Что такое сила электрического тока

Сила тока ?. Формула силы тока. Как обозначается ? единица измерения силы тока?

Что такое сила электрического тока

Электрический ток — это направленный поток отрицательно заряженных частиц. Величину электрического тока определяют по числу электронов, протекающих сквозь проводник с неким поперечным сечением за определенную единицу времени.

Однако в полной мере охарактеризовать ток только движением электронов невозможно. Он также имеет другие параметры. Действительно, объем электричества, равного одному кулону способно проходить через металлический проводник в течение одной секунды или другого промежутка времени.

Если принять во внимание временной промежуток как характеристику, то можно увидеть, что интенсивность потоков в разных случаях будет не одинаковой. Тот объем, который можно пропустить сквозь проводник за секунду именуют силой тока. В качестве обозначения используют Ампер, как международную единицу измерения.

Общее описание силы тока

Сила тока является объемом электрических зарядов, проходящих сквозь поперечные профили проводников в интервале времени, равному одной секунде. Как уже было выше сказано, что за единиц силы тока принимают Ампер, которая и принадлежит к Международной СИ, используемой во всех странах мира.

Один ампер равен силе изменения потока электричества при прохождении по параллельным, парным линейным проводникам бесконечной длины, имеют ничтожно малую площадь кругового сечения. Эти материалы находятся в вакууме друг от друга на расстоянии одного метра. Он вызывает силу взаимного влияние равную 2*10-7. Единица исчисления силы тока Ампер соответствует одному кулону, пройденному за одну секунду через поперечный профиль материала проводника.

В математическом исчислении характеристика выглядит как 1 А = 1 кулон/1 секунда. Величина показателя относительно большая, поэтому для бытовых электроприборов и микросхем применяют дополнительные единицы: 1 мА и 1 мкА, которые равны одной тысячной и одной миллионной части ампера.

Если известна величина электрозаряда, прошедшего сквозь проводник с нужным сечением за требуемый промежуток времени, то параметр можно выразить следующей формулой: l=q/t.

В замкнутой сети без ответвлений за одну секунду времени проходит одинаковое количество электронов в любом участке проводника. Поскольку заряды не могут накапливаться исключительно в одном участке электрической цепи, то его интенсивность не зависит от толщины и сечения кабеля.

Для более сложных цепей с ответвлениями такое утверждение также остается истинным. Но такое определение действует только для отдельных участков схемы, которые следует рассматривать как элементарная сеть.

Способы измерения силы тока

Для того чтобы узнать силу тока на требуемом участке цепи, одних теоретических вычислений не достаточно. Да, можно использовать формулы и узнать величину, но она будет приблизительной. Поскольку приборостроение, электроника и электрика — науки точные и не терпят погрешностей, был изобретен индукционный, а позднее электронный прибор, который способен показывать точные величины.

Амперметр предназначен для измерений силы тока на отдельных участках электрической цепи. Но значения, равные 1 Амперу и более можно увидеть только в силовых установках и сетях. Для снятия показаний с них используют специальные понижающие трансформаторы. Из курсов физики многие знают от чего зависит интенсивность действий электрического тока. Инициатором движения электронов является магнитное поле. От его силы зависит и мощность потока.

Ток подается на основные катушки, в которых создается индукция. С ее помощью во второстепенной катушке генерируется электричество меньшей величины. Показатель зависит от числа витков обмоток. Они прямо пропорциональны. Поэтому даже на крупных предприятиях, где напряжение достигает нескольких тысяч вольт применяют микроамперметры или миллиамперметры. Это связано, прежде всего, с безопасностью обслуживающего персонала.

Довольно часто в обиходе можно услышать термин мультиметр. Его отличие от амперметра заключается в возможности измерять несколько характеристик одновременно, тогда как амперметр является узкоспециализированным прибором.

Включают устройство в разрыв электрической цепи. При таком способе замеров, ток протекает через измеритель к потребителю. Следовательно, соединять прибор нужно до или после элемента нагрузки, так как в простой схеме без ответвлений он будет всегда одинаковым.

Существует ошибочное убеждение, что ток до потребителя и после не одинаковый, так как часть электричества тратится на компонента. Такое утверждение ошибочно, поскольку в ток представляет собой электромагнитный процесс, выполняемый в теле металлического проводника. Результатом становится упорядоченное движение электронов вдоль всей длины проводника. Но саму энергию переносят не электроны, а магнитное поле, которое окружает тело проводника.

Важно!

Через любой поперечный профиль металла простых электрических цепей проходит одинаковое количество электрического заряда. Сколько электронов вышло из положительного полюса источника питания, столько заходит в отрицательный полюс, пройдя через элемент нагрузки. В ходе движения электроны не могут расходоваться, как другие частицы материала. Они составляют единое целое с проводником и их количество всегда одинаковое.

Отличие напряжения от силы тока

Электричество, как и любая другая материя, имеет собственные характеристики, используемые для определения эффективности работы и контроля заданных параметров. В физике существуют такие понятия как «напряжение» и «сила тока». Они описывают одно и тоже явление, но сами по себе как показатели они отличаются друг от друга.

Такие различия заключены в принципе действия электричества. Под силой тока понимают объем потока электронов, способных пройти на расстояние одного метра за установленный интервал времени. Напряжение наоборот выражено в количестве потенциальной энергии. Оба понятия тесно связаны между собой. К внешним факторам влияния на них относят:

  • материал, из которого изготовлен проводник;
  • температура;
  • магнитное поле;
  • условия окружающей среды.

Отличия также заключаются в способах получения этих параметров. Когда на заряды проводника воздействует внешнее магнитное поле, формируется напряжение, которое генерирует поток между точками цепи. Так же специалисты выделяют отличия в энергопотреблении, называемым мощностью. Если напряжение характеризует параметры потенциальной энергии, то ток — кинетической.

Заключение

Сила тока является одним из важных параметров, характеризующих электричество. Он показывает, какой объем электрического заряда проходит через поперечный профиль металлического проводника. Данная характеристика широко применяется в электронике и энергетике.

Источник: https://remont220.ru/osnovy-elektrotehniki/920-sila-elektricheskogo-toka/

Что такое сила тока, формулы

Что такое сила электрического тока

Определение 1

Ток является процессом, при протекании которого (под непосредственным влиянием электрического поля) начинает осуществляться движение некоторых заряженных частиц.

Такими заряженными частицами могут выступить разные элементы (все будет зависеть от ситуации). В случае с проводниками, например, в роли таковых частиц, выступят электроны.

Сила тока, таким образом, будет считаться движением заряженных частиц, ориентированных в одном направлении.

Понятие силы тока

Сила электрического тока будет представлять величину, характеризующую порядок движения электрических зарядов, численно равную количеству заряда $\delta q$, который при этом протекает сквозь определенную поверхность $S$, (представляющую поперечное сечение проводника) за единицу времени:

$I=\frac{\delta q}{\delta t}$

С целью определения силы тока $I$, требуется разделить электрический заряд $\delta q$, прошедший через поперечное сечение проводника за время $\delta t$, на это время.

Сила тока будет зависимой от заряда, переносимого посредством всех частиц, скорости их ориентированного в конкретном направлении движения и площади поперечного проводникового сечения.

  • Курсовая работа 420 руб.
  • Реферат 230 руб.
  • Контрольная работа 240 руб.

Рассмотрим проводник с площадью поперечного сече­ния $S$. Заряд всех частиц обозначим $q_о$. В объеме проводника, ограниченного двумя сечениями, содержится $nS\delta l$ частиц, где $n$ представляет их концентрацию. Их общий заряд окажется таким:

$q={q_о}{nS\delta I}$

При условии движения частиц со средней скоростью $v$, за время $\delta t=\frac{\delta I}{v}$ все частицы, заключенные в рассматриваемом объеме, успеют пройти через второе поперечное сечение, что означает соответствие силы тока расчетам по такой формуле:

$I={q_о}{nvS}$, где:

  • $I$ — обозначение силы электричества, измеряется в Амперах (А) или Кулонах/секунду;
  • $q$ — заряд, идущий по проводнику, единица измерения Кулоны (Кл);

В СИ единицу силы тока считают основной, а называется она ампер (А). Измерительным прибором выбран амперметр, чей принцип работы основывается на магнитном действии тока.

Замечание 1

При оценке скорости упорядоченного движения электронов внутри проводника, выполненная, согласно формуле для медного проводника при площади поперечного сечения в один квадратный миллиметр, мы получаем незначительную величину (0,1мм/с).

Отличие силы тока от напряжения

В физике различают такие понятия, как «сила тока» и «напряжение». Между ними существуют некоторые отличия, рассмотрение которых играет важное значение для понимания принципа действия силы тока.

Под «силой тока» понимается некоторое количество электричества, «напряжением», в то же время считается мера потенциальной энергии. При этом данные понятия достаточно сильно взаимозависимы. Важнейшими факторами, влияющими на них, являются:

  • материал проводника;
  • температура;
  • внешние условия.

Различия можно наблюдать также и в способе их получения. Если в случае воздействия на электрические заряды создается напряжение, ток возникнет уже за счет действия напряжения между точками схемы. Также существует различие и в сравнении с таким понятием, как «энергопотребление». Оно будет заключаться именно в мощности. Так, если напряжение требуется для характеристики потенциальной энергии, то ток уже будет характеризовать энергию кинетическую.

Способы определения силы тока

Вычисляется сила тока на практике с задействованием специальных измерительных приборов либо посредством отдельных формул (при условии наличия исходных данных). Основной формулой, согласно которой рассчитывается сила тока, выглядит следующим образом:

$I=\frac{q}{t}$

Существование электричества может быть постоянным (например, содержащийся в батарейке ток), а также переменным (ток в розетке). Освещение помещений и работа всех приборов электрического типа происходит именно посредством воздействия переменного электричества. Основным отличием переменного тока от постоянного выступает его более сильная склонность к трансформации.

Наглядным примером действия переменного тока может также послужить эффект включения люминесцентных ламп. Так в процессе включения такой лампы начинает осуществляться движение заряженных частиц то вперед, то назад, что объясняет действие переменного тока. Именно данный вид электричества считается наиболее распространенным в быту. Соответственно закону Ома, силу тока рассчитывают по формуле (для участка электроцепи):

$I=\frac{U}{R}$

Сила тока, таким образом, оказывается прямо пропорциональна напряжению $U$, измеряемому в Вольтах, к участку цепи и обратно пропорциональной $R$-сопротивлению проводника указанного участка, выражаемому в Омах. Расчет силы электричества в полной цепи рассчитан таким образом:

$I=\frac{E}{R+r}$, где:

  • $Е$ — электродвижущая сила, ЭДС, Вольт;
  • $R$ — внешнее сопротивление, Ом;
  • $r$ — внутреннее сопротивление, Ом.

Основными способами определения силы тока посредством систем приборов на практике являются следующие:

  1. Магнитоэлектрический измерительный метод. Его преимуществами выступают высокая чувствительность и точность показаний при незначительном энергопотреблении. Указанный способ применим исключительно при определении величины силы постоянного тока.
  2. Электромагнитный способ заключается в нахождении силы токов переменного и постоянного типов путем процесса трансформации из электромагнитного поля в сигнал магнитного модульного датчика.
  3. Косвенный метод направлен на определение за счет вольтметра напряжения при определенном сопротивлении.

Замечание 2

С целью нахождения силы тока, на практике зачастую применяется специальный прибор амперметр. Такое устройство включается в разрывы электроцепи в требуемой точке измерения силы электрозаряда, прошедшего за некоторое время через сечение провода.

При определении величины силы малого электричества применяют миллиамперметры, микроамперметры, а также гальванометры, также подключаемые к определенному месту в цепи, где необходимо найти силу тока. Подключение может быть выполнено двумя способами:

  • последовательным;
  • параллельным.

Определение силы тока, который потребляется, считается не так часто востребованным, как измерение напряжения или сопротивления. В то же время, без вычисления физической величины силы тока становится невозможным расчет потребляемой мощности.

Источник: https://spravochnick.ru/fizika/ponyatie_sily_v_fizike/chto_takoe_sila_toka_formuly/

Электрический ток

Что такое сила электрического тока
Электрический ток — направленное (упорядоченное) движение заряженных частиц.

Такими частицами могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

  • нагревание проводников (в сверхпроводниках не происходит выделения теплоты);
  • изменение химического состава проводников (наблюдается преимущественно в электролитах);
  • создание магнитного поля (проявляется у всех без исключения проводников).

Классификация:

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток.

Различают переменный (англ. alternating current, AC), постоянный (англ. direct current, DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают.

Постоянный ток — ток, направление и величина которого слабо меняются во времени.

Переменный ток — ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону.

В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал).

В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Квазистационарный ток — «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие.

Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры.

Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Переменный ток высокой частоты — ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Пульсирующий ток — ток, у которого изменяется только величина, а направление остаётся постоянным.

Вихревые токи (токи Фуко) — «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

ЭТО ИНТЕРЕСНО:  Чему равен 1 ампер в ваттах

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока.

Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов.

При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики:

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света.

За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны).

То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Основные типы проводников:

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации.

При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них.

Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Источник: http://www.elektal.com.ua/spravochnik/articles/elektricheskiy_tok.html

Сила тока

Думаю, вы не раз слышали такое словосочетание, как “сила тока“. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать.  Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.

Представьте себе шланг, с помощью которого вы поливаете свой огород

Давайте теперь проведем аналогию. Пусть шланг  – это провод, а вода в нем – электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.

А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.

В обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет  в два раза больше, чем через тонкую трубу.

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

где

I – собственно сила тока, Амперы

N – количество электронов

t – период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

где

Δq  – это заряд за какой-то определенный промежуток времени, Кулон

Δt – тот самый промежуток времени, секунды

I – сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10-19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅1018 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅1018 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока  – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам,  Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе – это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет “протащить” через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

плавкий предохранитель

Как только сила тока через тонкий проводок  предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели,  через которые “бегут” сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

закон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

задача на силу тока в проводнике

Решение:

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы – амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который  может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое “сила тока”.

Источник: https://www.ruselectronic.com/sila-toka/

Что такое электрический ток? В чем измеряется и его природа

Электрическим током называют направленное перемещение заряженных частиц, которое происходит под влиянием электрического поля.

Как образуется ток?

Электрический ток появляется в веществе при условии наличия свободных (несвязанных) заряженных частиц. Носители заряда могут присутствовать в среде изначально, либо образовываться при содействии внешних факторов (ионизаторов, электромагнитного поля, температуры).

В отсутствие электрического поля их передвижения хаотичны, а при подключении к двум точкам вещества разности потенциалов становятся направленными – от одного потенциала к другому.

 Количество таких частиц влияет на проводимость материала – различают проводники, полупроводники, диэлектрики, изоляторы.

Где возникает ток?

Процессы образования электрического тока в различных средах имеют свои особенности:

  1. В металлах заряд перемещают свободные отрицательно заряженные частицы – электроны. Переноса самого вещества не происходит – ионы металла остаются в своих узлах кристаллической решетки. При нагревании хаотичные колебания ионов близ положения равновесия усиливаются, что мешает упорядоченному движению электронов, — проводимость металла уменьшается.
  2. В жидкостях (электролитах) носителями заряда являются ионы – заряженные атомы и распавшиеся молекулы, образование которых вызвано электролитической диссоциацией. Упорядоченное движение в этом случае представляет собой их перемещение к противоположно заряженным электродам, на которых они нейтрализуются и оседают.

    Катионы (положительные ионы) движутся к катоду (минусовому электроду), анионы (отрицательные ионы) – к аноду (плюсовому электроду). При повышении температуры проводимость электролита возрастает, так как растет число разложившихся на ионы молекул.

  3. В газах под действием разности потенциалов образуется плазма. Заряженными частицами являются ионы, плюсовые и минусовые, и свободные электроны, образующиеся под воздействием ионизатора.
  4. В вакууме электрический ток существует в виде потока электронов, которые движутся от катода к аноду.
  5. В полупроводниках в направленном движении участвуют электроны, перемещающиеся от одного атома к другому, и образующиеся при этом вакантные места – дырки, которые условно считают плюсовыми.

    При низких температурах полупроводники приближаются по свойствам к изоляторам, так как электроны заняты ковалентными связями атомов кристаллической решетки.

    При увеличении температуры валентные электроны получают достаточную для разрыва связей энергию, и становятся свободными. Соответственно, чем выше температура – тем лучше проводимость полупроводника.

Посмотрите видео ниже с подробным рассказом об электрическом токе:

От чего зависит ток?

На количество свободных заряженных частиц и на скорость их упорядоченного передвижения влияют следующие факторы:

В чем измеряется ток?

Для измерения электрического тока пользуются понятиями силы тока и его плотности. Измеряется сила тока специальным приборам —амперметром.

Сила тока измеряется в Амперах (А) и представляет собой величину заряда, который проходит через поперечное сечение проводящего материала за единицу времени. Единица измерения силы тока называется Ампер (А). Один ампер приравнивают к отношению одного Кулона (Кл) к одной секунде.

Плотностью тока называют отношение силы тока к площади этого сечения. Единицей измерения измеряют в Амперах на квадратный метр (А/м2).

Ниже представлено видео о силе электрического тока в рамках школьной программы:

Постоянный и переменный — в чём различие?

Источник: https://pue8.ru/elektrotekhnik/817-elektricheskij-tok-opredelenie-edinitsy-izmereniya-raznovidnosti.html

Что такое сила тока. Как измерять силу тока в электрической цепи

Понятие о силе тока является основой современной электротехники. Без этих базовых знаний невозможно сделать расчеты к схемам, выполнить действия по электрике, предотвратить, выявить и устранить повреждение в цепи.

Как возникает

Для понимания, что такое сила тока, следует знать условие его возникновения – существование частиц со свободным зарядом. Он перемещается через проводник (его поперечное сечение) от одной точки к другой. Физика силы тока заключается в упорядоченном движении электронов, на которые действует электрическое поле от источника питания. Чем большее количество заряженных частиц переносится, и чем быстрее их передвижение в одном направлении, тем больший заряд дойдет до места назначения.

Помимо источника питания, элементами замкнутой цепи являются соединительные провода, по которым проходит электричество, и потребители энергии (установки, резисторы).

Дополнительная информация. В проводниках из металла в роли передатчика зарядов выступают электроны, газообразных – ионы, жидких – перенесение заряженных частиц выполняется с помощью обоих видов частиц. Нарушение порядка прохождения говорит о хаотичном движении зарядов, цепь при котором станет обесточенной.

Определение

Сила тока в проводнике – это количество электричества, перемещаемое через поперечное сечение за единичный интервал времени. Чтобы увеличить данное значение, нужно изъять из схемы лампу либо повысить магнитное поле, создаваемое батарейкой.

ЭТО ИНТЕРЕСНО:  Как найти силу тока если известна мощность

Единицей измерения силы электрического тока по международной системе СИ (Systеme International) считается ампер (А), названный по фамилии выдающегося французского научного деятеля XIX века Андре-Мари Ампера.

Дополнительная информация. Ампер – достаточно внушительная электрическая мера. Для жизни человека представляет смертельную опасность токовая величина до 0,1A. Горящая бытовая лампочка на 100 Вт пропускает электричество примерно в 0,5 А. В комнатном обогревателе это значение доходит до 10 А, портативному калькулятору будет достаточной одна тысячная доля ампера.

В электротехнической практике замеры малых величин могут выражаться в микро,- и миллиамперах.

Силу тока находят измерительным приспособлением (ампер,- или гальванометром), последовательно включая его в нужный участок цепи. Малые величины измеряют микро,- или миллиамперметром. Основными методами нахождения количества электричества при помощи приборов являются:

  • Магнитоэлектрический – при неизменной токовой величине. Такой способ отличают повышенная точность и малое потребление энергии;
  • Электромагнитный – для стационарных и изменяющихся величин. При использовании этого метода сила тока в цепи находится в результате преобразования магнитного поля в выходной сигнал модуляционного датчика;
  • Косвенный – основан на замере напряжения при известном сопротивлении. Далее вычисляют искомую величину по закону Ома, показанному ниже.

Согласно определению, силу тока (I) можно найти по формуле:

I = q/t, где:

  • q – заряд, идущий поперек проводника (Кл);
  • t – длительность времени, затраченного на перемещение частиц (с).

Формула силы тока читается следующим образом: необходимая величина I – это отношение прошедшего через проводник заряда к используемому отрезку времени.

Обратите внимание! Сила тока определяется не только через заряд, но и расчетными формулами на основе закона Ома, который гласит: сила электричества прямо пропорциональна напряжению проводника и обратно пропорциональна его сопротивлению.

Формула закона Ома поможет найти силу тока, которая выглядит отношением:

I = U / R, здесь:

  • U – напряжение (В);
  • R – сопротивление (Ом).

Эта установленная связь физических величин используется для различных расчетов:

  • учитывающих характеристики источника питания;
  • для вычислений в цепях токов любого направления;
  • для многофазных цепей.

Обратите внимание! Если проводники соединяются последовательным способом, то электричество каждого из них равно. Параллельное соединение предусматривает количество амперов, которое складывается из суммы токовых значений каждого проводника.

Как найти мощность (скорость передачи или преобразования энергии) с помощью токового значения? Для этого нужно воспользоваться формулой:

Р = U*I, где умножаемые значения упоминались выше.

Виды

При постоянном и переменном электричестве его сила бывает разного характера. Для цепи с движением частиц в постоянном направлении все параметры остаются неизменными. Переменный вид способен менять свою величину при одном и том же или меняющемся направлении. Количество электричества при этом бывает:

  • мгновенным, зависящим от амплитудной величины и частоты колебаний, связанной с угловой частотой;
  • амплитудным – максимальным значением мгновенной силы тока за определенный период;
  • эффективным – при превращении энергии количество теплоты от обоих видов тока одинаково.

Электросети бытового назначения пропускают переменный ток, преобразующийся в постоянный при прохождении через блок питания электроприбора (компьютера, телевизора).

Величина силы тока – понятие, тесно связанное с электрической энергией, имеющей огромное значение для сферы быта, народного хозяйства, объектов стратегического назначения. Более того, электроэнергетика является экономической основой государства и определяющим вектором развития внутри страны и на международном уровне.

Сила тока

Характеристикой тока в цепи служит величина, называемая силой тока (I). Сила тока – физическая величина, характеризующая скорость прохождения заряда через проводник и равная отношению заряда q, прошедшeгo через пoперeчное сечение проводника за промежуток времени t, к этому промежутку времени: I = q/t. Единица измерения силы тока – 1 ампер (1 А).

Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.

За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2*10 -7 Н. Эта единица и называется ампером (1 А).

Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1А * 1с.

Амперметр

Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку.

Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить, и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.

У клемм амперметра стоят знаки «+» и «-», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному пoлюсу источника тока, а клемма со знаком «-» к отрицательному пoлюсу истoчникa тока.

Напряжение

Источник: https://footyclub.ru/pitomcy/chto-takoe-sila-toka-kak-izmeryat-silu-toka-v-elektricheskoi-cepi/

сила тока: определение

Электричество давно стало незаменимым спутником всего человечества. Но для большинства обывателей оно представляет собой какое-то абстрактное понятие, с которым сложно разобраться и тем более понять. Но нет нечего сложного для усвоения. Простыми словами электричество можно охарактеризовать как упорядоченное перемещение заряженных частиц.

Определяющими характеристиками электрической энергии являются напряжение, сила тока и сопротивление. Рассмотрим более подробно что это за характеристики их определения, способы измерений и вычислений.

Определение силы электрического тока в электроцепи

Электрический ток, как говорилось выше, представляет собой упорядоченное перемещение заряженных частиц от одного электрода к другому. В металлах это электроны, в жидкостях – ионы, а их количество принято именовать зарядом. Одной из ключевых характеристик электротока является его сила или собственно отношение общего количества заряда к временному отрезку за который он проходит через отдельный участок.

Следовательно, определение силы тока в электроцепи или его величины можно выразить формулой:

I=q/t

q – количество заряда, а t – промежуток времени за которое он проходит этот определенный участок. В системе измерений СИ для определения единицы силы тока применяется ампер (сокращенно – «А»).

Зависимость силы тока от напряжения и сопротивления

Когда разговор заходит о токе, то наиболее часто речь идет о напряжении. В системе СИ оно обозначается в вольтах (В). Для общего понимания определения напряжения рассмотрим физику формирования электричества в общем. В двух словах это процесс выглядит следующим образом.

Из одного места извлекаются электроны, тем самым создавая разряжение. В другой точке они накапливаются, образуя избыток, который стремится занять освободившееся место. Таким образом образуются отрицательный и положительный потенциал, разница между ними и будет являться искомым напряжением в электрической сети.

Для определения величины напряжения применяется специальный измерительный прибор – вольтметр.

Для того чтобы определить силу тока, зная напряжение, необходимо ввести еще одно понятие – сопротивление электроцепи. Оно в упрощенном понимании представляет собой некую силу, затрудняющую движение электронов от одного электрода к другому. Измеряется сопротивление в омах. Определить его величину можно омметром. Воедино понятия напряжение, силы тока и сопротивления связывает закон Ома. Он является одним из основополагающих при расчете любой электрической схемы.

Величина силы тока. Определение в зависимости от напряжения и сопротивления

Закон Ома относительно применения к участку цепи определяет силу тока как величину пропорционально обратную сопротивлению и прямо сопоставимую разности потенциалов. Соответствующая формула выглядит следующим образом:

I=U/R, в которой: R (Ом)– сопротивление на участке электрической схемы, а U(В) – напряжение или разность потенциалов на электродах.

Из уравнения видно, что при наличии стабильного напряжения в электроцепи сила тока будет снижаться при увеличении нагрузочного сопротивления. Эта закономерность привела к тому, что последовательное включение потребителей применяется очень редко. При параллельном включении нагрузки величина силы тока на отельных участках может быть разной (в зависимости от сопротивления), но на входе, в точке соединения она останется прежней.

Сила тока и его плотность

Одно из важных понятий в электротехнике является плотность электрического тока, которая характеризуется его силой по отношению к площади приложения. В системе СИ плотность тока обозначается буквой «J», единица измерения — А/мм2. Общий вид формулы следующий:

J= I/S, где I – сила в амперах, а S – площадь поперечного сечения провода в квадратных мм.

Следовательно, с точки зрения физики, плотность тока — это количество заряда, перемещаемого через единицу площади за определенное время Одним словом эта величина описывает степень электрической нагрузки на проводник и является одной из определяющих при выборе кабельной продукции соответствующего диаметра.

Плотность играет важную роль, т.к. любой элемент сети в т.ч. и токопроводящий провод обладает собственным сопротивлением. Следствием потери тока является нагрев проводника. Значительные потери могут привести к перегреву, вплоть до расплавления изоляции или материала жил.

В заключение отметим, что данные определения силы тока, через основные характеристики носят общий характер. В частных случаях используются дополнительные данные которые влияют на точность вычислений, но не искажают обобщенного представления о физики электричества и взаимосвязи значений.

Источник: http://podvi.ru/interesnoe/sila-toka-opredelenie.html

Все о силе тока в физике

Прежде чем выяснять, что такое сила тока и от чего она зависит, нужно дать определение электрическому току как движению заряженных частиц. Подобно автомобилям разных конструкций и оснащения, они перемещаются в прямом или обратном направлении, быстрее или медленнее. Их скорость и концентрация создают «трафик», только не на шоссе, а в проводнике.

Сила тока – физическая величина, равная отношению количества заряда к величине этого промежутка времени.

Что такое сила тока

Это физическая величина, равная количеству заряда, проходящего за единицу времени через поперечное сечение проводящего материала-проводника. Его носители могут быть как отрицательно, так и положительно заряженные.

В первом случае, это электроны или отрицательные ионы-анионы, во втором – положительные ионы-катионы или «дырки» (пустоты в кристаллической решетке полупроводника, которые ведут себя как положительно заряженные частицы).

В чем она измеряется и как посчитать

Сила тока измеряется в амперах – обозначение А. Ампер – одна из семи основных единиц.

1А = 1Кл/c, где Кл (или С) – это кулон, единица измерения количества электрического заряда.

Сила тока обозначается символом I (согласно первой букве французского Intensite´ du courant).

Величина ее определяется по формуле I=qn Vср S cos a, где:

  • q – сумма зарядов;
  • n – концентрация частиц;
  • Vср – средняя скорость их упорядоченного движения;
  • S – площадь проводника;
  • a – угол между вектором направления движения и вектором нормали (перпендикуляра) к поверхности проводника.

Ампер – единица измерения силы электрического тока.

Для участка цепи величина I рассчитывается по формуле немецкого физика Георга Ома, открывшего в 1926 г. закон взаимосвязи между силой тока, напряжением и сопротивлением проводника:

I=U/R,

  • U – напряжение (или падение напряжения, или разность потенциалов), измеряется в вольтах – обозначение В или V;
  • R – сопротивление проводника, измеряется в омах – обозначение Ом или W.

Или по формуле I=UG, где обозначение G – это проводимость или электропроводность (величина, обратная сопротивлению, измеряется в сименсах, обозначение – См или S).

Расчет для полной цепи происходит по формуле I=e/R+r, где:

  • e – ЭДС или электро-движущая сила в цепи, измеряется в вольтах;
  • R – суммарное сопротивление всех приборов, включенных в цепь;
  • r – внутреннее сопротивление источника напряжения.

Сила тока зависит от электрического напряжения (или разности потенциалов, или ЭДС). В случаях, когда rR, можно считать, что она обратно пропорциональна либо сопротивлению цепи, либо сопротивлению источника.

Закон Ома для полной цепи.

Значение I связано с показателем скорости преобразования электрической энергии – мощностью P (единицы измерения ватты -обозначение Вт или W). Для линейной цепи, в которой соблюдается закон Ома, расчет P производится по формуле:

P=IU или P=I2R=U2/R.

Значение I прямо пропорционально мощности: I=P/U. В приборах большей мощности возникает ток большей силы.

Как измерить силу тока

Эту характеристику можно измерить с помощью амперметра. Прибор последовательно подключается к электрической сети (плюс к плюсу, минус к минусу). Чем ниже сопротивление амперметра, тем меньше его влияние на измерения, и тем они точнее. Если сопротивление амперметра стремится к нулю, он нейтрален и не влияет на показатели сети.

Виды амперметров

По конструкции амперметры бывают:

  • аналоговые (со стрелочной измерительной головкой);
  • цифровые (с индикатором).

Амперметр – прибор для измерения силы тока в амперах.

По способу измерения:

  1. Магнитоэлектрические, в которых отклонение чувствительной стрелки и показатели зависят от силы взаимодействия полей постоянного магнита и поля электрического тока в алюминиевой рамке, и угла поворота последней.
  2. Электромагнитные, показатели которых меняются с подвижками железного сердечника под влиянием электромагнитного поля катушки.
  3. Электродинамические, в которых отклонение стрелки связано с притяжением или отклонением подвижной катушки относительно неподвижной, соединенных последовательно или параллельно.
  4. Тепловые, в которых при нагреве электрическим током происходит изменение длины металлической нити и положения связанной с нитью измерительной стрелки.
  5. Индукционные, в которых связанный со стрелкой металлический диск отклоняется под воздействием электромагнитного поля неподвижных катушек.
  6. Детекторные, в которых магнитоэлектрический прибор соединен с выпрямителем-детектором.
  7. Термоэлектрические, которые состоят из нагревателя и магнитоэлектрического измерительного механизма.
  8. Фотоэлектрические, в которых фотоэлектрический элемент преобразует световой поток в электрический.

Магнитоэлектрические приборы определяют только силу постоянного тока, индукционные и детекторные – переменного. Фотоэлектрические высокоточные приборы работают с постоянным током и током низкой и высокой частоты.

Остальные из перечисленных подходят для разных токов.

Приборы бывают многофункциональными, т.е. действующими в разных режимах. Например, мультиметр работает и как вольтметр, и как омметр, и как мегомметр (для высоких сопротивлений).

В всех современных измерительных приборах есть переключатель диапазона чувствительности.

Правила измерения

  1. Амперметр включается в электросеть последовательно, «в разрыв цепи».
  2. При включении прибора в сеть, необходимо соблюдать полярность, присоединяя «+» прибора к «+» источника тока, а «-» к «-».
  3. Тестируемая линия при подключении должна быть обесточена. Иначе прикасание щупами прибора к проводам или контактам может вызвать короткое замыкание.
  4. При высоких напряжениях в цепь переменного тока помимо амперметра включается трансформатор или шунт, в цепь постоянного – магнитный усилитель или шунт.
  5. Тип амперметра для измерений выбирают в соответствии с типом электрического прибора или линии. Также учитывают требуемую точность показателей.
ЭТО ИНТЕРЕСНО:  Что такое электризация тел кратко

Перед подключением необходимо подробно изучить инструкцию к амперметру.

Источник: https://knigaelektrika.ru/teoriya/vse-o-sile-toka-v-fizike.html

Стенд для измерений параметров микросистем бесконтактного контроля силы электрического тока СКИ МБКТ

Стенд для измерений параметров микросистем бесконтактного контроля силы электрического тока СКИ МБКТ (далее — стенд) предназначен для воспроизведения выходного напряжения для питания аналоговых (цифровых) входов тестируемых микросхем и силы постоянного тока, измерений напряжения питания и температуры.

Описание

Принцип действия стенда основан на генерировании при помощи встроенного цифро-аналогового преобразователя (ЦАП) измерительного блока (ИБ) задаваемых оператором с персонального компьютера (ПК) сигналов силы постоянного тока, передачу сигналов на плату тестирования микросхем и измерении при помощи аналого-цифрового преобразователя (АЦП) ИБ отклика в виде сигналов напряжения постоянного тока. Измеренные данные напряжения постоянного тока передаются на ПК. Для измерений температуры используется встроенный в ИБ платиновый термометр сопротивления.

Конструктивно стенд состоит из ИБ, выполненного в моноблочном исполнении, и платы тестирования микросхем. На передней панели ИБ расположены кнопки включения/выключения (I/O). На задней панели расположены входные разъемы: для подключения платы тестирования микросхем, кабеля USB для передачи результатов измерений на ПК и сетевого шнура. На плате тестирования микросхем может быть установлено до 16 тестируемых микросистем 2001МСУ1ЭААР, 2001МСУЭАБР, 2001МСУ1ЭАВР, 2001МСУ1ЭАГР.

Питание стенда осуществляется от сети переменного тока.

Общий вид стенда представлен на рисунке 1.

Рисунок 2 — Схема пломбировки от несанкционированного доступа и место размещения знака утверждения типа

Схема пломбировки от несанкционированного доступа и место размещения знака утверждения типа представлены на рисунке 2.

Программное обеспечение

Программное обеспечение (ПО) состоит из единого модуля.

Обмен данными с ПК осуществляется через порт USB2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений «низкий» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 — Идентификационные данные ПО

Идентификационные данные (признаки) Значение
Идентификационное наименование ПО Prog GAVL.411171.102 (dig.exe)
Номер версии (идентификационный номер) ПО 1.0.0.1
Цифровой идентификатор ПО

Технические характеристики

стенда приведены в таблицах 2, 3.

Таблица 2 — Метрологические характеристики

Наименование характеристики Значение характеристики
Воспроизводимое значение выходного напряжения постоянного тока для питания аналоговых входов тестируемых микросхем Ua при Imax = 0,6 А, В +6,5
Пределы допускаемой абсолютной погрешности воспроизведения напряжения постоянного тока для питания аналоговых входов тестируемых микросхем, В ±1,5
Воспроизводимое значение выходного напряжения постоянного тока для питания цифровых входов тестируемых микросхем Ua при Imax = 0,2 А, В +5
Пределы допускаемой абсолютной погрешности воспроизведения напряжения постоянного тока для питания цифровых входов тестируемых микросхем, В ±0,2
Диапазон воспроизведения силы постоянного тока на выходе 1вых, А от 0 до 10
Пределы допускаемой абсолютной погрешности воспроизведения силы постоянного тока, мА:-    в диапазоне от 0 до 1 А-    в диапазоне св. 1 до 10 А ±[(0,5-10-2- 1в) + 1] ±[(0,5 10-2- I* ) + 10]
Диапазон измерений выходного напряжения постоянного тока тестируемых микросхем ивых, В от 0 до 2,5
Пределы допускаемой абсолютной погрешности измерений выходного напряжения постоянного тока тестируемых микросхем, мВ ±[(0,3 10-2- ив*) + 5]
Диапазон измерений температуры, °С от -60 до +125
Пределы допускаемой абсолютной погрешности измерений температуры, °С ±3
I* — воспроизводимое значение силы постоянного тока, мА;**ив — измеряемое значение напряжения постоянного тока, мВ

Таблица 3 — Основные технические характеристики

Наименование характеристики Значение характеристики
Питание ИБ осуществляется от сети переменного тока:
— напряжение, В от 216 до 253
— частота, Гц 50±1
Г абаритные размеры, мм, не более: ИБ
— высота 70
— ширина 140
— длина 190
плата тестирования микросхем
— высота 15
— ширина 200
— длина 300
Масса, кг, не более:
— ИБ 1,5
— плата тестирования микросхем 0,5
Рабочие условия эксплуатации:
— температура окружающей среды, °С от +18 до +28
— относительная влажность, % от 30 до 80
— атмосферное давление, кПа от 84 до 106,7

Знак утверждения типа наносится на титульный лист руководства по эксплуатации типографским способом и на боковую панель ИБ в виде наклейки со стойким к истиранию покрытием.

Комплектность

Комплект поставки приведен в таблице 4.

Таблица 4 — Комплектность

Наименование Обозначение Количество
1 Стенд для измерений параметров микросистем бесконтактного контроля силы электрического тока СКИ МБКТ в составе:-    измерительный блок;-    плата тестирования микросхем ГАВЛ.411171.102 1 шт.
2 Комплект принадлежностей 1 шт.
3 Программное обеспечение 1 шт.
4 Руководство по эксплуатации ГАВЛ.411171.102РЭ 1 экз.
5 Паспорт ГАВЛ.411171.102ПС 1 экз.

Поверка

осуществляется по документу ГАВЛ.411171.102РЭ «Стенд для измерений параметров микросистем бесконтактного контроля силы электрического тока СКИ МБКТ. Руководство по эксплуатации», раздел 5 «Методика поверки», утвержденному ФГУП «ВНИИФТРИ»

12 марта 2018 г.

Основные средства поверки:

—    мультиметр цифровой прецизионный 8508А, регистрационный номер 25984-14 в Федеральном информационном фонде;

—    калибратор многофункциональный 3041R, регистрационный номер 57747-14 в Федеральном информационном фонде;

—    термометр сопротивления платиновый вибропрочный эталонный ПТСВ, регистрационный номер 23040-14 в Федеральном информационном фонде.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска.

Сведения о методах измерений

приведены в эксплуатационном документе.

Нормативные документы

Источник: https://all-pribors.ru/opisanie/72011-18-ski-mbkt

Сила тока — определение и физический смысл

Мы помним из уроков физики средней школы основной постулат. Выглядит он следующим образом.

Силой тока называется величина, которая количественно характеризует упорядоченное движение заряженных частиц

Чтобы понять это определение, нужно для начала выяснить, что такое «упорядоченное движение заряженных частиц». Это как раз и есть электрический ток. Таким образом, сила тока позволяет численно измерить электрический ток.

Например, заданное количество электрических зарядов может проходить по проводнику в течение 1 часа или 1 секунды. Понятно, что во втором случае интенсивность прохождения зарядов будет гораздо больше. Соответственно и сила тока будет больше. Так как в международной системе СИ единицей времени принято считать 1 секунду, то приходим к определению силы тока.

Сила тока — это количество электричества, проходящее через поперечное сечение проводника за одну секунду.

Единица силы тока

Единицей измерения силы тока является Ампер. Ампер — сила электрического тока, при котором через поперечное сечение проводника каждую секунду проходит количество электричества, равное одному кулону: 1 ампер = 1 кулон/1 секунду.

Дополнительные единицы измерения, наиболее часто встречающиеся в энергетике:

  • 1 мА (миллиампер) = 0,001 А;
  • 1 мкА (микроампер) = 0,000001 А;
  • 1 кА (килоампер) = 1000 А.

Теперь мы знаем, в чем измеряется сила тока.

Измерение силы тока

Для измерения силы тока служит прибор Амперметр. Для измерения очень малых сил тока применяются миллиамперметры и микроамперметры.

Условные обозначения амперметра и миллиамперметра

Для того, чтобы измерит силу тока нужно включить амперметр в разрыв цепи, то есть последовательно. Измеряемый ток проходит от источника через амперметр и приемник. Стрелка амперметра показывает силу тока в цепи. Где именно включить амперметр в цепи — безразлично, так как сила тока в простой замкнутой цепи (без разветвлений) будет одинакова во всех точках цепи.

Прибор амперметр

В технике встречаются очень большие силы тока (тысячи ампер) и очень маленькие (миллионные доли ампера).

Например, сила тока электрической плитки примерно 4 — 5 ампер, лампы накаливания — от 0,3 до 4 ампер (и больше). Ток, проходящий через фотоэлементы, составляет всего несколько микроампер. В главных проводах подстанций, дающих электроэнергию для трамвайной сети, сила тока достигает тысяч ампер.

Источник: https://linijaopory.ru/sila-toka-opredelenie-i-fizicheskijj-smysl/

Определение силы тока

Если известно количество электрических зарядов, направленное движение которых принято называть электрическим током, и единица времени, за которую электричество в таком объеме проходит через поперечное сечение проводника, можно узнать характеристику интенсивности тока, то есть вычислить силу тока.

Точное определение силы тока необходимо для правильного понимания процессов, происходящих при подаче электроэнергии для питания двигателей и прочего оборудования.

Определение силы тока и способы ее измерения

Значение количества электричества можно использовать для определения и расчета силы тока, благодаря существованию правила постоянства тока в замкнутых цепях (в каждой точке цепи). Суть правила в том, что количество проходящего за одну секунду тока будет одинаковым для любого сечения в любом месте цепи, независимо от толщины проводника (правило действует для цепей без разветвлений).

Измерить силу тока можно с помощью специального оборудования. Обычно применяют следующие приборы:

  • амперметр (наиболее востребованный вариант);
  • мультиметр;
  • миллиамперметр;
  • микроамперметр.

Последние два варианта служат для измерения малых сил тока, составляющих миллионные доли ампера, например, возникающих при прохождении тока через фотоэлементы.

Чтобы получить значение силы тока с помощью амперметра, прибор следует подключить в разрыв цепи (в любой ее точке) таким образом, чтобы ток проходил через амперметр. Стрелка устройства при этом будет показывать силу тока в цепи. Амперметр можно подключить как до, так и после устройства-потребителя, поскольку миф о том, что в потребителе остается «часть тока» и после него сила тока в цепи меньше, не соответствует действительности.

Сила тока — обозначение и базовые формулы

В формулах при расчете такого параметра, как сила тока, обозначение его величины с помощью буквы «I» является общепринятым. Основная формула выглядит как I=q/t, где q – количество электричества, а t – временной отрезок.

Также для расчета силы тока можно использовать такие параметры, как:

  • фактическое напряжение (U);
  • мощность (P).

В этом случае применяется формула I= P/U. Получение силы тока расчетным методом актуально в тех случаях, когда невозможно применение измерительных приборов, например, на этапе проектирования электросетей.

Основные единицы измерения силы тока

В качестве основной единицы измерения силы тока используют ампер (краткое обозначение – А). Ампер, получивший свое название по имени ученого физика Анри Ампера, входит в Международную систему единиц (СИ).

Если через поперечное сечение в течение 1 секунды проходит 1 кулон электричества, то сила тока в этом проводнике равна одному амперу. Как вспомогательные единицы применяются:

  • миллиамперы (ма), одна тысячная или 10-3 ампер;
  • микроамперы (мкА), одна миллионная или 10-6 ампер.

Сила тока является важным параметром, знание которого поможет в выборе кабелей с оптимальным для планируемой нагрузки размером сечения.

Источник: https://www.szemo.ru/press-tsentr/article/opredelenie-sily-toka/

Единица измерения силы электрического тока. Ампер (Ampere, Amp). Миллиамперы и микроамперы

Единица измерения силы тока. Ампер. Соотношение с другими физическими величинами. (10+)

Единица измерения силы электрического тока. Ампер (Ampere, Amp). Миллиамперы и микроамперы

Оглавление :: ПоискТехника безопасности :: Помощь

Материал является пояснением и дополнением к статье:
Единицы измерения физических величин в радиоэлектронике
Единицы измерения и соотношения физических величин, применяемых в радиотехника.

Сила электрического тока — это скорость изменения заряда, количество заряда, проходящего в единицу времени.

Сила электрического тока измеряется в Амперах (Ampere, Amp). Обозначение А. Международное обозначение A. В формулах сила тока обычно обозначается буквой I.

Если протекает постоянный электрический ток, то можно говорить об определенной силе тока, равной изменению заряда за одну секунду. Если ток меняется во времени, то сила тока является функцией от времени и равна производной от функции заряда от времени. I(t) = dQ(t) / dt.

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Основные соотношения между силой тока (Ампер) и другими физическими величинами

Электрический ток силой один Ампер, проходящий в течение одной секунды, переносит один Кулон.

[Сила электрического тока, А] = [Перенесенный заряд, К] / [Время переноса заряда, с]

Электрический ток в 1 Ампер заряжает конденсатор в один Фарад за одну секунду на 1 Вольт.

[Изменение напряжения на конденсаторе, К] = [Сила тока, А] * [Время протекания тока, с] / [Емкость конденсатора, Ф]

Через проводник сопротивлением электрическому току 1 Ом под напряжением 1 Вольт протекает ток 1 Ампер. Это закон Ома.

[Сила электрического тока, А] = [Напряжение, В] / [Сопротивление, Ом]

Один Ватт тепловой мощности выделяется проводником при токе в 1 Ампер и напряжении на проводнике 1 Вольт.

[Выделяемая тепловая мощность, Вт] = [Сила тока, А] * [Напряжение, В]

[Выделяемая тепловая мощность, Вт] = [Сила тока, А] 2 * [Сопротивление проводника, Ом]

Доли Ампера (Ampere, Amp)

миллиампер мА mA 1E-3 А 0.001 А
микроампер мкА mсA 1E-6 А 0.000001 А

(читать дальше) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Источник: https://gyrator.ru/units-ampere

Сила тока: определение, формулы

Движение заряженных частиц в проводнике в электротехнике называется электрическим током. Электроток не характеризуется только прошедшим через проводник значением количества электрической энергии, так как за 60 минут через него может пройти электричество равное 1 Кулону, но и такое же количество электричества можно пропустить через проводник за одну секунду.

Как измеряется сила тока

Величину силы тока измеряют прибором, который называется амперметр, а также для небольших значений — миллиамперметр и микроамперметр, который можно увидеть на фото внизу:

Амперметр Основы

Среди людей бытует мнение, что когда измеряется сила тока в проводнике до нагрузки (потребителя), то значение будет выше, чем после нее. Это ошибочное мнение, основанное на том, что якобы какое-то значение силы будет расходоваться на то, чтобы привести потребитель в действие. Электроток в проводнике — это процесс электромагнитный, в котором участвуют заряженные электроны, они направленно двигаются, но энергию передают не электроны, а электромагнитное поле, которое окружает проводник.

Количество электронов, вышедших из начала цепи, будет равно количеству электронов и после потребителя в конце цепи, они не могут быть израсходованы.

Измерение силы тока

Какие проводники бывают? Специалисты дают определение понятию «проводник» — это материал, в котором частицы, имеющие заряд, могут перемещаться свободно. Такие свойства на практике имеют почти все металлы, кислота и солевой раствор. А материал или вещество, в котором движение заряженных частиц затруднено или вообще невозможно, называются изоляторами (диэлектриками). Часто встречающиеся материалы-диэлектрики — это кварц или эбонит, искусственный изолятор.

Вывод

На практике современное оборудование работает с большими величинами тока, до сотни, а то и тысячи ампер, а также и с малыми значениями.

Примером в повседневной жизни величины тока в разных приборах может быть электрическая плита, где она достигает значения в 5 А, а простая лампа накаливания может иметь величину 0,4 А, в фотоэлементе величина проходящего тока измеряется в микроамперах.

В линиях городского общественного транспорта (троллейбус, трамвай) значение проходящего тока достигает 1000 А.

Источник: https://domelectrik.ru/baza/teoriya/sila-toka

Понравилась статья? Поделиться с друзьями:
Электро Дело