Что такое заземление дать определение

18. Объясните физическую сущность заземления и зануления

Что такое заземление дать определение

Заземление- преднамеренное соединение потенциальноопасных или токоведущих частейэлектроустановки с заземляющимустройством.

Зануление -преднамеренное соединение потенциальноопасных частей с заземленной нейтральюэлектроустановки до 1 кВ с цельюавтоматического отключения поврежденногоучастка сети.

Заземлениеследует применять во всех электроустановкахнапряжением выше 1 кВ, а такжеэлектроустановках до 1 кВ с изолированнойнейтралью. Зануление — в электроустановкахдо 1 кВ с заземленной нейтралью.

19. Дайте определение терминов: заземление, зануление, защитное отключение, малое напряжение, двойная изоляция

Заземление- преднамеренное соединение потенциальноопасных или токоведущих частейэлектроустановки с заземляющимустройством.

Зануление -преднамеренное соединение потенциальноопасных частей с заземленной нейтральюэлектроустановки до 1 кВ с цельюавтоматического отключения поврежденногоучастка сети.

Защитноеотключение — автоматическое отключениевсех фаз (полюсов) участка сети до 1 кВ,обеспечивающее безопасные для человекасочетания тока и времени его прохожденияпри замыкании на корпус или сниженииуровня изоляции ниже определенногозначения.

Малоенапряжение — номинальное напряжениемежду фазами (полюсами) и по отношениюк земле не более 42 В переменного тока и110 В постоянного тока, применяемое вцелях уменьшения опасности пораженияэлектрическим током.

Двойнаяизоляция -совокупность рабочей и защитной(дополнительной) изоляции электрооборудования,при которой повреждение только рабочейили только защитной (дополни­тельной)изоляции не приводит к появлению опасногонапря­жения на корпусе.

20. Как рассчитать заземление?

Основнымиэлектрическими параметрами ЗУ являютсясопротивление растекания заземлителяи напряжение прикосновения в зонезаземления. Сопротивление заземлителяизмеряют, как правило, по методуамперметра-вольтметра, используя дляэтой цели приборы АНЧ-3, ИКС-1, ИКС-50,М-416, МС-08 и др.

Токовыйи потенциальный электроды необходиморасполагать относительно центразаземлителя и относительно друг другатаким образом, чтобы взаимное сопротивлениемежду ними равнялось сумме взаимныхсопротивлений между каждым электродоми заземлителем.

Сопротивлениеиспытываемого заземлителя определяетсяна основании измеренных значений токаI и напряжения U по формуле R = U/I. Длядостаточной точности измерениясопротивление вольтметра должно бытьзначительно больше сопротивленияэлектрода П, которое может достигать1-2 кОм.

Значение тока Iприизмерении ма­лых сопротивлений должносоставлять 20-25 А.

21. Какое значение сопротивления растеканию тока заземляющего устройства обеспечивает электробезопасть?

Электродызаземляющих устройств выполняются изстальных труб, толщина стенок не менее3,5 мм. Стальных угловых профилей толщинаполок не менее 4 мм. Круглых d> 10 мм или прямоугольных сечением неменее 48 .

Вэлектроустановках до 1 кВт и выше сизолированной нейтралью проводимостьзаземления проводников должна составлятьне менее 1/3 проводимости фазныхпроводников.

Площадь сечения заземленияпроводников в помещении должна быть неменее 4 мм2,6 мм2для алюминиевых, 24 мм2для стальных, вне помещения допускаетсяиспользовать только стальные проводникиплощадью сечения не менее 48 мм2.Магистрали заземления в производственныхпомещениях выполняются из стальнойполосы площадью не менее 120 мм2.

Источник: https://studfile.net/preview/5581996/page:6/

Кратко об электробезопасности

Что такое заземление дать определение

(Электротехнический справочник. Том 1. Общие вопросы. Электротехнические материалы. Москва. Энергия. 1980 г.)

Основные понятия и определения

Электробезопасность – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от опасного и вредного воздействия электрического тока, электрической дуги, электромагнитного поля и электростатических разрядов.

Организационные мероприятия по электробезопасности – правильная организация и внедрение безопасных методов работ; обучение и инструктаж электротехнического персонала; контроль и надзор за выполнением правил техники безопасности, приемов работы; механизация и автоматизация технологических процессов.

Технические мероприятия по электробезопасности – обеспечение нормальных метеорологических условий в рабочей зоне, нормированной освещенности, применение необходимых защитных мер и средств; применение безопасных ручных электрических машин (электроинструмента), а также ограждений, блокировок коммутационных электроаппаратов, контрольно-измерительных приборов, спецодежды, спецобуви идр*.

Травма, вызванная воздействием на организм электрического тока или электрической дуги, называется электротравмой.

Электротравмы возможны в результате непосредственного контакта человека с токоведущими частями электроустановки, а также в случаях прикосновения к металлическим конструктивным нетоковедущим частям электрооборудования, изоляция которого нарушена и имеет место замыкание токоведущих частей на корпус.

Прикосновение человека к токоведущим частям электроустановки может быть двухфазным (двухполюсным) и однофазным (однополюсным).

Электрическим замыканием на землю называется случайное электрическое соединение токоведущей части электроустановки непосредственно с землей, нетоковедущими проводящими конструкциями или предметами, не изолированными от земли.

Зона растекания тока замыкания на землю – зона, за пределами которой электрический потенциал, обусловленный токами замыкания, может быть условно принят равным нулю.

Напряжением относительно земли при замыкании на корпус называется разность потенциалов между этим корпусом и зоной нулевого потенциала.

В отношении воздействия на человека различают значения тока:

пороговый ощутимый ток – наименьшее значение ощутимого тока;

пороговый неотпускающий ток – наименьшее значение неотпускающего тока;

пороговый фибрилляционный ток – наименьшее значение фибрилляционного тока.

https://www.youtube.com/watch?v=Uw5eRGM34v4

Напряжение прикосновения – напряжение между двумя точками цепи тока, которых одновременно касается человек.

Напряжение шага – напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых стоит человек (на земле, на полу и т. д.).

Заземление – преднамеренное электрическое соединение с заземляющим устройством частей электроустановки, нормально не находящихся под напряжением.

Малое напряжение – номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током.

Воздействие электрического тока на организм человека

Электрический ток, проходя через тело человека, производит тепловое, химическое и биологическое воздействие, тем самым нарушая нормальную жизнедеятельность.

Химическое действие тока ведет к электролизу крови и других содержащихся в организме растворов, что приводит к изменению их химического состава и, следовательно, к нарушению их функций.

Биологическое действие электрического тока проявляется в опасном возбуждении живых клеток организма, в частности, нервных клеток и всей нервной системы. Такое возбуждение может сопровождаться судорогами, явлениями паралича.

В ряде случаев возможен паралич дыхательного аппарата (паралич мышц грудной клетки) и паралич сердца (мышц желудочков сердца), являющийся причиной смертельного исхода.

Прекращение работы сердца под действием электрического тока может быть в результате непосредственного действия тока на сердечную мышцу, когда ток проходит через область сердца, или рефлекторным – вследствие нарушения функции центральной нервной системы.

Степень поражения человека и тяжесть электрического удара зависят главным образом от значения тока, проходящего через тело человека, пути тока в теле человека и длительности его прохождения.

Зависимость допустимых для человека значений токов от продолжительности воздействия приведена на рисунке.

Допустимые для человека значения тока в зависимости от продолжительности воздействия

1 – переменный ток 50 Гц;
2 – постоянный ток.

Классификация электроустановок

Электроустановки в отношении мер безопасности разделяются на:

  1. электроустановки напряжением выше 1000 В с глухозаземленной нейтралью (с большими токами замыкания на землю);
  2. электроустановки напряжением выше1000 В с изолированной нейтралью (с малыми токами замыкания на землю);
  3. электроустановки напряжением до 1000 В с глухозаземленной нейтралью;
  4. электроустановки напряжением до 1000 В с изолированной нейтралью.

Электромашинными помещениями (ЭМП) называются помещения, в которых совместно могут быть установлены электрические генераторы, вращающиеся или статические преобразователи, электродвигатели, трансформаторы, распределительные устройства, щиты и пульты управления, а также относящееся к ним вспомогательное оборудование, обслуживание которых производится специальным электротехническим персоналом. Общие требования к ЭМП изложены в Правилах устройства электроустановок.

В отношении опасности поражения людей электрическим током все помещения (в том числе и электропомещения) разделяются на следующие виды:

  1. помещения с повышенной опасностью, характеризующиеся наличием в них одного из следующих условий, создающих повышенную опасность: сырости или проводящей пыли, токопроводящих полов (металлических, земляных, железобетонных, кирпичных и т. п.), высокой температуры, возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п. с одной стороны, и к металлическим корпусам электрооборудования – с другой;
  2. особо опасные помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность: особой сырости; химически активной среды; одновременного наличия двух или более условий повышенной опасности (п. «1»);
  3. помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную опасность и особую опасность (п. «1» и «2»).

В зависимости от назначения устройства и характера окружающей среды следует применять напряжения согласно таблицы:

Напряжение, В Область применения
12 Для ручных светильников я электрифицированного ручного инструмента – в помещениях, особо опасных
36 и 42 Для тех же целей – в помещениях с повышенной опасностью, а также для стационарных светильников, подвешенных ниже 2,5 м над полом – в помещениях особо опасных и с повышенной опасностью.
65 Для сварочных работ.
220 Для стационарных осветительных установок.
220, 380, 660 Для электропривода и других технических целей.

В производственных помещениях допускается применение напряжения до 1000 В при условии, что электрооборудование имеет защищенное исполнение. Применение напряжения выше 1000 В допускается, если оборудование имеет закрытое исполнение или специальные ограждения, для снятия которых необходим инструмент, или при снятии ограждений автоматически снимается напряжение с токоведущих частей.

Если у Вас остались вопросы – обращайтесь к нам, в авторизованный сервисный центр «Эл Ко-сервис».

Мы всегда рады помочь в установке приобретенной Вами техники.

Если у Вас возникли проблемы при эксплуатации стиральной или посудомоечной машины (плиты, духовки, накопительного или проточного водонагревателя, холодильника) – мы всегда рады помочь в решении возникших у Вас проблем.

Инженерно-технический отдел авторизованного сервисного центра «Эл Ко-сервис»

Источник: http://www.elko-service.ru/about_el_kratko.htm

Рабочее и защитное заземление: описание, принцип действия и назначение, схемы подключения и отличия,

Что такое заземление дать определение

Во время эксплуатации электроприборов необходимо использовать заземляющие устройства. В соответствии с назначением, возможно использование защитного и рабочего заземления. Первый вид позволяет обеспечить нормальную работу оборудования, а второй предназначен для защиты людей. Эти виды мер безопасности имеют различное назначение и принцип работы.

Рабочее (функциональное) заземление — соединение с землей определенных точек токоведущих частей электрооборудования. Чаще всего это нейтральные точки обмоток трансформаторов и генераторов. Для реализации этого вида защиты используются надежные проводники либо специальные устройства, например, пробивные предохранители. Основной задачей рабочего заземления является предотвращение замыканий и сбоев в работе электроустановок.

Согласно правилам техники безопасности, эти виды защиты от электротока не могут совмещаться. Дело в том, что токи помех (например, атмосферные разряды) могут накладываться на протекающие в электроцепи. В результате оборудование может быть повреждено, а защитное заземление не будет выполнять свои функции. Также следует помнить, что показатель сопротивления функционального не должен превышать 4 Ом.

Защитное заземление

Благодаря электрическому соединению металлических конструкций оборудования промышленного и бытового назначения с землей повышается безопасность его эксплуатации. Этот способ защиты людей от поражения электротоком называется защитным заземлением. Даже если в цепи используются специальные автоматические устройства, скорость их работы не позволяет полностью обезопасить человека.

Принцип работы

Если фазный провод коснется металлической конструкции оборудования, то его корпус окажется под напряжением. Если этот вид защиты был организован правильно, то создается электроцепь с низким сопротивлением. В результате этот путь станет для тока более предпочтительным, прикосновение человека к корпусу окажется безопасным. Так кратко можно описать принцип действия защитного заземления.

Основные функции:

  1. Защита обеспечивается даже в ситуации, когда опасное напряжение на корпусе было образовано токами индукции, а не коротким замыканием.
  2. Использование глухозаземленной нейтрали позволяет получить при коротком замыкании длительные импульсы с большой амплитудой, способствующие срабатыванию защитной автоматики.
  3. Заземляющий проводник способен обеспечить надежную защиту оборудования при попадании в него молнии.

Последняя функция не является целевой и носит второстепенный характер. Основное назначение защитного заземления — обеспечение безопасности людей во время работы на оборудовании.

Схемы подсоединения

Для выбора оптимального варианта защиты следует разобраться в схемах организации заземления, а также их преимуществах и недостатках. Первый вид — глухозаземленная нейтраль (тип TN). Эта схема используется в бытовом и промышленном электрооборудовании, предназначенном для работы в сетях до 1 кВ. Для ее реализации нейтральный провод источника питания соединяется с заземлителем. Затем к общему проводнику подключаются корпус, экран и шасси.

Наибольшей популярностью пользуются три схемы, обозначающиеся соответствующей буквой:

  1. C — проводник выполняет одновременно защитную и рабочую функцию. Схема предельно проста в реализации, но при разрыве электроцепи теряет свои защитные свойства.
  2. S — применяется два отдельных нулевых провода. Стоимость схемы несколько выше, но ее надежность существенно увеличивается.
  3. C-S — комбинация двух предыдущих систем. При ее использовании необходимо принять меры по предотвращению механического повреждения защитных проводников, иначе схема перестанет выполнять свою функцию.

На воздушных линиях электропередач используется схема ТТ. К источнику питания подключается глухозаземленная нейтраль, а энергия передается по четырем проводникам. На стороне потребителя монтируется автономная система защиты, к которой и подключается оборудование.

Еще одна схема реализации этого вида защиты — схема IT. Она активно применяется в исследовательских центрах, так как позволяет дополнительно устранить паразитные электрические наводки. Для уменьшения показателя сопротивления приходится сокращать длину проводника. Решается эта задача с помощью создания по периметру объекта специального заземляющего контура.

Категории заземлителей:

  1. Искусственные — изготавливаются специально для создания защитного заземления и не должны покрываться лакокрасочными материалами. Допускается использование в роли заземлителя электропроводящего бетона.
  2. Естественные — электропроводящие части сетей и коммуникаций строений, находящиеся в контакте с землей.

Такая классификация носит условный характер, так как в любом случае для обеспечения безопасности людей используются металлические части здания, расположенные в земле. Рекомендуется создавать защитное заземление с помощью естественных заземлителей. Однако для решения поставленной задачи запрещено применять трубопроводы, подающие горючие вещества.

Назначение и устройство защитного заземления существенно отличается от функционального, поэтому их нельзя совмещать. Подробно вопросы организации защиты оборудования и людей от воздействия электротока изложены в особом документе «Правила устройства электроустановок».

Источник: https://220v.guru/elementy-elektriki/zazemlenie/princip-deystviya-i-naznachenie-zaschitnogo-i-rabochego-zazemleniya.html

Защитное зануление определение – Защитное заземление. Зануление

Не все понимают разницу между такими понятиями, как зануление и заземление, хотя, в принципе, это одно и то же. Защитное зануление – это соединение нейтрали трансформатора с металлическим корпусом бытового прибора. А так как система электроснабжения с глухозаземленной нейтралью – основная схема подачи электричества в дома, соответственно схема зануления присутствует в каждом доме.

При всей непонятности названия: глухозаземленная нейтраль – в реалии все достаточно просто. Электроснабжение домов производится от электрической подстанции, в которой установлен трансформатор. Фазные обмотки трансформатора соединены в одной точке, данная схема называется звездой.

Разность потенциалов в данной точке равна нулю, то есть, напряжение здесь отсутствует. Именно эта точка соединяется с заземляющим контуром, который расположен внутри подстанции. И от этой точки в дома проводится провод, который называется нулевым.

То есть, в каждую квартиру или дом входит два проводника: фазный и нулевой, которые и подают напряжение в 220 вольт.

Теперь, что такое зануление? Современные бытовые приборы в процессе производства комплектуются заземляющим проводом, который соединяет их металлический корпус с вилкой. В последней установлена третья клемма заземления.

Соответственно современные розетки также снабжены третьим заземляющим контактом. При установке вилки в розетку происходит замыкание заземляющих контактов, то есть, бытовой прибор подключается к заземляющему контуру, расположенному в подстанции, через нулевой провод.

И хотя эта одна из разновидностей заземления, название она получила от нулевого проводника.

Как работает система

Принцип действия зануления очень простой. Он основан на правилах устройства электроустановок (ПУЭ). В них регламентированы нормативы, в которых обозначено, что при появлении короткого замыкания в сети защитное устройство (автомат) должно среагировать за 0,4 секунды. За этот небольшой промежуток времени человек останется в живых, если он коснулся корпуса прибора, который находится под напряжением в виду пробивки изоляции внутри электроустановки.

Есть два тонких момента, которые определяют принцип действия защитного зануления.

  1. При ее использовании значительно уменьшается сопротивление петли «фаза-ноль».
  2. Увеличивается значение тока короткого замыкания, которое становится причиной срабатывания защитного автоматического выключателя.

По второму пункту необходимо дать пояснения. У каждого автомата есть свой определенный предел реагирования на величину тока. Он обычно обозначается на корпусе прибора, к примеру, 16 А. То есть, автомат будет реагировать на силу тока, равную или выше 16 ампер. Все величины ниже данного значения автомат пропускает, то есть, на них он не реагирует, а значит, и не отключает подачу электричества в помещения. Поэтому зануление дома — это защита, которая повышает значение тока короткого замыкания, чтобы автоматы в распределительном щитке срабатывали в независимости от реального пониженного значения.

ЭТО ИНТЕРЕСНО:  Что такое амперы и ваты

Внимание! Есть одно требование, которое зафиксировано в ПУЭ. Нельзя изготавливать своими руками отдельный заземляющий контур на улице и подключать к нему заземляющий провод, если в доме используется сеть с глухозаземленной нейтралью. Все дело в том, что самодельный контур может иметь более значительное сопротивление, чем зануляющая система через нейтраль. А это снижение силы тока короткого замыкания, на который не отреагируют защитные автоматы в распределительном щитке.

Это же самое касается создания заземляющего контура через отопление или водопроводные металлические трубы.

Область применения зануления обширна. К ней на промышленных объектах подключаются все электроустановки: электродвигатели, генераторы, трансформаторы, конструкции распределительных устройств и прочие. В быту к ней подключаются бытовые приборы, электрические инструменты и станки, светильники, распределительные щиты.

Назначение защитного зануления – это безопасная эксплуатация электроустановок. Но насколько оно эффективнее настоящей заземляющей сети. Во-первых, необходимо отметить, что отдельно устанавливаемый заземляющий контур – это провод, который проложен от распределительного щитка в доме к трансформатору и подключен к заземляющей сети внутри подстанции.

Во-вторых, могут возникнуть ситуации, когда нулевой проводник по каким-то причинам отгорит. То есть, при коротком замыкании внутри бытового прибора весь потенциал будет направлен на его корпус.

А так как при занулении нулевой провод соединен с заземляющим, то последний также не будет задействован в системе безопасности. Последствия при соприкосновении с корпусом прибора – удар током.

В заземлении такого не произойдет, потому что оба проводника: ноль и земля – это два отдельно проведенных контура.

Обобщение по теме

Требования ПУЭ точно определяют нормативы, при которых питающая электрическая цепь должна сработать на отключение при возникновении короткого замыкания.

Для этого сила тока короткого замыкания должна быть в три раза больше, чем номинальный, обозначенный на автоматическом выключателе. Это касается жилых домов и офисных зданий, где установлены автоматические выключатели с плавкими вставками.

Для защитных устройств с электромагнитными расцепителями повышающий коэффициент равен 1,4. Для взрывоопасных помещений используется коэффициент 4-6.

Чтобы ток такой силы мог спокойно растекаться по зануляющей сети, необходимо, чтобы ее сопротивление при 220 вольт было 8 Ом, при 380 вольтах – 4 Ома. Это может обеспечить медный провод сечением 4 мм², не меньше. Этот размер применяется в бытовых сетях, где используется напряжение 220 В.

Обобщая информацию, можно дать окончательное определение зануляющей системе. Итак, занулением называется соединение нетоковедущих металлических частей электроустановок (бытовых приборов) с нейтралью трансформатора. Последняя соединяется с заземлением. Добавим, что заземляющие и зануляющие провода имеют один окрас – желто-зеленый. Это делается для облегчения монтажа и для легкости определения проводников в процессе проводимого ремонта.

Источник: https://biysk-tv.ru/raznoe-2/zashhitnoe-zanulenie-opredelenie-zashhitnoe-zazemlenie-zanulenie-2.html

Зачем нужно заземление и что такое УЗО

Практически в любом руководстве по эксплуатации современного бытового электроприбора указывается о необходимости его заземления. Как его заземлить? Можно ли включать без заземления? Будет ли он при этом нормально работать? Можно. Будет.
Большая часть наших сограждан живет в домах, где заземления нет. А современная бытовая техника есть у всех. Соответственно большая часть техники рассчитанной на заземление, довольно успешно эксплуатируется без него.

Зачем нужно заземление?

Заземление применяется для защиты человека от поражения электрическим током. При нормальной работе электроприбора его корпус надежно изолирован от находящихся под напряжением токоведущих частей. При поломке прибора находящиеся под напряжением токоведущие части могут коснуться корпуса и тогда он окажется под напряжением. Прикоснувшегося к такому прибору человека ударит током.

Автоматический выключатель в данном случае не поможет, поскольку протекающего через человека тока будет явно недостаточно для его срабатывания. Зато этого тока вполне хватит для того чтобы лишить человека здоровья и даже жизни.

Для исключения подобных ситуаций корпуса всех электрических устройств, к которым может прикоснуться человек, должны быть заземлены, то есть электрически соединены с землей через проводники. В этом случае ток с корпуса устройства, а вместе с ним и опасное напряжение, будут уходить в землю, не причиняя никакого вреда человеку.

Для обеспечения такого заземления европейцы добавили в электропроводку жилых помещений заземляющий провод. Электропроводка получилась трехпроводной. Два провода, как и в наших проводках – фаза и ноль, предназначены для питания электроприборов, а третий и есть защитное заземление.

Розетки такой проводки должны иметь три контакта — нулевой, фазный и заземляющий. Рассчитанные на такую проводку бытовые приборы имеют трехжильный шнур и вилку с тремя контактами. Две жилы шнура это фаза и ноль, а третья предназначена для присоединения корпуса прибора к заземлению электропроводки. Заземляющий контакт розетки (металлические полоски сверху и снизу) присоединяется к защитному заземлению электропроводки. Заземляющий контакт вилки соединен с корпусом электроприбора.

Включая вилку в розетку, мы соединяем металлический корпус прибора с защитным заземлением. Теперь, даже при появлении напряжения на корпусе прибора, весь заряд будет стекать в землю, и неисправный прибор не будет биться током.

Заземление бытовой техники возможно только в том случае если в доме есть контур заземления. В домах старой постройки, его, к сожалению нет. В те времена проводка выполнялась двухжильным проводом, одна из жил была нулем, а другая фазой.

Розетки и вилки тоже имели по два контакта, нулевой и фазный. Ни о каком заземлении никто тогда не думал. Ведь в то время у людей практически не было бытовой техники и в домах вполне хватало предохранительных пробок на шесть ампер.

То есть если мощность всех включенных в квартире электроприемников достигала полутора киловатт, пробки перегорали.

С развитием техники в жилищах людей становилось все больше электрических помощников. Где то с середины шестидесятых годов в домах начали появляться телевизоры, холодильники, стиральные машины, электрические утюги.

Девяностые годы принесли в наш быт компьютеры, стиральные машины-автоматы, посудомоечные машины, кондиционеры и т. д. Вместе с увеличением количества и мощности электроприемников стало увеличиваться число случаев поражения людей электрическим током от неисправных электроприборов.

Эту проблему нужно было как то решать и с 1997 строителей обязали оборудовать все строящиеся здания защитным заземлением.

В домах современной постройки вся электропроводка выполняется трехжильной, и проблем с эксплуатацией современной техники нет.

В старых домах, с двухжильной проводкой, биться током может даже абсолютно исправная техника. Дело в том, что бытовые электроприборы оснащены встроенным сетевым фильтром, защищающим электронные схемы прибора от резких скачков напряжения. Конструкция фильтра такова, что он через конденсаторы соединяет нулевой и фазный провод с корпусом прибора.

Если корпус прибора не заземлен, то на нем появляется напряжение 110 вольт. То есть на корпусе стиральной машины, холодильника, микроволновки, компьютера присутствует напряжение 110 вольт.

Если вы живете в доме со старой проводкой без заземления и у вас есть кое-какие познания в электротехнике, попробуйте измерить напряжение на корпусе вашего компьютера, холодильника и стиральной машины. Вполне возможно, что там будет присутствовать напряжение 220 В. Это утверждение похоже на бред.

Ведь производители прекрасно понимают, что выпускаемая ими техника должна быть абсолютно безопасной для человека и ни в коем случае не нести вред его здоровью. Но далекие от российской реальности создатели импортной техники не представляют, что где-то она может работать без заземления. Это обстоятельство позволяет понять логику производителя.

Новая техника рассчитана на то, что небольшое количество тока должно стекать с конденсаторов в землю через корпус прибора. Напряжение 110 В появляется на корпусе только в том случае если он не соединен с землей.

Несмотря на большую величину, серьезной опасности это напряжение не представляет. Небольшая емкость конденсаторов фильтра ограничивает величину тока так, что он не может нанести серьезного вреда человеку.

От него можно лишь получить неприятный удар током если одновременно коснуться находящегося под напряжением корпуса, и какого либо заземленного предмета, например батареи или водопроводного крана.

Хотя специально делать этого не стоит, благополучный исход такого эксперимента не может гарантировать никто.

Гораздо хуже ситуация когда из-за поломки прибора его корпус соединяется с питающим проводом. В этом случае на корпусе прибора окажется 220 В и величина тока уже не будет ограничиваться конденсаторами сетевого фильтра. Прикосновение к такому прибору может, при неблагоприятном стечении обстоятельств привести к смерти.

Несмотря на то, что неисправные бытовые приборы могут быть источником серьезной опасности, большая часть населения нашей страны живет в домах без заземления и даже не подозревает о подстерегающих их опасностях. Практически каждого из нас било током, но мало кому довелось пережить серьезные электро травмы. Чем же объясняется такая избирательность тока? Почему одних он калечит и убивает, а других лишь слегка щелкает?

Действие тока на организм человека определяется его величиной. Человек способен почувствовать ток величиной в один миллиампер. Ток величиной от одного до десяти миллиампер вызывает у человека болезненные ощущения.

Ток выше десяти миллиампер вызывает судорожное сокращение мышц, в результате чего человек не может самостоятельно разжать руку, чтобы разорвать контакт с находящейся под напряжением токонесущей частью.

При токе свыше сорока миллиампер наступает паралич дыхания, и нарушение работы сердца Ток величиной в сто миллиампер приводит к остановке сердца и смерти.

Величина протекающего через тело человека тока зависит от величины приложенного к нему напряжения и от сопротивления цепи, по которой проходит ток. Для того чтобы понять, почему при одном и том же напряжении, ток в одном случае может лишь вызвать у человека неприятные ощущения, не причинив ему при этом никакого вреда, а в другом убить, необходимо уяснить, что такое токовая цепь и как она создается.

Токовая цепь это путь прохождения тока и этот путь всегда замкнут. Ток в наш дом приходит с трансформаторной подстанции по фазному проводу, после чего возвращается на эту же подстанцию по нулевому проводу. Причем сколько тока пришло с подстанции в дом, столько же должно вернуться с дома на подстанцию, не больше и не меньше.

Ток не обязательно возвращается на подстанцию только по нулевому проводу. При повреждении изоляции возможна утечка тока в землю. В этом случае часть тока будет возвращаться на подстанцию по земле, а часть по нулевому проводу. Но и в этом случае полный, вернувшийся на подстанцию ток, будет равен току, идущему от подстанции к потребителю.

Если по каким либо причинам возвращение тока на подстанцию невозможно, например, отгорел нулевой провод у подстанции, то тока в домах потребителя не будет. В розетках будет напряжение, причем как в фазном, так и нулевом контактах по 220 вольт, но ток через приборы не пойдет и они работать не будут.

Почему в домах нельзя выполнять зануление?

Кстати этот случай наглядно показывает, почему в домах нельзя выполнять зануление, то есть присоединять корпуса приборов к нулевому проводу, как это иногда делают горе-электрики в домах где нет заземления. Действительно, пока все работает нормально, нет большой разницы к нулевому или заземляющему проводу присоединены корпуса защищаемых электроприборов.

Но при отгорании нулевого провода на нем, а следовательно и на всех присоединенных к нулевому проводу приборах, появится напряжение 220 В. То же самое произойдет, если при ремонте распределительного щитка электрик перепутает нулевой провод с фазным.

В этом случае корпуса приборов окажутся присоединенными не к нулевому, а к фазному проводу и на них тоже будет присутствовать напряжение 220 В.

Итак, токовая цепь это путь тока от подстанции к потребителю и обратно от потребителя к подстанции. Если в каком-то месте она нарушена, тока в цепи не будет. Сидящих на проводах птиц не бьет током только потому, что нет цепи для прохождения тока.

Стоящего на резиновом коврике электрика не бьет током, потому что коврик мешает току вернуться на подстанцию по цепи: фазный провод -> электрик -> земля -> подстанция. Вот и причина того почему при одном и том же напряжении ток может лишь слегка щипнуть человека, а может и убить.

Все зависит от того есть ли у него надежный путь для возвращения на трансформаторную подстанцию или нет. Если есть, то попавшему под напряжение человеку мало не покажется.

В интернете описан трагический случай, произошедший с мальчиком, захотевшим сделать уроки в вечернем саду. Он взял включенную в сеть настольную лампу с удлинителем и начал выносить ее из дома. Лампа была неисправна – находящийся под напряжением фазный провод касался корпуса лампы. Мальчик держал в руках находящийся под напряжением корпус лампы, но током его не било.

Сухой деревянный пол мешал току вернуться к подстанции. Как только мальчик сошел с крыльца и наступил на землю, создалась замкнутая токовая цепь: трансформаторная подстанция -> фазный провод -> настольная лампа -> человек -> земля -> снова трансформаторная подстанция и мальчик был убит током. Трагедии могло не быть.

Если бы лампа, удлинитель и проводка в доме были заземлены, то ток с корпуса лампы утекал бы через заземление, не причиняя вреда мальчику.

Если в доме нет возможности установить заземление, то хотя бы следует помнить что у тока не должно быть возможности возвратиться на подстанцию через землю. Только по специально предназначенному для этого нулевому проводу.

Ни в коем случае нельзя одновременно касаться электроприборов и заземленных частей, таких как батареи, водопроводные трубы и т п, чтобы не дать току возможность пройти через вас в землю и вернуться к подстанции.

Если в помещении сырой пол, то желательно чтобы на вас была обувь с непромокаемой подошвой, которая станет преградой между вами и проводящим полом, в случае если вы случайно попадете под напряжение.

Что такое УЗО?

Если вас не устраивают такие способы обеспечения электробезопасности, а установить заземление не представляется возможным, то есть еще одно мощное средство способное надежно обезопасить вас от травмирующего действия электрического тока. Это устройство защитного отключения, больше известное под аббревиатурой УЗО. Оно сравнивает ток фазы с током нуля.

Если ток в фазном проводе, хотя бы чуть-чуть больше тока в нулевом проводе, значит, существует утечка и часть тока возвращается на подстанцию через землю. В этом случае УЗО мгновенно отключит линию и если причиной утечки будет попавший под напряжение человек, через которого ток утекает в землю, то с ним не произойдет ничего страшного. УЗО успеет отключить ток до того как он успеет навредить человеку.

Хотя несчастные случаи с участием электрического тока в домашних условиях очень редки, не стоит экономить на подобных устройствах. Ведь жизнь человека слишком дорога, чтобы пренебрегать подобной опасностью.

зачем нужно заземление и что такое УЗО

Источник: https://o-remonte.com/zachem-nuzhno-zazemlenie-i-chto-takoe-uzo/

Система заземления TN-C-S

Дорогие гости, сайта заметки электрика.

Продолжаю серию статей про системы заземления.

В прошлой статье мы рассмотрели систему заземления TN-C.

Наша сегодняшняя тема статьи — это система заземления TN-C-S.

Чем же эта система заземления отличается от предыдущей?

Принцип системы TN-C-S основан на том, что PEN проводник разделяется в определенном месте и  приходит к потребителю двумя отдельными проводниками:

  • нулевой рабочий проводник N
  • защитный проводник PE
ЭТО ИНТЕРЕСНО:  Что такое электрическое поле

В качестве примера приведу схему электрического подъездного щита жилого дома.

Электроснабжение квартиры с системой заземления TN-C-S

В данном случае электроснабжение квартиры осуществляется либо 3-жильным кабелем (фаза, N, PE) при однофазном питании (см. рисунок выше), либо 5-жильным кабелем (А,В,С, N, PE) при трехфазном питании.

В отличии от рассмотренной ранее системы TN-C, в этой системе допускается устанавливать розетки с наличием клеммы для заземления — евророзетки.

Защитный проводник РЕ необходимо соединить с корпусом электрооборудования (СВЧ-печь, электроплита, стиральная машина и другие электрические приборы). Нулевой рабочий проводник N служит только для передачи электроэнергии потребителю.

Где произвести разделение PEN-проводника?

Разделение PEN проводника в системе TN-C-S

Сначала давайте определимся с местом разделения PEN-проводника в системе TN-C-S.

Чаще всего разделение PEN-проводника осуществляется на вводе в жилой дом, т.е. в вводно-распределительном устройстве (ВРУ) Вашего дома.

Наглядное представление системы заземления TN-C-S

Как правильно произвести электромонтаж по разделению проводника PEN?

Пример разделения PEN-проводника в ВРУ жилого дома

В ВРУ жилого дома должны быть установлены:

  • нулевая шина N
  • шина заземления PE

PEN проводник с вводного кабеля соединяем с шиной заземления РЕ. А между шиной заземления РЕ и нулевой шиной N устанавливаем перемычку. 

Шину заземления PE необходимо заземлить (повторное заземление), т.е. соединить с контуром заземления жилого дома.

Очень важно!!! PEN проводник от источника питания до места разделения должен иметь сечение: не меньше 10 кв.мм. по меди, и не меньше 16 кв.мм. по алюминию.

Дополнение: я написал подробную статью о том как правильно и в каком месте разрешено разделять PEN проводник — переходите и читайте.

Достоинства системы заземления TN-C-S

Система TN-C-S — это самая перспективная система заземления для нашего государства. С помощью нее обеспечивается высокий уровень безопасности от поражения электрическим током, в связи с использованием устройств защитного отключения (УЗО).

Также рекомендую прочитать статью про систему уравнивания потенциалов (СУП).

Недостатки системы TN-C-S

Самый главный недостаток системы TN-C-S возникает в случае обрыва PEN проводника. При нарушении изоляции, корпус электрических приборов может оказаться под напряжением относительно земли, что приведет к электрической травме человека.

Вывод

В завершение статьи я хочу дать Вам совет-рекомендацию. Если в Ваших домах (квартирах) до сих пор эксплуатируется электропроводка с системой заземления TN-C, то Вам необходимо задуматься о переходе на систему TN-C-S (а еще лучше на систему TN-S), т.к. от этого зависит Ваша личная электробезопасность.

В следующей моей статье читайте материал про систему заземления TT.

Источник: http://zametkielectrika.ru/sistema-zazemleniya-tn-c-s/

Заземляющие устройства: заземление, виды и технические параметры

Заземляющее устройство (ЗУ) — это совокупность заземлителя и заземляющих проводников которые соединяют землю с электрическими приборами, машинами и электроустановками.

задача ЗУ – создание надежного соединения для отвода напряжения с элементов, которые могут попасть под высокое напряжение.

Причиной тому чаще всего служат:

  • молния;
  • вынос потенциалов;
  • вторичная индукция из-за влияния близко находящихся токоведущих частей.

Роль земли может выполнять грунт или вода в крупных водоемах и реках, каменноугольные выработки, и иные природные или рукотворные объекты с похожими свойствами.

Разделяют три вида заземления:

  • рабочее зазмеление необходимо для нормального функционирования прибора или установки, которое пропускает через себя рабочий ток, составляющий часть тока в фазе трехфазной системы или в одном из полюсов постоянного тока;
  • зануление заземление — нейтраль трехфазного генератора или трансформатора заземлена и от нее проложен нулевой провод, выполняющий одновременно функции рабочего и защитного зануления;
  • заземление безопасности — главной задачей является уменьшение шагового напряжения и обеспечение электробезопасности. Это осуществляется путем снижения сопротивления каждого отдельного заземлителя и равномерным распределением потенциала по всей площади;

В трехфазных сетях с напряжением менее 1000 Вольт при наличии изоляции нейтрали в обязательном порядке требуется защитное заземление, и независимо от режима изоляции в сетях от 1000 Вольт.

Виды ЗУ

В качестве заземляющего устройства может использоваться объекты естественного происхождения либо искусственные заземлители.

К первым относятся:

  • конструкции домов и помещений, осуществляющие соединение с землей;
  • фундаменты из железобетона — при наличии вокруг влажных грунтов (глинистые, суглинки и др.);
  • подземные трубы различных систем, кроме теплотрасс и слущащих для транспортировки горючих материалов;
  • оболочки кабеля из свинца.

Следует учитывать, что значение R (сопротивление) у естественных заземлителей можно узнать только путем проведения контрольных замеров, и если естественные элементы заземления будут иметь приемлемые показатели сопротивления, то конструировать что-то еще не нужно будет.

В качестве искусственных заземляющих устройств применяются элементы представляющие собой:

  • стальные трубы от 3 см в диаметре и от 2 метров длинной;
  • стальные полосы или угловая сталь не тоньше 0,4 см и длинной от 2 метров;
  • длинные (до 10 м) стальные прутья диаметром от 1 см;
  • обрезки труб из стали, рельс;
  • металлические цепи, тросы.

Выбирая размеры электрода, обязательно учитывайте:

  • значение сопротивления заземлителя при наименьшей массе — уровень сопротивления зависит в основном от длины электрода, и в наименьшей степени от его поперечного сечения; 
  • механическую устойчивость к подземной коррозии — показатель устойчивости к коррозии зависит от толщины и площади соприкосновения с грунтом.

Имея одинаковые сечения, в качестве более долговечных электродов служат круглые стержни. Для предотвращения коррозии в агрессивных щелочных и кислых почвах, используют медные, омедненные или оцинкованные материалы. На любых типах почв нельзя использовать алюминий, из-за окисления и последующей изоляции его поверхности.

Монтируют вертикальные электроды таким образом, чтобы верхний конец находился около поверхности грунта или глубже на 50-80 см — данный вариант обеспечивает более стабильную и эффективную защиту из-за небольших изменений удельного сопротивления грунта в разные периоды. Если одного электрода недостаточно для достижения необходимых технических параметров сопротивления растеканию, тогда устанавливают несколько электродов подряд или по периметру. Лучшую прочность во время углубления показывают трубы и уголки.

Вертикальные элементы чаще всего соединяются стальными стержнями, приваренными к верхним концам, реже с помощью пластин или колец.

От 1000 Вольт при больших токах замыкания

В этом случае для наибольшего сопротивления заземляющих устройств требуется менее 0,5 Ом, однако этим не обеспечивается достаточное напряжение касания и шага токозамыкания 1-2 кА. Поэтому дополнительно выполняются следующие действия:

  • должно быть быстрое отключение на случай замыкания в землю;
  • выравниваются потенциалы по периметру территории местонахождения установки и в ее пределах. Для этого по всей площади от 50 см глубиной закладывают сетку, состоящую из проводников выравнивания для равномерного растекания тока. Продольные части укладываются параллельно осей электрооборудования на дистанции 80 — 100 см от его основания либо фундамента. Затем укладывают поперечные детали и шаг соединения до 6 м. Крайние части сетки, через которые уходит большое количество тока, укладывают глубже на 30-50 см.
  • Такое же выравнивание осуществляют рядом с входами на территорию электрической установки укладкой дополнительно нескольких полос с их постепенным заглублением — расстояние от заземлителя 100 и 200 см соответственно, а глубина закладки 100 и 150 см.
  • Дистанция от периметра контура до ограждения должно превышать 3 м, тогда ограждение можно не заземлять. Подходы, входы и въезды есть смысл делать в виде асфальтовых или гравийных покрытий, из-за их малой проводимости.
  • Чтобы избежать выноса за границы местонахождения потенциала, разрешается присоединять приемники вне территории установки к трансформаторам смонтированным в нее можно лишь при условии изоляции их нейтрали.

Больше 1000 Вольт при небольших токах замыкания

Когда проводится значение R для таких установок, требуется менее 10 Ом. Рассчитать его можно с помощью формулы:

В качестве расчетного используется:

  • показатель тока сработки релейной защиты обязательно гарантирующей обесточивание замыкания на землю;
  • емкость предохранителей.

Необходимо превышение в 1,5 и 3 раза минимального эксплуатационного тока замыкания соответственно над уровнем срабатывания реле или номинальным током предохранителей.

До 1000 Вольт — нейтральный проводник заглушен в землю

Уровень сопротивления заземляющих устройств менее 4 Ом. Когда общая мощность источников и преобразователей напряжения не доходит больше 100 кВА, тогда достаточно уровеня менее 10 Ом.

Заземляемые детали делаются надежно связанными с проводниками заземления или нуля источника электричества.

На воздушных линиях этот контакт делается специально прокладываемым параллельно фазам проводом. В этом случае необходимо сделать повтор заземления нуля с интервалом 250 м, и обязательно в конечной точке линии. Для каждого повтора R меньше 10 Ом.

Если мощность всех источников и трансформаторов в сумме меньше 100 кВА, и для этой сети разрешено R главного ЗУ 10 Ом, то для повторных этот показатель необходим менее 30 Ом в количестве больше двух.

До 1000 Вольт — нейтраль в изоляции

Как в предыдущем пункте, требуется получить уровень R заземляющих устройств менее 4 Ом. Когда же сумма мощности генераторов и преобразователей до 100 кВА, показатель нужен меньше 10 Ом.

Наибольшее значение при касании может быть до 40 В. Из-за этого электробезопасность частей, которые могут оказаться под напряжением в таких сетях значительно выше.

Источник: http://www.kabelmontazh.ru/articles/view/zazemlyayushchie_ustrojstva/

Заземление. Что это такое и как его сделать (часть 1)

Мой рассказ будет состоять из трёх частей.

3 часть. Современные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования. Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений. Третья часть (практика) в некотором смысле продолжит вторую.

В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий. Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

1 часть. Заземление

В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения

Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта. Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).И попытаюсь “перевести” эти определения на “простой” язык.
Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.
Заземляющее устройство

Источник: https://habr.com/ru/post/144464/

Системы заземлений: TN-С, TN-C-S, TN-S, ТТ, IT

Глобализация не обошла стороной электротехнику, МЭК (Международная электротехническая компания) разработала единый стандарт, по которой квалифицируются системы заземлений.

Разновидности систем заземлений

Можно выделить следующие три системы, а также еще три подсистемы заземлений:

  • Система TN:  подсистемы TN-C, TN-S, TN-C-S.
  • Система ТТ.
  • Система IT.

Международная классификация  систем заземлений обозначается заглавными буквами. Первая буква указывает на характер ЗАЗЕМЛЕНИЯ ИСТОЧНИКА ПИТАНИЯ , вторая – на характер ЗАЗЕМЛЕНИЯ ОТКРЫТЫХ ЧАСТЕЙ ЭЛЕКТРОУСТАНОВКИ.

Какая из систем надежно защищает?

Аббревиатура букв расшифровывается так:

  • T (terre — земля) — заземлено;
  • N (neuter — нейтраль) — присоединено к нейтрали источника (занулено);
  • I (isole) — изолировано.

В ГОСТ введены обозначения нулевых проводников:

  • N — нулевой рабочий проводник;
  • PE — нулевой защитный проводник;
  • PEN — совмещенный нулевой рабочий и защитный проводник заземления.

Целевые предназначения систем заземления

Разновидности систем заземлений

Предлагаю по порядку разобрать каждую систему и подсистему для того, чтобы лучше понять, как они работают и для чего они нужны.

Система TN – система в которой нейтраль источника питания глухо заземлена,  а открытые проводящие части электропроводки присоеденены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

Термин глухозаземленная означает, что проводник N (нейтраль) присоединен не  к дугогасящему реактору, а к заземляющему контуру, который непосредственно смонтирован вблизи трансформаторной подстанции.

Система TN: подсистема TN-C

TN—C — нулевой рабочий и нулевой защитный проводники объединены в одном проводнике по всей системе (C — combined — объединённый).

  • Достоинства подсистемы TN-C.

Наиболее распространенная подсистема, экономичная и простая.

  • Недостатки подсистемы TN-C

У такой системы нет отдельного проводника РЕ (защитное заземление).  Это означает, что в жилом доме в розетках отсутствует заземление. Нередко при такой системе делается зануление. Зануление — это крайняя мера, рассчитанная на эффект короткого замыкания. Если проводник фазы окажется на корпусе прибора, произойдет короткое замыкание (КЗ), в итоге, сработает автоматический выключатель на отключение.

При такой системе TN-C недопустимо уравнивание потенциалов в ванной комнате.

Cистема заземления TN-C используется в старом жилом фонде и не может быть рекомендована для новых построек.

Схема системы TN-C

Cхема системы TN-C

Система TN: подсистема TN-S

TN—S — нулевой рабочий и нулевой защитный проводники работают раздельно по всей системе (S — separated — раздельный).

  • Достоинства подсистемы TN-S.

Наиболее современная и  безопасная система заземления. Рекомендуется при строительстве новых зданий. Способствует хорошей защите человека, оборудования, а так же защиты зданий.

  • Недостатки подсистемы TN-S.

Менее распространена. Требует прокладки от трансформаторной подстанции пятижильного провода в трехфазной сети или трехжильного кабеля в однофазной сети, что ведет к удорожанию проекта.

Cхема системы TN-S

Схема системы TN-S

Система TN: подсистема TN-C-S

TN-C-S — нулевой рабочий и нулевой защитный проводники объединены в одном проводнике в  какой- то ее части, начиная от источника питания до ввода в здание, такую систему возможно расщепить на проводник N и проводник РЕ. После расщепления такая система требует повторного заземления

  • Достоинства подсистемы TN-С-S.

Подсистема TN-C-S рекомендована для широкого применения . Технически достаточно легко выполнима. При переходе с подсистемы TN-C требует несложной модернизации.

  • Недостатки подсистемы TN-С-S.

Нуждается в модернизации стояков в подъездах. При обрыве PEN проводника электроприборы могут оказаться под опасным потенциалом.

Схема системы TN-C-S

Схема системы TN-C-S

Система TT

TT — нейтраль источника глухо заземлена, а открытые проводящие части электроустановки присоединены к заземлителю, электрически независимому от заземлителя нейтрали источника питания.

До недавнего времени система заземления ТТ  была запрещена в нашей стране. Сегодня, эта система остается достаточно востребованной и используется для мобильных зданий, таких как вагончики, ларьки, павильоны,дома и др. Допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены.

Такая система требует высококачественного повторного заземления, с высокими требованиями к сопротивлению. Самым эффективным заземлением в этом случае, является модульно-штыревое заземление. Во всех перечисленных системах рекомендуется для безопасности применять УЗО ( Устройство защитного отключения).

Схема системы ТТ

Cхема системы ТТ

Система IT

Cистема IT — в такой системе нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.

Система IT – это схема заземления лабораторий и медицинских учреждений,  в которой проводятся опыты и работы с чувствительной аппаратурой. А все токи и электромагнитные поля сведены к минимуму.

Схема системы IT

схема система IT

Как подготовится к электромонтажным работам в доме или офисе?

Источник: http://electric-tolk.ru/sistemy-zazemleniya-tn-s-tn-c-s-tn-s-tt-it/

Глухозаземленная нейтраль: принцип действия, устройство, схемы

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

ЭТО ИНТЕРЕСНО:  В чем измеряется работа электрического тока

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.

Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром.

Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ).

При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

UF1= UF2=UF3;

UL1=UL2=UL3.

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети.

Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения.

К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
  • I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ).Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются.Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации.Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена.Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

Источник: https://www.asutpp.ru/gluhozazemlennaja-nejtral.html

Рабочее заземление: определение, устройство и назначение

Заземление электроустановок делится на два основных вида – функциональное рабочее и защитное. В некоторых источниках встречаются и дополнительные виды заземлений, такие как измерительное, контрольное, инструментальное и радио.

Рабочее или функциональное заземление

ПУЭ в параграфе № 1.7.30 дано определение рабочего заземления: «рабочим называют заземление одной или нескольких точек токоведущих частей электроустановки, которое служит не в целях безопасности».

Такое заземление подразумевает электрический контакт с грунтом. Оно необходимо для нормальной эксплуатации электроустановки в штатном режиме.

Назначение функционального заземления

Для того чтобы понять, что называется рабочим заземлением, следует знать его основное назначение – устранение опасности удара током в случае соприкосновения человека к корпусу электроустановки или к её токоведущим частям, которые в данный момент находятся под напряжением.

Такая защита применяется в сетях с трёхфазной системой распределения тока. Изолированная нейтраль необходима для электросети, где напряжение не превышает 1 кВ. В сетях с напряжением свыше 1 кВ защитное заземление допускается делать с любым режимом нейтрали.

Принцип действия функционального заземления заключается в снижении напряжения между корпусом, который в результате непредвиденной аварии оказался под током, и землёй до безопасной для человека величины.

Если корпус электроустановки, оказавшийся под током, не оснащён функциональным заземлением, то прикосновение человека к нему равносильно контакта с фазным проводом.

Если учесть, что сопротивление обуви человека, который дотронулся до электроустановки, и пола, на котором он стоит, ничтожно мала относительно земли, то ток может достигнуть опасной величины.

При правильной работы функционального заземления ток, проходящий через человека, будет безопасным. Напряжение во время прикосновения также будет незначительным. Основная часть электроэнергии будет уходить через заземляющий проводник в землю.

Различия между рабочим и защитным заземлениями

Рабочее и защитное заземление отличается друг от друга прежде всего назначением. Если первое необходимо для обеспечения правильной и бесперебойной работы электрооборудования, то второе служит для защиты людей от поражения электрическим током. Также оно защищает и оборудование от поломок в случае пробоя какого-нибудь электрического прибора на корпус. Если здание оборудовано громоотводом, такой тип заземления защитит приборы от перегрузки в случае удара молнии.

Рабочее заземление электроустановок, в случае возникновения чрезвычайной ситуации, сыграет роль защитного, но основная её функция — обеспечение правильной бесперебойной работы электрооборудования.

В неизменном виде функциональное заземление применяют только на промышленных объектах. В жилых домах используется заземляющий проводник, который подводится к розетке. Однако есть бытовые приборы в доме, которые таят в себе потенциальную опасность для потребителя, поэтому не будет лишним заземлить их, используя глухозаземлённую нейтраль.

Домашние приборы, которые требуется подключить к рабочему заземлению:

  1. Микроволновка.
  2. Духовка и плита, которые работают за счёт электричества.
  3. Стиральная машина.
  4. Системный блок персонального компьютера.

Конструкция заземления

Рабочее заземление представляет собой вбитые в землю железные штыри, играющие роль проводников, на глубину около 2-3 метров.

Такие металлические прутья соединяют заземлительные клеммы электрооборудования с шиной заземления, тем самым образуя металлосвязь.

Металлосвязь есть в каждом жилом доме. Это сварная железная конструкция, которая соединяет друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.

В качестве заземляющего проводника используют шину или провод с сечением не менее 4 кв. мм, окрашенные в жёлтые и зелёные полосы. Кабель в основном используют для переноса функционального заземления от шины к шине.

В целях безопасности проводится периодическая проверка электронного сопротивления металлической связи заземления. Оно измеряется от клеммы заземления электроустановки до наиболее удалённого от неё наземного контура заземления. Показатель сопротивления в любой части рабочего заземления не должен превышать 0,1 Ом.

Для чего делают несколько заземлителей

Электроустановку нельзя оснащать только одним заземлителем, поскольку почва является нелинейным проводником. Сопротивление земли находится в сильной зависимости от напряжения и площади контакта с воткнутыми штырями рабочего заземления. У одного заземлителя площадь контакта с почвой будет недостаточной, чтобы обеспечить бесперебойную работу электроустановки.

Если установить 2 заземлителя на расстоянии в несколько метров друг от друга, то появляется достаточная площадь контакта с землёй. Однако следует помнить, что разносить слишком далеко металлические части заземления нельзя, поскольку связь между ними прервётся. В итоге останется только два отдельно установленных в почву заземлителя, никак не связанных друг с другом.

Оптимальное расстояние между двумя контурами заземления составляет 1-2 метра.

Как нельзя осуществлять заземление

Согласно параграфу 1.7.110 ПУЭ, запрещается использовать в качестве рабочего заземления любые виды трубопроводов. Кроме того, запрещено выводить заземляющий кабель наружу и подключать его к неподготовленной контактной площадке на шине. Такой запрет объясняется тем, что каждый металл имеет свой индивидуальный потенциал.

При воздействии внешних факторов образуется гальванический пар, который способствует процессу электроэрозии. Коррозия может распространиться под оболочку заземляющего провода, что повышает опасность его оплавления во время подачи больших токов на контур заземления в случае аварии.

Специальная защитная смазка предотвращает разрушение металла, но действует она лишь в сухом помещении.

Также ПУЭ запрещает осуществлять поочерёдное заземление электроустановок друг с другом, подключать более одного кабеля на одну площадку заземляющей шины. Если пренебречь такими правилами, то в случае аварии на одной установке она будет создавать помехи в работе соседа. Такое явление называется электрической несопоставимостью. При неправильном подключении рабочего заземления работы по устранению недостатков опасны для жизни.

Чтобы разобраться в том, что называется рабочим заземлением, а также какие требования предъявляются к таким конструкциям, следует знать, что для защиты людей от удара электрическим током, напряжение которого не превышает 1000 В, необходимо заземлять абсолютно все металлические части электрооборудования. Немаловажно, чтобы все конструкции, построенные в целях заземления, отвечали всем нормам безопасности, предъявляемым для обеспечения нормальной работоспособности сетей и дополнительных предохранителей от возможной перегрузки.

Опасность соприкосновения с токоведущими частями

При контакте человека с токоведущими частями электрической цепи или с металлическими конструкциями, которые оказались под напряжением в результате нарушения изоляционного слоя кабеля, возможно поражение электрическим током. Полученная травма проявляется в виде ожога на кожном покрове. От такого удара человек может потерять сознание, возможна остановка дыхания и сердца. Встречаются случаи, когда удар тока при малом напряжении приводит к смерти человека.

Меры предосторожности от поражения током

Чтобы максимально обезопасить людей от контакта с токоведущими частями электроустановки, а также с её металлическими частями, необходимо полностью изолировать опасный объект. Для этого устанавливают различные ограждения вокруг электроустановок.

Источник: https://fb.ru/article/346759/rabochee-zazemlenie-opredelenie-ustroystvo-i-naznachenie

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]