» необходимо заземлить. 

  2. Вторичная обмотка не эксплуатируется при разомкнутой цепи, а та обмотка, которая не используется закорачивается и заземляется.

  3. Трансформаторы тока с ответвителем емкостного делителя присоединяются к индикатору. Неиспользованное ответвление заземляют.

Обслуживание измерительных трансформаторов 

Перед началом работы с поверхности трансформаторов удаляется смазка, пыль и прочие загрязнения. Протирка производится с использованием уайт-спирита. Ветошь не должна оставлять ворс. 

Трансформатор исследуется на наличие сколов, трещин и наличие следов коррозии. 

После визуального осмотра трансформатор подвергают испытанию или проверяют прибором/мегомметром (2500 В) на достаточность сопротивления изоляции.  Вторичная обмотка проверяется мегомметром со шкалой деления на 1000 В.

Ток холостого хода проверяется со стороны вторичной обмотки под напряжением равным 1,2 от номинального. Отличие полученного результата не должно быть отличным от паспортного больше чем на ±10%.

Основное требование к трансформаторам – номинальная мощность не должна быть больше указанных в паспорте изделия.

Качество электроэнергии в сети должно быть соответствующим требованиям ГОСТ 32144. 

Установка трансформатора должна производиться на место с обеспеченным доступом к клеммным контактам.

При обслуживании трансформатора измерения проверяют надежность контактного соединения.

Разомкнутые треугольные обмотки однофазных индукционных ТН обеспечивают безаварийность кабельных систем распределения энергии.

Для повышения надежности разомкнутых треугольных обмоток трансформатора напряжения в цепь добавляют стабилизаторы напряжения, ограничители, стабилитроны. Эти устройства поддерживают работоспособность систем распределения электроэнергии после аварий и сбоев.

Работы по обслуживанию измерительных трансформаторов производятся по наряду в соответствии с технологическими картами. Капитальный ремонт, например, у трансформаторов тока не делают. Если испытания и замеры сопротивления основной изоляции показали неудовлетворительные результаты трансформатор меняют на другой. Основная изоляция должна иметь сопротивление не менее 300 МОм.

Вторичная обмотка в отключенном и отсоединенном состоянии должна показать сопротивление не менее 50 МОм, с подключенными вторичными цепями не менее 1 МОм.

При обслуживании трансформаторов тока проверяют переходное сопротивление болтового контактного соединения. Оно не должно превышать 33 мкОм для контактов на 2000 А и не выше 60 мкОм для контактных соединений на 630 А. 

Технология ремонта измерительных трансформаторов: разборка магнитопровода, демонтаж и ремонт катушек, перемотка обмоток, замена пластин магнитопровода и прочее схожи с ремонтом силовых трансформаторов. На время ремонта трансформатора обмотки закорачивают между собой, чтобы исключить возможный контакт и обратную трансформацию и напряжение при выполнении ремонтных работ. 

Важные примечания 

В индукционных однополюсных измерительных трансформаторах тока при замыкании цепи и во время затухания токов замыкания на «землю» возникает феррорезонанс, следствием которого является перегрев, появляется высокое напряжение, а сам трансформатор может разрушиться.

Для предупреждения феррорезонанса в разомкнутую треугольную цепь трех обмоток трансформатора напряжения включают резистор. Заземление выполняют только в одной точке. В контакты разомкнутого треугольника присоединяют приборы, которые следят за токами замыкания не землю.

ЭТО ИНТЕРЕСНО:  Что такое анод в бойлере

Приобретение и установка измерительного трансформатора в соответствии с паспортными данными нагрузки и напряжения электроустановки гарантируют бесперебойную и точную работу приборов и оборудования.  

Источник: https://www.kesch.ru/info/articles/naznachenie-i-printsip-deystviya-izmeritelnykh-transformatorov/

������������� �������������� ����������

������� / ������ / ������������� �������������� ����������

��������������� ������������� ��������������� ���������� �������� ����������� ��������� �������� ����������, ������� � ��������� ����������� ���� �������� �� ������������� ������ � ���� ������ � ����������.

���������� ��������������� ����������

���������������� ��������� �������� ���������� ������� ������������� ����� ���������� �������� � ����, ��� ��� ���������� �� ������������ � �������������� ���������.

������ ���������� � ��������� ����� ���������� ����������� ����������, ��� ����� ��� ����������, ������� ����� � ��������� 35 ��. �� ����������� ����������� ������� ������ �������� ��������.

��� ������������� �������������� �������������� ���������� ����������� ����������� ������������ ��������� �������� ����������, �������� ����� ����������� ������������� ������, � �������� ��������� ������� ���������, ��� ������� ����, ������� ���������� ����� ������������� ����������.

����� ����, ���� ������������� ������������ ������� ������������ ������������ ������������� �������� � ����, �������� (�������) �� �� �������� ����������.

����� ����, ������������� �������������� ���������� � ���������������� � ������� ����������� ��������������� ���������� �������� ������������� ���������, �������� ����� ��������������, � ����� ����������� �������� ������ �������� ������ � ���������������� ����������.

�� ���� ������� ������������� �������������� ����������

�������� ���������� �������������� �������������� ���������� �������� ����������� ��������������.

� ������� �������������� ��������������:

  • �������� ��������� (�������� �������� ������������������ �����),
  • ��������� �������,
  • ���� ��� ��� ��������� �������.

������������� ������������� ����������, ���������� ���� ��������� �������

��� ������������� ��������������� ����������, ���������� ���� ��������� �������, ������� ���������� U1 ������ �� ��������� �������, � ������������� ������� �������� �� ��������� ������� (���������� U2).

������������ ���������� � ���������� ����������� ���������� ������������ ����������� ����������� �������������: �� = U1��� / U2���.

��� ���� �� ������ ��������������� ���������� ����� ������� ��� ������� ������� ��������� �����������: ������ ��������� ������� ���������� ������� ������ �, ������ ��������� � ��������� ������ �, ����� ������� � �������������� ������� ������ X � ��������� ������ �.

������������� ������������� ����������, ���������� ��� ��������� �������

������������� ����������, � ������� ������������ ��� ��������� �������, ����������� �� ������ � ������������� �������� � ����, �� � � ���������� ������������ ��������� �� ����� ��� ������� � ���� ������������� �������� � � ���������� ������ �� ��������� �� ����� ��� �����, ������� ����������� ��������.

��� ����� ���� ��������������� ���������� ������ ������ (��������������) ������� ������������� ������ ��� ������������ ��� ����� ��� ���������� �� �����. ������� ��� ������ ����������, ��� �� � ��.

���������������� ����� ��������� �������������� �������������� ����������

���������� ����� � ����� ���������� ��������������� ���������� ��������� ��� �������� ������ ���������� � ��� ���������������� ������� 6 — 10 �� � ����� ��������� ����������� � ���� ���������� ��������� ���. ��� ����� ������������ �� ��������.

��� ���������� �������������� ���������� � ����� ��������, ����������� ������ �������� ����� �������-������, ��������� ��� ������� ���������� ��������� ����: ������������� ������, ������� � ���������, �������������� �������� ���������������� 0,5 — 10 ��, � ������� ������������ ������������� �������� � ��������������� ���� � ��� �� ��������� ��������������� � ������������� ���������� ��������� �� �����.

��� ���� ����� ��� ���������� ������������ �������, �� �������� �� ��������� ������ ����������, � ���� ������� �� ���������. ��� ���� ���������� ���������� �������� ���������� ���������� ����� ������ � ������.

���� �� ���������� ������������ ������������� ���������� ��� ������� �������������� �������, �������� � ����, ������� ���������� �� ����������� ����������, �� � ���� ������ ��������� ������������ �� ����� ��������� ������������. ����� ����� ��������� ������������ ����������� ���������� ��� ������ �������������� ���������� ��� ������ ������ ��������.

������� ��������, ��� ������������ ���� ��������� ������������ �������� ������������������ �������� ��������������. ���� �������� ������, � ������� ������ ��� ��������������, ������ �������� ������, ���������� ��� ��������������, ������� ��������� � ������ �����������, �� � ������� ����, � � 3 ���.

� ���������������� 6�35 �� ��� ������� ������������� ��������� ����� ����� � ����� ���������������� ���������� ���������� ������ �����.

�� ��������� ���� ������ �������������� ������������� ������������ �������, �� ����� ������������ �������� ����-��������� ���������� ���� ������� ������ �����������.

��� ���� ��������� ������� ����������� �� ���� � ���� B � ��������������� � ��������������� ���������� � ������� ���������� ��������������.

��� ������������� ����������� ������� ���������� ���� �������������� ������������� ����������� (���) ����������� ���������� � ������������ ������������� ���������� �������� �������� ����� ������������-������. ��� ���� ��������� ���������� ������ ��� �������������� ����������� ��������������� �� ��������� ����� (��� ��������� ��� ��� ��������������� ���� ����������).

����������� � ���� ������������� ���������������

��� �������� ��������������� ��� ������������� � ������������ � ���������� �����. ����� ��� ��� ����, ����� ��������� �������� ����, � ������� ���������� ������������� ����������, � ����� ���� �� ���� � ������� �����������. � ��������� �������� ������������� � ��� ���� �� ������� ��� ����� ���� ����� ������� ����� �� ����� ������� �����������.

�����, ������������� �������������� �������� ��������� ������ ��������� ������ ��������� ���������.

������������� �������������� ������:

  • ������������� ����. ������ �������� ����������� ��������������� ���� � ������������ ����� ���������� �������������. �������� ������� ��� �������� ��������, ������� �������� ������ �������������. � ������������� ������������ ��һ ���������� ��� ������������� ������� ������� ������� ��������� ���������. ��� ������� �������� �� ���� ���������. ��������� ������� �������������� ���������������, � ��� � ��������� ������������ ���� �������. ���� ��һ ��������, �� ��� ��������� ������� ����������� ������ ���� � ���������.
  • ������������� ����������. ����������� ������ ��������� ����� � �������� ����������������. ��������� � ��������� ������� ��� ���������� ��������� �����, ������������� �� ������������ ��������������� ���������. ����������� ����� ������ ��������������� ���������� ��������� ������ ��������� ����. ����������� ��� ����������� ����������� ���������� ��������. �����, ������������� ������������ ����� ��������� �������� ���������� �������� ������� ����� ������������ ��������� � ��������� �������.

��� ������������� ���� ���� ��������� ����� ��������� ���� � �� �� ������������� ������������, � ������� �������� �������������� �������� ���������� ���� � ����������. ��������� ������� ��һ � ��ͻ ���������� ���������. ��� �������� ������� ������������� ������� �� ���������� ��������� ����������� ����������, ���������� ���������� ��� ��������� ���������, ����� ��� ������ �������� � �.�.

������ ���������� ���������������� �� ��������� ���� � ���, ���� � ��������������� �������� (� �������, �������� �����) � ���� � ����������. � ���������� ���� ��������� ������������� ���� ��������� ��������������.

��� ���������� ������� ���������� ���������� �������� ������������ � ���������� ��� ���������� ����.

����� ����� �����, ������������� �������������� �������������� ��������:

  • ������� �������. ���� ��������� ���������, ������������ � ������� ��������.
  • ���� ���������. ������ �� �������� �������, � ���������, ���������� � ������������� ������������, ������������� � ����������� ���������.
  • �������� ����� ������������ ������������� (���� ��� ���������).
  • ���������� �������� �������������. ������������� �������������� ����� ���� ��������� ���� ���������������.
  • ���� ��������� ������� (���� ��� ����� ������).

������� � ������������� ������������ ���������� �������� ��������� ������� � 750 �� � ���� ������. �� � ���� ����� �������� �� ������� ���� �����. ��� ���� ����� �� ��������, ���������� ������ ����������, ������� ��������������� ��� �������� �������� � ���� �� ����� � ������� ����� ��� �����������.

�����, ��� �������� ��������� ���������� � ��� �� ��� �������, ������� ������ ��������.

��������� ������������� ��������������� ���� � ���������� ������ ������������ ���������, ���������, ��������� ������� �������� ������, ��������, �������� �������.

����������� ������������� �������������� ����������

������������� �������������� ���� � ����������, ������� ��������, �������������� � ������������� ������, ������������������ ������� � ��������� ������� � �� ��� �� ������� ���������� �� �������� �������������� �������� ��������������������. ������������. ������������� ������.

�� �������� �������� �� ������ ����� ����������� ������������ � ������������� ��������� ����������.

�������� ������ �������� ������������ �������������� ����� ��������� ���������� � ������� ��������������. �������� ����������� �������������� ��������, ������� �������� �������� �� ������ � ����� ������, �� � �� ����� 20 ����� ����.

�� �������� ����������� ����� ����������������� ����������� ������������� �������������� ���������� � ����.

������� ������ ���� ������:

���������������� � ��������� �������������� �������������

����������� ������������ ���������
������� ��������������

Источник: https://www.elektro-expo.ru/ru/articles/izmeritelnye-transformatory-napryazheniya/

Трансформаторы. Режимы работы и рабочие характеристики

08.12.2018

В первой части нашей статьи мы рассмотрели устройство трансформатора, принцип действия и виды трансформаторов. Теперь поговорим о них более детально.

Холостой ход однофазного трансформатора

Приведенные при рассмотрении принципа действии трансформа­тора соотношения справедливы лишь для идеального трансформатора, в котором пренебрегают сопротивлениями обмоток и потерями в сердечнике и считают, что магнитный поток замыкается только по сердечнику.

В реальных условиях необходимо учитывать падения напряжения в обмотках и фактическую картину распределения магнитных полей.

В частности, при холостом ходе МДС F0 кроме основного магнитного потока взаимоиндукции Ф0, замыкающегося по сердечнику, создает магнитный поток рассеяния Фрс1, который замыкается, в основном, по воздуху и сцепляется только с первичной обмоткой (рис. 1).

Рис. 1 — Холостой ход однофазного трансформатора

Под действием этого магнитного потока в первичной обмотке индуктируется ЭДС самоиндукции ерс1, действующее значение которой обычно рассчитывают по соотношению

где хрс1 — индуктивное сопротивление рассеяния первичной обмотки.

Для упрощения записи это сопротивление часто обозначают просто х1  Оно равно

где L1 — индуктивность рассеяния, определяемая по специальным формулам.

Таким образом, реально существующий магнитный поток рассеяния Фрс1 первичной обмотки и соответствующая ему ЭДС Ерс1 учитываются путем введения некоторого индуктивного сопротивления рассеяния х1, падение напряжения на котором уравновешивает ЭДС, т.е. в векторной форме равенство

записывают в виде

Такой подход значительно упрощает анализ и расчет режимов работы трансформатора. Сопротивление х1 практически постоянно, а величина Ерс1 пропорциональна току первичной обмотки.

Полное сопротивление первичной обмотки, кроме сопротивления х1 учитывает также активное сопротивление r1, т.е.

Электрическая схема замещения фазы первичной обмотки трансформатора на холостом ходу полностью аналогична схеме замещения катушки со стальным сердечником (рис. 2).

Рис. 2 — Электрическая схема замещения фазы трансформатора на холостом ходу

Уравнение электрического равновесия трансформатора для режима холостого хода может быть записано в виде

или

Таким образом, подводимое к первичной обмотке напряжение уравновешивается ЭДС самоиндукции Е10 и падением напряжения на сопротивлениях r1 и х1 обмотки. Поскольку падение напряжения  достаточно мало, последнее уравнение для режима холостого хода часто записывают в виде

Векторная диаграмма трансформатора в режиме холостого хода является графической иллюстрацией и решением уравнений

Векторы как это следует из уравнений

отстают от вектора Фом на 90° (рис.3). Величина напряжения U20 =Е20 отличается от Е10 в отношении коэффициента трансформации. Ток холостого хода I0 не синусоидален и его представляют в виде двух составляющих: I0а — активной, определяющей потери энергии в стали сердечника и в обмотке; I0р — реактивной, необходимой для создания МДС F0 и потоков Ф0 и Фрс1.

Рис. 3 — Векторная диаграмма холостого хода трансформатора

Таким образом, можно записать

Обычно I0а 0.

Рис. 4 — Нагрузочный режим однофазного трансформатора

Это основной режим, при котором вторичный ток изменяется в пределах 0 0, ?2 = 0  и ?2 < 0, а также геометрическое место концов вектора при изменении угла ?2  пределах :

Построение упрощенных диаграмм производятся следующим образом: из точки 0 как из центра проводится дуга окружности радиусом, равным в принятом масштабе величине напряжения ; под углом ?2 проводятся направления вектора вторичного напряжения ; во всех случаях нагрузки треугольник короткого замыкания распо­лагается таким образом, чтобы вершина А была на дуге  , вер­шина С — на направлении вектора ; а катет ВС совпадал с направлением вектора тока .

Рис. — 12.  Упрощенная векторная диаграмма приведенного  трансформатора при различных по характеру нагрузках

Точки С, С1 и C2 определяют величину приведенного вторичного напряжения при соответствующем значении ?2 . Если треугольник ABC поместить в положение 0 B’ C’, то дуга, проведенная из вершины С радиусом, равным , пройдет через точки С, С1 и C2 и является, таким образом, геометрическим местом конца вектора напряжения  .Из рис. 12 хорошо видно, что при активно-индуктивной (?2 > 0) и чисто активной нагрузке (?2 = 0) приведенное вторичное напряжение меньше первичного напряжения  .

При активно-емкостной нагрузке (?2 < 0) вторичное напряжение может стать даже больше первичного.

Физически это объясняется следующим образом. Реактивная мощность, необходимая для создания магнитного поля взаимоиндукции определяется, главным образом, реактивным сопротивлением рассеяния xk. При активно-емкостной нагрузке эта реактивная мощность может забираться от нагрузки и при определенной величине емкости в нагрузке избыток реактивной мощности отдается в первичную сеть. При этом растет ЭДС:

что приводит к перевозбуждению трансформатора, т.е. к возрастанию потока и увеличению напряжения .

Внешняя характеристика трансформатора

Внешней характеристикой трансформатора называют зависимость:

при   и cos?1 = const (рис. 13).

Рис. 13 —  Внешняя характеристика трансформатора

Из рис. 13 следует, что внешняя характеристика трансформатора при увеличении тока нагрузки до номинального является достаточно жесткой. Изменение напряжения составляет всего несколько процентов и зависит от характера нагрузки, что находится в соответствии с векторной диаграммой (рис. 12 ).

При активной и активно-индуктивной нагрузке напряжение  уменьшается, при активно-емкостной нагрузке оно может несколько возрастать. На практике величина изменения напряжения обычно рассчитывается по приближенной формуле:

где  ? = I2/I2н нагрузка трансформатора в относительных единицах;

Потери в трансформаторе и его КПД

Трансформатор потребляет из сети мощность:

где m1 – число фаз.

Часть этой мощности, как отмечалось, теряется в виде потерь в обмотках:

другая часть — в виде потерь в сердечнике на гистерезисе и вихревые токи.

Электромагнитная мощность:

передается во вторичную обмотку посредством магнитного поля.

Полезная мощность равна:

Потери в стали:

мало изменяются при изменении нагрузки и относятся к категории постоянных потерь. Потери в обмотках:

являются переменными т.к. изменяются при изменении тока. Коэффициент полезного действия трансформатора показывает соотношение между мощностью, которая передается из первичной обмотки во вторичную и обратно, и мощностью, которая преобразуется в тепло. КПД определяется по формуле:

КПД силовых трансформаторов обычно достигает 9498%. Рассчитывают трансформаторы таким образом, чтобы КПД имел наибольшее значение при нагрузке ? = 0,5 – 0,7 от номинальной. Обычно трансформаторы работают с некоторой недогрузкой — в области максимального значения КПД рис. 14.

Рис. 14 — Коэффициент полезного действия трансформатора

При передаче значительной реактивной мощности (при уменьшении cos?2) КПД уменьшается, что показано на рис. 1, кривая 2.

Параллельная работа трансформаторов

Параллельная работа трансформаторов возможна лишь в том случае, если в обмотках трансформаторов не возникают уравнительные токи, а нагрузка распределяется пропорционально номинальным мощностям трансформаторов. Практически это сводится к выполнению следующих условий:

1. Напряжения обмоток высшего и низшего напряжения, указанные на заводских табличках, должны быть соответственно равны, т.е. должны быть равны коэффициенты трансформации k1 = k2 kn.

2. Напряжения короткого замыкания uк, указываемые на заводских табличках трансформаторов, должны быть также равны; при параллельной работе трансформаторов допускают отклонения в пределах ±10 %.

ЭТО ИНТЕРЕСНО:  Для чего магниевый анод в бойлере

3. Мощности параллельно работающих трансформаторов не должны значительно отличаться одна от другой. Допускается различие мощностей не больше чем в 3 раза.

4. Схемы и группы соединений обмоток трансформаторов, предназначенных для параллельной работы, должны быть одинаковыми. Это требование может быть выполнено, если условные обозначения схем и групп соединений, указанные на заводских табличках, будут одинаковыми.

5. Обмотки фаз трансформаторов, включенных для параллельной работы, должны совпадать, т. е. одинаково обозначенные выводы обмоток фаз должны быть присоединены к одной, а не к разным шинам.

Рассмотрим последствия нарушения названных условий.

Допустим, что не выполнено первое условие (k1 < k2 ). Это значит, что при одном и том же напряжении на первичных обмотках трансформаторов U1, вторичные ЭДС трансформаторов будут неодинаковы Е1 > Е2. Под действием возникшей разности потенциалов в замкнутом контуре  вторичных обмоток пойдет уравнительный ток, который создаст падение напряжения в обмотках.

В трансформаторе 1 это вызовет уменьшение напряжения на зажимах вторичной обмотки, в трансформаторе 2 – увеличение вторичного напряжения. В результате напряжение на внешних шинах будет иметь среднее значение. При нагрузке уравнительный ток накладывается на ток нагрузки, вследствии чего трансформатор 1 будет перегружен, а трансформатор 2 – недогружен.

ГОСТ допускает расхождение в коэффициентах трансформации не больше ±0,5% от их среднего значения.

Если трансформаторы имеют неодинаковые номинальные напряжения короткого замыкания  u1К  ? u2К, значит неодинаковы сопротивления короткого замыкания Z1К ? Z2К. При работе трансформаторов в параллель напряжения вторичных обмоток одинаковы т. е. I12Z1К = I22Z2К, а это возможно лишь при неодинаковых токах трансформаторов.

Это значит, что при параллельной работе трансформаторов нагрузка между ними будет распределяться непропорционально их номинальным мощностям. Чтобы не вызвать аварии трансформатора, имеющего меньшее значение uК, необходимо снижать общую нагрузку. Это ведет к неполному использованию трансформаторов.

Согласно ГОСТ необходимо, чтобы разница напряжений короткого замыкания не превышала ±10% от их среднего значения, а соотношение номинальных мощностей параллельно работающих трансформаторов было не больше, чем 3:1.

Несоблюдение четвертого условия вызывает настолько большой уравнительный ток, что трансформаторы могут выйти из строя из-за перегрева обмоток. Даже при минимальном расхождении групп соединения трансформаторов (например, у одного группа ?/? – 0, а у другого ?/? – 11) уравнительный ток будет примерно в 5 раз больше номинального, что равносильно короткому замыканию.

Во избежание ошибок присоединение трансформаторов к сети без нулевого провода ( пятое условие ) производят следующим образом. Включают оба трансформатора со стороны высшего напряжения, затем один из них присоединяют к шинам низкого напряжения выводами обмоток всех фаз, а другой — выводами обмотки одной фазы, например С.

Затем между выводами обмоток фаз В и А второго трансформатора и шинами низкого напряжения, к которым соответственно присоединены выводы обмоток фаз В и А первого трансформатора, включают вольтметр или лампу.

Если обозначения выводов обмоток фаз на трансформаторах нанесены правильно, то между всеми парами одноименных выводов напряжение равно нулю (лампа не горит или вольтметр показывает нуль) и выводы В и А второго трансформатора могут быть соединены с шинами, к которым соответственно присоединены выводы В и А первого трансформатора.

https://www.youtube.com/watch?v=22HKAUBzwZw\u0026list=PLtR4tdoyiT5vzpx5zlJSFoKWIsfCAWgwg

Контрольные лампы или вольтметры при указанной проверке должны быть взяты на двойное рабочее напряжение трансформатора со стороны низшего напряжения.

Трансформаторы. Режимы работы и рабочие характеристики Ссылка на основную публикацию

Источник: http://www.radioingener.ru/transformatory_part2/

Всё об энергетике

Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго.

Рабочий режим

Режим характеризуется следующими признаками:

  • Напряжение первичной обмотки близко к номинальному значению или равно ему \(\dot{u}_1 ≈ \dot{u}_{1ном}\);
  • Ток первичной обмотки меньше своего номинального значения или равен ему \(\dot{i}_1 ≤ \dot{i}_1ном\).

В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.

Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.

Номинальный режим работы

Характерные признаки режима:

  • Напряжение первичной обмотки равно номинальному \(\dot{u}_1 = \dot{u}_{1ном}\);
  • Ток первичной обмотки равен номинальному \(\dot{i}_1 = \dot{i}_{1ном}\).

Номинальный режим работы является частным случаем рабочего режима. В таком режиме могут работать все трансформаторы, но как правило, с бóльшими в сравнении с рабочим режимом потерями и как следствие, с меньшим КПД (коэффициентом полезного действия). Из-за этого при эксплуатации трансформатора его избегают.

Оптимальный режим работы

Режим характеризуется условием:

\begin{equation} k_{нг} = \sqrt{P_{хх}\over P_{кз}} \end{equation}

Где \(P_{хх}\) — потери холостого хода;    \(P_{кз}\) — потери короткого замыкания;

    \(k_{нг}\) — коэффициент нагрузки трансформатора, определяемый по формуле:

\begin{equation} k_{нг} = {I_2\over I_{2ном}} \end{equation}

Где \(P_2\) — ток нагрузки вторичной обмотки;
    \(P_{2ном}\) — номинальный ток вторичной обмотки.

В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД [2, с.308] (Смотри «Трансформаторы. Оптимальный режим работы»).

Режим холостого хода

Характерные признаки режима:

  • Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки(1) трансформатора;
  • К первичной обмотке приложено напряжение \(\dot{u}_{1хх} = \dot{u}_{1ном}\);
  • Ток вторичной обмотки \(\dot{i}_2 ≈ 0\) (для трехфазного трансформатора — \(\dot{i}_{2ф} ≈ \dot{i}_{2л} ≈ 0\).

На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 — трехфазного двухобмоточных трансформаторов.

Рисунок 1 — Схема опыта холостого хода однофазного двухобмоточного трансформатора

Рисунок 2 — Схема опыта холостого хода трехфазного двухобмоточного трансформатора

По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока \(i_х\), мощности \(ΔQ_хх\) холостого хода и ряда других параметров [2, c. 291][3, с. 207] (смотри «Опыт холостого хода трансформатора»).

    Примечание:
  1. Под сопротивлением номинальной нагрузки обмотки понимается величина \(R_{Нном}\), равная отношению номинального напряжения обмотки \(U_{ном}\) к её номинальному току обмотки \(I_{ном}\)

Режим короткого замыкания

Режим короткого замыкания характеризуется:

  • Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;
  • К первичной обмотке приложена такая величина напряжения \(\dot{u}_1\), что ток первичной обмотки равен её номинальному току \(\dot{i}_1 = \dot{i}_{1ном}\)
  • Напряжение вторичной обмотки \(\dot{u}_2 = 0\) (для трехфазного трансформатора — \(\dot{u}_{2ф} = \dot{u}_{2л} = 0\).

Схема опыта короткого замыкания изображена на рисунке 3 для однофазного, а на рисунке 4 — для трехфазного двухобмоточных трансформаторов.

Рисунок 3 — Схема опыта короткого замыкания однофазного двухобмоточного трансформатора

Рисунок 4 — Схема опыта короткого замыкания трехфазного двухобмоточного трансформатора

Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов. Также он используется для определения напряжения \(u_к\), мощности \(ΔP_кз\) короткого замыкания и других параметров трансформатора [2, c. 294][3, с. 209] (смотри «Опыт короткого замыкания трансформатора»).

Список использованных источников

  1. Бессонов, Л.А. Теоретические основы электротехники: учебник / Л.А. Бессонов — Москва: Высшая школа, 1996 — 623 с.
  2. Вольдек, А.И. Электрические машины: учебник для студентов вузов / А.И. Вольдек — СПб.: Энергия, 1978 — 832 с.
  3. Касаткин А.С. Электротехника: учебное пособие для вузов / А.С. Касаткин, М.В. Немцов — Москва: Энергоатомиздат, 1995 — 240 с.

Источник: https://allofenergy.ru/16-transformatory-rezhimy-raboty

Как работает трансформатор тока

В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции.

Для этого необходимо знать, как работает трансформатор тока, действие которого основано на законе электромагнитной индукции, применяемого для электрических и магнитных полей. В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением.

Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.

В каком режиме работает трансформатор тока

Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.

https://www.youtube.com/watch?v=FzpX24NN81c\u0026list=PLtR4tdoyiT5vzpx5zlJSFoKWIsfCAWgwg

Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.

Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода.

Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.

Ток холостого хода трансформатора

В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению.

В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС.

Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.

Одним из основных считается и режим короткого замыкания, при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным.

Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи.

Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.

Особенности работы трансформатора тока в разных условиях:

  • Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
  • Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.

В каком режиме работает измерительный трансформатор напряжения

Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения.

Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы.

Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.

Тороидальный трансформатор

С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения.

Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к холостому ходу.

Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.

Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения.

Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется.

В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.

Каждый трансформатор обладает определенной номинальной погрешностью и классами точности, составляющими 0,2; 0,5; 1; 3. Уровень погрешности зависит от конструкции магнитопровода, размеров вторичной нагрузки и других факторов. Компенсировать погрешность напряжения можно, если уменьшить количество витков первичной обмотки и компенсировать угловую погрешность специальными компенсирующими обмотками.

Источник: https://electric-220.ru/news/kak_rabotaet_transformator_toka/2017-01-18-1159

Трансформаторы напряжения: описание, принцип действия

» Статьи » Трансформаторы напряжения: описание, принцип действия

Все трансформаторы тока — это конструкции, которые изменяют переменный ток и стабильно защищают от перепадов высокого напряжения. Он является механизмом только переменного тока, который не может работать с источником постоянного тока, так как при этом в его обмотках не будет электромагнитной индукции. Сейчас трансформаторы напряжения, работающие на маленьких мощностях, практически вытеснены более мощными модификациями.

Описание и составляющие

Трансформатор состоит из трех частей:

  • Электро-обмотка может быть первичной подводящей напряжение и вторичной снимающей напряжение. Первичная обвивка подключается по порядку и подсоединяется к ключу переменного тока. Вторичная обвивка должна быть замкнута на нагрузку и ее противодействие не превышает установленного значения, она никак не сопряжена с первичной. На вторичной обмотке вызывается крайне высокое напряжение и вследствие этого она обязана быть заземлена.
  • Системы охлаждения: естественное воздушное, масляное (трансформаторное масло циркулирует и отдает запасенное тепло через заднюю стенку бака в окружающую среду, охлаждаясь), по тому же принципу циркуляции происходит охлаждение водой и естественное жидким диэлектриком.
  • Сердечник. А еще его называют магнитопровод, чаще всего изготавливается из специальных сплавов штампованных пластин в виде буквы Ш и О. Могут быть броневые (катушки установлены на одной оси) и стержневые (занимают большую часть сердечника и сердечники являются раздельными их стягивают при сборке).

Принцип действия

Отдача мощности из одной обмотки во вторую совершается электромагнитным путем и основана на электромагнитной индукции. Непостоянный ток, идя по первичной обмотке, формирует электромагнитное течение в магнитопроводе и индуцирует во вторичной обмотке, пронизывая ее витки.

В результате он становиться замкнутым в магнитопроводе и сцепляется с двумя обмотками. Витки обмотки имеют равное усилие и в случае если повысить количество витков на 2–ой обмотке, объединяя их поочередно между собою, то можно повысить вольтаж на выходе трансформатора.

Таким же образом уменьшая количество витков уменьшить выходное напряжение. В сердечнике трансформатора неизбежны потери энергии за счет выделения тепла, но в современных мощных моделях эти потери невелики и не превышают 3%.

Однофазные трансформаторы напряжения могут работать, на нагрузку, в режиме холостого хода и короткого замыкания. Как три отдельных однофазных трансформатора можно рассматривать трехфазные, но они работают на больших мощностях.

← Назад к списку новостей

Источник: https://www.ruselt.ru/articles/transformatory-napryazheniya-opisanie-printsip-deystviya/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]