Измерение потенциала проводника
Как уже неоднократно отмечалось, напряженность поля внутри проводника равна нулю. Из этого следует, что проводник эквипотенциален по всему объему, то есть во всех точках проводника потенциалы одинаковы, значит, разность потенциалов двух любых точек проводника равна:
Значение потенциала, равное во всех точках проводника называют потенциалом проводника.
Допустим, что мы имеем изолированный, заряженный проводник. Заряд этого проводника создаёт электрическое поле в веществе вокруг проводника. Примем нормировку потенциала на ноль в бесконечности. В таком случае потенциал проводника выразим как:
где путь интегрирования начинается в любой точке проводника и заканчивается в бесконечности.
Как измерить потенциал проводника
Прибором для измерения разности потенциалов между двумя проводниками может служить электроскоп, листочки или стрелка которого окружены металлической оболочкой, при этом его называют электрометром. При этом один проводник соединяют с шариком электрометра, другой с оболочкой (рис. 1).
Стрелка электрометра примет потенциал тела (1), а оболочка — потенциал тела (2). Возникнет электрическое поле, силовые линии которого идут от оболочки к стрелке или в обратном направлении. При этом угол отклонения стрелки определен напряженностью и конфигурацией возникшего поля.
При этом поле внутри замкнутой оболочки из металла ни как не зависит от внешнего поля. Оно определяется разностью потенциалов между оболочкой и стрелкой.
- Курсовая работа 490 руб.
- Реферат 240 руб.
- Контрольная работа 200 руб.
Значит, угол отклонения стрелки есть мера разности потенциалов тел (1) и (2).
Подобный прибор можно градуировать в вольтах. Очень часто в качестве второго тела используют Землю, то есть оболочку электрометра заземляют. В таком случае электрометр покажет потенциал тела (1) относительно Земли.
Рис. 1
Не имеет принципиального значения, какое из тел заземлять, оболочку или шарик. От этого зависит только направление силовых линий. Угол отклонения стрелки в обоих случаях будет одним. Понятно, что электрометр может служить измерительным прибором для потенциала тела, только если его стрелка защищена не полностью от внешних полей.
Но при этом связь стрелки с внешними телами должна быть слабой. Для этого отверстие в оболочке металлического экрана (шарика) и наружная часть стержня, которая соединяет шарик со стрелкой, должны быть небольшими. В противном случае, на этих частях электрометра могут возникать существенные заряды, которые индуцируются посторонними внешними телами.
Они вносили бы искажения при переходе на стрелку, и разность потенциалов измерялась бы неверно. Провода, которые соединяют тела (1) и (2) по такой же причине должны быть тонкими. Используя электрометр легко убедиться, что поверхность проводника всегда является эквипотенциальной.
Если соединять электрометр с разными точками заряженного проводника, то отклонение стрелки его изменяться не будет.
Метод электрического зонда
Для измерения разности потенциалов в жидком или газообразном диэлектрике используют метод электрического зонда. Зонд состоит из небольшого металлического тельца (например, шарик или диск), которое соединено проволочкой с шариком электрометра. Оболочка электрометра заземлена. Зонд помещают в точку диэлектрика, потенциал которой измеряют.
При этом электрометр покажет разность потенциалов между стрелкой и оболочкой (тоже самое: между зондом и Землей). При этом необходимо заметить, что зонд существенно изменяет потенциал точки, в которую он помещается. Причиной этому являются индукционные заряды, которые появляются на зонде и шарике электрометра.
Поэтому для того, чтобы была возможность истинного измерения потенциала надо, чтобы при внесении зонда в исследуемую точку зонд и соединенный с ним шарик электроскопа приняли потенциал, который был в нашей точке до внесения зонда. Это достигается если убрать индукционные заряды с зонда. Так, например, в капельном зонде телом служит маленькое ведерко, которое наполняется проводящей жидкостью.
В дне ведерка есть очень маленькое отверстие. Капли жидкости, стекающие из этого отверстия, уносят индукционный заряд, который возникает на зонде. Заряды противоположного знака переходят на стрелку электрометра. Угол отклонения стрелки изменяется. В стационарном состоянии, когда зонд не заряжен, потенциал зонда равен потенциалу окружающего пространства.
Так как зонд соединен проводником с шариком электрометра, то потенциал шарика измерительного прибора будет таким же. В результате электрометр покажет потенциал, который необходимо измерить. Индукционные заряды удаляют и другими методами, например, используют «пламенный зонд».
В этом случае зондом является кончик металлической проволоки, который выступает из диэлектрической трубки, которая играет роль газовой горелки. Из-за высокой температуры пламени воздух вокруг нее слегка ионизируется и становится проводящим. Ионы уносят индукционные заряды с зонда с потоком газа. Похожая идея реализуется и в радиоактивном зонде.
Пример 1
Задание: Опыты показали, что земной шар заряжен отрицательно. В среднем напряженность поля около самой поверхности Земли составляет 130$\frac{В}{м}$. Разность потенциалов уровней у ног человека и у головы составляет примерно 200 В. Почему при таких условиях человек не поражается электрическим током?
Решение:
Человеческое тело является хорошим проводником. Как и любой другой проводник, тело человека сильно искажает электрическое поле. При помещении тела человека происходит перераспределение зарядов на поверхности его тела, но это перемещение идет короткий промежуток времени и оно очень слабо.
Силовые линии поля подходят к поверхности тела перпендикулярно, а эквипотенциальные поверхности огибают его, так же как металлический предмет. Весь объем тела человека эквипотенциален, то есть все точки тела имеют равные потенциалы. Напряженность поля зависит от разности потенциалов поля, если разность потенциалов равна нулю, значит и напряженность поля нуль.
Поэтому человек не чувствует разности потенциалов электрического поля Земли.
Пример 2
Задание: Если коснуться электроскопа пальцем, то он разрядится. Будет ли разряжаться электроскоп, если недалеко от него поместить изолированное от Земли заряженное тело?
Решение:
Если к электроскопу поднести заряженное тело, то на стержне прибора возникнут индуцированные заряды. Причем на внешнем конце заряды будут иметь противоположный знак по отношению к зарядам тела, на внутреннем конце такой же знак, что и заряд тела. Следовательно, электроскоп не разрядится на электрометре останется индуцированный заряд.
Пример 3
Задание: Измерения электрическим зондом показывают, что изменение потенциала электрического поля Земли изменяется в среднем на 100 В на каждый метр подъема от поверхности. Вычислите заряд Земли, если считать, что поле создается этим зарядом. Радиус Земли принять равным R=6400 км.
Решение:
Изменение модуля напряженности поля можно связать c изменением потенциала Земли в нашей задаче с помощью формулы:
\[\left|E\right|=\frac{\triangle \varphi }{\triangle x}(3.1)\]
судя по размерности в нашей задаче указан именно $\left|E\right|$.
По теореме Остроградского — Гаусса запишем, что:
Источник: https://spravochnick.ru/fizika/elektrostatika/izmerenie_potenciala_provodnika/
Электрическое поле: определение, классификация, характеристики
Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.
Определение
Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.
Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].
Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.
Рис. 1. Определение понятия «электрическое поле»
Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.
Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.
Характерные физические свойства:
- реагирует на присутствие заряженных частиц;
- взаимодействует с магнитными полями;
- является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
- поддаётся определению только по результатам наблюдения за проявлением действия.
Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.
Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.
Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.
Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.
Классификация
Электрические поля бывают двух видов: однородные и неоднородные.
Однородноеэлектрическое поле
Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.
В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).
Рис. 2. Пример однородности
Неоднородное электрическое поле
Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию.
Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3).
Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.
Рис. 3. Электрический диполь Рис. 4. Вихревые поля
Характеристики
Основными характеристиками являются:
- потенциал;
- напряжённость;
- напряжение.
Потенциал
Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ=W/q′. называется потенциалом электрического поля в этой точке.
Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией, называется потенциалом рассматриваемого электрического поля в данной точке.
Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.
Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ∞=0.
Напряжённость поля
Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.
Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.
Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.
Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости
Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.
Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.
Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов
Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.
Для общего случая распределения зарядов имеем:
Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:
- электростатического;
- дипольного;
- системы и одноимённых зарядов;
- однородного поля.
Рис. 7. Линии напряжённости различных полей
Напряжение
Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.
Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.
Методы обнаружения
Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.
Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.
Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.
Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.
Методы расчета электрического поля
Для расчётов параметров используются различные аналитические или численные методы:
- метод сеток или конечных разностей;
- метод эквивалентных зарядов;
- вариационные методы;
- расчёты с использованием интегральных уравнений и другие.
Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.
Использование
Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.
На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.
Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.
К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.
Источник: https://www.asutpp.ru/elektricheskoe-pole.html
Потенциал электрического поля
В механике взаимодействие тел характеризует силой или потенциальной энергией. Электрическое поле, которое обеспечивает взаимодействие между электрически заряженными телами, также характеризуют двумя величинами. Напряженность электрического поля — это силовая характеристика.
Теперь введем энергетическую характеристику — потенциал. С помощью этой величины можно будет сравнивать между собой любые точки электрического поля. Таким образом, потенциал как характеристика поля должен зависеть от значения заряда, содержащегося в этих точках.
Поделим обе части формулы A = W1 — W2 на заряд q, получим
Отношение W/q не зависит от значения заряда и принимается за энергетическую характеристику, которую называют потенциалом поля в данной точке. Обозначают потенциал буквой φ.
Потенциал электрического поля φ — скалярная энергетическая характеристика поля, которая определяется отношением потенциальной энергии W положительного заряда q в данной точке поля к величине этого заряда:
Единица потенциала — вольт:
Подобно потенциальной энергии значения потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Чаще всего в электродинамике за нулевой уровень берут потенциал точки, лежащей в бесконечности, а в электротехнике — на поверхности Земли.
С введением потенциала формулу для определения работы по перемещению заряда между точками 1 и 2 можно записать в виде
Поскольку при перемещении положительного заряда в направлении вектора напряженности электрическое поле выполняет положительную работу A = q (φ1 — φ2 )> 0, то потенциал φ1 больше чем потенциал φ2 . Таким образом, напряженность электрического поля направлена в сторону уменьшения потенциала.
Если заряд перемещать с определенной точки поля в бесконечность, то работа A = q (φ — φ∞ ). Поскольку φ∞ = 0, то A = qφ. Таким образом, величина потенциала φ определенной точки поля определяется работой, которую выполняет электрическое поле, перемещая единичный положительный заряд из этой точки в бесконечность,
Если электрическое поле создается точечным зарядом q, то в точке, лежащей на расстоянии r от него, потенциал вычисляют по формуле
По этой формуле рассчитывают и потенциал поля заряженного шара. В таком случае r — это расстояние от центра шара до выбранной точки поля. С этой формулы видно, что на одинаковых расстояниях от точечного заряда, который создает поле, потенциал одинаков. Все эти точки лежат на поверхности сферы, описанной радиусом r вокруг точечного заряда. Такую сферу называют эквипотенциальной поверхностью.
Эквипотенциальные поверхности — геометрическое место точек в электрическом поле, которые имеют одинаковый потенциал, — один из методов наглядного изображения электрических полей.
Эквипотенциальные поверхности электрических полей, созданных точечными зарядами разных знаков
Силовые линии всегда перпендикулярны эквипотенциальных поверхностей. Это означает, что работа сил поля по перемещению заряда по эквипотенциальной поверхности равна нулю.
В случае наложения электрических полей, созданных несколькими зарядами, потенциал электрического поля равен алгебраической сумме потенциалов полей, созданных отдельными зарядами, φ = φ1 + φ2 + φ3 . Эквипотенциальные поверхности таких систем имеют сложную форму. Например, для системы из двух одинаковых по значению одноименных зарядов эквипотенциальные поверхности имеют вид, изображенный на рисунке. Эквипотенциальные поверхности однородного поля явлются плоскостями.
Эквипотенциальные поверхности: а — поля двух одинаковых зарядов б — однородного поля
Разность потенциалов
Практическое значение имеет не сам потенциал в точке, а изменение (разница) потенциала φ1 — φ2 , которое не зависит от выбора нулевого уровня отсчета потенциала. Разность потенциалов φ1 — φ2 еще называют напряжением и обозначают латинской буквой U. Тогда формула для работы по перемещению заряда приобретает вид
Напряжение U — это физическая величина, определяемая работой электрического поля по перемещению единичного положительного заряда между двумя точками поля,
Единица разности потенциалов (напряжения), как и потенциала, — вольт,
Поскольку работа сил поля по перемещению заряда зависит только от разности потенциалов, то в случае перемещения заряда с первой эквипотенциальной поверхности на другую (потенциалы которых соответственно φ1 и φ2 ) выполненная полем работа не зависит от траектории этого движения.
Связь напряженности электрического поля с напряжением
Из формул A = Eqd и A = qU можно установить связь между напряженностью и напряжением электрического поля: Ed = U. С этой формулы следует:
- чем меньше меняется потенциал на расстоянии d, тем меньше есть напряженность электрического поля;
- если потенциал не меняется, то напряженность равна нулю;
- напряженность электрического поля направлена в сторону уменьшения потенциала.
Поскольку
то именно из этой формулы и выводится еще одна единица напряженности — вольт на метр,
Источник: https://www.polnaja-jenciklopedija.ru/nauka-i-tehnika/potentsial-elektricheskogo-polya.html
Работа в электрическом поле. Потенциал
Когда пробный заряд q перемещается в электрическом поле, можно говорить о работе, совершаемой в данный момент электрическими силами. Для малого перемещения ∆l→ формулу работы можно записать так: ∆A=F·∆l·cos α=Eq∆lcos α=Elq∆l.
Рисунок 1.4.1. Малое перемещение заряда и работа, совершаемая в данный момент электрическими силами.
Теперь посмотрим, какую работу по перемещению заряда совершают силы в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени. Такое поле еще называют электростатическим. У него есть важное свойство, о котором мы поговорим в этой статье.
Определение 1
При перемещении заряда из одной точки электростатического поля в другую работа сил электрического поля будет зависеть только от величины этого заряда и положением начальной и конечной точки в пространстве. Форма траектории при этом не имеет значения.
У гравитационного поля есть точно такое же свойство, что неудивительно, поскольку соотношения, с помощью которых мы описываем кулоновские и гравитационные силы, одинаковы.
Исходя из того, что форма траектории не имеет значения, мы можем также сформулировать следующее утверждение:
Определение 2
Когда заряд в электростатическом поле перемещается по любой замкнутой траектории, работа сил поля равна 0. Поле, обладающее таким свойством, называется консервативным, или потенциальным.
Ниже приведена иллюстрация силовых линий в кулоновском поле, образованных точечным зарядом Q, а также две траектории перемещения пробного заряда q в другую точку. Символом ∆l→ на одной из траекторий обозначается малое перемещение. Запишем формулу работы кулоновских сил на нем:
∆A=F∆lcos α=Eq∆r=14πε0Qqr2∆r.
Следовательно, зависимость существует только между работой и расстоянием между зарядами, а также их изменением Δr. Проинтегрируем данное выражение на интервале от r=r1 до r=r2 и получим следующее:
A=∫r1r2E·q·dr=Qq4πε01r1-1r2.
Рисунок 1.4.2. Траектории перемещения заряда и работа кулоновских сил. Зависимость от расстояния между начальной и конечной точкой траектории.
Результат применения данной формулы не будет зависеть от траектории. Для двух различных траекторий перемещения заряда, указанных на изображении, работы кулоновских сил будут равны. Если же мы изменим направление на противоположное, то и работа также поменяет знак. А если траектории будут соединены, т.е. заряд будет перемещаться по замкнутой траектории, то работа кулоновских сил будет нулевой.
Вспомним, как именно создается электростатическое поле. Оно представляет собой сочетание точечных разрядов.
Значит, согласно принципу суперпозиции, работа результирующего поля, совершаемая при перемещении пробного заряда, будет равна сумме работ кулоновских полей тех зарядов, из которых состоит электростатическое поле.
Соответственно, величина работы каждого заряда не будет зависеть от того, какой формы траектория. Значит, и полная работа не будет зависеть от пути – важно лишь местоположение начальной и конечной точки.
Поскольку у электростатического поля есть свойство потенциальности, мы можем добавить новое понятие – потенциальная энергия заряда в электрическом поле. Выберем какую-либо точку, поместим в нее разряд и примем его потенциальную энергию за 0.
Определение 3
Потенциальная энергия заряда, помещенного в любую точку пространства относительно нулевой точки, будет равна той работе, которая совершается электростатическим полем при перемещении заряда из этой точки в нулевую.
Обозначив энергию как W, а работу, совершаемую зарядом, как A10, запишем следующую формулу:
Wp1=A10.
Обратите внимание, что энергия обозначается именно буквой W, а не E, поскольку в электростатике E – это напряженность поля.
Потенциальная энергия электрического поля является определенной величиной, которая зависит от выбора точки отсчета (нулевой точки). На первый взгляд в таком определении есть заметная неоднозначность, однако на практике она, как правило, не вызывает недоразумений, поскольку сама по себе потенциальная энергия физического смысла не имеет. Важна лишь разность ее значений в начальной и конечной точке пространства.
Определение 4
Чтобы вычислить работу, которая совершается электростатическим полем при перемещении точечного заряда из точки 1 в точку 2, нужно найти разность значений потенциальной энергии в них. Путь перемещения и выбор нулевой точки значения при этом не имеют.
A12=A10+ A02= A10 – A20 =Wp1 – Wp2.
Если мы поместим заряд q в электростатическое поле, то его потенциальная энергия будет прямо пропорциональна его величине.
Опиши задание
Понятие потенциала электрического поля
Определение 5
Потенциал электрического поля – это физическая величина, значение которой можно найти, разделив величину потенциальной энергии электрического заряда в электростатическом поле на величину этого заряда.
Он обозначается буквой φ. Это важная энергетическая характеристика электростатического поля.
φ=Wpq.
Если мы умножим величину заряда на разность потенциалов начальной и конечной точки перемещения, то мы получим работу, совершаемую при этом перемещении.
A12=Wp1–Wp2=qφ1–qφ2=q(φ1 – φ2).
Потенциал электрического поля измеряется в вольтах (В).
1 В=1 Дж1 Кл.
Разность потенциалов в формулах обычно обозначается Δφ.
Чаще всего при решении задач на электростатику в качестве нулевой берется некая бесконечно удаленная точка. Учитывая это, мы можем переформулировать определение потенциала так:
Определение 6
Потенциал электростатического поля точечного заряда в некоторой точке пространства будет равен той работе, которая совершается электрическими силами тогда, когда единичный положительный заряд удаляется из этой точки в бесконечность.
φ∞=A∞q.
Чтобы вычислить потенциал точечного заряда на расстоянии r, на котором размещается бесконечно удаленная точка, нужно использовать следующую формулу:
φ=φ∞=1q∫r∞Edr=Q4πε0∫r∞drr2=14πε0Qr
С помощью нее мы также можем найти потенциал поля однородно заряженной сферы или шара при r≥R, что следует из теоремы Гаусса.
Изображение электрических полей с помощью эквипотенциальных поверхностей
Чтобы наглядно изобразить электростатические поля, кроме силовых линий используются поверхности, называемые эквипотенциальными.
Определение 7
Эквипотенциальная поверхность (поверхность равного потенциала) – это такая поверхность, у которой во всех точкам потенциал электрического поля одинаков.
Эквипотенциальные поверхности и силовые линии на изображении всегда находятся перпендикулярно друг другу.
Если мы имеем дело с точечным зарядом в кулоновском поле, то эквипотенциальные поверхности в данном случае являются концентрическими сферами. На изображениях ниже показаны простые электростатические поля.
Рисунок 1.4.3. Красным показаны силовые линии, а синим – эквипотенциальные поверхности простого электрического поля. На первом рисунке изображен точечный заряд, на втором –электрический диполь, на третьем – два равных положительных заряда.
Если поле однородное, то его эквипотенциальные поверхности являются параллельными плоскостями.
В случае малого перемещения пробного заряда q вдоль силовой линии из начальной точки 1 в конечную точку 2 мы можем записать такую формулу:
ΔA12=qEΔl=q(φ1–φ2)=–qΔφ,
где Δφ=φ1-φ2 – изменение потенциала. Отсюда выводится, что:
E=-∆φ∆l, (∆l→0) или E=-dφdl.
Это соотношение передает связь между потенциалом поля и его напряженностью. Буквой l обозначена координата, которую следует отсчитывать вдоль силовой линии.
Зная принцип суперпозиции напряженности полей, которые создаются электрическими разрядами, мы можем вывести принцип суперпозиции для потенциалов:
φ=φ1+φ2+φ3+
Источник: https://zaochnik.com/spravochnik/fizika/elektricheskoe-pole/rabota-v-elektricheskom-pole-potentsial/
III. Основы электродинамики
Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.
Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.
Принцип суперпозиции
Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности
Как определить знак потенциала
При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.
На рисунке изображены линии напряженности. В какой точке поля потенциал больше?
Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.
Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.
Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.
Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.
Зависимость напряженности и потенциала от расстояния
Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен
Напряжение в природе
Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В. Напряжение в телефонных сетях может достигать 60 В.
Электрический угорь способен создавать напряжение до 650 В.
Энергия взаимодействия зарядов*
Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1
Аналогично Тогда энергия взаимодействия двух точечных зарядов
Энергия взаимодействия n зарядов
Источник: http://fizmat.by/kursy/jelektrichestvo/potencial
Работа сил электростатического поля — справочник студента — МБОУ
Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.
Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.
Бесплатная оценка заказа!