В чем разница трансформатора и автотрансформатора

Чем отличается трансформатор от автотрансформатора?

Работа электрооборудования обеспечивается системой повышающих, понижающих трансформаторов. Приборы «отличаются» рядом характеристик. Бытовые агрегаты рассчитаны на напряжение 110 или 220В, а бытовые – на 380В. Некоторые из представленных устройств снижают или повышают напряжение, другие передают электричество постепенно от подстанции потребителям.

Подобные действия совершают «трансформаторы и автотрансформаторы». Агрегаты характеризуются некоторыми отличиями. Однако подобные аппараты предназначены для поддержания требуемого уровня напряжения в сети. Чтобы научиться правильно, безопасно применять подобное оборудование, нужно рассмотреть их главные отличия.

  • 1 Основное определение
  • 2 Основные отличия

Основное определение

Чтобы понимать, «чем принципиально отличаются трансформатор и автотрансформатор», нужно рассмотреть их определение.

Трансформатор – электромагнитный прибор статического типа, преобразующий электрический ток переменного значения с определенным показателем напряжения в электроэнергию другого уровня. Прибор способен повышать или понижать этот показатель. Система способна преобразовывать частоту и количество фаз электрического тока. Также рекомендуем ознакомиться с конструкцией и принципами работы трансформатора.

Оборудование включает несколько обмоток. Контуры находятся на сердечнике из специального сплава. Первичная катушка подключается к сети переменного типа. Вторичная катушка или все остальные обмотки соединены с установкой, потребляющей исходящее электричество.

Основным принципом работы прибора является закон Фарадея. При перемещении через обмотку магнитного потока определяется некоторая электродвижущая сила.

При необходимости менять параметры незначительно, разрешается применять «автотрансформатор». Этот агрегат представляет собой систему с двумя обмотками, объединенными в одну катушку. Это обеспечивает возникновение электромагнитной, электрической связи. Подробнее о автотрансформаторе мы писали здесь.

Основные отличия

Существует всего 5 основных отличий трансформатора и автотрансформатора. Их можно кратко перечислить:

  1. В первую очередь оба этих агрегата отличаются «тем», что у них присутствует разное количество обмоток.
  2. Надежность и безопасность автотрансформатора уступает обычному трансформатору.
  3. Автотрансформаторы стоят дешевле.
  4. Трансформатор имеет меньший уровень КПД.
  5. Габариты автотрансформатора меньше.

У трансформаторов, отличающихся количеством обмоток, есть две катушки и более. Второй тип агрегатов обладает одной совмещенной катушкой. Она имеет минимум три выхода для подключения к различным коммуникациям и получения на выходе различных показателей сети.

Автотрансформаторы применяются в сетях с напряжением от 150 кВ и более. Они компактные, удобные и стоят значительно дешевле. Их главным преимуществом является высокий уровень КПД. Однако существенным недостатком является отсутствие между обмотками изоляционного материала. Это понижает безопасность представленных приборов при его эксплуатации и обслуживании. Для промышленных сетей это не столь важно, но для бытового применения подобный факт является существенным недостатком.

Если применять этот прибор в бытовых сетях, при возникновении аварийной ситуации электричество может быть приложено из первичной обмотки к низшему напряжению. Это происходит из-за пробоя изоляции частей, проводящих электричество. Части агрегата будут соединены с высоковольтными частями. Поэтому для бытовых нужд применяют трансформаторы, а в промышленности – автотрансформаторы.

Рассмотрев основные отличия автотрансформаторов и трансформаторов, каждый пользователь сможет правильно применять подобное оборудование в своих целях.

Источник: https://protransformatory.ru/vidy/transformator-i-avtotransformator

Параметры схемы замещения трансформаторов

В электрических сетях используются различные виды трансформаторов: двухобмоточные, трёхобмоточные, автотрансформаторы, трансформаторы с расщеплением обмоток сторон. В зависимости от вида трансформаторы представляются различными схемами замещения.

Двухобмоточный трансформатор

Условное обозначение двухобмоточного трансформатора и его схема замещения приведены на рис. 1 [1].

Рис. 1. Условное обозначение двухобмоточного трансформатора и его схема замещения

Активное RT и реактивное XT сопротивления трансформатора являются суммой активных и реактивных сопротивлений рассеяния обмотки высшего напряжения и низшего напряжения, причём величины сопротивления приводятся к одной из сторон.

В поперечной ветви схемы замещения трансформатора находятся активная GT и реактивная проводимости ВT.

При этом проводимости обычно подключают со стороны питания: для повышающих трансформаторов – со стороны низшего напряжений, для понижающих – со стороны высшего напряжения.

В приведённой на рис. 1 схеме замещения отсутствует идеальный трансформатор, поэтому одно из напряжения является приведённым к напряжению другой стороны.

Величина активного сопротивления трансформатора RT в Ом определяется из паспортных данных по выражению

$$ R_T = \Delta P_\textrm{к} \cdot \frac{U2_\textrm{ном}}{S2_\textrm{ном}}, $$

где ΔPк – потери активной мощности в режиме холостого хода, Вт;
Uном – номинальное напряжение стороны трансформатора, В;
Sном – номинальная мощность трансформатора, ВА.

Величина реактивного сопротивления трансформатора XT в Ом определяется из паспортных данных по выражению

$$ X_T = \frac{U_\textrm{к}}{100\%} \cdot \frac{U2_\textrm{ном}}{S_\textrm{ном}}, $$

где Uк – напряжение короткого замыкания, %;
Uном – номинальное напряжение стороны трансформатора, В;
Sном – номинальная мощность трансформатора, ВА.

Величина активной проводимости трансформатора GT в См определяется из паспортных данных по выражению

$$ G_T = \frac{\Delta P_\textrm{х}}{U2_\textrm{ном}}, $$

где ΔPх – потери активной мощности в режиме холостого хода, Вт;
Uном – номинальное напряжение стороны трансформатора, В.

Величина реактивной проводимости трансформатора BT в См определяется из паспортных данных по выражению

$$ B_T = \frac{I_\textrm{х}}{100\%} \cdot \frac{S_\textrm{ном}}{U2_\textrm{ном}}, $$

где Iх – ток холостого хода трансформатора, %;
Uном – номинальное напряжение стороны трансформатора, В;
Sном – номинальная мощность трансформатора, ВА.

Трёхобмоточный трансформатор

Условное обозначение трёхобмоточного трансформатора и его схема замещения приведены на рис. 2 [1].

Рис. 2. Условное обозначение трёхобмоточного трансформатора и его схема замещения

Параметры схемы замещения рассчитываются исходя из паспортных данных трансформатора. Активные сопротивления R обмоток сторон рассчитываются по следующим выражениям

$$ R_\textrm{в} = \Delta P_\textrm{к,в} \cdot \frac{U2_\textrm{ном}}{S2_\textrm{ном}}, R_\textrm{с} = \Delta P_\textrm{к,с} \cdot \frac{U2_\textrm{ном}}{S2_\textrm{ном}}, R_\textrm{н} = \Delta P_\textrm{к,н} \cdot \frac{U2_\textrm{ном}}{S2_\textrm{ном}}, $$

где Uном – номинальное напряжение стороны трансформатора, В;
Sном – номинальная мощность трансформатора, ВА;
ΔРк,в = 0,5 ∙ (ΔРк,вн + ΔРк,вс + ΔРк,сн);
ΔРк,с = 0,5 ∙ (ΔРк,вс + ΔРк,сн + ΔРк,вн);
ΔРк,н = 0,5 ∙ (ΔРк,вн + ΔРк,сн + ΔРк,вс);
ΔPк,вн, ΔPк,вс, ΔPк,сн – мощности короткого замыкания при закороченных обмотках сторон высшего и низшего, высшего и среднего и среднего и низшего напряжений соответственно, Вт.

Реактивные сопротивления X сторон рассчитываются по следующим выражениям

$$ X_\textrm{в} = \frac{U_\textrm{к,в}}{100\%} \cdot \frac{U2_\textrm{ном}}{S_\textrm{ном}}, X_\textrm{с} = \frac{U_\textrm{к,с}}{100\%} \cdot \frac{U2_\textrm{ном}}{S_\textrm{ном}}, X_\textrm{н} = \frac{U_\textrm{к,н}}{100\%} \cdot \frac{U2_\textrm{ном}}{S_\textrm{ном}}, $$

где Uном – номинальное напряжение стороны трансформатора, В;
Sном – номинальная мощность трансформатора, ВА;
Uк,в = 0,5 ∙ (Uк,вн + Uк,вс + Uк,сн);
Uк,с = 0,5 ∙ (Uк,вс + Uк,сн + Uк,вн);
Uк,н = 0,5 ∙ (Uк,вн + Uк,сн + Uк,вс);
Uк,вн, Uк,вс, Uк,сн – напряжения короткого замыкания при закороченных обмотках сторон высшего и низшего, высшего и среднего и среднего и низшего напряжений соответственно, %.

Если в паспортных данных задано только одно значение мощности короткого замыкания ∆Рк (обычно для обмоток сторон высшего и среднего напряжения ∆Рк,вс), то потери мощности в каждой обмотке определяются по следующим выражениям:

$$ \begin{cases} \Delta P_\textrm{к,вс} = \Delta P_\textrm{к,в} + \Delta P_\textrm{к,с} \\ \Delta P_\textrm{к,в} / \Delta P_\textrm{к,с} = S_\textrm{с,ном} / S_\textrm{в,ном} \\ \Delta P_\textrm{к,в} / \Delta P_\textrm{к,н} = S_\textrm{н,ном} / S_\textrm{в,ном} \end{cases} $$

где Sв,ном, Sс,ном, Sн,ном – номинальные мощности сторон трансформатора.

Проводимости трёхобмоточного трансформатора рассчитываются аналогично проводимостям двухобмоточных трансформаторов.

Двухобмоточный трансформатор с расщеплением обмотки низшего напряжения

Условное обозначение двухобмоточного трансформатора с расщеплением обмотки низшего напряжения и его схема замещения приведены на рис. 3.

Рис. 3. Условное обозначение двухобмоточного трансформатора с расщеплением обмотки низшего напряжения и его схема замещения

Параметры схемы замещения рассчитываются исходя из паспортных данных трансформатора. Активные сопротивления R обмоток сторон рассчитываются по следующим выражениям

Rнн1 = Rнн2 = Rобщ, Rв = 0,5 Rобщ,

где $ R_\textrm{общ} = \Delta P_\textrm{к} \cdot \frac{U2_\textrm{ном}}{S2_\textrm{ном}} $;
ΔРк – потери активной мощности в режиме холостого хода, Вт;
Uном – номинальное напряжение стороны трансформатора, В;
Sном – номинальная мощность трансформатора, ВА.

Для определения индуктивных сопротивлений обмоток необходим учёт расположения обмоток на магнитопроводе. Для группы однофазных трансформаторов

Хв = 0, Хнн1 = Хнн2 = 2 Хобщ.

где $ X_\textrm{общ} = \frac{U_\textrm{к}}{100\%} \cdot \frac{U2_\textrm{ном}}{S_\textrm{ном}}, $,
Uк – напряжение короткого замыкания, %;
Uном – номинальное напряжение стороны трансформатора, В;
Sном – номинальная мощность трансформатора, ВА.

Для трехфазных трансформаторов

Хв = 0,125 Хобщ   и   Хнн1 = Хнн2 = 1,75 Хобщ,

где Xобщ рассчитывается аналогично вышеприведённому выражению.

Автотрансформатор

Условное обозначение автотрансформатора и его схема замещения приведены на рис. 4 [1].

Рис. 4. Условное обозначение двухобмоточного автотрансформатора и его схема замещения

Параметры схемы замещения автотрансформатора рассчитываются аналогично трёхобмоточному трансформатору. Отличие расчёта параметров схемы замещения автотрансформатора может заключаться в том, что часть паспортных данных может быть приведена к типовой мощности, определяемой коэффициентом выгодности α. Типовой мощностью автотрансформатора называется та мощность, которая передаётся электромагнитным путём.

Если в паспортных данных параметры ΔРк,вн, ΔРк,сн, Uк,вн и Uк,сн приведены к типовой мощности автотрансформатора, то их следует пересчитать к номинальной мощности автотрансформатора по следующим выражениям

$$ \Delta P_\textrm{к,вн} = \frac{\Delta P’_\textrm{к,вн}}{\alpha2}; \Delta P_\textrm{к,сн} = \frac{\Delta P’_\textrm{к,сн}}{\alpha2}; $$

$$ U_\textrm{к,вн} = \frac{U’_\textrm{к,вн}}{\alpha}; U_\textrm{к,сн} = \frac{U’_\textrm{к,сн}}{\alpha}, $$

где «’» обозначает, что данные параметры приведены к типовой мощности.

Список использованной литературы

  1. Идельчик В.И. Электрические системы и сети: Учебник для вузов. — М.: Энергоатомиздат, 1989. — 592 с.

Если вам нравится наш контент, помогите в развитии сайта.

Источник: https://faultan.ru/simulation/eqparams/transformer/

Автотрансформаторы

    Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь. В автотрансформаторе потери мощности меньше, чем в двух-обмоточном трансформаторе, при одинаковой номинальной мощности.

Это объясняется тем, что в двухобмоточном трансформаторе вся мощность передается из первичной цепи во вторичную электромагнитным путем, а в автотрансформаторе электромагнитным путем передается только часть этой мощности, а остальная часть передается непосредственно из первичной во вторичную цепь в результате электрической связи между ними, поэтому рассчитывать автотрансформатор на эту мощность не требуется.

Чем ближе коэффициент трансформации к единице, тем меньше часть мощности передается электромагнитным путем, следовательно, тем меньше масса и габаритные размеры автотрансформатора.

Например, при коэффициенте трансформации равном 2, электромагнитным путем во вторичную цепь передается половина мощности, а при при коэффициенте трансформации равном 3 — уже 2/3 этой мощности.

Следовательно, преимущества автотрансформаторов проявляются только при небольших коэффициентах трансформации, когда разность токов  мала . При больших коэффициентах трансформации выгоды от применения автотрансформаторов практически нет.

Тем не менее  автотрансформаторы значительно выигрывают по стоимости. Так для сравнения рассмотрим два варианта одинаковой мощности. Мы предлагаем трансформатор 60ВА по цене 170грн. ,автотрансформатор такой же мощности будет стоить 105грн. Примерно такая же пропорция будет сохраняться и на более высоких мощностях.

   В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На каркасе магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки. Большинство деталей автотрансформатора в конструктивном отношении не отличаются от деталей трансформатора. 

  Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл.

Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.Случается,что напряжение бывает не дотягивает до стандартного 230В или наоборот превышает его. Автотрансформатор может легко скорректировать это с шагом ,которым он рассчитан и выполнен.

Автотрансформатор, укомплектованный регулирующей и коммутационной аппаратурой,  делает это автоматически.

     Изготовим автотрансформатор мощностью от 20ВА до 300кВА в однофазном или трехфазном исполнении. В конструктивной обвязке с клеммными колодками или в корпусе. Входное, выходное напряжение и количество обмоток -по вашему желанию.

Автотрансформатор маломощный

автотрансформатор 2кВА

Атотрансформатор в корпусе

Автотрансформатор в 3-х фазном исполнении имеет некоторые ограничения,т.к. не подавляются токи гармонических составляющих и образуются токи утечки. Большой 3-х фазный автотрансформатор может иметь скрытую обмотку, не связанную с наружной, для подавления этих гармоник.

Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь. Существенный недостаток автотрансформаторов — гальваническая связь между первичной и вторичной цепями, что не позволяет использовать их в качестве силовых в сетях 6 — 10 кВ при понижении напряжения до 0,38 кВ, так как напряжение 380 В подводится к оборудованию, на котором работают люди.

Источник: https://www.tor-trans.com.ua/avtotransformatory.html

Гост р 52719-2007 трансформаторы силовые. общие технические условия (с поправкой), гост р от 09 апреля 2007 года №52719-2007

ГОСТ Р 52719-2007Группа Е64

ЭТО ИНТЕРЕСНО:  Как правильно зарядить севший аккумулятор

ОКС 29.180
ОКП 34 1100

Дата введения 2008-01-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Филиалом ОАО «НТЦ электроэнергетика» — ВНИИЭ, Федеральным государственным унитарным предприятием «Всероссийский электротехнический институт им. В.И.Ленина» (ФГУП ВЭИ)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 37 «Электрооборудование для передачи, преобразования и распределения электроэнергии»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 9 апреля 2007 г. N 60-ст

4 Настоящий стандарт разработан с учетом основных нормативных положений следующих международных стандартов:

МЭК 60076-1 (в части основных понятий и определений);

МЭК 60076-2, МЭК 60076-3 и МЭК 60076-5 (в части технических требований по нагреву, электрической прочности и стойкости при коротких замыканиях)

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а тексты изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты».

В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты».

Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ВНЕСЕНА поправка, опубликованная в ИУС N 8, 2018 год

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт распространяется на силовые трансформаторы общего назначения, в том числе на автотрансформаторы, трансформаторы собственных нужд электростанций и трансформаторы для комплектных трансформаторных подстанций (КТП), трехфазные мощностью не менее 5 кВ·А и однофазные мощностью не менее 1 кВ·А классов напряжения до 1150 кВ включительно, предназначенные для нужд экономики страны.

Стандарт распространяется на оборудование, разработанное после 1 января 2008 г.

Стандарт не распространяется на трансформаторы малой мощности и специальные трансформаторы (преобразовательные, электропечные, тяговые, пусковые, сварочные и др.), а также трансформаторы с числом обмоток более трех.

Требования настоящего стандарта могут полностью или частично применяться для этих трансформаторов, если на них нет отдельных нормативных документов (далее — НД).

Для тех из указанных силовых трансформаторов, на которые имеются отдельные НД, настоящий стандарт распространяется только в той мере, которая специально оговорена в НД на эти трансформаторы.

Примечание — Число обмоток трехобмоточного трансформатора определяют по числу его основных обмоток, т.е. без учета обмоток регулировочных и компенсационных.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 51685-2000 Рельсы железнодорожные. Общие технические условия

ГОСТ Р ИСО 9001-2001* Системы менеджмента качества. Требования______________

* На территории Российской Федерации документ не действует. Действует ГОСТ Р ИСО 9001-2008, здесь и далее по тексту. — Примечание изготовителя базы данных.

Источник: http://docs.cntd.ru/document/1200050072

Чем отличается автотрансформатор от трансформатора, устройство, назначение, принцип действия

У обычного трансформатора первичные и вторичные обмотки электрически не связаны, энергия между ними передается посредством магнитного поля. Автотрансформатор фактически имеет одну обмотку, от которой отходят выводы. Помимо электромагнитной связи, обмотки автотрансформатора связаны электрически.

Устройство автотрансформатора

В простейшем случае, на замкнутом магнитопроводе располагаются две обмотки соединенные последовательно. В зависимости от варианта подключения источника энергии и нагрузки, автотрансформатор может работать как повышающий или как понижающий.

Существует конструкция, в которой реализован механизм ручного регулирования выходного напряжения (Вариак, ЛАТР). Так же применяются блоки автоматической регулировки с обратной связью, по сути, автотрансформатор с таким устройством можно назвать стабилизатором напряжения.

Принцип действия автотрансформатора

В автотрансформаторе энергия передается не только магнитным потоком, но и электрически, так как обмотки имеют гальваническую связь. Чем ближе коэффициент трансформации к 1, тем меньше энергии передается электромагнитным способом.

Ниже вы видите схему понижающего автотрансформатора, к первичной обмотке которого подключен источник переменного напряжения, а к выводам вторичной обмотки подключена нагрузка, в виде лампы накаливания.

В режиме холостого хода автотрансформатор работает так, как и обычный трансформатор. Когда подключена нагрузка, переменный магнитный поток возникающий в сердечнике индуктирует в витках вторичной обмотки ЭДС, направленную навстречу ЭДС источника энергии.

Поэтому ток протекающий по вторичной обмотке равен разнице между током нагрузки и током первичной цепи. Это позволяет вторичную обмотку изготавливать из провода малого диаметра.

Экономия на меди, тем меньше, чем больше коэффициент трансформации отличается от единицы.

Автотрансформатор эффективнее трансформатора и дешевле в изготовлении, при условии, что коэффициент трансформации не сильно отличается от единицы. Существенным недостатком с точки зрения безопасности, является отсутствие гальванической развязки между обмотками.

Источник: http://www.sdelai-sam.su/avtotransformator.html

В чем разница между трансформатором и автотрансформатором?

Трансформаторы являются довольно разнообразной группой оборудования, имеющей существенные внутренние различия по назначению и конструктивным особенностям. Кроме того, работа различного оборудования требует различного напряжения. Существуют средние значения.

Которые учитываются при составлении технического допуска на подключение. Например, домашние бытовые приборы рассчитаны на 220, а то и на 110 В. А вот оборудование промышленного типа использует 380 В. Для них предусмотрены свои варианты, более легкие и недорогие.

Но прежде чем решиться на использование, следует знать в чем разница между трансформатором и автотрансформатором.

Для чего снижают напряжение?

Передача электроэнергии на дальние расстояния требует высоких показателей напряжения, в противном случае потери при транспортировке энергии сделают процесс нерентабельным. Но, чтобы использовать электроэнергию в промышленных и, тем более, бытовых целях, требуется ее снижение. Делается это постепенно, благодаря системе трансформаторов, а также их более мобильных аналогов — автотрансформаторов.

Несмотря на то, что все приборы такого типа призваны преобразовать исходное напряжение до желаемого, трансформаторы можно разделить на два типа. Первые — повышающие — увеличивают напряжение, поддерживая его на достаточном уровне для продолжения транспортировки или для использования в промышленных целях. Вторые — понижающие — напротив, снижают напряжение, позволяя использовать энергию в бытовых целях.

Что представляют собой оба устройства? 

Любой трансформатор — это прибор статического типа, который преобразует переменный ток, частоту, а также число фаз. Это устройство включает в себя две или больше обмоток, которые наматываются на один для всех сердечник из стали. Одна из обмоток обязательно должна быть подключена к источнику переменного тока.

Остальные  могут быть соединены с конечными потребителями. В результате между ними наблюдается как электромагнитная, так и электрическая связи.

Дополнительно обмотка автотрансформатора оснащена  тремя и более выводами, то есть имеется возможность подключаться к разным выводам и, соответственно, получать разные значения напряжения.

В основе принципа работы лежит небезызвестная электромагнитная индукция. Проще говоря, меняющийся при прохождении через обмотку магнитный поток образует в ней электродвижущую силу.

Такой тип трансформаторов прекрасно подходит для смены напряжения в сравнительно малом диапазоне.

В чем отличия трансформатора от автоварианта? 

Разница между трансформатором и автотрансформатором — это число обмоток.  Больше — у трансформаторов, автотрансформаторы имеют всего один экземпляр.

Очевидные плюсы автовариантов обнаруживаются при применении в сетях с уровнем напряжения от 150 кВ и более. Эти приборы дешевле, да и потери в обмотках у них на порядок меньше. Размером автотрансформаторы тоже уступают своим статичным аналогам.

Помимо этого, у автотрансформаторов гораздо выше коэффициент полезного действия. Такое возможно благодаря частичному преобразованию мощности. Стоимостные преимущества же обосновываются меньшим расходом материалов, а соответственно, меньшей массой и большей компактностью.

Что касается минусов автотрансформаторов, то к ним можно отнести отсутствие электроизоляции между обмотками электрической изоляции. Для промышленного применения это не играет никакой роли, там всегда наличествует заземляющий провод. А вот в быту их применение опасно.

Можно сказать, что трансформаторы более универсальны в использовании и имеют широкий диапазон применения, в отличие от автотрансформаторов.

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Источник: https://energiatrend.ru/news/otlichiya-avtotransformatora-i-transformatora

Автотрансформаторы (ЛАТР). Типы и работа. Применение

Для плавной регулировки напряжения переменного тока в различных работах, связанных с электротехникой, служат автотрансформаторы (ЛАТР). Их чаще всего используют для изменения напряжения в бытовых приборах, строительстве.

Автотрансформатор – это один из видов трансформаторов. Две обмотки в этом приборе имеют между собой прямое соединение. Вследствие этого между ними появляются два вида связи, одна из которых электромагнитная, а другая электрическая. Катушка имеет несколько выводов с разными значениями выхода напряжения. Отличие от обычного трансформатора состоит в повышенной эффективности, вследствие частичного изменения мощности.

Конструктивные особенности

Трансформаторами называют электроаппаратуру с наличием более 2-х и более обмоток, которые имеют индуктивную связь, служащую для изменения электроэнергии по напряжению.

Обмотка может быть одна только у автотрансформатора, либо несколько обмоток, охваченных магнитным потоком, намотанных на сердечник с ферромагнитными свойствами, у других трансформаторов.

Сегодня приобрели популярность 1-фазные трансформаторы (ЛАТР). Это лабораторный вариант трансформатора, в котором обе обмотки между собой не изолированы, а имеют прямое соединение, поэтому кроме электромагнитной связи у них имеется электрическая связь. Такая общая катушка оснащена несколькими выводами. На их выходе можно получить разное по величине напряжение.

Принцип работы

Благодаря особенности конструкции автотрансформаторы могут выдавать как пониженное напряжение, так и повышенное. На рисунке показаны схемы автотрансформаторов с понижением и повышением напряжения.

Если подключить источник переменного тока к Х и «а», то создается магнитный поток. В этот момент в витках катушки индуцируется разность потенциалов одинакового значения. В итоге, между Х и «а» появляется ЭДС, равная значению ЭДС 1-го витка, умноженного на число витков обмотки, находящихся в промежутке между этими точками.

При подключении нагрузки потребителя к катушке к клеммам Х и «а», ток вторичной катушки пойдет по участку обмотки между этими точками. Имея ввиду то, что первичный и вторичный токи между собой накладываются друг на друга, между Х и «а» будет проходить незначительный ток.

Из-за такой особенности работы автотрансформатора основную часть обмотки выполняют из провода малого поперечного сечения, что уменьшает его стоимость. Если необходимо изменить напряжение в небольших пределах, то целесообразно применять такие автотрансформаторы (ЛАТР).

Нашли применение несколько типов автотрансформаторов:

  • ВУ–25 — Б, служит для сглаживания вторичных токов в защитных схемах трансформаторов.
  • АТД — мощность 25 ватт, долгонасыщаемый, имеет старую конструкцию и мало используется.
  • ЛАТР — 1, служит для применения с напряжением 127 вольт.
  • ЛАТР — 2, применяется с напряжением 220 вольт.
  • ДАТР — 1, служит для слабых потребителей.
  • РНО – для мощной нагруженности.
  • АТЦН применяется в измерительных телеустройствах.

Автотрансформаторы также подразделяют по мощности:

  • Малой мощности, до 1000 вольт;
  • Средней мощности, свыше 1000 вольт;
  • Силовые.

Лабораторные автотрансформаторы

Такой вариант исполнения используют в сетях низкого напряжения для регулировки напряжения в условиях лабораторий. Такие однофазные ЛАТР выполнены из ферромагнитного сердечника в виде кольца, на которое намотан один слой медного провода в изоляции.

В нескольких местах обмотки сделаны выводы в виде ответвлений. Это дает возможность применять такие устройства в качестве автотрансформаторов с возможностью повышения, либо понижения напряжения с неизменным коэффициентом трансформации. Сверху на обмотке выполнена узкая дорожка, на которой очищена изоляция. По ней двигается роликовый или щеточный контакт, позволяющий плавно изменять вторичное напряжение.

Витковых коротких замыканий в таких лабораторных автотрансформаторах не случается, так как ток нагрузки и сети в обмотке направлены навстречу друг другу и близки по значению. Мощности ЛАТР выполняют от 0,5 до 7,5 кВА.

Трехфазные трансформаторы

Кроме других вариантов исполнений существуют еще и трехфазные варианты автотрансформаторов. У них бывает, как три, так и две обмотки.

Фазы в них чаще всего соединяют в виде звезды с отдельной точкой нейтрали. Соединение звездой дает возможность понизить напряжение, рассчитанное для изоляции прибора. Для уменьшения напряжения питание подводят к клеммам А, В, С, а выход получают на клеммах а, b, с. Для повышения напряжения все делается наоборот. Такие трансформаторы используют для уменьшения уровня напряжения при запуске мощных электромоторов, а также для регулировки напряжения по ступеням в электрических печах.

Высоковольтные автотрансформаторы применяют в высоковольтных системах сетей. Использование автотрансформаторов оптимизирует эффективность энергетических систем, дает возможность уменьшить стоимость транспортировки энергии, однако при этом способствует повышению токов коротких замыканий.

ЭТО ИНТЕРЕСНО:  Что такое возбуждение генератора

Режимы работы

  • Автотрансформаторный.
  • Комбинированный.
  • Трансформаторный.

При соблюдении требований эксплуатации автотрансформаторов, в том числе соблюдения контроля температуры масла, он может функционировать длительное время без перегрева и поломок.

Можно выделить такие преимущества:

  • Преимуществом можно назвать высокий КПД, потому что преобразуется лишь малая часть мощности трансформатора, а это имеет значение, когда напряжения выхода и входа отличаются на малую величину.
  • Уменьшенный расход меди в катушках, а также стали сердечника.
  • Уменьшенные размеры и вес автотрансформатора позволяют создать хорошие условия перевозки к месту монтажа. Если необходима большая мощность трансформатора, то его можно изготовить в пределах допустимых ограничений габаритов и массы для перевозки на транспорте.
  • Низкая стоимость.
  • Плавность съема напряжения с подвижного токосъемного контакта, подключенного к обмотке.

Недостатки автотрансформаторов:

  • Чаще всего катушки подключают звездой с нейтралью, которая заземлена. Соединения по другим схемам также возможны, но при их выполнении возникают неудобства, вследствие чего используются редко. Производить заземление нейтрали необходимо через сопротивление, либо глухим методом. Но нельзя забывать, что сопротивление заземления не должно допускать превышения разности потенциалов на фазах в тот момент, когда какая-либо одна фаза замкнула накоротко на землю.
  • Повышенный потенциал перенапряжений во время грозы на входе автотрансформатора делает необходимым монтаж разрядников, которые не отключаются при выключении линии.
  • Электрические цепи не изолированы друг от друга (первичная и вторичная).
  • Зависимость низкого напряжения от высокого, вследствие чего сбои и скачки высокого напряжения оказывают влияние на стабильность низкого напряжения.
  • Низкий поток рассеивания между первичной и вторичной обмоткой.
  • Изоляцию обеих обмоток приходится выполнять для высокого напряжения, так как присутствует электрическая связь обмоток.
  • Нельзя применять автотрансформаторы на 6-10 киловольт в качестве силовых с уменьшением напряжения до 380 вольт, потому что к такому оборудованию имеют доступ люди, а вследствие аварии напряжение с первичной обмотки может попасть на вторичную.

Автотрансформаторы имеют широкую область использования в разных сферах деятельности человека:

  • В устройствах малой мощности для настройки, питания и проверки промышленного и бытового электрооборудования, приборов автоматического управления, в лабораторных условиях на стендах (ЛАТРы), в устройствах и приборах связи и т.д.
  • Силовые варианты исполнений 3-фазных автотрансформаторов применяют для снижения тока запуска электродвигателей.
  • В энергетике мощные образцы автотрансформаторов применяют для осуществления связи сетей высокого напряжения с близкими по напряжению сетями. Коэффициент трансформации в таких устройствах обычно не превосходит 2 – 2,5. Чтобы изменять напряжение в еще больших размерах, требуются другие устройства, а применение автотрансформаторов становится нецелесообразным.
  • Металлургия.
  • Коммунальное хозяйство.
  • Производство техники.
  • Нефтяное и химическое производство.
  • Учебные заведения применяют ЛАТРы для показа опытов на уроках физики и химии.
  • Стабилизаторы напряжения.
  • Вспомогательное оборудование к станкам и самописцам.

Как выбрать автотрансформатор

Для начала определите, где будет использоваться автотрансформатор. Если для испытаний силового оборудования на предприятии, то необходима одна модель, а для питания автомагнитолы во время ремонта, то совсем иная.

При выборе лучше следовать некоторым советам:

  • Мощность. Необходимо рассчитать нагрузку всех потребителей. Их общая мощность не должна быть больше мощности автотрансформатора.
  • Интервал регулировки. Этот параметр зависит от действия прибора, то есть, на повышение или на понижение. Чаще всего приборы относятся к виду с понижением напряжения.
  • Напряжение питания. Если вы хотите подключить автотрансформатор к домашней сети, то лучше приобрести прибор на 220 вольт, а если для 3-фазной сети, то на 380 вольт.

С таким прибором вы можете изменить значения напряжения сети и выставить те значения, которые нужны для конкретного вида нагрузки.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/avtotransformatory-latr/

Чем отличается трансформатор от автотрансформатора? В чем принципиальное отличие трансформатора от автотрансформатора

ТрансформаторВ чем принципиальное отличие трансформатора от автотрансформатора

Работа электрооборудования обеспечивается системой повышающих, понижающих трансформаторов. Приборы «отличаются» рядом характеристик. Бытовые агрегаты рассчитаны на напряжение 110 или 220В, а бытовые – на 380В. Некоторые из представленных устройств снижают или повышают напряжение, другие передают электричество постепенно от подстанции потребителям.

Подобные действия совершают «трансформаторы и автотрансформаторы». Агрегаты характеризуются некоторыми отличиями. Однако подобные аппараты предназначены для поддержания требуемого уровня напряжения в сети. Чтобы научиться правильно, безопасно применять подобное оборудование, нужно рассмотреть их главные отличия.

Отличия трансформаторов от автотрансформаторов

Отличия трансформаторов от автотрансформаторов

Трансформаторное оборудование представлено на современном рынке в широком ассортименте, существуют различные по видам и особенностям трансформаторы, которые предназначены для использования в разных условиях и на разных объектах. При выборе трансформатора следует учитывать назначение объекта, его особенности и характеристики. Для питания большинства маломощных бытовых устройств требуется электрическое напряжение 220 В, а иногда и 110 В.

Для подключения таких объектов к электросети используются одни трансформаторные устройства. Для подключения крупных предприятий, где оборудование требует напряжение на уровне 380 В придется использовать другие приборы.

Чтобы правильно выбрать трансформаторное устройство, нужно учесть множество разных факторов и особенностей. Кроме того, специалистам следует знать основные отличия трансформаторов от автотрансформаторов.

Зачем требуется снижение напряжения в сети

Электрическую энергию принято транспортировать на большие расстояния при максимальных уровнях напряжения.

Если электричество будет иметь бытовой уровень напряжения 220 В или даже напряжение 380 В для использования на крупных объектах, при его транспортировке будут происходить ощутимые потери, из-за чего передача электрической энергии станет затратной для сетевых предприятий.

Таким образом, электричество транспортируют с высоким напряжением, а потому, для его использования конечными потребителями, уровень напряжения электроэнергии должен быть существенно снижен. Снижают уровень напряжения электричества с помощью специальных устройств, называемых трансформаторами.

Автотрансформаторы отличаются значительно меньшими габаритами, они удобны в эксплуатации и просты в монтаже, хотя и не отличаются столь же высокой функциональностью, которая характерна для стандартных устройств. Специалисты обязаны разбираться в видах и особенностях трансформаторов для организации надежных электросистем.

Нельзя сказать, что единственным назначением трансформаторов является снижение уровня напряжения электрической энергии. Помимо понижающего оборудования, которое требуется для электроснабжения конечных потребителей, в электрических сетях используются и повышающие устройства. Повышающие приборы в цепи требуются для того, чтобы транспортировать электроэнергию на большие расстояния с минимальным уровнем потерь.

Особенности трансформаторов

Любой трансформатор предназначен для изменения свойств и характеристик электрической энергии. Это статическое устройство, способное преобразовывать переменный ток, число фаз в электрической сети и частоту электроэнергии.

Трансформатор может включать в себя от двух обмоток и более, устанавливаемых на единый стальной сердечник. Вне зависимости от общего числа обмоток, хотя бы одна из них должна иметь подключение к источнику переменного тока.

Все остальные обмотки устройства могут подключаться к потребителям электрической энергии.

Такая конструкция обеспечивает необходимые электрические и электромагнитные связи между обмотками. Автотрансформаторы оснащаются дополнительными обмотками, имеющими несколько отдельных выводов. Другими словами, такие устройства могут быть подключены к различным выводам, за счет чего может быть обеспечено разное значение параметров напряжения в сети.

Автотрансформаторы работают по принципу электромагнитной индукции, при прохождении через обмотку магнитного потока, в ней появляется электродвижущая сила. Данное оборудование прекрасно подходит для изменения характеристик электрической энергии в небольших диапазонах.

Основные отличия трансформаторов и автотрансформаторов

Основным и самым важным отличием двух трансформирующих устройств является число обмоток на них. В стандартных приборах используется больше обмоток, чем в автоматических, в последних обычно предусматривается только одна обмотка.

Каждое из этих устройств имеет свои преимущества и недостатки, с которыми должны быть хорошо знакомы все профессионалы. Автоматические трансформаторы отлично подходят для использования в сетях электроснабжения с напряжением не менее 150 кВ.

Такие устройства отличаются сравнительно невысокой стоимостью и в процессе их работы уровень потерь на обмотках будет максимально низким. Еще одной положительной чертой автоматических устройств является их небольшой размер.

За счет описанных особенностей и частичному преобразованию мощности, для таких приборов характерен крайне высокий КПД.

У автоматических приборов имеются и определенные недостатки, если сравнивать их со стандартными трансформаторами. В первую очередь, автоматические приборы не имеют надежной электрической изоляции между обмотками. Эта особенность делает использование автотрансформаторов в бытовых целях крайне опасным, хотя в промышленных цепях, где присутствует надежное заземление, этот недостаток не имеет особого значения.

Подводя итог, можно сказать о том, что стандартные трансформаторы являются более универсальными, они подходят для использования практически во всех условиях, чего нельзя сказать об их автоматических аналогах. При выборе трансформаторного оборудования необходимо учитывать допустимый уровень потерь напряжения в сетях.

Применение автотрансформаторов

В отличие от стандартного трансформирующего оборудования, автоматические трансформаторы можно использовать далеко не во всех ситуациях. Чаще всего такие приборы применяют для обеспечения плавной регулировки напряжения и тока в электросистеме. За счет установки такого оборудования можно добиться передачи электроэнергии в полном объеме на потребители только при условии нахождения коэффициента трансформации на уровне единицы.

Так как автоматические трансформаторы снабжаются специальными секционированными обмотками, с их помощью можно обеспечивать плавную регулировку электрических устройств.

Следует отметить также, что из-за простой конструкции и простого монтажа, автоматические трансформирующие устройства отличаются легким ремонтом, что сказывается на стоимости эксплуатации всей электрической системы.

При выходе оборудования из строя, специалистам нужно будет лишь заменить обмотку, которую можно перемотать вручную, обладая необходимой подготовкой и профессиональными знаниями.

Защита автотрансформаторов

Если сравнивать надежность и безопасность эксплуатации трансформаторов и автотрансформаторов, то следует отметить, что автоматические устройства не имеют вращающейся части, что делает их гораздо более надежными и долговечными. Несмотря на эту особенность в процессе эксплуатации таких приборов также могут возникать различные проблемы, сбои и поломки, с которыми придется бороться ремонтникам.

Чтобы снизить вероятность крупного повреждения, на автоматических трансформаторах принято устанавливать защиту. Защита работает следующим образом: если в процессе эксплуатации устройства на нем возникнет какая-то неисправность, об этом будет подан соответствующий световой сигнал. Если проблема не будет устранена, устройство будет автоматически отключено, чтобы избежать серьезных проблем в электросистеме.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Источник: https://energy-systems.ru/main-articles/electrolaboratoriy/4707-otlichiya-transformatorov-ot-avtotransformatorov

Регулируемый автотрансформатор

Логическим развитием автотрансформаторов явилось создание так называемых регулируемых автотрансформаторов, которые, благодаря своим возможностям, получили достаточно широкое распространение в различных сферах техники.

Давайте рассмотрим, в чем главное отличие регулируемых автотрансформаторов от обычных, какое у них устройство и принцип действия, где они применяются, какие у них плюсы и минусы.

В первую очередь давайте вспомним, что из себя представляет стандартный автотрансформатор и как он устроен — обязательно читайте по ссылке нашу подробную статью об этом.

Из неё вы, в частности, узнаете, что автотрансформатор имеет одну общую обмотку, часть которой является первичной, к ней подключается электрический ток питающей сети, а другая часть — вторичной, к ней подключается нагрузка — какой-нибудь электроприбор.

При этом отводов от основной обмотки может быть несколько, все они с определенным шагом изменяют входящее напряжение, какие-то повышают, а какие-то понижают. Схема стандартного автотрансформатора представлена ниже:

В нашем примере, у автотрансформатора имеется два дополнительных отвода от обмотки а2 и а3, с коэффициентами трансформации k1 = 1,125 и k2 = 0,9.

Таким образом, если мы подаём на первичную обмотку переменный ток напряжением 220В, на первом отводе получаем 220/0,9 = 244,4 В, а на втором 220/1,125 = 195,55 В. (Входящее напряжение именно делится на коэффициент трансформации, для получения величины выходного напряжения у автотрансформатора, т.к. формула для определения коэффициента следующая: k=U1/U2, где k – коэффициент трансформации, U1 – входящее напряжение, U2 – получаемое напряжение на отпайках.)

Чаще всего, автотрансформаторы имеют по несколько дополнительных отпаек, которые и формируют вторичные обмотки, несколько ступеней регулирования входящего напряжения и, соответственно, остальных параметров электрического тока.

Главным недостатком такой конструкции автотрансформатора является то, что изменять входящее напряжение можно лишь кратно коэффициентам трансформации существующих отводов от обмотки, а сделать много сложно и не практично, поэтому напряжение может регулироваться лишь ступенчато, с определенным шагом.

Здесь нам и приходит на помощь регулируемый автотрансформатор, он устроен так, что позволяет плавно и достаточно точно изменять входящее напряжение, получая на выходе требуемые величины.

На изображении ниже вы можете видеть устройство стандартного регулируемого автотрансформатора:

Регулируемый автотрансформатор, как и обычный, представляет собой магнитный сердечник с обмоткой из медной проволоки, к которой в точках А1 и Х подключается входящий переменный электрический ток, например, стандартной бытовой электросети 220В.

На этом сходство с обычным автотрансформатором заканчивается, ведь вместо нескольких отводов с разным коэффициентом трансформации, здесь есть всего один контакт, подключенный к подвижному механизму, который может перемещаться по обмотке.

ЭТО ИНТЕРЕСНО:  Как правильно варить дуговой сварки

При этом, с части обмотки снят изоляционный слой, в этом месте с ней и контактирует угольная щетка или ролик этого механизма, таким образом создаётся электрическая связь с требуемой частью обмотки.   

Принцип действия регулируемого автотрансформатора

Как вы, наверное, уже догадались, нагрузка, какой-нибудь электроприбор, подключается к выводу от этого подвижного контакта а2 и к общей точке обмотки Х. Получается, что, перемещая ролик, мы изменяем количество витков вторичной обмотки автотрансформатора, и таким образом имеем возможность плавно регулировать получаемое на выходе напряжение.

Регулируемый автотрансформатор позволяет как повысить электрические показатели в определенных пределах, в частности напряжение, так и понизить их.

Регулируемый автотрансформатор на схеме

На электрических схемах, регулируемый автотрансформатор чаще всего изображается следующим образом:

— В виде прямой черты показан магнитопровод — сердечник, волнистая линия сбоку от него это общая обмотка

— Показаны стационарные отводы для подключения входящего источника питания — точки А1 и Х

— Стрелкой обозначен перемещаемый, подвижный контакт, формирующий вторичную обмотку, в зависимости от своего местоположения — точки а2 и Х

 

 Регулируемые автотрансформаторы бывают:

— однофазными и трехфазными.

Конструктивно трехфазный регулируемый автотрансформатор представляет собой три однофазных в одном корпусе.

По типу привода, который перемещает подвижный контакт по обмотке, они делятся на модели:

с механической — ручной и автоматической — с помощью сервопривода, регулировкой выходного напряжения.

Здесь все просто, в автоматических автотрансформаторах положение подвижного контакта изменяет электромотор – сервопривод. Часто такое решение применяется при устройстве стабилизаторов напряжения, когда от автотрансформатора требуется автоматическое, достаточно точное реагирование на изменение параметров входящего электрического тока.

В механических регулируемых автотрансформаторах, перемещение подвижного контакта по обмотке осуществляется вручную, ярким представителем такой конструкции является ЛАТР – Лабораторный Автотрансформатор Регулируемый.  

Наибольшее распространение ЛАТР, как вы, наверное, уже догадались из названия, получили в различной лабораторной деятельности, при проверке, ремонте, модификации электрооборудования, приборов и их элементов.

Нередко именно ЛАТР устанавливают в приборах, где есть нагревательные элементы, например, ТЭНы, изменяя с помощью ЛАТР параметры электрического тока, питающего их, можно регулировать температуру нагрева.

Главное отличие регулируемого автотрансформатора, от нерегулируемого – механизм передвижения контакта, является как основным преимуществом – позволяя плавно регулировать параметры электрического тока, так и главным недостатком. Как и любой другой подвижный элемент, он требует периодического обслуживания и может сломаться, угольная щетка или ролик может стереться и электрический контакт ослабнет или совсем пропадёт.

Но, несмотря на это, в настоящее время, регулируемые трансформаторы довольно широко распространены, и вы обязательно их встретите в недорогих, но достаточно надежных стабилизаторах напряжениях, в мастерских и различных лабораториях.

А если в статье вы не нашли ответов на свои вопросы о регулируемых автотрансформаторах – не стесняйтесь, пишите в комментариях, я обязательно постараюсь оперативно вам ответить. Кроме того, как обычно приветствуются любые мнения, дополнения, здоровая критика, всё то, что поможет сделать материал более информативным и полезным всем.

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/184-reguliruemyj-avtotransformator

Трансформаторы

Существует много разных электрических  устройств. Рассмотрим одно из основных и распространенных дошедших до наших дней и не потерявшей своей актуальности – трансформатор. Это устройство служит для повышения или уменьшения напряжения в электрических цепях, частоты и числа фаз переменного электрического тока. По изменению напряжения тока они делятся на понижающие  и повышающие значение напряжения сети.

  Какой трансформатор называется повышающим а какой понижающим?

Понижающий  трансформатор уменьшает напряжение тока в электрической цепи. Технически — это реализуется за счет разности напряжений между первичной обмотки устройства и вторичной.

 Какой трансформатор называется повышающим? Повышающий трансформатор повышает значение напряжения электрического тока. На первичной обмотке оно ниже, а на вторичной выше. Тем самым на выходе прибора напряжение выше и за счет определенного числа витков обмотки и сечения имеет нужное значение.

Автотрансформаторы

Наряду с обычными трансформаторами часто в быту и промышленности применяются автотрансформаторы. Отличие от обычных состоит в том, что первичную и вторичную обмотку связывает не только магнитное поле, но и электрическая связь. Мощность в этом устройстве передается не только за счет магнитного поля, но и за счет электрической связи.

Какой трансформатор называют повышающим и какой понижающим в автотрансформаторах?  Принципы заложены те же. Какой трансформатор повышающий, а какой понижающий можно определить по соответствующей маркировке. Есть и универсальные устройства, которые выполняют обе функции на понижение и на повышение.

Автотрансформаторы широко применяются в цепях  большой мощности и высокого напряжения и, а также регулируют напряжение  в устройствах небольшой мощности.

Как подобрать трансформатор

Чтобы грамотно выбрать  трансформатор необходимо вначале ознакомится с характеристиками приборов  сети, для которой вы будите покупать трансформатор. Узнать их потребляемую мощность и напряжение.

Далее узнать входное напряжение сети. Зная эти значения можно начать подбирать  устройство. Определим, вначале, нам необходим повышающий или понижающий трансформатор.  Какой трансформатор называют повышающим? Такой, у которого напряжение на входе меньше чем на выходе. Если приборы у нас потребляют напряжение больше, чем на входе сети, то выберем повышающий. Если нет – понижающий.

Смотрим на сумму значений мощности потребляемых приборов. Подбираем трансформатор с выходным параметром соответствующим этой мощности, добавив 20% и напряжению этих приборов. 

Входное напряжение устройства должно соответствовать напряжению сети.

Трансформатор ставим в безопасное место и обязательно заземляем.

Часто покупатели затрудняются в выборе трансформатора. В сложностях подсчета мощности потребляемых приборов. Какой трансформатор является повышающим , какой понижающим. Что выбрать и так далее. Проще обратиться к нашему специалисту и он все сделает. Рассчитает и подберет универсальный автотрансформатор на все случаи, когда будет необходимо добавить какой либо новый потребляющий прибор.

Источник: https://www.zapitatel.ru/uniform/transformatory/

Автотрансформатор: устройство, принцип действия, схема, типы

С развитием энергетики и связанных с ней электрических сетей для передачи переменного тока, как источника питания для различных устройств, возникла необходимость в приборах, изменяющих величину напряжения. Такими универсальными электромагнитными устройствами, позволяющими повышать или понижать исходное напряжение до требуемой величины, стали трансформаторы.

Со временем, для обеспечения стабильной работы электроприборов, преимущественно бытового назначения, возникла необходимость плавного регулирования напряжения. Это стало возможным после того, как был изобретён автотрансформатор – устройство, в котором вторичная обмотка является составной частью первичных витков.

Что такое автотрансформатор?

Из школьного курса физики известно, что простейший трансформатор состоит из двух катушек, намотанных на железные сердечники. Магнитным полем переменного тока, запитанного через выводы первичных обмоток, возбуждаются электромагнитные колебания во второй катушке, с аналогичной частотой.

При подключении нагрузки, к выводам рабочей обмотки, она образует вторичную цепь, в которой возникает электрический ток. При этом напряжение в образованной электрической цепи связано прямо пропорциональной зависимостью с количеством витков обмоток. То есть: U1/U2 = w1/w2 , где U1, U2 – напряжения, а w1, w2 – количество полных витков в соответствующих катушках.

Рисунок 1. Схема обычного трансформатора и автотрансформатора

Немного по-другому устроен автотрансформатор. Он, по сути, состоит из одной обмотки, от которой сделано один или несколько отводов, образующих вторичные витки. При этом все обмотки образуют между собой не только электрическую, но и магнитную связь.

Поэтому, при подаче электрической энергии на вход автотрансформатора, возникает магнитный поток, под действием которого происходит индукция ЭДС в обмотке нагрузки. Величина электродвижущей силы связана прямой пропорциональностью с числом витков, образующих нагрузочную обмотку, с которой снимается напряжение.

Таким образом, формула, приведённая выше, справедлива и для автотрансформатора.

Из основной обмотки можно отводить большое количество выводов, что позволяет создавать комбинации для снятия различных по величине напряжений. Это очень удобно на практике, так как понижение напряжения часто требуется для питания нескольких блоков электроприборов, использующих различные напряжения.

Отличие автотрансформатора от обычного трансформатора

Как видно из описания автотрансформатора, главное его отличие от обычного трансформатора – отсутствие второй катушки с сердечником. Роль вторичных обмоток выполняют отдельные группы витков, имеющих гальваническую связь. Эти группы не требуют отдельной электрической изоляции.

У такого устройства есть определённые преимущества:

  • сокращён расход цветных металлов, используемых на изготовление такого оборудования;
  • передача энергии осуществляется путём воздействия электромагнитного поля входного тока, и благодаря электрической связи между обмотками. Следовательно, потеря энергии оказывается ниже, поэтому у автотрансформаторов наблюдаются более высокие КПД;
  • малый вес и компактные габариты.

Несмотря на конструкционные различия, принцип работы этих двух типов изделий остаётся неизменным. Выбор типа трансформатора зависит, прежде всего, от целей и задач, которые приходится решать в электротехнике.

Типы автотрансформаторов

В зависимости от того в каких сетях (однофазных или трёхфазных) требуется изменить напряжение, используют соответствующий тип автотрансформаторов. Они бывают однофазными либо трёхфазными. Для трансформации тока с трёх фаз можно установить три автотрансформатора, предназначенных для работы в однофазных сетях, соединив их выводы треугольником или звёздочкой.

Схема соединений обмоток трансформатора

Существуют типы лабораторных автотрансформаторов, позволяющих плавно изменять значения по выходному напряжению. Такой эффект достигается путём перемещения ползунка по поверхности открытой части однослойной обмотки, наподобие принципа работы реостата. Витки проволоки наносятся вокруг кольцеобразного ферромагнитного сердечника, по окружности которого и перемещается контактный ползунок.

Автотрансформаторы подобного типа массово применялись на просторах СССР в эпоху массового распространения ламповых телевизоров. Тогда напряжение сетей было нестабильно, что вызывало искажения изображений. Пользователям этой несовершенной техники приходилось время от времени подстраивать напряжение до уровня 220 В.

До появления стабилизаторов напряжения, единственной возможностью достичь оптимальных параметров питания для бытовой техники того времени, было применение ЛАТР. Данный тип автотрансформаторов используется и сегодня в различных лабораториях и учебных заведениях. С их помощью осуществляется наладка электротехнического оборудования, тестируется аппаратура с высокой чувствительностью и выполняются другие задачи.

В специальном оборудовании, где нагрузки незначительны, применяются модели автотрансформаторов ДАТР.

Автотрансформатор ЛАТР

Существуют также автотрансформаторы:

  • малой мощности, для работы в цепях до 1 кВ;
  • среднемощные агрегаты (больше 1 кВ);
  • высоковольтные автотрансформаторы.

Следует заметить, что с целью безопасности ограничено использование автотрансформаторов в качестве силовых трансформаторов, для снижения до 380 В напряжений, превышающих 6 кВ. Это связано с наличием гальванической связи между обмотками, что не безопасно для конечного потребителя. При авариях не исключено, что высокое напряжение попадёт на запитанное оборудование, что чревато непредсказуемыми последствиями. В этом кроется основной недостаток автотрансформаторов.

Обозначение на схемах

Отличить автотрансформатор на схеме от изображения обычного трансформатора очень легко. Признаком является наличие единственной обмотки связанной с одним сердечником, обозначенным жирной линией на схемах. По одну или по обе стороны этой лини схематически изображены обмотки, но в автотрансформаторе все они соединены друг с другом. Если на схеме витки изображены автономно, то речь идёт об обычном трансформаторе (см. рисунок 1).

Устройство и конструктивные особенности

Как было отмечено выше, автотрансформатор состоит из одной катушки. Её наматывают на обычный или на тороидальный сердечник.

Тороидальный трансформатор

В силу конструктивных особенностей у него отсутствуют гальванические развязки между цепями, что может привести к поражению высоковольтным током. Поэтому понижающий автотрансформатор, ввиду его повышенной опасности, требует принятия дополнительных мер по защите от поражения электротоком. Работа с ним допускается при условии строгого соблюдения правил безопасности.

Области применения

Автотрансформаторы по сей день занимают прочные позиции в различных областях, связанных с электротехникой. Без них не обходятся:

  • различные выпрямители;
  • радиотехнические устройства;
  • телефонные аппараты;
  • сварочные аппараты;
  • системы электрификации железных дорог и многие другие устройства.

Трёхфазные автотрансформаторы используют в высоковольтных электросетях. Их применение повышает КПД энергосистем, что сказывается на снижении затрат, связанных с передачей электроэнергии.

Преимущества и недостатки

К описанным выше преимуществам можно добавить низкую стоимость изделий, за счёт снижения затрат на применяемые цветные металлы, расходов на трансформаторную сталь. Для автотрансформаторов характерны незначительные потери энергии токов, циркулирующих по обмоткам и сердечникам, что позволяет достигать уровня коэффициента полезного действия до 99%.

К недостаткам следует добавить необходимость оборудования глухого заземления нейтрали. В связи с существующей вероятностью по короткому замыканию и возможностью передачи высокого напряжения по сети, для автотрансформаторов существуют определённые ограничения к применению.

Из-за гальванической связи обмоток, возникает опасность перехода между ними атмосферных перенапряжений. Однако, несмотря на недостатки, автотрансформаторы по-прежнему находят широкое применение в самых различных областях.

Источник: https://www.asutpp.ru/chto-takoe-avtotransformator.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]