Что делает диод в схеме

Полупроводниковые диоды

Что делает диод в схеме

Полупроводниками являются вещества, занимающие промежуточное положение между проводниками и изоляторами, по своим электропроводящим свойствам. В полупроводниках, как и в металлах ток представляет из себя упорядоченное движение заряженных частиц.

Однако, вместе с перемещением отрицательных зарядов(электронов) в полупроводниках имеет место упорядоченное перемещение положительных зарядов, т. н. — дырок.

Дырки получаются при участии ионов вещества полупроводника — атомов с сбежавшими электронами. В реальности, ионизированные атомы не покидают своего места, в кристаллической решетке. На самом деле, имеет место поэтапное изменение состояния атомов вещества, когда электроны перескакивают с одного атома, на другой. Возникает процесс, внешне выглядящий, как упорядоченное движение неких условных положительно заряженных частиц — дырок.

В обычном, чистом полупроводнике соотношение дырок и свободных электродов 50%:50%.
Но стоит добавить в полупроводник небольшое количество вещества — примеси, как это соотношение претерпевает значительные изменения. В зависимости от особенностей добавленного вещества полупроводник приобретает либо ярко выраженную электронную проводимость(n-тип), либо его основными носителями становятся дырки(p-тип).

Полупроводниковый переход(p-n) формируется на стыке двух фрагментов полупроводникового материала, имеющих разную проводимость. Он представляет из себя крайне тонкую область, обедненную носителями обоих типов. p-n переход имеет незначительное сопротивление, когда направление тока — прямое, и очень большое, когда направление тока — обратное.

Обычный полупроводниковый диод состоит из одного полупроводникового перехода, снабженного двумя выводами — анодом(положительным электродом) и катодом — отрицательным электродом. Соответственно, диод обладает свойством односторонней проводимости — он хорошо проводит ток в прямом направлении и плохо в обратном.

Что это означает на практике?
Представим себе электрическую цепь, состоящую из батарейки и лампочки накаливания, подключенной последовательно через полупроводниковый диод. Лампочка будет гореть только в том случае, если анод (положительный электрод) подключен к плюсу источника питания (батарейки) а катод (отрицательный электрод) к минусу — через накальную нить лампочки.

Это и является прямым включением полупроводникового диода. Если поменять полярность источника питания, включение диода окажется обратным — лампочка гореть не будет.

Обратите внимание как выглядит обозначение полупроводникового диода на схеме — треугольная стрелочка, указывающая прямое включение, совпадает с общепринятым в электротехнике направлением тока — от плюса источника питания, к минусу.

Вертикальная черточка примыкающая к ней символизирует преграду для движения тока в обратном направлении.

Существует одно обязательное условие для нормальной работы любого полупроводникового диода. Напряжение источника питания должно превышать некоторый порог (величину потенциала внутреннего смещения p-n перехода).

Для выпрямительных диодов он как правило — меньше 1 вольта, для германиевых высокочастотных диодов порядка 0,1 вольта, для светодиодов может превышать 3 вольта.

Это свойство полупроводниковых диодов можно использовать при создании низковольтных стабилизированных источников питания.

Если диод подключить обратно и постепенно повышать напряжение источника питания, в некоторый момент обязательно наступит обратный электрический пробой p-n перехода. Диод начнет пропускать ток и в обратном направлении, а переход окажется испорченным. Величина максимального допустимого обратного напряжения (Uобр.и.) широко разнится у различных типов полупроводниковых диодов и является очень важным параметром.

Вторым, не менее важным параметром можно назвать предельное значение прямого тока-Uпр. Этот параметр напрямую зависит от величины падения напряжения на переходе полупроводникового диода, материала полупроводника и теплообменных характеристик корпуса.

Заменим источник питания постоянного тока, на источник переменного тока, близкого напряжения.

Лампочка будет гореть, но более тускло, с небольшим мерцанием. Как известно, переменный ток частотой 50 гц. плавно меняет свое направление 50 раз в секунду. Диод пропустит полуволны направленные в его прямом направлении, и обрежет направленные в обратном.

На рисунке ниже, отрицательные полуволны для наглядности, изображены синим цветом, а положительные — красным.

Таким образом на лампочке окажется выпрямленное напряжение, пульсирующее с два раза, меньшей частотой. Результируещее напряжение при этом, окажется несколько ниже номинального. Для более качественного выпрямления переменного тока применяется так называемая, мостовая схема, из четырех диодов в однофазной цепи.

В трехфазной цепи переменного тока, положительная ветвь диодного мост выглядит вот — так:

Для надежной работы при проектировании источников питания выбираются полупроводниковые диоды с 50 % запасом по параметрам Uобр.и. и Jпр. Это связано с тем, что при работе на предельных токах надежность выпрямителя снижается, из-за нагрева p-n переходов.

Выходное напряжение обычного, нестабилизированного источника постоянного электрического тока подвержено колебаниям, из- за изменений напряжения на его входе. Рисунок. При подключении различных потребителей потребляющих разный ток напряжение так же меняется – возрастает при меньшей нагрузке, падает при большей.

Для нормальной работы электронных устройств необходимо это напряжение стабилизировать, сделав его величину независимой от вышеупомянутых факторов. Стабилитроны это полупроводниковые диоды, использующиеся для стабилизации напряжения в различных источниках питания. В отличии от обычных диодов работают при обратном включении, в режиме пробоя.

Это не наносит им вреда, если не превышается предел рассеивающей мощности, величина которого является производной, от падения напряжения на переходе и тока через него протекающего.

Итак, важнейшие параметры стабилитрона — это напряжение стабилизации и максимальный рабочий ток. Рабочий ток стабилитрона, ограничивается с помощью последовательно включенного резистора.

Трехэлектродные тиристоры(тринисторы) — полупроводниковые приборы, применяемые для регулирования мощности в сетях переменного и постоянного токов. Тиристор легко переходит из закрытого (непроводящего) состояния в открытое, при подаче на управляющий электрод открывающего импульса.

После того, как тиристор открыт, он остается в таком состоянии, пока протекающий через него ток не снизится до определенного порогового значения.

При работе в цепях переменного тока, подобное снижение происходит с каждой сменой полярности, при изменении фазы. В цепях постоянного тока, для отключения используются специальные схемы.

Помимо способности пропускать ток только в одном направлении, p-n переход обладает рядом других интересных особенностей. Например, способностью излучать(в т. ч. и в видимом диапазоне) при протекании тока в прямом направлении и генерировать эл. ток под воздействием излучения.

Эта особенность используется при реализации таких электронных элементов как светодиоды, фотодиоды и фотоэлементы. Кроме того, любой p-n переход обладает еще и электрической емкостью, а кроме того, возможностью ее изменять с помощью напряжения приложенного в обратном направлении.

Используя ее удалось создать такие полезные элементы как ВАРИКАПЫ.

Варикапы

Итак, p-n переход обладает электрической емкостью, величина которой зависит от его площади и ширины. Если подавать напряжение в обратном направлении — переход смещается, площадь остается неизменной, но ширина увеличивается. Емкость, при этом соответственно — уменьшается. Появляется возможность, изменяя величину приложенного напряжения, эту емкость регулировать. Электронные элементы(диоды, по сути) созданные на этом принципе называют — варикапами.

Варикапы используются в радиоаппаратуре вместо обычных конденсаторов переменной емкости для перестройки частоты колебательных контуров. Приемущество Применение варикапов позволило значительно снизить габариты и повысить эффективность блоков селекции радиоприемных устойств, относительно просто и недорого реализовать автоматизацию процессов настройки(проводимых ранее вручную).

Диоды Шоттки

Диод Шоттки(диод с барьером Шоттки) — полупроводниковый диод с малым падением напряжения(0,2—0,4 вольт) при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В диодах Шоттки в отличие от обычных диодов,вместо p-n перехода используется переход металл-полупроводник. Это дает ряд особых преимуществ — пониженное падение напряжения при прямом включении, очень маленький заряд обратного восстановления.

Последнее объясняется тем, что в отличии от обычных диодов диоды Шоттки работают только на основных носителях, а их быстродействие ограничивается лишь барьерной емкостью. Диоды Шоттки наиболее целесообразно использовать в быстродействующих импульсных цепях, для выпрямления малых напряжений высокой частоты, в высокочастотных смесителях, в ключах и коммутаторах.

Светодиоды

При протекании прямого тока через любой p-n переход(любого диода!) происходит генерация фотонов. Это является следствием циклической рекомбинации — восстановления атомов вещества в процессе перемещения основных носителей тока.
Электронные элементы служащие для генерации света и основанный на этом принципе называется соответственно — светодиодами. Светодиоды используют для индикации, передачи информации, в составе таких электронных приборов как оптопары.

К.П.Д. и яркость современных светодиодов настолько высоки, что на настоящий момент они являются наиболее перспективными источниками искуственного освещения. В зависимости от материала выбранного в качестве полупроводника светодиоды излучают на разных длинах волн.

ИК — диоды излучают в инфракрасной области, индикаторные и осветительные светодиоды в видимой части спектра(зеленые, красные, желтые и т. п.). Наиболее высоким К.П.Д. отличаются светодиоды излучающее в ультрафиолетовой области. Интересно, что как раз этот тип наиболее часто применяется для освещения.

Белый свет получается при использовании специального люминофора, преобразующего ультрафиолет.

Интенсивность излучения светодиода возрастает при увеличении тока протекающего через p-n переход, до определенного предела. После его достижения сетодиод выходит из строя. Поэтому, для нормальной работы необходимо ограничивать ток. Как правило, это реализуется с помощью последовательного подключения резистора.

Стабисторы

Существующие стабилитроны имеют ограничение по минимальному напряжению стабилизации(около 3 В). Что делать, если необходим источник стабилизированного напряжения до 3-х вольт? Использовать прямую ветвь Вольт — Амперной Характеристики диода(ВАХ). В области прямого смещения p-n-перехода напряжение на нем может иметь значение 0,72 В(в зависимости от материала полупроводника) и мало зависит от тока. Диоды специально используемые в этом качестве, называют — СТАБИСТОРАМИ.

Фотодиоды

Фотодиод — это светочувствительный полупроводниковый элемент с одним p-n переходом, обратный ток которого меняется в зависимости от уровня освещенности. Величина на которую происходит его изменение при этом, называется фототоком.

Фотодиоды используют для преобразования сигналов передаваемых в оптическом режиме в электрическую форму. Малая инерционость фотодиодов способствует приему передачи информации, с большой плотностью, например, в при передаче ее по оптоволоконным линиям. Кроме того фотодиоды могут использоваться в фотоприемниках дистанционного управления и т. д.

страницу

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

Источник: https://elektrikaetoprosto.ru/diod.html

Полупроводниковый диод

Что делает диод в схеме

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.

На стыке соединения P и N образуется PN-переход (PN-junction). Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя

Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя. То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.

Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.

Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания — плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода

Меняем полярность источника питания — плюс к аноду, минус к катоду. В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам.

PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки.

Через диод пошел ток ID.

Чтобы не возникло путаницы, напомню, что направление тока на электрических схемах обратно направлению потока электронов.

Недостатки реального полупроводникового диода

На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток, измеряемый в микро, или наноамперах ( в зависимости от модели прибора ).

В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде. В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении. Такое напряжение называется напряжение пробоя.

Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.

При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения Vϒ, для того чтобы диод начал хорошо проводить ток. Для кремниевых приборов Vϒ — это примерно 0.7V, а для германиевых — около 0.3V. Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода.

Источник: http://hightolow.ru/diode1.php

Используем параллельное соединение нескольких MAX40200 в качестве идеального диода

Что делает диод в схеме

14 января 2019

В данной статье рассматривается возможность использования нескольких интегральных схем (ИС) MAX40200 производства Maxim Integrated в параллельном подключении, а также их комбинированные параметры. Совместное применение нескольких ИС MAX40200 в роли идеального диода должно суммарно обеспечивать такие же характеристики, как и у одного более крупного устройства.

Общие рекомендации

MAX40200 – это идеальный диодный токовый переключатель с настолько малым падением напряжения прямого смещения на полупроводниковом переходе, что оно почти на порядок меньше, чем у диодов Шоттки. В MAX40200 реализована защита самой ИС и подключенных к выходу цепей от превышения температуры.

В отключенном состоянии (на выводе EN установлен низкий уровень) ИС блокирует прямое и обратное напряжения до 6 В, что делает ее пригодной для большинства низковольтных портативных электронных устройств. При обратном смещении диодного перехода MAX40200 ток утечки меньше, чем у многих сопоставимых диодов Шоттки.

MAX40200 работает с напряжением питания 1,55,5 В.

Идеальный интегральный диод MAX40200 имеет целый ряд преимуществ, среди которых:

  • незначительный ток в дежурном режиме – 7 мкА;
  • малая рассеиваемая мощность – всего 125 мкА при токе 1 А;
  • небольшое падение напряжения (примерно 18 мВ) для прямого тока – до 100 мА;
  • время переключения между прямым и обратным напряжением смещения – менее 100 мкс;
  • компактный корпус типа WLP с четырьмя выводами;
  • отпирающий/запирающий сигнал и тепловая защита.

Одной из важных особенностей ИС MAX40200, применяемой в качестве идеальных диодов, является использование MOSFET вместо обычной биполярной полупроводникой технологии, что позволяет, по сути, обеспечить для нагрузки гальваническую развязку по току. В данной статье исследуются характеристики нескольких параллельно соединенных ИС MAX40200.

Комплект из нескольких идеальных диодов должен обеспечивать те же характеристики, что и один более мощный диод. Для этого необходимо подобрать некоторое количество MAX40200. Например, можно использовать две параллельно соединенных ИС для системы на 2 А и, соответственно, четыре параллельных ИС для системы на 4 А.

Экспериментальные результаты

На рисунке 1 показаны четыре параллельно подключенных MAX40200, которые обеспечивают ток до 4 А. Если все ИС размещены близко друг к другу, то они имеют почти одинаковую температуру. И, следовательно, при одинаковой температуре должны иметь сходные характеристики.

На рисунке 2 показана зависимость падения прямого напряжения на ИС от протекающего постоянного тока.

На рисунке 3 сравниваются графики зависимости напряжения от тока для одной и четырех ИС MAX40200, подтверждающие, что характеристики для одного устройства MAX40200 и для четырех MAX40200 очень похожи.

Рис. 1. Типичная схема параллельного подключения диодов для увеличения нагрузочной способности цепи по току

Рис. 2. Зависимость прямого падения напряжения на MAX40200 от величины протекающего через них прямого тока

Рис. 3. Сравнение характеристик одного и четырех MAX40200

На рисунке 4 представлена схема с открытием и закрытием диодов для протекающего тока. На рисунках 5 и 6 представлены наблюдаемые результаты.

Рис. 4. Схема включения/выключения диодов

Рис. 5. Переходные процессы при открытом диоде (IFWD = 4 A)

Рис. 6. Переходные процессы при открытом/закрытом диоде (IFWD = 4 A)

Обратите внимание, что VIN на рисунке 5 представляет важный переходный процесс. Это связано с тем, что переходная характеристика меняющейся нагрузки источника питания используется при токе 04 А. Этот переходный процесс также виден на VLOAD.

На рисунке 7 представлена схема для измерения переходных характеристик на нагрузке. Здесь могут возникать условия для появления кратковременной повышенной нагрузки, когда проводящее устройство должно быть способным обеспечить необходимый ток с незначительными колебаниями VFWD. Это связано с тем, что VLOAD (V) обычно является источником питания для последующих цепей. На рисунке 8 показаны переходные процессы при изменяющейся нагрузке.

Рис. 7. Схема для контроля переходных процессов на нагрузке

Рис. 8. Переходные процессы на нагрузке (IFWD = 200 мА3,8 A)

В показанной на рисунке 9 схеме используется стандартный диод Шоттки CMCH5-20 (20 В, 5 А) вместе с четырьмя ИС MAX4200. Переходный процесс создан на участке VIN2, чтобы имитировать вариант схемы диодного «ИЛИ» для выбора пути тока.

Рис. 9. Диодная схема «ИЛИ» на основе стандартного диода и четырех устройств MAX40200

Когда VIN2 (3,3 В) меньше чем VIN1 (3,6 В), выбранным источником напряжения будет VIN1 и диод D1 оказывается обратносмещенным. Когда VIN2 будет более 3,6 В, D1 переходит в проводящее состояние, а U1U4 выключаются. На рисунках 10а и 10б отображены переходные характеристики схемы, представленной на рисунке 9.

Рис. 10. Переходные характеристики диодного соединения «ИЛИ»

Особенности трассировки печатной платы

На рисунке 11 показан типичный пример размещения дорожек на печатной плате для четырех параллельно соединенных ИС MAX40200. Как видно, цепи VDD и OUT на плате имеют медные площадки большого размера для уменьшения сопротивления и плотности тока. Обе цепи – VDD и OUT – размещены на верхней стороне платы без использования межслойных перемычек.

Поскольку физический механизм, обеспечивающий разделение тока нагрузки, является тепловым, параллельно соединенные идеальные диоды должны располагаться как можно ближе друг к другу. Учитывая вероятность повышенных токов или отсутствия параллельно подключенных компонентов, следует использовать печатную плату с наиболее толстым слоем меди. Это помогает лучше рассеивать выделяющееся тепло и уменьшает падение напряжения при высоких токах.

Обратите внимание, что корпус WLP оптимален для параллельного соединения нескольких устройств – этому способствуют его небольшие размеры и хорошая теплопроводность.

Рис. 11. Пример компоновки печатной платы

Как показано на рисунке 12, отдельные компоненты размещены с зазором в 12 мм, что гарантирует термическую равноценность всех ИС MAX40200. Параллельно соединенные ИС следует защитить от повышенного теплового воздействия внешних источников тепла. В противном случае все работающие при высокой температуре устройства будут иметь повышенное RON.

Неравномерное распределение температуры на плате под установленными ИС приводит к неравному разделению тока.

Не рекомендуется использовать переходные отверстия на основных проводящих участках платы (VDD или OUT), так как они добавляют паразитную индуктивность и увеличивают эффективное RON в основной цепи, таким образом повышая прямое падение напряжения (VFWD).

Рис. 12. Расстояние между размещенными рядом MAX40200

На рисунке 13 показана разница температур окружающей среды и платы с параллельно соединенными MAX40200. Обратите внимание что разность температур прямо пропорциональна прямому току нагрузки, проходящему через эти устройства. Данный результат был получен на плате, изображенной на рисунке 12.

Рис. 13. Температура печатной платы, изменяющаяся в зависимости от температуры окружающей среды

Почему так хорошо работают блоки из нескольких параллельных диодов

Сопротивление открытого канала MOSFET имеет резко положительный температурный коэффициент, который гарантирует, что более горячий MOSFET имеет большее сопротивление, чем более холодный, что приводит к протеканию через него немного повышенного тока.

Поэтому для двух таких MOSFET устанавливается тепловой баланс, соответствующий токовому балансу. Такой тепловой баланс гарантируется правильной компоновкой печатной платы. Вообще, плотное размещение компонентов является обоснованным.

Но если на плате есть другое устройство, которое рассеивает много тепла, то вызванный им тепловой градиент изменяет баланс распределения тока для параллельно соединенных идеальных диодов.

Разница между обычным корпусом и WPL – корпусом на базе подложки кристалла

Описанное выше исследование было проведено для корпуса WLP (Wafer Level Package) и является оптимальным для параллельного использования нескольких корпусов, поскольку очень малый размер, электрические характеристики этого типа интегральной упаковки и хорошая теплопроводность позволяют обеспечить достаточную термическую связь, чтобы сделать такой подход более удобным с практической точки зрения.

Из-за более высокого теплового сопротивления в корпусе типа SOT23 (обусловленного сопротивлением внутреннего соединения проводов) распределение тока и прямое падение напряжения (VFWD) –несколько хуже, чем в случае с корпусом WPL. Значительное влияние, даже при плотно размещенных корпусах типа SOT, оказывают и любые дополнительные перепады температур. Для идеальных диодов в таком корпусе рекомендуется понизить размеры до 75% от указанных в спецификации.

Заключение

Интегральный диод MAX40200 одинаково хорошо показал себя при параллельном соединении как двух, так и четырех ИС. И статические, и переходные характеристики показывают, что распределение тока является близким к поведению идеального диода, а переходные характеристики не ухудшаются. Несколько MAX40200 могут быть применены в тех случаях, когда требуется повышенный ток или пониженное падение напряжения.

Оригинал статьи

•••

Источник: https://www.compel.ru/lib/97208

Что такое диодный мост

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

статьи

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате.

Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах.

В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом.

Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех.

Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Устройство диода

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону.

Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием.

При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

Работа диодного моста

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны.

Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный.

Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное.

Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором.

В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Другие материалы по теме

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Источник: https://www.radioelementy.ru/articles/chto-takoe-diodnyy-most/

Упрощенные методы анализа схем с диодами с прямым смещением

В данной статье описываются два метода, которые мы используем для оценки токов и напряжений, присутствующих в цепи, которая включает в себя один или несколько диодов.

Что делает диодные схемы настолько сложными для анализа?

Мы уже обсуждали экспоненциальную зависимость тока от напряжения у диодов с прямым смещением. В этой статье мы узнаем, как использовать понимание этой связи тока и напряжения для выполнения простого анализа диодных схем.

Анализ диодных схем

Диоды усложняют анализ цепи, поскольку имеют нелинейную вольт-амперную характеристику. Другими словами, диод не имеет единственного числового значения, которое фиксирует математическую связь между током и напряжением.

Для резистора это единственное числовое значение является сопротивлением, и, следовательно, когда мы строим для резистора зависимость между током и напряжением, мы получаем прямую линию. С типовым кремниевым диодом, напротив, график нелинейной ВАХ выглядит как экспоненциальная кривая, показанная ниже.

Рисунок 1 – Вольт-амперная характеристика диода

Метод 1: Диод как ключ

Самый безболезненный (и наименее точный) способ анализа диодных цепей – сделать вид, что диод является ключом, управляемым напряжением, который работает для электрического тока как идеальный односторонний клапан. Если напряжение на этом «ключе» больше 0 В, ток течет свободно, без какого-либо сопротивления или падения напряжения. Если напряжение на «ключе» меньше или равно 0 В, ток не течет совсем.

Первым шагом в этом типе анализа является допущение, что диод находится в режиме проводимости или непроводимости. Любое предположение приведет к правильным результатам, поэтому просто сделайте свою лучшую догадку. Если предполагается, что диод находится в режиме проводимости, сохраните его на схеме, но обращайтесь с ним как куском провода. Если предполагается, что диод не проводит ток, замените его разрывом в цепи.

Теперь приступите к анализу и проверьте, что результаты имеют смысл. Если напряжение на предполагаемой разомкнутой цепи больше нуля, предположение было неверным – этот диод на самом деле проводит ток. Если ток, протекающий через проводящий диод, направляется от катода к аноду, то предположение было неверным – мы ограничиваем наш анализ диодами с прямой проводимостью, поэтому ток, протекающий от катода к аноду, указывает на то, что диод на самом деле не проводит ток.

Рисунок 2 – Схема вверху представляет исходную схему. В левом нижнем углу диод считается непроводящим и был заменен разрывом цепи. Справа внизу предполагается, что диод является проводящим и заменен на соединение с нулевым сопротивлением.

Этот метод может показаться довольно примитивным, но на самом деле это удобный способ выполнить быстрый предварительный анализ.

Это особенно полезно, когда в цепи присутствуют напряжения, которые достаточно велики по сравнению с обычными прямыми напряжениями диодов, или когда цепь содержит несколько диодов, и основной проблемой является определение, какие из них являются проводящими.

Метод 2: Подход с постоянным падением напряжения

Когда мы используем метод, описанный в предыдущем разделе, мы анализируем схему, как будто диоды идеальны, то есть они работают для тока как идеальные односторонние клапаны. Мы можем сделать этот метод намного более реалистичным, просто добавив идеальную батарею, которая представляет падение напряжения на диоде.

Батарея становится внутренней частью всего компонента диода, как показано на следующей схеме.

Рисунок 3 – Условное обозначение диода представляет идеальный диод, и батарея делает две вещи: она изменяет пороговое условие для проводимости и создает падение напряжения, которое присутствует, когда диод проводит ток.

Поскольку напряжение идеальной батареи является фиксированным и постоянным, этот метод анализа соответствует упрощенной модели диода, состоящей из двух дискретных состояний: если напряжение между анодом и катодом на диоде меньше 0,7 В, диод заперт и действует как разомкнутая цепь; если напряжение больше или равно 0,7 В, диод проводит ток с нулевым сопротивлением, но вызывает падение напряжения на 0,7 В (вам не обязательно использовать значение 0,7 В в качестве постоянного падения напряжения, но это стандартный выбор для типовых кремниевых диодов).

Понимание модели с постоянным падением напряжения

Если вам непонятно, как работает эта модель, обратите внимание, что полярность батареи противоположна направлению прямого тока, протекающего через диод.

Таким образом, ток не может течь от анода к катоду, пока прямое напряжение не превысит напряжение батареи, а это означает, что батарея создает пороговое условие для проводимости диода.

Также обратите внимание, что батарея не создает паразитный ток, который мешает нашему анализу схемы, потому что идеальный диод не позволяет току течь в направлении от катода к аноду.

После перехода в режим проводимости напряжение батареи становится обычным падением напряжения. Опять же, давайте рассмотрим полярность батареи.

Представьте себе резистор на месте батареи; мы представили бы падение напряжения на резисторе, нарисовав плюс слева и минус справа, и мы знаем, что эта ориентация указывает на падение напряжения при движении по пути прохождения тока.

Батарея имеет ту же ориентацию полярности, и, таким образом, она также представляет падение напряжения, в этом случае вызванное диодом, а не резистора.

Далее: более сложные методы анализа диодных схем

Мы рассмотрели экспоненциальную зависимость тока от напряжения у диода и два метода упрощения анализа схем, заменив эту экспоненциальную зависимость чем-то более простым. В следующей статье мы обсудим более сложные методы анализа.

Оригинал статьи:

Теги

Анализ цепейДиодПрямое смещение диода

Источник: https://radioprog.ru/post/811

Диод шоттки маркировка на корпусе

Что такое диод Шоттки? Это полупроводниковый элемент, название которого соответствует фамилии знаменитого физика и изобретателя, работавшего в Германии. Специфика диода Шоттки заключается в минимальном снижении напряжения.

Эта низкая динамика наблюдается при прямом введении компонента в цепь.

На практике используется при обратном напряжении с небольшими значениями (в среднем 3-10В), при возможности применять в промышленности с гораздо большими величинами значение может достигать до 1200В.

Внешний вид

Разновидности диодов Шоттки

Все полупроводниковые элементы, работающие по принципу барьера Шоттки, делятся по мощности на:

Сдвоенный диод

На рисунке показан сдвоенный элемент, являющий собой по сути два элемента. Они расположены в едином корпусе, в одно целое соединены катодом или анодом. В этом случае чаще всего имеется три вывода диода. При идентичных параметрах собранных таким образом элементов обеспечивается надежность работы всего устройства, в первую очередь, за счет единой температуры.

Особенности и принцип работы диода Шоттки

Как работает диод Шоттки? В чем принципиальные отличия его работы от аналогов с другим барьерным переходом?

Устройство диода Шоттки имеет отличие от других элементов того же назначения использованием барьером в виде перехода между металлом и полупроводником. У аналогов обычно работает с этой же целью p-n переход.

Так в первом случае имеется односторонняя электропроводность. В зависимости от того, какой конкретно металл выбран для перехода в элементе, различаются и характеристики элемента. Чаще всего выбирается кремний, возможно применение арсенида галлия.

Реже могут применяться сплавы вольфрама, платины и других материалов.

Кремний — самый распространенный и надежный элемент в диодах Шоттки, с ним конструкция надежно работает в условиях высокой мощности. Изделие стабильнее в работе, чем другие полупроводниковые аналоги, а простота изготовления и устройства диода Шоттки делают его очень доступным вариантом.

Металл-полупроводник: принцип работы перехода

Структура элемента

Принцип работы диода Шоттки основан на особенностях барьера. Эффект Шоттки при контакте компонентов, из которых выполнен непосредственно полупроводник и металл заключается в образовании бедного электронами участка. Последний имеет вентильные характеристики, аналогичные p-n взаимодействию. Контактный слой останавливает носителей заряда. По сравнению с другими типами полупроводниковых вентилей такое решение обладает:

  • минимальным обратным током;
  • стремящейся к нулю собственной емкостью;
  • обратным напряжением самой низкой допустимой величины;
  • при прямом включении — меньшим снижением напряжения (до 0.5 В в сравнении с 2-3 В в случае аналога).

В переходной зоне нет лишних носителей заряда. Благодаря этому там не возникают диффузии и рекомбинации, что наблюдается в контактных слоях p-n перехода. Так обеспечивается минимальная собственная емкость диода Шоттки, что делает возможным с большей эффективностью использовать его в устройствах с высокими и сверхчастотами.

Преимущества и недостатки диода Шоттки

Несомненными преимуществами подобных полупроводниковых изделий являются:

  • надежное удерживание электротока;
  • минимальная емкость барьера обеспечивает длительную эксплуатацию;
  • быстродействие.

Высокие показатели обратного тока — основной недостаток устройств с диодом Шоттки. Из-за этого при скачке обратного тока диод может выйти из строя.

Важно! При внедрении подобных диодов в цепи с высокой мощностью электротока создается риск теплового пробоя.

Маркировка и схема диода Шоттки

На схеме преподносится почти как стандартный полупроводниковый диод, но имеются и отличия.

Обозначения диодов

В маркировке используется набор символов, они всегда обозначаются сбоку изделия. Используются международные стандарты, но в зависимости от производителя маркировка может отличаться.

Сочетание цифр и букв на корпусе не всегда понятно, но в радиотехнических справочниках всегда можно найти точную расшифровку.

Работа в ИБП

Подобные элементы очень широко используются в импульсных схемах, в приборах для стабилизации напряжения, а также в блоках питания. Преимущественно выбираются сдвоенные элементы, имеющие в одном корпусе общий катод.

Использование в ИБП сдвоенного диода Шоттки с общим катодом является признаком высокого качества и надежности блока питания.

При этом сгоревший элемент относится к частым и типовым неисправностям импульсного устройства. Нерабочее состояние возникает при:

  • утечке на корпус;
  • электроприборе.

Встроенная защита приводит к блокировке ИБП в обоих случаях. При утечке возможно присутствие незначительных нестабильных пульсаций напряжения на выходе, а также слабые «подергивания» вентилятора. В случае пробоя напряжения в блоке питания полностью исключены. Так можно определить вероятную причину нерабочего состояния диода Шоттки, но для окончательного решения понадобится диагностика.

Для диагностики следует выполнить шаги:

  1. Выпаять элемент и схемы.
  2. Осмотреть на предмет механических повреждений, присутствия следов разрушительных химических реакций.
  3. Выполнить проверку мультиметром.

Проверка мультиметром

Отличие процедуры от диагностики обычных диодов заключается в необходимости демонтажа сборки или элемента, иначе проверить его состояние будет очень сложно. Утечку диагностировать сложнее.

При использовании типичного мультиметра может отображаться полная работоспособность элемента при работе прибора в режиме «диод». Потому лучше устанавливать режим «омметр» и заменить элемент при демонстрации сопротивления.

Показатель 5 кОм не устанавливает точно неисправность диода, но лучше считать его подозрительным и выполнить замену. Доступная стоимость диодов Шоттки позволяет сделать это практически в любой момент без особых трат.

Источник: https://crast.ru/instrumenty/diod-shottki-markirovka-na-korpuse

Отличие светодиода от диода

21 июня 2015.
Категория: Лампы.

Светодиод – это разновидность диода, электронного прибора обладающего односторонней проводимостью электрического тока. Диод, или как его еще называют выпрямительный диод, обладая своими уникальными свойствами изменять электрическое сопротивление в зависимости от полярности приложенного к нему напряжения, применяют для выпрямления переменного тока. Конструкция выпрямительного диода  может строиться как на базе радиоэлектронных ламп, так и на базе полупроводниковых кристаллов.

Принцип действия светодиода

В отличие от выпрямительного диода светодиод выполняется только на базе полупроводниковых кристаллов. Принцип действия у обоих электронных приборов основан на инжекции (диффузии) электронов и дырок в области p-n перехода, то есть области контакта двух полупроводников с разным типом проводимости.

Под инжекцией подразумевается переход избыточных электронов из области n-типа в область p-типа, а также переход избыточных дырок из области p-типа в область n-типа, где существует их недостаток. В результате инжекции в обеих областях, возле границы перехода, образуются не скомпенсированные слои электронов и дырок. На стороне n-перехода слой дырок, а на стороне p-перехода слой электронов.

Эти слои образуют так называемый запирающий слой, внутреннее электрическое поле которого препятствует дальнейшей инжекции (рисунок 1).

Рисунок 1. Запирающий слой p-n перехода

Наступает определенное равновесие.

При подаче отрицательного напряжения к области кристалла с проводимостью n-типа и положительного напряжения к области кристалла с проводимостью p-типа под действием внешнего электрического поля направленного против запирающего поля открывается путь основным носителям через p-n переход. Запирающий слой становится тоньше и его сопротивление уменьшается. Происходит массовое перемещение свободных электронов из n-области в p-область и дырок из p-области в n-область. В цепи возникает электрический ток (рисунок 2).

Рисунок 2. Включение в прямом направлении

Если подать обратное напряжение, то запирающий слой становится толще и электрическое сопротивление значительно увеличивается. Электрический ток при подаче обратного напряжения практически отсутствует (рисунок 3).

Рисунок 3. Включение в обратном направлении

Нужно помнить, что допустимая величина обратного напряжения у светодиодов, при которой не происходит его пробоя, значительно ниже, чем у выпрямительных диодов. Зачастую эта величина равна максимальному значению прямого напряжения.

Поэтому, включая светодиод в электрическую цепь переменного тока, не следует забывать про амплитудное значение напряжения. Для синусоидального напряжения частотой 50 Гц его амплитудное значение в 1,41 раза больше чем действующее.

Такие включения используются редко, так как назначение светодиода все-же «светиться», а не «выпрямлять». Обычно светодиод включается на постоянное напряжение.

1. Полупроводники

При перемещении свободных электронов через p-n переход электроны и дырки излучают фотоны по причине их перехода с одного энергетического уровня на другой. Не все полупроводниковые материалы эффективно излучают свет при инжекции. Например, диоды, выполненные из кремния, германия, карбида кремния, свет практически не излучают. А диоды, выполненные из арсенида галлия или сульфида цинка, обладают наилучшими излучающими способностями.

Излучаемый свет не когерентен и лежит в узком спектре. В связи с этим у каждого светодиода свой спектр волн, со своей длиной и частотой, которые могут быть видны или не видны человеческому глазу.

В качестве примера применения светодиодов с не видимым спектром излучения, можно привести светодиоды, применяемые в пультах дистанционного управления любой современной радио-электронной аппаратуры. Для того чтобы увидеть излучение возьмите пульт дистанционного управления и любой сотовый телефон имеющий фото-видео камеру.

Переведите телефон в режим съемки видео, направьте объектив камеры на передний край пульта и нажмите на пульте любую из кнопок. При этом на экране телефона вы будете наблюдать свечение светодиода.

Спектр излучения зависит от химического состава кристалла полупроводника. Каждый спектр излучения имеет свой цвет. Поэтому светодиоды излучающие свет в видимом человеческому глазу спектре, воспринимаются разноцветными, красными, зелеными, синими.

История создания светодиодов

Свечение твердотельного диода впервые обнаружил британский экспериментатор Генри Раунд (Henry Round). В 1907 году, проводя свои исследовательские работы он случайно заметил, что вокруг точечного контакта работающего диодного детектора возникает свечение. Однако вывода о практическом применении этого явления им сделано не было.

Через несколько лет, в 1922 году, Олег Владимирович Лосев во время своих ночных радиовахт, точно также как и Генри раунд, случайно стал наблюдать за возникающим свечением кристаллического детектора. Для получения устойчивого свечения кристалла, он подавал на точечный контакт диодного детектора напряжение от гальванической батарейки и тем пропускал через него электрический  ток. Это была первая попытка найти практическое применение работы светодиода.

В 1951 году в США начались исследовательские работы по разработке «полупроводниковых лампочек», действие которых было основано на «эффекте Лосева». В 1961 году, была открыта и запатентована технология изготовления инфракрасного светодиода, авторами которой стали Роберт Байард и Гари Питтман.

Тем не менее, технология получилась перспективной и получила дальнейшее развитие.

Следующим шагом в развитии светодиодной техники явилось изобретение желтого светодиода. Бывший ученик Ника Холоньяка — Джордж Крафорд, в 1972 году вместе с изобретением желтого светодиода, увеличил в 10 раз яркость  свечения красных и красно-оранжевых светодиодов.

Практически одновременно с этими изобретениями, в начале 70-х годов, были получены светодиоды зеленого цвета. Свое применение они нашли в калькуляторах, наручных часах, электронных приборах, световых указателях и дорожных светофорах.

Значительного увеличения светового потока, до 1 люмена (Лм), красных, желтых и зеленых светодиодов смогли достичь только к 1990 году.

В 1993 году, японский инженер, работник компании Nichia, Суджи Накамура (Shuji Nakamura), смог получить первый светодиод высокой яркости который излучал синий цвет. Это изобретение стало революцией в развитии светодиодной техники, так как были получены светодиоды трех основных цветов, красного, зеленого и синего. С этого момента можно было получить свечение любого цвета, включая белого.

В 1996 году появились первые белые светодиоды. Они состояли из двух светодиодов – синего и ультрафиолетового с люминофорным покрытием.

Светодиоды белого цвета

К 2011 году были построены конструкции светодиодов белого свечения, которые обеспечивали светоотдачу до 210 Лм/Вт. Каким же образом ученые и инженеры добились таких успехов. Для этого рассмотрим известные на сегодняшний день способы получения светодиодов белого цвета.

Известно, что все цвета и оттенки складываются из трех основных цветов – красного, зеленого, синего. Белый свет не исключение. Существует четыре варианта получения излучения светодиодами белого цвета (рисунок 4).

Рисунок 4. Получение светодиодов излучающих белый свет

Первый вариант – использование в конструкции светодиода трех отдельных p-n переходов излучающих красный, зеленый и синий свет. При этом варианте для каждого p-n перехода требуется свой собственный источник питания. Регулируя напряжение на каждом p-n переходе добиваются создания белого свечения со своим оттенком (цветовой температурой).

Второй вариант – при этом варианте в конструкции светодиода используется один p-n переход синего свечения, покрытый желтым или желто-зеленым люминофором. Такой вариант применяется чаще всего, так как для работы светодиода требуется один источник питания. Однако цветовые характеристики этого светодиода уступают характеристикам светодиодов получаемых другими способами.

Третий вариант – здесь также используется один p-n переход синего свечения, но покрытый слоями люминофоров двух цветов – красного и зеленого. Конструкции светодиодов, изготавливаемые данным способом, позволяют получить лучшие цветовые характеристики.

Четвертый вариант – конструкция светодиода при этом варианте строится на основе ультрафиолетового светодиода покрываемого тремя слоями люминофоров красным, зеленым и синим. Конструкции таких светодиодов самые не экономичные, так как преобразование коротковолновых ультрафиолетовых лучей в длинноволновые видимые лучи, во всех трех слоях люминофора, сопровождается потерями энергии.

Значение светоотдачи сверхярких светодиодов белого цвета в 210 Лм/Вт пока было достигнуто только в лабораторных условиях. Максимальная же светоотдача ярких светодиодов доступных для общего применения не превышает 120 Лм/Вт. Такие светодиоды очень дороги и используются редко. Основная масса светодиодов имеет светоотдачу 60 – 95 Лм/Вт.

Светоотдача светодиода, так же как и любого другого источника света работающего под действием электрической энергии, зависит от величины проходящего через него тока. Чем больше ток, тем больше светоотдача.

Но также как и любого другого источника света, большая часть энергии в нем превращается в тепло. Нагрев светодиодов сопровождается падением их светоотдачи.

В связи с этим производители вынуждены использовать массивные металлические корпуса для охлаждения кристалла и рассеивания выделяющегося тепла в окружающую среду. Такие меры позволяют несколько повысить эффективность его использования.

Если сравнивать энергоэффективность различных источников света то выяснится, что светодиоды имея коэффициент полезного действия 40 – 45% являются самыми экономичными. К примеру, лапы накаливания имеют КПД равный 2 – 5%, люминесцентные лампы – 15 – 25%, газоразрядные лампы высокого давления – 24 – 30%.

Режим работы светодиода, когда кристалл имеет температуру близкую к комнатной, несомненно, благоприятно сказывается на его сроке службы. При таких режимах работы светодиод способен работать до 50000 часов не теряя светоотдачи.

Если ставится цель повысить светоотдачу увеличивая ток, то это само собой пагубно сказывается на его сроке службы. В первую очередь к концу срока службы значительно падает светоотдача. Падение происходит плавно и достигает 70% от начального значения.

  Реле поворотов под светодиоды своими руками

Во вторых увеличивается вероятность его полного выхода из строя.

Этот факт говорит о том, что выбирая светильники и лампы при разработке проектов освещения необходимо каждый раз оценивать какой из них более выгоден с экономической точки зрения.

Источник: https://1000eletric.com/otlichie-svetodioda-ot-dioda/

Устраняем заблуждения относительно внутреннего диода MOSFET

Проектировщики мощных импульсных цепей на основе полупроводниковых приборов с широкой запрещенной зоной часто допускают ошибки, связанные с режимом переключения транзисторов, которые потом дорого им обходятся.

Порой нам приходится сталкиваться с неприятной для самолюбия правдой о собственных познаниях в области силовой электроники. Поэтому автору этой статьи хотелось бы попросить читателей попытаться хотя бы на время стать полностью самокритичными!

У вас неверные представления о внутреннем диоде в мощных полевых транзисторах? Вы не одиноки в этом среди множества остальных специалистов. У любого из нас есть похожие истории о том, с чего начиналась эта путаница.

MOSFET обладают весьма полезным свойством, которое заключается в том, что когда VGS = 0, транзистор все еще проводит ток в обратном направлении. Происходит это из-за образования между истоком и стоком транзистора паразитного диода, называемого также внутренним диодом (body diode). Работая с силовой электроникой, мы обнаруживаем, что MOSFET могут пропускать ток в обратном направлении через внутренний диод, а у IGBT такой возможности нет (из-за отсутствия подобного диода).

В англоязычной литературе этот эффект уже привыкли называть просто «body diode». И все было прекрасно на протяжении десятилетий, пока не появились полупроводниковые приборы с расширенной запрещенной зоной.

Благодаря измененной полупроводниковой топологии у некоторых из них нет паразитных диодов. Но они по-прежнему имеют то же самое полезное свойство, что и MOSFET: они обладают проводимостью в обратном направлении, когда VGS = 0.

В частности, этим свойством отличаются GaN-транзисторы типа E-HEMT (High Electron Mobility Transistor).

Вот после этого и возникла путаница.

Я и мои коллеги неоднократно встречались с инженерами, которые предполагают, что поскольку GaN-приборы не имеют паразитных диодов, то они не проводят ток в обратном направлении. Мы неоднократно обсуждали эту тему, беседы велись в подобном ключе:

Инженер: Таким образом, у GaN-транзисторов нет паразитного диода?

Я: Да, верно.

Инженер: Значит, они не могут проводить ток в обратном направлении при отсутствии управляющего напряжения между затвором и истоком? Поэтому мне нужно добавить в схему встречно-параллельный диод?

Я: Это не совсем так.

Инженер оставался в недоумении.

Пришло время обновить используемые в данном случае понятия, чтобы правильно ссылаться на канал обратной проводимости, понимая, почему для этого не нужны внутренние body-диоды, и даже оценить преимущества, которые обеспечивают GaN-транзисторы, не имеющие таких диодов.

 Что же на самом деле происходит

Внутри GaN E-HEMT есть так называемый вторичный канал двумерного электронного газа (2DEG), сформированный на гетероэпитаксиальной структуре AlGaN/GaN. Он обеспечивает чрезвычайно высокую плотность заряда и подвижность носителей.

Для работы в режиме обогащения затвор, по сути, обедняет 2DEG под этим электродом при нулевом или отрицательном смещении. Положительное смещение на затворе притягивает электроны в обедненную область и открывает канал 2DEG.

При прямой проводимости (первый квадрант на рисунке 1) такое поведение во многом напоминает MOSFET, но с улучшенными характеристиками переключения.

В третьем квадранте (когда VGS = 0, а VDS отрицательное) устройство ведет себя не так, как MOSFET. Проще говоря, отрицательное смещение на выводе стока создает градиент напряжения в канале полупроводникового устройства. Это, в свою очередь, приводит к тому, что обедненная область под затвором имеет отрицательный электрический потенциал относительно электрода затвора.

Другими словами, сток GaN HEMT будет вести себя как исток, а исток будет действовать как сток. Как только разность потенциалов между затвором и каналом превышает пороговое напряжение (VTH_GD), транзистор включается. Этот эффект иногда называют «самокоммутацией» (self-commutation).

Поскольку транзистор проводит ток I через резистивный канал Ron, падение напряжения D вычисляется по формуле 1:

D = VTH_GD + IRon   (1)

Если транзистор выключен с отрицательным напряжением, сток должен быть более отрицательным, прежде чем возникнет самокоммутация, а общее падение напряжения DT будет вычисляться по формуле 2:

DT= VTH_GD+ (-VGS) + IRon   (2)

Рис. 1. На диаграмме из указаний GaN Systems по применению GN001 показаны графики IR для различных значений VGS

Теперь займемся поиском истины. Стоит отметить, что закреплению ошибочного представления о канале обратной проводимости способствовали сами производители GaN-транзисторов.

Многие годы они использовали два основных подхода для объяснения характеристик своих изделий при нулевом обратном смещении VGS. Во-первых, некоторые производители просто продолжали пользоваться термином «body diode».

Они объясняли это тем, что GaN-транзисторы имеют некий магический диод с нулевым QRR (заряд обратного восстановления диода) и необычайно высоким падением напряжения.

Это не истина, но скорее удобная фикция, позволяющая разработчикам почти всегда создавать удачные схемные решения.

Во-вторых, некоторые производители публикуют подробную документацию с характеристиками своих полупроводниковых приборов, ожидая, что инженеры внимательно прочитают эти руководства, осознают возможные ошибки и способы их устранения, прежде чем рассматривать технологию. Это достойный одобрения подход, хотя он и упускает из виду тот факт, что инженеры — такие же люди, которым трудно изменить прочно укоренившиеся привычки.

Как и следовало ожидать, результатом этих подходов стала дезориентация пользователей. До сих пор специалисты технической поддержки из компании GaN Systems встречают схемы заказных проектов, где к нашим транзисторам подключают встречно-параллельные диоды.

Преимущества при отсутствии внутреннего диода

В конце концов, обратная проводимость при отсутствии внутреннего диода имеет некоторые реальные преимущества.

Во-первых, отсутствие этого диода означает отсутствие QRR (заряда для обратного восстановления диода), что делает GaN-транзистор пригодным для мощной полумостовой схемы коммутации.

Это, в свою очередь, означает отсутствие дополнительных проблем с жесткой коммутацией из-за обратного восстановления диода, что приводит к гораздо более высоким потерям на переключение.

К тому же отсутствие в GaN-транзисторах эффекта обратного восстановления позволяет использовать новые высокоэффективные схемные решения, такие как PFC (управление коэффициентом мощности) с безмостовым выходным каскадом на двух транзисторах.

Во-вторых, как видно из рисунка 2, при отсутствии этого диода нет всплеска шума при его включении. Все это упрощает разработку цепей защиты от ЭМП и повышает быстродействие схемы, что особенно полезно в компактных конструкциях, где и преобразование мощности, и обработка сигнала выполняются на одной и той же небольшой печатной плате.

Наконец, есть преимущества в ограничениях dv/dt и надежности. MOSFET имеют механизм отказа, вызываемый быстрым нарастанием напряжения на встроенном в MOSFET диоде (dv/dt). Пока этот диод находится в состоянии обратного восстановления, на нем увеличивается напряжение «сток-исток». Такое поведение может вызвать ложное включение внутреннего паразитного биполярного NPN транзистора, что в итоге разрушает структуру MOSFET.

Рис. 2. Осциллограммы сигналов переключения типичного MOSFET и E-HEMT иллюстрируют некоторые различия в поведении при включении, вызываемые встроенным диодом

В действительности, при отсутствии встроенного диода имеется только один недостаток: повышенное падение обратного напряжения (рисунок 3). В GaN E-HEMT падение обратного напряжения включает пороговое напряжение и напряжение на резистивном элементе, возникающее из сопротивления канала.

Падение напряжения в GaN E-HEMT, рассчитанном на 650 В, может достигать 3 В при протекании больших токов. Это больше чем эквивалентное падение в MOSFET.

Такое повышенное обратное напряжение может снизить эффективность типичной полумостовой схемы за счет увеличенных потерь при переключении («мертвое время»).

Правда, эти потери можно понизить, сократив длительность паузы между переключениями. Режим ускоренного переключения GaN E-HEMT обычно упрощает задачу сокращения паузы между открытым и закрытым состояниями ключей. Кроме того, есть такие корпусные решения от компании GaN Systems как GaNPx, они отличаются малой паразитной индуктивностью, что обеспечивает крутые фронты переключающих импульсов с сокращенным мертвым временем.

Рис. 3. Различия между обратной проводимостью в MOSFET и GaN-HEMT

Как правило, выигрыш в эффективности усиления при реализации GaN-схем получают от сокращения мертвого времени, что значительно перевешивает потери от повышенного обратного напряжения. Сегодня такое повышение эффективности реализовать проще, поскольку драйверы и контроллеры нового поколения все чаще поддерживают сокращение мертвого времени.

Также стоит отметить, что короткое мертвое время выгодно и по другим причинам. Например, в аудиоусилителях класса D укороченное мертвое время приводит к снижению гармонических искажений и повышению качества звука.

Есть немало учебных пособий, способных помочь тем, кто хочет избавиться от ошибочных представлений о роли встроенных диодов и намерен создавать оптимизированные по эффективности и стоимости схемы. Понимание особенностей поведения встроенного диода и четкое представление рабочих режимов GaN-устройств помогают устранить путаницу в голове, по крайней мере, до тех пор, пока очередная эволюция в сфере силовой электроники не приведет к появлению новой терминологии.

Источник: https://www.terraelectronica.ru/news/6381

Как работает полупроводниковый диод

В полупроводнике “n” типа имеются свободные электроны, частицы со знаком минус, а в полупроводнике типа “p” наличествуют ионы с положительным зарядом, их принято называть «дырки». Подключим диод к источнику питания в обратном включении, то есть на анод подадим минус, а на катод плюс.

Между зарядами разной полярности возникает притяжение и положительно заряженные ионы тянутся к минусу, а отрицательные электроны дрейфуют к плюсу источника питания. В “p-n” переходе нет носителей зарядов, и отсутствует движение электронов. Нет движения электронов – нет электрического тока.

Диод закрыт.

При прямом включении диода происходит обратный процесс. В результате отталкивания однополярных зарядов все носители группируются в зоне перехода между двумя полупроводниковыми структурами. Между частицами возникает электрическое поле перехода и рекомбинация электронов и дырок. Через “p-n” переход начинает протекать электрический ток. Сам процесс носит название «электронно-дырочная проводимость». При этом диод открыт.

Возникает вполне естественный вопрос, как из одного полупроводникового материала удаётся получить структуры, обладающие различными свойствами, то есть полупроводник “n” типа и полупроводник “p” типа.

Этого удаётся добиться с помощью электрохимического процесса называемого легированием, то есть внесением в полупроводник примесей других металлов, которые и обеспечивают нужный тип проводимости. В электронике используются в основном три полупроводника. Это германий (Ge), кремний (Si) и арсенид галлия (GaAs).

Наибольшее распространение получил, конечно, кремний, так как запасы его в земной коре поистине огромны, поэтому стоимость полупроводниковых приборов на основе кремния весьма невысока.

При добавлении в расплав кремния ничтожно малого количества мышьяка (As) мы получаем полупроводник “n” типа, а легируя кремний редкоземельным элементом индием (In), мы получаем полупроводник “p” типа.

Присадок для легирования полупроводниковых материалов достаточно много.

Например, внедрение атомов золота в структуру полупроводника увеличивает быстродействие диодов, транзисторов и интегральных схем, а добавление небольшого числа различных примесей в кристалл арсенида галлия определяет цвет свечения светодиода.

Типы диодов и область их применения.

Семейство полупроводниковых диодов очень большое. Внешне они очень похожи за исключением некоторых групп, которые отличаются конструктивно и по ряду параметров. Наиболее распространены следующие модификации полупроводниковых диодов:

  • Выпрямительные диоды. Предназначены для выпрямления переменного тока.

  • Стабилитроны. Обеспечивают стабилизацию выходного напряжения.

  • Диоды Шоттки. Предназначены для работы в импульсных преобразователях и стабилизаторах напряжения. Например, в блоках питания персональных компьютеров.

  • Импульсные диоды отличаются очень высоким быстродействием и малым временем восстановления. Они применяются в импульсных блоках питания и в другой импульсной технике. К этой группе можно отнести и туннельные диоды.

  • СВЧ диоды имеют определённые конструктивные особенности и работают в устройствах на высоких и сверхвысоких частотах.

  • Диоды Ганна. Они предназначены для генерирования частот до десятков гигагерц.

  • Лавинно-пролётные диоды генерируют частоты до 180 ГГц.

  • Фотодиоды имеют миниатюрную линзу и управляются световым излучением. В зависимости от типа могут работать как в инфракрасном, так и в ультрафиолетовом диапазоне спектра.

  • Светодиоды. Излучают видимый свет практически любой длины волны. Спектр применения очень широк. Рассматриваются как альтернатива электрическим лампам накаливания и других осветительных приборов.

  • Твёрдотельный лазер так же представляет собой полупроводниковый диод. Спектр применения очень широк. От приборов военного назначения до обычных лазерных указок, которые легко купить в магазине. Его можно обнаружить в лазерных считывателях CD/DVD-плееров, а также лазерных уровнях (нивелирах), используемых в строительстве. Чтобы не говорили сторонники лазерной техники, как ни крути, лазер опасен для зрения. Так что, будьте внимательны при обращении с ним.

Также стоит отметить, что у каждого типа диодов есть и подгруппы. Так, например, среди выпрямительных есть и ультрабыстрые диоды. Могут называться как Ultra-Fast Rectifier, HyperFast Rectifier и т.п. Пример – ультрабыстрый диод с малым падением напряжения STTH6003TV/CW (аналог VS-60CPH03).

Это узкоспециализированный диод, который применяется, например, в сварочных аппаратах инверторного типа. Диоды Шоттки являются быстродействующими, но не способны выдерживать больших обратных напряжений, поэтому вместо них применяются ультрабыстрые выпрямительные диоды, которые способны выдерживать большие обратные напряжения и огромные прямые токи.

При этом их быстродействие сравнимо с быстродействием диодов Шоттки.

Параметры полупроводниковых диодов

Параметров у полупроводниковых диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются.

Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр. – допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.

  • U обр. – допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

    Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине. Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр. – прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер.

    Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается.

    Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.

  • I обр. – обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.

  • U стаб. – напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/diod.html

ЭТО ИНТЕРЕСНО:  Что это такое Бесснабберный симистор
Понравилась статья? Поделиться с друзьями:
Электро Дело
Можно ли резать пленочный теплый пол

Закрыть