Что понимается под глухозаземленной нейтралью

Правила устройства электроустановок (ПУЭ). Глава 7.7. Торфяные электроустановки (Издание шестое), от 15 апреля 1976 года

Что понимается под глухозаземленной нейтралью

Переход к Содержаниюдокумента осуществляется по ссылке

Область применения. Определения

7.7.1. Настоящая главаПравил распространяется на вновь сооружаемые, реконструируемые иежегодно сдаваемые в эксплуатацию торфяные электроустановки до 10кВ.

Электрооборудованиеторфяных электроустановок кроме требований настоящей главы должноотвечать требованиям разд.1-6в той мере, в какой они не изменены настоящей главой.

7.7.2. Под торфянымиэлектроустановками в настоящих Правилах понимаются подстанции(стационарные и передвижные), воздушные и кабельные линииэлектропередачи и присоединенная к ним электрическая частьэлектрифицированных машин для подготовки торфяных месторождений,добычи, сушки, уборки и погрузки торфа.

7.7.3. Территориейторфяного предприятия считается территория, закрепленная запредприятием, в границах его перспективного развития.

Территория торфяногопредприятия, за исключением рабочих поселков, деревень ижелезнодорожных станций, относится к ненаселенной местности.

Электроснабжение

7.7.4. Электрические сетиторфяных электроустановок до 1 кВ и выше должны иметь изолированнуюнейтраль. Допускается заземление нулевых точек в цепях измерения,сигнализации и защиты напряжением до 1 кВ.

Распределительные сети, ккоторым присоединены электроприемники полевых гаражей,железнодорожных станций и разъездов, насосных станций, а такжеэлектроприемники, не относящиеся к торфяным электроустановкам, норасположенные на территории торфяных предприятий (электроприемникипоселков, мастерских, заводов по торфопереработке, перегрузочныхстанций), как правило, следует выполнять трехфазнымичетырехпроводными с глухозаземленной нейтралью напряжением 380/220В.

7.7.5. Присоединениепостороннего потребителя к электрическим сетям торфяныхэлектроустановок выше 1 кВ с изолированной нейтралью допускаетсялишь в виде исключения по согласованию с руководством торфяногопредприятия и при условии, что суммарный емкостный токприсоединения, включая ответвление к электроустановке потребителя,составляет не более 0,5 А.

7.7.6. Электроприемникиторфяных электроустановок в отношении надежности электроснабженияследует относить ко II категории (см. гл.1.2).

Защита

7.7.7. На подстанциях, откоторых в числе других потребителей получают питание передвижныеторфяные электроустановки выше 1 кВ, на каждой отходящей линиидолжна быть установлена селективная защита, отключающая линию привозникновении на ней однофазного замыкания на землю.

Должна бытьвыполнена вторая ступень защиты, действующая при отказе селективнойзащиты линии.

Вкачестве второй ступени должна применяться защита oт повышениянапряжения нулевой последовательности, действующая с выдержкойвремени 0,5-0,7 с на отключение секции или системы шин,трансформатора, подстанции в целом.

7.7.8. Торфяныеэлектроустановки до 1 кВ, получающие питание от трансформатора сизолированной нейтралью, должны иметь защиту от замыкания на землюс мгновенным отключением установки в случае однофазного замыканияназемлю.

Подстанции

7.7.9. Стационарныетрансформаторные подстанции (в том числе столбовые), применяемые научастках добычи торфа, должны состоять из комплектных блоков,допускающих многократный монтаж и демонтаж. Эти подстанции должныиметь исполнение для наружной установки. Аппаратуру до 1 кВ следуетустанавливать в металлических шкафах.

7.7.10. Территориястационарной трансформаторной подстанции (в том числе столбовой)должна быть ограждена забором высотой 1,8-2,0 м. Ограждение можетбыть выполнено из колючей проволоки.

Ворота ограждения должныбыть снабжены замком. На них должен быть повешен предупреждающийплакат.

Источник: http://docs.cntd.ru/document/1200001652

Рекомендации Рекомендации по проектированию заземления и защитных мер электробезопасности в силовых электроустановках напряжением до 1 кВ промышленных предприятий

Что понимается под глухозаземленной нейтралью

МИНИСТЕРСТВО МОНТАЖНЫХ И СПЕЦИАЛЬНЫХ
СТРОИТЕЛЬНЫХ РАБОТ СССР

НАУЧНО ПРОИЗВОДСТВЕННОЕ
ОБЪЕДИНЕНИЕ «ЭЛЕКТРОМОНТАЖ»

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ПРОЕКТНЫЙ И ПРОЕКТНО-КОНСТРУКТОРСКИЙ ИНСТИТУТ

ПО КОМПЛЕКСНОЙ ЭЛЕКТРИФИКАЦИИ ПРОМЫШЛЕННЫХ ОБЪЕКТОВ

ТЯЖПРОМЭЛЕКТРОПРОЕКТ

РЕКОМЕНДАЦИИ
ПО ПРОЕКТИРОВАНИЮ ЗАЗЕМЛЕНИЯ И ЗАЩИТНЫХ МЕР ЭЛЕКТРОБЕЗОПАСНОСТИ В СИЛОВЫХ ЭЛЕКТРОУСТАНОВКАХ НАПРЯЖЕНИЕМ ДО 1 кВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

МОСКВА 1989

СОГЛАСОВАНО:Начальник техническогоотделаЛ.Б. Годгельф Главный инженер институтаМ.Г. ЗименковНачальник отделапромышленных установокБ.А. ЛесковОтветственный исполнительО.А. Шаблинская

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ

При проектировании электротехнической части любого предприятия решаются вопросы выбора защитных мер электробезопасности для обслуживающего персонала от поражения его электрическим током.

Вопрос электробезопасности обслуживания электроустановок имеет первостепенное значение и рассматривается в ПУЭ в отдельных его главах и в специальной главе 1.7. «Заземление и защитные меры электробезопасности».

Защитные меры электробезопасности должны быть выполнены в полном объеме, предусмотренном в ПУЭ.

Настоящие Рекомендации составлены в соответствии с главой 1.7. и другими главами ПУЭ шестого издания и имеют своей целью помочь проектировщикам представить объем работ по защитным мерам электробезопасности при проектировании электротехнической части силового электрооборудования напряжением до 1 кВ промышленных предприятий, что особенно важно для молодых специалистов.

В Рекомендациях рассматриваются вопросы защитных мер электробезопасности для электроустановок до 1 кВ. Защитные меры электробезопасности для электроустановок выше 1 кВ рассмотрены только в той части, где они влияют на выполнение защитных мер электробезопасности электроустановок до 1 кВ.

В Рекомендациях не рассматриваются вопросы защитных мер электробезопасности для электроприемников электроосвещения, а также для молниезащиты зданий и сооружений.

Теоретические вопросы, касающиеся физической суности явлений, связанных с защитными мерами электробезопасности в электроустановках до 1 кВ промышленных предприятий приведены в работе «Заземление и зануление в электроустановках до 1000 В», Свердловское отделение ВНИПИ Тяжпромэлектропроект, С475-2, Свердловск, 1985.

Рабочая документация электротехнической части должна содержать подробное описание защитных мер с помощью которых обеспечивается электробезопасность. Замыкание поврежденной фазы может быть на корпус электрооборудования, непосредственно на землю и на различные металлические части.

1. ОБЩАЯ ЧАСТЬ

1.1. При проектировании электротехнической части промышленного предприятия решаются вопросы защитных мер электробезопасности для обслуживающего персонала, т.е. принимаются меры для защиты людей от поражения электрическим током.

1.2. Для правильного решения, какие конкретно защитные меры электробезопасности должны быть приняты для электроустановок в зданиях и наружных электроустановок промышленного предприятия необходимо:

1.2.1. Определить все помещения здания согласно ПУЭ, главе 1.1 в отношении опасности поражения людей электрическим током, которые классифицируются как:

1) помещения без повышенной опасности;

2) помещения с повышенной опасностью;

3) особо опасные помещения;

4) наличие наружных электроустановок;

5) наличие взрывоопасных зон в помещениях и в наружных электроустановках.

1.2.2. Знать, какие электроустановки и электрические сети (режимы нейтралей и величины токов замыкания на землю) имеются в здании, так как в зависимости от этого определяются конкретные меры электробезопасности, которые надо принимать, а именно:

1) электроустановки до 1 кВ, сеть с изолированной нейтралью;

2) электроустановки до 1 кВ, сеть с глухозаземленной нейтралью;

3) электроустановки выше 1 кВ, сеть с изолированной нейтралью;

4) электроустановки выше 1 кВ, сеть с эффективно заземленной нейтралью.

1.2.3. Для здания, в котором размещено распределительное устройство (РУ) 6-10 кВ, принимающее электроэнергию от ГПП на промышленное предприятие, или расположены трансформаторные подстанции, принимающие непосредственно электроэнергию на промышленное предприятие, выяснить какую электрическую сеть имеет электроустановка выше 1 кВ ГПП от которой подается питание.

Если на ГПП установлены трансформаторы с обмотками на первичной стороне 110 или 220 кВ и сеть с эффективно заземленной нейтралью, то необходимо знать, имеется ли металлическая связь между ГПП и зданием, принимающим от ГПП электроэнергию.

Такая связь может быть:

1) через металлические оболочку и броню питающих кабелей;

2) через металлические трубопроводы различного назначения;

3) через кабельные конструкции по которым проложены питающие кабели.

Через металлические связи будут соединены заземляющие устройства ГПП и здания, принимающего электроэнергию, и может быть вынос высокого потенциала в здание промышленного предприятия на время срабатывания защиты от однофазных КЗ на землю в сети 110 или 220 кВ ГПП.

1.2.4. Вынос потенциала — распространение за пределы электроустановки по естественным или искусственным заземлителям или по заземляющим проводникам напряжения относительно зоны нулевого потенциала, при котором возможное напряжение прикосновения превышает допустимые значения по ГОСТ 12.1.038-82. «Предельно допустимые уровни напряжений прикосновения и токов».

Зона нулевого потенциала — зона земли, расположенная за пределами зоны растекания тока замыкания на землю, в которой электрический потенциал, обусловленный током замыкания на землю условно принят равным нулю.

1.2.5. Если возможен вынос высокого потенциала в здание промышленной установки необходимы меры по его выравниванию снаружи этого здания.

Внутри здания выравнивание потенциалов обеспечивается наличием разветвленной сети заземления и зануления, а также большого числа электрически связанных между собой и с сетью заземления и зануления металлических частей строительного и производственного назначения, трубопроводов и т.д. Чем более насыщено здание оборудованием, тем эффективнее осуществляется выравнивание потенциалов.

Если даже исключен вынос потенциала с заземляющего устройства ГПП с эффективно заземленной нейтралью, но расстояние между заземлителями здания промышленного предприятия и заземлителями ГПП менее 20 м (см. п. 6.1 Рекомендаций) надо предусматривать выравнивание потенциалов (заземлители здания промышленного предприятия подвержены влиянию заземляющего устройства ГПП).

1.3. Возможные защитные меры электробезопасности:

1) заземление;

2) зануление;

3) выравнивание потенциалов;

4) уравнивание потенциалов;

5) защитное отключение;

6) разделяющий трансформатор (защитное разделение сети);

7) двойная или усиленная изоляция:

8) малое напряжение.

1.4. Основными защитными мерами электробезопасности на промышленных предприятиях является заземление или зануление корпусов электрооборудования, выравнивание и уравнивание потенциалов.

1.5. Заземление или зануление корпусов электрооборудования следует выполнять:

1.5.1. В помещениях без повышенной опасности — при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока.

1.5.2. В помещениях с повышенной опасностью, особо опасных и наружных электроустановках — при напряжении выше 42 В переменного тока и выше 110 В постоянного тока.

1.5.3. Во взрывоопасных зонах в помещениях и в наружных электроустановках — при всех напряжениях переменного и постоянного тока.

ЭТО ИНТЕРЕСНО:  Что такое фаза и ноль простыми словами

1.5.4. В пожароопасных зонах всех классов в помещениях — с учетом классификации помещения в отношении опасности поражения электрическим током по п. 1.2.1. Рекомендаций в котором находится пожароопасная зона.

1.5.5. В пожароопасных зонах наружных электроустановок согласно п. 1.5.2. Рекомендаций.

1.6. Для электроустановок до 1 кВ в сети с изолированной нейтралью, а также для электроустановок выше 1 кВ в сети с изолированной нейтралью в качестве защитной меры электробезопасности принимается защитное заземление, т.е. преднамеренное соединение с землей корпусов электрооборудования, нормально не находящихся под напряжением.

Назначение защитного заземления — создание преднамеренного соединения (заземляющего устройства) с такой величиной сопротивления между корпусом электрооборудования и землей, при котором через тело человека при его прикосновении к корпусу электрооборудования, оказавшемуся под напряжением, будет проходить ток, не угрожающий жизни и здоровью человека (человек присоединяется к соединению параллельно).

1.7. Для электроустановок до 1 кВ в сети с глухозаземленной нейтралью в качестве защитной меры электробезопасности применяется зануление, т.е. преднамеренное соединение корпусов электрооборудования, нормально не находящихся под напряжением, с глухозаземленной нейтралью питающего трансформатора.

Назначение зануления — при замыкании поврежденной фазы на корпус электрооборудования или на нулевой защитный проводник создать ток однофазного КЗ такой величины, который будет автоматически отключаться аппаратом защиты, установленном в голове аварийного участка. Цепь для КЗ: петля фаза электроприемника — нуль трансформатора.

1.8. Заземляющее устройство — совокупность конструктивно объединенных (электрически) заземлителей и заземляющих проводников.

1.9. Заземлители — проводники, электрически соединенные между собой, находящиеся непосредственно в соприкосновении с землей (создают электрическое соединение с землей).

1.10. Заземляющий проводник — проводник, соединяющий заземлители с заземляемыми частями электроустановки.

В сетях до 1 кВ с изолированной нейтралью и в сетях выше 1 кВ с изолированной нейтралью — заземляющие проводники.

В сетях до 1 кВ с глухозаземленной нейтралью — нулевые защитные проводники. Нулевой защитный проводник — проводник, соединяющий зануляемые части с глухозаземленной нейтралью трансформатора.

1.11. При монтаже заземляющего устройства должны быть выполнены требования СНиП 3.05.06-85 «Электротехнические устройства», раздел «Заземляющие устройства».

1.12. Изолированная нейтраль трансформатора — нейтраль не присоединенная к заземляющему устройству (обмотка, соединенная в треугольник) или присоединенная к нему через устройства, имеющие большое сопротивление (обмотка, соединенная в звезду).

1.13. Глухозаземленная нейтраль трансформатора — нейтраль присоединенная к заземляющему устройству непосредственно или через малое сопротивление, например, через трансформаторы тока (обмотка, соединенная в звезду или зигзаг).

1.14. При невозможности выполнения заземления или зануления, удовлетворяющих гл. 1.7. ПУЭ, или если это представляет значительные трудности по технологическим причинам, допускается обслуживание электрооборудования с изолирующих площадок.

Изолирующие площадки должны быть выполнены таким образом, чтобы прикосновение к токоведущим частям, а также к корпусам электрооборудования было возможно только с площадки. При этом должна быть исключена возможность одновременного прикосновения к выше указанным частям электрооборудования и металлическим частям зданий, сооружений, оборудования, трубопроводам, не относящихся к электроустановкам.

Применение изолирующих площадок для обслуживания электрооборудования — ПУЭ, п. 1.7.45.

Источник: http://www.gostrf.com/normadata/1/4294847/4294847064.htm

Глухозаземленная нейтраль: принцип действия, устройство, схемы

Что понимается под глухозаземленной нейтралью

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.

Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром.

Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ).

При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

UF1= UF2=UF3;

UL1=UL2=UL3.

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети.

ЭТО ИНТЕРЕСНО:  Как влияет сопротивление на напряжение

Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения.

К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
  • I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ).Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются.Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации.Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена.Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

Источник: https://www.asutpp.ru/gluhozazemlennaja-nejtral.html

Вечный спор — зануление и заземление

Очень много споров и обсуждений возникает на тему заземления и зануления, а также целесообразности применения этих систем в различных установках. Как раз разницу между этими двумя системами безопасности необходимо знать и понимать для избежания в последующем опасных ситуаций. Основная проблема, как правило, заключается в том, что не все до конца понимают, чем отличается зануление от заземления, но мы попытаемся разобраться в этом.

Зануление

С ПУЭ (правила эксплуатации электроустановок) известно, что по мерам электробезопасности электроустановки (до 1000 Вольт) разделяют на системы, в которых нейтраль (нулевой проводник) глухо заземлена, и где нейтраль изолирована.

При глухо заземленной нейтрали нулевую точку трансформатора или генератора соединяют с заземляющим устройством напрямую или через очень малое сопротивление:

С изолированной нейтралью – схема не подключается к заземляющим элементам или подключается через большое сопротивление и будет иметь такой вид:

Проводник, который выполняет роль рабочего нулевого и защитного проводника обозначается на схеме PEN. Схема показана ниже:

Итак, согласно ПУЭ, занулением в электрических установках называют соединение частей этой установки, которые в нормальном состоянии не находятся под напряжением (например корпус электроприбора) с глухозаземленной нейтралью генераторов или трансформаторов в сетях трехфазных, с выводами источников однофазных токов, которые глухо заземлены, а также с средними точками в цепях постоянного напряжения, которые также глухозаземленной. В данном типе соединений запрещено последовательное соединение элементов защиты – все устройства должны подключатся к защитной шине ПАРАЛЛЕЛЬНО:

Это правильное крепление защиты

Такой вариант недопустим, так как при отключении рабочего нуля 2, корпус прибора может оказаться под напряжением, относительно земли. Если произойдет обрыв «нуля», то в таком случае весь потенциал сети будет на корпусе устройства, что небезопасно.

Если соединению подлежат несколько устройств, то защитный провод каждого прибора выводится отдельно и крепится к общей нулевой шине. Также в защитной цепи не должно быть никаких коммутирующих устройств (автоматы, рубильники, разъединители и так далее).

Заземление

Согласно того же ПУЭ заземлением является соединение частей электроустановки с заземляющим устройством с целью предотвращения поражения электричеством людей и животных. Этот проводник имеет маркировку PE. Главным отличием от зануления здесь будет то, что при заземлении, как правило, используют отдельный контур заземления, а не заземленную нейтраль трансформатора (генератора):

Где 1 – фаза, 2 – нейтраль, 3 – заземление защитное. Эта система заземления полностью независима от нулевого проводника сети и часто применяется в системах с изолированной нейтралью. Такие схемы часто применяются в жилых домах для подключения защитного заземления к бытовым электроприборам

Подключение бытовых устройств к заземлению

Если ваше устройство имеет три клеммы подключения (фаза, нейтраль, заземление) как показано ниже:

Но в вашей квартире или доме отсутствует заземляющий проводник, то совмещение функций нулевого рабочего и защитного проводников ЗАПРЕЩЕНЫ  ПУЭ пунктом 1.7.132., то есть запрещено ставить перемычку между нулем и заземлителем:

Это обусловлено тем, что при потере соединения точки 2 с защитным нулем PEN корпус устройства окажется под потенциалом сети, а также если в случае выполнения каких-то ремонтных работ фаза и ноль будут перепутаны местами – то вы получаете гарантированное напряжение на корпусе вашего прибора, что делает его опасным для окружающих.

Провод защитного заземления имеет желто-зеленую изоляцию:

Поэтому если возникает необходимость подключить защитное заземление для однофазной цепи, то необходимо иметь отдельный защитный проводник. Если у вас его нет, то не стоит экспериментировать, а лучше позвать профессионального электрика, который сможет правильно подключить ваше электрооборудование.

Источник: https://elenergi.ru/vechnyj-spor-zanulenie-i-zazemlenie.html

Системы заземлений: TN-С, TN-C-S, TN-S, ТТ, IT

Глобализация не обошла стороной электротехнику, МЭК (Международная электротехническая компания) разработала единый стандарт, по которой квалифицируются системы заземлений.

Разновидности систем заземлений

Можно выделить следующие три системы, а также еще три подсистемы заземлений:

  • Система TN:  подсистемы TN-C, TN-S, TN-C-S.
  • Система ТТ.
  • Система IT.

Международная классификация  систем заземлений обозначается заглавными буквами. Первая буква указывает на характер ЗАЗЕМЛЕНИЯ ИСТОЧНИКА ПИТАНИЯ , вторая – на характер ЗАЗЕМЛЕНИЯ ОТКРЫТЫХ ЧАСТЕЙ ЭЛЕКТРОУСТАНОВКИ.

Какая из систем надежно защищает?

Аббревиатура букв расшифровывается так:

  • T (terre — земля) — заземлено;
  • N (neuter — нейтраль) — присоединено к нейтрали источника (занулено);
  • I (isole) — изолировано.

В ГОСТ введены обозначения нулевых проводников:

  • N — нулевой рабочий проводник;
  • PE — нулевой защитный проводник;
  • PEN — совмещенный нулевой рабочий и защитный проводник заземления.

Целевые предназначения систем заземления

Разновидности систем заземлений

Предлагаю по порядку разобрать каждую систему и подсистему для того, чтобы лучше понять, как они работают и для чего они нужны.

Система TN – система в которой нейтраль источника питания глухо заземлена,  а открытые проводящие части электропроводки присоеденены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

Термин глухозаземленная означает, что проводник N (нейтраль) присоединен не  к дугогасящему реактору, а к заземляющему контуру, который непосредственно смонтирован вблизи трансформаторной подстанции.

Система TN: подсистема TN-C

TN—C — нулевой рабочий и нулевой защитный проводники объединены в одном проводнике по всей системе (C — combined — объединённый).

  • Достоинства подсистемы TN-C.

Наиболее распространенная подсистема, экономичная и простая.

  • Недостатки подсистемы TN-C

У такой системы нет отдельного проводника РЕ (защитное заземление).  Это означает, что в жилом доме в розетках отсутствует заземление. Нередко при такой системе делается зануление. Зануление — это крайняя мера, рассчитанная на эффект короткого замыкания. Если проводник фазы окажется на корпусе прибора, произойдет короткое замыкание (КЗ), в итоге, сработает автоматический выключатель на отключение.

ЭТО ИНТЕРЕСНО:  Кому присваивается 4 группа по электробезопасности

При такой системе TN-C недопустимо уравнивание потенциалов в ванной комнате.

Cистема заземления TN-C используется в старом жилом фонде и не может быть рекомендована для новых построек.

Схема системы TN-C

Cхема системы TN-C

Система TN: подсистема TN-S

TN—S — нулевой рабочий и нулевой защитный проводники работают раздельно по всей системе (S — separated — раздельный).

  • Достоинства подсистемы TN-S.

Наиболее современная и  безопасная система заземления. Рекомендуется при строительстве новых зданий. Способствует хорошей защите человека, оборудования, а так же защиты зданий.

  • Недостатки подсистемы TN-S.

Менее распространена. Требует прокладки от трансформаторной подстанции пятижильного провода в трехфазной сети или трехжильного кабеля в однофазной сети, что ведет к удорожанию проекта.

Cхема системы TN-S

Схема системы TN-S

Система TN: подсистема TN-C-S

TN-C-S — нулевой рабочий и нулевой защитный проводники объединены в одном проводнике в  какой- то ее части, начиная от источника питания до ввода в здание, такую систему возможно расщепить на проводник N и проводник РЕ. После расщепления такая система требует повторного заземления

  • Достоинства подсистемы TN-С-S.

Подсистема TN-C-S рекомендована для широкого применения . Технически достаточно легко выполнима. При переходе с подсистемы TN-C требует несложной модернизации.

  • Недостатки подсистемы TN-С-S.

Нуждается в модернизации стояков в подъездах. При обрыве PEN проводника электроприборы могут оказаться под опасным потенциалом.

Схема системы TN-C-S

Схема системы TN-C-S

Система TT

TT — нейтраль источника глухо заземлена, а открытые проводящие части электроустановки присоединены к заземлителю, электрически независимому от заземлителя нейтрали источника питания.

До недавнего времени система заземления ТТ  была запрещена в нашей стране. Сегодня, эта система остается достаточно востребованной и используется для мобильных зданий, таких как вагончики, ларьки, павильоны,дома и др. Допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены.

Такая система требует высококачественного повторного заземления, с высокими требованиями к сопротивлению. Самым эффективным заземлением в этом случае, является модульно-штыревое заземление. Во всех перечисленных системах рекомендуется для безопасности применять УЗО ( Устройство защитного отключения).

Схема системы ТТ

Cхема системы ТТ

Система IT

Cистема IT — в такой системе нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.

Система IT – это схема заземления лабораторий и медицинских учреждений,  в которой проводятся опыты и работы с чувствительной аппаратурой. А все токи и электромагнитные поля сведены к минимуму.

Схема системы IT

схема система IT

Как подготовится к электромонтажным работам в доме или офисе?

Источник: http://electric-tolk.ru/sistemy-zazemleniya-tn-s-tn-c-s-tn-s-tt-it/

Основные понятия электрических сетей: номинальные напряжения, режимы работы нейтрали

На отечественных электростанциях вырабатывается электроэнергия трехфазного переменного тока частотой 50 Гц. Постоянный ток получают в основном от преобразователей, поэтому энергия постоянного тока всегда дороже энергии переменного тока на величину стоимости преобразования.

Для достижения наилучших технических и экономических показателей работы и обеспечения потребителей электроэнергией электростанции объединяют в энергосистемы (районные, объединенные и др.)

Производство электроэнергии в зависимости от применяемых генераторов, передача и распределение в зависимости от величин передаваемых мощностей и расстояний, на которые они передаются, использование электроэнергии в зависимости от применяемых электроприемников осуществляются на различных номинальных напряжениях.

Под номинальным напряжением генераторов, трансформаторов, линий электропередачи, электроприемников понимается напряжение, на которое они рассчитаны в нормальных длительных условиях работы, сопровождающихся наивысшими технико-экономическими показателями.

По признаку напряжения все электроустановки подразделяются на две группы: до 1 кВ и выше 1 кВ.

Для согласования работы всех электроустановок энергосистем, систем электроснабжения — от генераторов станций и до электроприемников — номинальные напряжения стандартизированы. Величины номинальных напряжений для электроустановок до 1 кВ приведены в табл. 1.1, в табл. 1.2 — для электроустановок выше 1 кВ. Для источников и преобразователей указаны междуфазные напряжения трехфазного тока.

ГОСТ 21128-83 для специальных целей предусматривает применение дополнительных номинальных напряжений, например, для электрических сетей и приемников тока: 24, 42, 127 В.

Шкала номинальных напряжений определяется уровнем развития народного хозяйства и с течением времени корректируется. Так, в последних ГОСТах введены напряжения 0,66 и 20 кВ, которые для питания крупных узлов нагрузок и электроприемников более экономичны, чем напряжения 0,38 и 10 кВ.

Передача больших мощностей на значительное расстояние обусловила необходимость использования высоких и сверхвысоких напряжений (500, 750, 1150 кВ).

На электростанциях электрическая энергия производится на напряжении (3,15); (6,3); 10,5; 21 кВ. Эти номинальные напряжения называются генераторными.

Номинальные напряжения вторичных обмоток трансформаторов, питающих электрические сети, и номинальные напряжения генераторов на 5 10 % выше номинальных напряжений сети. Это предусмотрено с целью компенсировать потери напряжения в линиях и трансформаторах.

Важным при работе электрической сети является режим ее нейтрали, а также возможность иметь линейные (междуфазные) и фазные напряжения для электроприемников до 1 кВ.

Под нейтралью электрической сети понимается совокупность нейтральных точек обмоток трансформатора (нулевой потенциал обмоток, соединенных в звезду) и соединяющих их проводников. Нейтраль может быть изолирована от земли, соединена с землей через активные или реактивные сопротивления, а также глухо заземленной.

Выбор режима работы нейтрали

Выбор режима работы нейтрали определяется надежностью и экономичностью работы электроустановок, безопасностью их обслуживания. Электроустановки напряжением до 1 кВ выполняются с изолированной или глухозаземленной нейтралью.

Глухое заземление нейтрали может выполняться на напряжении 220/ 127, 380/220, реже — 660/380 В. Нулевой провод в четырехпроводной сети обеспечивает равенство фазных напряжений при неравномерной загрузке фаз от однофазных электроприемников.

Трехфазные сети с заземленной нейтралью позволяют питать совместно трех- и однофазные нагрузки, например, трехфазные — на линейном напряжении 380 В, однофазные — на фазном напряжении 220 В.

: Установки с изолированной нейтралью применяются в условиях с повышенными требованиями к безопасности (торфяные разработки, угольные шахты, передвижные электроустановки), Электроустановки напряжением выше 1 кВ по виду режима нейтрали подразделяются на: электроустановки в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю); в сетях с изолированной нейтралью (с малыми токами замыкания на землю).

В электрических сетях напряжением 110 кВ и выше используется эффективное заземление нейтрали.

Электрической сетью с эффективно заземленной нейтралью называется трехфазная электрическая сеть выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4. Коэффициентом замыкания на землю называется отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю другой (или двух других) фазы к разности потенциалов между фазой и землей в этой точке до замыкания.

Электрические сети напряжением 6—35 кВ выполняются с изолированной или компенсированной, т.е. соединенной, например, через индуктивность (дугогасящую катушку), нейтралью.

В сетях с изолированной нейтралью при замыкании на землю через место повреждения будут проходить емкостные токи, обусловленные напряжением и емкостью неповрежденных фаз.

Включение в нейтраль активных или реактивных сопротивлений вызвано необходимостью ограничения емкостных токов на землю.

Так, эти токи не должны превышать в нормальных режимах: в сетях 3—20 кВ, имеющих железобетонные и металлические опоры на воздушных линиях, и во всех сетях 35 кВ — 10 А; в сетях, не имеющих железобетонных и металлических опор на воздушных линиях: при напряжении 3—6 кВ — 30 А, при 10 кВ — 20 А, при 15—20 кВ — 15 А.

Особенности сетей с изолированной нейтралью

  1. При неравномерной загрузке фаз трехпроводной электрической сети имеет место напряжение смещения нейтрали, при этом каждая из фаз будет находиться под напряжением, отличным от фазного. Особенно это важно учитывать для сетей напряжением до 1 кВ.
  2. Замыкание одной фазы на землю считается не аварийным, а лишь анормальным режимом.

    При его возникновении сеть и поврежденная линия могут оставаться включенными и в течение некоторого времени продолжать работу. Замыкание на землю практически не влияет на систему междуфазных напряжений и режим работы электроприемников. Таким образом увеличивается надежность электроснабжения потребителей.

  3. При замыкании на землю одной фазы напряжение двух других фаз относительно земли увеличивается в л/3 раз.

    В связи с этим изоляция всех фаз предусмотрена на линейное напряжение. При напряжении до 35 кВ это не вызывает существенного удорожания сети.

  4. При больших токах однофазного замыкания дуга в месте короткого замыкания устойчиво и длительно горит, вызывая перенапряжения, опасные для изоляции неповрежденных фаз, и переход однофазного короткого замыкания в междуфазное.

При глухом заземлении нейтрали всякое замыкание одной фазы на землю является однофазным коротким замыканием и должно привести к срабатыванию защитных аппаратов, отключающих поврежденный участок от сети.

Системы электроснабжения сооружаются на нескольких напряжениях. Критерием оптимально принятой системы электроснабжения служит минимум приведенных затрат на ее сооружение и последующую эксплуатацию. Затраты на сооружение системы электроснабжения во многом определяются количеством трансформаций напряжения и используемыми номинальными напряжениями. Обычно в системах электроснабжения применяется 2— 3 трансформации напряжения.

Источник: https://pue8.ru/elektricheskie-seti/30-nominalnye-napryazheniya-i-rezhim-neytrali-seti.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как в розетке найти фазу

Закрыть