Как складываются сопротивления при параллельном соединении

Соединение резисторов

Радиоэлектроника для начинающих

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов

В жизни последовательное соединение резисторов имеет вид:

Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Общее номинальное сопротивление составного резистора обозначено как Rобщ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Что это значит?

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов

Можно соединять резисторы и параллельно:

Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.

Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.

Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/connection-of-resistors.html

Последовательное и параллельное соединение резисторов


Последовательное соединение резисторов применяется для увеличения сопротивления. Т.е. когда резисторы соединены последовательно, общее сопротивление равняется сумме сопротивлений каждого резистора. Например, если резисторы R1 и R2 соединены последовательно, их общее сопротивление высчитывается по формуле:
R = R1 + R2.Это справедливо и для большего количества соединённых последовательно резисторов:

R = R1 + R2 + R3 + R4 + + Rn.

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Параллельное соединение резисторов (формула)

Параллельное соединение резисторов необходимо для уменьшения общего сопротивления и, как вариант, для увеличения мощности нескольких резисторов по сравнению с одним.

Расчет параллельного сопротивления

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Сопротивление издвух резисторов:   R =  R1 × R2
 R1 + R2

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

Сопротивление параллельных резисторов

 1    =    1  +  1  +  1  +
R R1 R2 R3

Как видно, вычислить сопротивление двух параллельных резисторов значительно удобнее.

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Например: десять резисторов номиналом 1 КОм и мощностью 1 Вт каждый, соединённые параллельно будут иметь общее сопротивление 100 Ом и мощность 10 Вт.
При последовательном соединении мощность резисторов также складывается. Т.е. в том же примере, но при последовательном соединении, общее сопротивление будет равно 10 КОм и мощность 10 Вт.

Источник: http://katod-anod.ru/articles/4

Закон ома параллельное и последовательное соединение проводников

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой.

Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка.

Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Источник: https://vemiru.ru/info/zakon-oma-parallelnoe-i-posledovatelnoe-soedinenie/

Последовательное соединение сопротивлений

Сопротивления, например это могут быть лампы накаливания или другие нагревательные приборы, можно соединить тремя способами, а именно; последовательно, о чём здесь и расскажем, параллельно и смешано.

Последовательно — значит одно сопротивление подключается к другому, а третье ко второму и т. д. след в след. Вот и получается, что последовательно.

Каждое сопротивление имеет два отвода и представляет из себя двухполюсник (те самые два отвода). Если условно один из отводов (любой) назвать началом, то другой будет концом.

Если поменять местами, то суть от этого не поменяется, потому как мы имеем дело с обычным сопротивлением, а не с полупроводниковым диодом. Итак.

Берем конец одного сопротивления и соединяем его с началом другого, затем берём конец этого сопротивления и соединяем его с началом следующего и т. д. В итоге у нас получится что-то похожее на ёлочную гирлянду, особенно если провода длинные и гибкие.

ЭТО ИНТЕРЕСНО:  Что такое падение напряжения на участке цепи

В чём особенность такого соединения сопротивлений? Почему следует выбрать именно такой способ, а не какой-то другой? Давайте разберёмся с особенностями такого типа соединений. Если представить каждое сопротивление как отрезок металлического прута цилиндрической формы, то одинаковые сопротивления будут представлены одинаковыми прутами, а сопротивление в 2 раза большее будет представлено двойным отрезком прута.

Согласитесь, очень похоже схематическое изображение резистора (сопротивления) на тот самый пруток, правда в упрощенном виде.

Что же происходит когда мы фактически при последовательном соединении прикладываем прутки один к другому стык в стык. Визуально это выглядит как наращивание или удлинение проводника. У нас было много проводников, а стал как бы один большой.

Так как наш суммарный цилиндрический пруток стал длиннее, то и сопротивление его должно стать больше.

Одним словом в при последовательном соединении проводников общее сопротивление равно сумме всех последовательно соединенных сопротивлений на этом участке (ветке, или цепи если других веток нет).

Итак, что же следует учесть, чтобы продуктивно использовать последовательное соединение проводников и знать чем оно лучше или хуже остальных типов соединений.

Все особенности вытекают из Закона Ома и если хорошенько знать этот закон, то о многом можно догадаться сходу.

Падение напряжения на участке цепи

При последовательном соединении проводников сумма падений напряжений на каждом участке цепи (на каждом сопротивлении) будет равна падению напряжения всей цепи (или ветви цепи).

Величина падений напряжений будет прямо пропорциональна величине сопротивлений потому как величина силы тока в цепи одинакова при этом типе соединений.

Сила тока в цепи при последовательном соединении

Когда сопротивления соединяются одно к другому и нет отводов от этих сопротивлений, чтобы образовать новую цепочку соединений, то есть нет разветвлений в цепи, тогда величина силы тока будет одинакова во всей цепи. Через каждое сопротивление в цепи будет протекать один и тот же ток. Можно также сказать, что в цепи из последовательно соединённых сопротивлений установится одна и та же величина силы тока.

Это следует из Закона Ома. Согласно которому величина тока прямо пропорциональна величине падения напряжения (вся цепь) и обратно пропорциональна сопротивлению этого участка. Закон Ома определяет величину тока протекающего во всём участке цепи, а значит он везде одинаков, тем более если учесть, что участок у нас единственный с последовательно соединенными сопротивлениями.

Сопротивление участка цепи при последовательном соединении

Думаю, что с этим вопросом мы уже разобрались на примере металлического прута. При последовательном соединении величины сопротивлений складываются и их простая арифметическая сумма и будет величиной суммарного сопротивления. Чем больше мы включаем сопротивлений при последовательном соединении, тем большим становится суммарное сопротивление всего участка цепи.

Особенности и преимущества использования последовательного соединения

Одной неприятной особенностью последовательного соединения является то, что при обрыве одного из сопротивлений обрывается вся цепь. Ток прекращает течь. Но не стоит горевать, эта же особенность используется для защиты электрических цепей, потому как все предохранители включаются именно последовательно и именно для того, чтобы в случае опасной величины тока оборвать всю цепь, тем самым сберечь очень часто дорогостоящее оборудование.

Также последовательное соединение используется в качестве делителя напряжения, когда сопротивления подбираются так, чтобы на одном из сопротивлений получить нужное значение падения напряжения. Часто применяется в электронике, но в электротехнике делитель напряжения это временная мера, потому как гораздо экономичнее применить трансформатор.

Следующий вариант применения последовательного соединения — это сугубо утилитарный и зависит он от применяемых сопротивлений. Очень часто это также вынужденная мера.

Может случится так, что потребуется соединить нагревательные приборы в одну цепь, но в наличии окажутся только те нагреватели, что имеют номинальное напряжение 24 V, а требуется их включить в электрическую сеть 110-127 Volt. Как быть? До магазина далеко и взять другие нагреватели негде, а генератор выдает именно 110-127 Volt.

Выход как раз в последовательном соединении этих самых нагревателей (главное чтобы их было достаточно). Требуется включить последовательно столько нагревателей, чтобы падение на каждом из них не превышало 24 V.

Подсчитать тут достаточно легко и просто. Так как все нагреватели одинаковы, а значит и сопротивления их одинаковы, а требуется добиться, чтобы падение напряжения на каждом из них было те самые 24 V, то достаточно 127 Volt разделить на 24 V и получим сколько требуется взять нагревателей для последовательного соединения. Получается примерно 5,29 нагревателя. Разумеется мы сможем взять только целое количество сопротивлений и поэтому берем 6 нагревателей.

Каким расчетным будет падение напряжения на каждом нагревателе? Для этого 127 делим на 6 и получаем примерно 21,16 V. Расчетная величина не превышает номинального напряжения на которое рассчитаны нагреватели, а это значит, что нагреватели будут работать в своем номинальном эксплуатационном режиме.

В чём особенность такого способа расчёта? Вы наверное заметили, что тут в вычислениях не применялась величина сопротивления в омах. Мы не использовали значение сопротивления нагревателя, потому как оно нам было не нужно.

Такой фокус можно проделать тогда, когда при последовательном соединении все сопротивления одинаковые по величине. Нагреватели как раз были одинаковыми.

Что же делать если нам понадобится значение сопротивления, а под рукой нет прибора, чтобы сделать измерения? Обычно у каждого электротехнического прибора или изделия есть номинальные характеристики, такие как ток, напряжение и мощность. Зная Закон Ома можно вычислить всё остальное.

Дата: 16.01.2020

Валентин Григорьев

Возможно Вам будут интересны следующие статьи из этого раздела:

Если Вы не нашли ничего интересного в этом разделе, тогда Вам следует воспользоваться левым вертикальным меню, чтобы попасть в интересующий Вас раздел сайта.

Источник: http://electricity-automation.com/page/posledovatelnoye-soyedineniye-soprotivleniy

Соединение компонентов

Макеты страниц

Всякая электрическая цепь характеризуется активным сопротивлением, индуктивностью и емкостью. Компоненты, обладающие этими свойствами, могут соединяться между собой различными способами. В зависимости от способа соединения рассматриваются значения активных и реактивных сопротивлений. В заключение описывается явление резонанса, играющее в радиотехнике важнейшую роль.

Мои дорогие друзья, вы познакомились с пассивными компонентами. Так называют резисторы, катушки индуктивности и конденсаторы в отличие от активных компонентов: электронных ламп и транзисторов, изучением которых вы вскоре займетесь.

Сосуществование R, L и С

Все, что ты, Любознайкин, объяснил свому другу, совершенно правильно. Однако я должен добавить, что в действительности любой из компонентов обладает не только свойством, определяющим его название. Так, даже простой проводник из прямого отрезка провода одновременно обладает сопротивлением, индуктивностью и емкостью. В самом деле, какой хорошей ни была бы его проводимость, он все же обладает некоторым активным сопротивлением.

Вы помните, что, проходя по проводнику, электрический ток создает вокруг него магнитное поле. И если протекающий ток переменный, то и это поле переменное; оно наводит в проводнике токи, противодействующие основному току, протекающему по проводнику. Стало быть, здесь мы наблюдаем явление самоиндукции.

И, наконец, как и любой проводник, наш отрезок провода способен удерживать некоторый электрический заряд — как отрицательный, так и положительный. А это значит, что он обладает также и некоторой емкостью.

Все, что характерно для простого прямого отрезка провода, присуще, разумеется, и катушке: кроме своего основного свойства индуктивности, она обладает также некоторым активным сопротивлением и некоторой емкостью.

Конденсатор, в свою очередь, помимо характеризующей его емкости имеет некоторое, обычно очень малое, активное сопротивление. В самом деле, проходя по обкладкам конденсатора, электрические заряды пересекают некоторую массу обкладок, обладающую небольшим активным сопротивлением. И эти небольшие перемещения зарядов порождают также индукцию.

Таким образом, вы видите, что ни одна из этих трех характеристик, обозначаемых буквами R, L и С, не может существовать отдельно без наличия двух других. Тем не менее мы не будем учитывать эти побочные явления, так как они неизмеримо меньше основного свойства компонента.

Последовательное соединение

Нам необходимо изучить соединение однородных и разнородных компонентов. Мы проанализируем, какая величина получается в результате и какое сопротивление прохождению тока оказывают соединенные между собой компоненты.

Компоненты могут соединяться последовательно или параллельно (рис. 31). Последовательным соединением называется такое, когда конец одного компонента соединен с началом другого и т. д.

В этом случае ток поочередно проходит по всем образующим цепочку компонентам. При параллельном соединении между собой соединены одноименные выводы. Здесь ток, разветвляясь, одновременно проходит по всем соединенным таким образом компонентам.

Вы легко поймете, что соединенные последовательно сопротивления складываются. Возьмем резисторы сопротивлением 100, 500 и 1000 Ом. Соединим их последовательно; полученная цепочка будет иметь сопротивление

Возьмем теперь катушки индуктивности и соединим их последовательно. условии, что между ними нет взаимной индукции, их индуктивности должны складываться.

Возьмем катушки, обладающие индуктивностью соответственно 0,5 и 1,25 Г, и соединим их последовательно, разместив их достаточно далеко друг от друга, чтобы избежать взаимного влияния. Индуктивность цепи составит:

Все это кажется очень простым. А будет ли так же просто при последовательном соединении конденсаторов?

Рис. 31. Последовательное (а) и параллельное (б) соединения компонентов.

Рис. 32. Последовательное соединение конденсаторов. Суммарная емкость меньше емкости каждого из .

Мы сказали, что при таком соединении сопротивления компонентов складываются. А у конденсаторов складываются емкостные сопротивления. Рассмотрим случай с двумя конденсаторами, имеющими емкости соответственно , по которым протекает ток с частотой (рис. 32). Емкостные сопротивления этих конденсаторов складываются и составляют общее емкостное сопротивление:

Рассматривая емкостное сопротивление всей цепочки как соответствующее емкости С, мы можем записать:

Умножив все члены этого равенства на , получим:

Проведенные преобразования позволяют нам сделать вывод, что при последовательном соединении конденсаторов нужно сложить обратные величины их емкостей, чтобы получить обратную величину емкости всей цепочки.

В рассмотренном нами случае, т. е. случае последовательного соединения двух конденсаторов, из последней формулы мы без большого математического усилия можем вывести формулу для расчета емкости всей цепочки:

Параллельное соединение

Перейдем теперь к изучению компонентов, соединенных параллельно. Этот способ включения облегчает прохождение тока. В самом деле, здесь складывают проводимости компонентов. Так называют величину, обратную сопротивлению.

Рассмотрим случай параллельного соединения активных сопротивлений (рис. 33). Их проводимости складываются. При параллельном соединении двух резисторов проводимость всей цепочки равна сумме проводимостей соединенных резисторов:

Как вы видите, здесь наблюдается аналогия с последовательным соединением конденсаторов, и вы без труда можете рассчитать общее сопротивление цепи R двух параллельно соединенных резисторов:

Теперь, если мои рассуждения вам еще не наскучили, рассмотрим случай параллельного соединения двух катушек, между которыми нет взаимной индукции (рис. 34). Индуктивные сопротивления катушек пропорциональны их индуктивности. Следовательно, они будут вести себя аналогично активным сопротивлениям.

Итак, мы не ошибемся, если скажем, что две соединенные параллельна катушки и обладают общей индуктивностью, которая рассчитывается по формуле

И, наконец, рассмотрим случай двух соединенных параллельно конденсаторов (рис. 35). Здесь нужно складывать проводимости, которые представляют собой величины, обратные емкостным сопротивлениям. Но сами емкостные сопротивления, как вы помните, обратно пропорциональны емкостям. Это означает, что проводимости конденсаторов прямо пропорциональны их емкостям.

Рис. 33. При параллельном соединении резисторов общее сопротивление уменьшается.

Рис. 34. Параллельное соединение катушек индуктивности.

Рис. 35. Параллельное соединение конденсаторов.

Следовательно, будучи соединенными параллельно, емкости складываются:

Впрочем, анализируя физические явления, происходящие при заряде конденсаторов, вы легко пришли бы к этому выводу.

Постарайся запомнить, дорогой Незнайкин, что при последовательном соединении компонентов складываются их сопротивления, а при параллельном соединении складываются проводимости, т. е. величины, обратные сопротивлению.

Комбинированное соединение

Все только что сказанное мною применимо лишь к схемам, состоящим из однородных компонентов. Но положение значительно усложнится, если мы соединим вместе активные сопротивления, катушки индуктивности и конденсаторы.

Здесь мне следовало бы использовать термин полное сопротивление, который, как показывает само слово «полное», означает комплексное сопротивление, состоящее из активного и реактивного сопротивления. В отличие от активного сопротивления, присущего тому или иному материалу проводника, индуктивное и емкостное сопротивления называют реактивными сопротивлениями.

Полное сопротивление обозначается буквой Z, а его обратная величина и называется полной проводимостью.

Я не хочу утомлять вас рассмотрением всех возможных комбинаций. Мы ограничимся только теми, которые встречаются во всех электронных устройствах (табл. 2).

Рассмотрим для начала последовательное соединение катушки индуктивности с конденсатором (рис. 36). Их реактивные сопротивления складываются, но это не дает нам основания написать формулу со знаком плюс. В самом деле, индуктивное и емкостное сопротивления имеют как бы противоположные свойства.

Индуктивность, как вы знаете, задерживает появление тока при подключении к ней переменного напряжения. Это называется сдвигом по фазе, и ток в данном случае отстает от напряжения.

ЭТО ИНТЕРЕСНО:  Какая мощность называется активной

Обратное явление происходит в конденсаторе, где ток опережает напряжение по фазе. Ведь по мере нарастания заряда конденсатора напряжение на его обкладках увеличивается, но с приближением к насыщению величина тока убывает. Поэтому вас не удивит, что, складывая индуктивное сопротивление с емкостным, я перед последним поставлю знак минус:

Рис. 36. Последовательно соединенные катушка и конденсатор. Полное сопротивление цепи равно разности индуктивного и емкостного сопротивлений.

Рис. 37. Соотношение между гипотенузой и катетами прямоугольного треугольника.

Активное сопротивление в данном случае очень мало, и поэтому в приведенной выше формуле оно не учитывается. Но если величина R активного сопротивления значительна, то наша формула приобретает более сложный вид:

Как вы видите, нужно извлечь квадратный корень из суммы квадратов активного и реактивного сопротивлений, чтобы получить полное сопротивление.

Таблица 2

Это ничего тебе не напоминает, Незнайкин, из области геометрии? Не таким ли образом рассчитывают длину гипотенузы (рис. 37), извлекая квадратный корень из суммы квадратов катетов?

Источник: http://scask.ru/b_book_rit.php?id=28

Формула расчета сопротивления при параллельном соединении резисторов

Skip to content

Электрическое сопротивление характеризует свойство проводника препятствовать прохождению через него электрического тока. У каждого материала есть свое удельное сопротивление. Это табличная величина, и условно она считается постоянной.

Условно, потому что во многом эта характеристика зависит от внешних условий, например температуры. Сопротивление же какого-либо конкретного элемента (мы будем говорить о резисторах) складывается из многих факторов, например, из геометрических параметров, а когда речь идет о цепи переменного тока, то в расчеты включают также индуктивное и емкостное сопротивление, но об этом мы расскажем позже. Пока же — немного теории.

Закон Ома

В 1826 году немецкий физик Георг Ом на основе своих опытов вывел закон, согласно которому сила тока на участке цепи прямо пропорциональна напряжению, которое к нему приложено, и обратно пропорциональна сопротивлению участка. Из школьного курса мы знаем этот закон:

I=U/R

Позже он был сформулирован и для полной цепи:

I=ε/(R+r)

Где ε — ЭДС источника, R — сопротивление цепи, а r — сопротивление источника.

Мощность прибора

Электрический заряд при своем перемещении совершает работу. Может быть, это незаметно глазу, но вот пощупать результат этой работы можно: электроприборы у нас греются, а иногда нагрев — это цель, а не побочное явление. Не верите — ну, электроплитки, ТЭНы, утюги как раз это свойство и эксплуатируют. Правда, руками это проверять не советую.

Мощностью у нас называют работу, совершенную за единицу времени. Попробуем вычислить мощность электроприбора, включенного в цепь. Поскольку он обладает сопротивлением, обозначим его R, работу — А, мощность — Р, заряд — Q, а время — Δt. Итак, заряд проходит по цепи под действием напряжения U, которое совершает работу по его перемещению на участке цепи за время Δt:

Р=А/Δt , А=UQ

Р=UQ/Δt

Ну а поскольку Q/Δt — не что иное, как сила тока I, получаем:

Р=UI

Свяжем полученное выражение с законом Ома и получим:

Р=I2*R, P=U2/R

Последовательное и параллельное соединение

В реальной жизни мы редко имеем дело с одним проводником и одним источником. Достаточно взглянуть в любую принципиальную электрическую схему, например, такую простенькую:

(это схема микроволновки «Электроника»)

можно увидеть, что элементы в схеме соединены по-разному, но мы покажем вам базовые закономерности, которые работают в цепях.

Правила Кирхгофа

Если взять замкнутую электрическую цепь, по которой течет заряд, то можно определенно сказать: он никуда не денется. Сумма всех зарядов, которые текут в одной цепи, всегда одинакова. Это называется законом сохранения заряда, частным случаем общего закона сохранения (как говорится, если в одном месте что-то убудет, в другом непременно прибудет).

Отсюда мы и выводим тот факт, что в каждом узле цепи сумма токов равна нулю. То есть, если ток «приходит» в точку по ветке и «уходит» по двум — значит, первый равен сумме второго и третьего.

На этой картинке мы видим, что I1+I4=I2+I3

Это называется первым правилом Кирхгофа.

Если наша цепь не будет содержать узлов, значит, ток в ней будет величиной постоянной, а элементы, один за другим поставленные в цепь, будут давать падение напряжения. При этом общее напряжение в цепи останется тем же. Отсюда вытекает второе правило Кирхгофа: сумма напряжений на участках цепи будет равна ЭДС источников тока, входящий в эту цепь. Если у нас источник один, то будет верно равенство:

ε=U1+U2+U3++Un

Сумма падений напряжения будет, таким образом, нулевой.

В ситуациях, когда мы имеем дело с переменным током, падение будет наблюдаться на участках с конденсаторами и катушками — в цепях переменного тока у них появляется сопротивление (об этом позже).

Теперь, когда мы познакомились с теоретической частью, можем перейти к более приближенному к суровой реальности вопросу, а именно — расчету последовательного и параллельного соединения резисторов.

Примеры расчетов

Рассчитаем параметры цепей с разным типом соединения.

Как мы видим из рисунка, резисторы соединены один за другим, последовательным способом. Значит, ток в этой цепи — величина постоянная, а напряжение, исходя из второго правила Кирхгофа —

U=U1+U2+U3 /напряжение при последовательном соединении/

Поскольку из закона Ома получается U=IR, то

IR=IR1+IR2+IR3,

следовательно, сопротивление всей цепи

R=R1+R2+R3 /сопротивление при последовательном соединении/

а ее потребляемая мощность

Р=I2*R

На этой картинке мы видим, что резисторы соединены параллельно друг другу. Произведем расчет параллельного соединения резисторов. Напряжение при параллельном соединении постоянно, а вот ток во всей цепи, исходя из первого правила Кирхгофа, складывается из тока по каждой ветке отдельно:

I=I1+I2+I3 /сила тока при параллельном соединении/

Выражаем ток через напряжение и сопротивление, и получим:

U/R=U/R1+U/R2+U/R3

1/R=1/R1+1/R2+1/R3

R=1/(1/R1+1/R2+1/R3) /сопротивление при параллельном соединении/

Ну а мощность будет выражаться так:

P=U2/R

Исходя из вышеперечисленных закономерностей, вы сможете рассчитывать самые причудливые соединения резисторов, можете попрактиковаться, взяв в библиотеке задачник.

Типы резисторов

Как уже было сказано ранее, элемент, который ставится в цепь для нагрузки, называется резистором. Ставят его для разных целей, главным образом для того, чтобы изменить тот или иной параметр на участке цепи. Например, понизить напряжение или силу тока, чтобы деталь, стоящая за резистором, не сгорела.

Предприятиями выпускается большой ассортимент таких изделий, и их можно по-разному классифицировать. Номинально резистор имеет то сопротивление, которое указано на нем, а по факту оно может зависеть от напряжения в сети (нелинейность), иметь разброс параметра (иногда до 20% доходит). По применяемой технологии резисторы можно разделить на:

  1. проволочные;
  2. композитные;
  3. металлофольговые;
  4. угольные;
  5. интегральные.

Фактическое сопротивление такого элемента может зависеть от температуры окружающей среды и даже от частоты, если мы имеем дело с переменным током. Дело в том, что часть ассортимента резисторов выполнены по проволочной технологии, то есть фактически они представляют собой мини-катушку.

При малых частотах (50 Гц) это в расчет не берется, а вот на высоких (мегагерцы) паразитная индуктивность и индуктивное сопротивление может сказаться на работе схемы. Поэтому при выборе резистора для работы с высокочастотными схемами внимательно смотрите. по какой технологии он сделан.

Отдайте предпочтение тонкослойным и композиционным изделиям.

Источник: https://ostwest.su/instrumenty/formula-rascheta-soprotivlenija-pri-parallelnom.php/

Общее сопротивление Rобщ

При таком соединении, через все резисторы проходит один и тот же электрический ток. Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него. Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается, и оно равно сумме всех сопротивлений.

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности. Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Электрический ток при параллельном соединении

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Смешанное соединение резисторов

Смешанным соединением называют участок цепи, где часть резисторов соединяются между собой последовательно, а часть параллельно. В свою очередь, смешанное соединение бывает последовательного и параллельного типов.

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/posledovatelnoe-i-parallelnoe-soedinenie/

Параллельное соединение резисторов. Калькулятор для расчета

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

ЭТО ИНТЕРЕСНО:  Что такое флюс и припой

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

Таким образом, протекающий общий ток в цепи  можно определить как:

I = I1 + I2

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора, входящего в параллельное соединение.

Источник: http://www.joyta.ru/7362-parallelnoe-soedinenie-rezistorov/

Параллельное соединение резисторов: расчет и формулы

В случае последовательного соединения прохождение тока осуществляется только через один проводник. Параллельное соединение резисторов предполагает распределение электрического тока среди нескольких проводников. При добавлении еще одного резистора в электрическую цепь, ток будет частично проходить через разные резисторы.

Схемы последовательного и параллельного соединения

Если рассматривать соединение на примере громкоговорителя, то при последовательном соединении с усилителем мощности подключается только один динамик, поскольку прохождение тока осуществляется только через один проводник. Подключение второго громкоговорителя может быть выполнено разными способами.

При последовательном соединении по обоим устройствам будет протекать одинаковый ток. В этом случае общее сопротивление приборов представляет собой сумму отдельно взятых сопротивлений.

При параллельном соединении протекание тока будет происходить по двум направлениям. Здесь общее значение сопротивления в отличие от последовательного соединения, наоборот, будет уменьшаться.

То есть, при параллельном соединении двух сопротивлений, их общее значение будет составлять половину каждого из них.

Если последовательное и параллельное соединение резисторов рассматривается с точки зрения радиоэлектроники, необходимо четко представлять себе, что представляет собой данный элемент и какова его роль в электронных схемах. Эта деталь является неотъемлемой частью многих устройств, благодаря такому свойству, как сопротивление электрическому току.

Резисторы могут быть двух типов – постоянными и переменными, то есть подстроечными. При создании тех или иных электрических схем требуется резистор установленного номинала, которого в данный момент может не оказаться в наличии.

Поэтому приходится использовать элементы с другими номинальными значениями, формула для каждого из которых подтверждает их физические свойства.

Электроемкость плоского конденсатора

Последовательное соединение считается наиболее простым. Оно используется, когда необходимо увеличить общее сопротивление электрической цепи. В этом случае все сопротивления резисторов просто складываются и дают общую сумму. При параллельном соединении, наоборот, можно снизить результирующее сопротивление или увеличить мощность за счет нескольких подключенных резисторов.

Отличие параллельного и последовательного соединения

Последовательное и параллельное соединение резисторов отличаются между собой значениями напряжения. В каждой части параллельных контуров этот показатель будет одинаковым. Однако, при одном и том же напряжении, сила тока в контурах будет разной. Кроме того, сопротивление резисторов при параллельном соединении будет существенно отличаться от того же показателя при последовательном соединении.

В процессе использования последовательной схемы наблюдаются обратные явления. Сила тока в каждом сопротивлении будет одна и та же, а напряжение на каждом участке будет отличаться. Это связано с тем, что во время протекания тока, каждый резистор частично забирает приложенное напряжение.

Из-за различного сопротивления резисторов, при последовательном соединении, напряжение в цепи может падать. Для того чтобы подтвердить данное явление, выполняется расчет сопротивления. Все падения напряжения в общей сумме равняются общему напряжению, которое было приложено.

Для проведения вычислений используются формулы, с помощью которых можно получить наиболее точные результаты.

Таким образом, параллельное соединение резисторов, находящихся под одинаковым напряжением, не влияет на режим работы каждого из них. То есть, они совершенно не зависят друг от друга, и ток, проходящий по одному приемнику, не может существенно влиять на другие приемники.

Формула расчета параллельного соединения резисторов

Свои особенности имеет и ток при параллельном соединении резисторов. Попадая в первый узел соединения, он разделяется на столько частей, сколько имеется резисторов, подключенных параллельно. То есть, через сопротивление R1 будет протекать ток I1, а через R2 – ток I2. При попадании во второй узел, они вновь соединяются в один общий ток: I = I1 + I2.

Если какой-либо резистор вышел из строя, то остальные будут нормально функционировать. В этом заключается основное преимущество параллельного соединения. Особенно, это касается двигателей и электрических ламп, работающих от определенного номинального напряжения.

Как правильно паять паяльником

Расчет общего номинального сопротивления осуществляется с помощью формулы: R(общ)=1/(1/R1+1/R2+1/R3+1/R n), где R(общ) – является общим сопротивлением, а R1, R2, R3 и Rn – параллельно подключенными резисторами. Если выполняется параллельное соединение двух резисторов, при котором используется всего лишь два элемента, то в этом случае для расчетов используется следующая схема: R(общ)=R1хR2/R1+R2.

Очень часто в радиоэлектронике приходится пользоваться следующим правилом: если резисторы, подключенные параллельно, имеют один и тот же номинал, то итоговое сопротивление высчитывается путем деления номинала на число подключенных элементов. Такое параллельное соединение резисторов формула представляется следующим образом: R(общ)=R1, где R(общ) представляет собой сопротивление, R – номинал параллельно подключенного резистора, n – число подключенных элементов.

Для того чтобы рассчитать параллельное соединение резисторов, следует учитывать, что итоговое сопротивление всех подключенных элементов будет всегда ниже, чем сопротивление резистора с самым низким номиналом.

В качестве примера можно рассмотреть схему с тремя резисторами, сопротивления которых составляют 30, 100 и 150 Ом. При использовании основной формулы будет получен следующий результат: R(общ)=1/(1/30+1/100+1/150) =1/(0,03+0,01+0,007)=1/0,047=21,28Ом.

Таким образом, три резистора, соединенные параллельно, с минимальным номиналом 30 Ом, в итоге дадут общее сопротивление электрической цепи 21,28 Ом.

Онлайн калькулятор

В случае больших объемов вычислений, расчет параллельного соединения резисторов выполняется с помощью онлайн-калькулятора.

Источник: https://electric-220.ru/news/parallelnoe_soedinenie_rezistorov/2014-01-10-487

Соединение катушек — Основы электроники

Суммарная индуктивность двух или нескольких катушек, соединенных последовательно и расположенных на таком расстоянии друг от друга, что магнитное поле одной катушки не пересекает витков другой (рисунок 1), равна сумме их индуктивностей.

Рисунок 1. Последовательное соединение катушект индуктивности.

Цепь, изображенная на рисунке 1, обладает общей индуктивностью L, которая выражается так:

где L1, L2 и L3 — индуктивности отдельных катушек.

Параллельное соединение катушек индуктивности

Индуктивность цепи, составленной из тех же катушек при параллельном их соединении (рисунок 2) и при соблюдении того же усло­вия относительно их расположения (отсутствие магнитного взаимодействия), подсчитывается по следующей формуле:

Рисунок 2. Параллельное соединение катушек индуктивности.

Индуктивность двух катушек, соединенных параллельно, определяется по следующей формуле:

Как видим, формулы для подсчета результирующих индуктивностей катушек, соединенных последовательно или парал­лельно и не взаимодействующих между собой, совершенно тождественны с формулами для подсчета омического сопро­тивления цепи при последовательном и параллельном соеди­нении резисторов.

Соединение катушек при наличии взаимного влияния их магнитных полей

Если катушки, включенные в цепь последовательно, распо­ложены близко друг к другу, т. е. так, что часть магнитного потока одной катушки пронизывает витки другой, т. е. между катушками существует индуктивная связь (рисунок 3а), то для определения их общей индуктивности приведенная выше фор­мула будет уже непригодна. При таком расположении катушек могут быть два случая, а именно:

  1. Магнитные потоки обеих катушек имеют одинаковые на­правления
  2. Магнитные потоки обеих катушек направлены навстречу друг другу

Тот или другой случай будет иметь место в зависимости от направления витков обмотки катушек и от направлений то­ков в них.

Рисунок 3. Соединение катушек индуктивности: а)суммарная индуктивность увеличивается за счет взаимной индукции б)суммарная индуктивность уменьшается за счет взаимной индукции.

Если обе катушки намотаны в одну сторону и токи в них текут в одном направлении, то это будет соответство­вать первому случаю; если же токи текут в противоположных направлениях (рисунок 3б), то будет иметь место второй случай.

Разберем первый случай, когда магнитные потоки направ­лены в одну сторону. Очевидно, при этих условиях витки каж­дой катушки будут пронизываться своим потоком и частью потока другой катушки, т. е.

магнитные потоки в той и в дру­гой катушке будут больше по сравнению с тем случаем, когда между катушками нет индуктивной связи. Увеличение магнитного потока, пронизывающего витки той или иной катушки, равносильно увеличению ее индуктивности.

Поэтому общая индуктивность цепи в рассматриваемом случае будет больше суммы индуктивностей отдельных катушек, из которых состав­лена цепь.

Рассуждая таким же образом, мы придем к выводу, что для второго случая, когда потоки направлены навстречу друг другу, общая индуктивность цепи будет меньше суммы индуктивностей отдельных катушек.

Подсчет величины индуктивности цепи, составленной из двух соединенных последовательно катушек индуктивности L1 и L2 при наличии между ними индуктивной связи, производится по фор­муле:

В первом случае ставится знак + (плюс), а во втором слу­чае знак — (минус).

Величина М, называемая коэффициентом взаим­ной индукции, представляет собой добавочную индук­тивность, обусловленную частью магнитного потока, общей для обеих катушек.

На явлении взаимоиндукции основано устройство варио­метров. Вариометр состоит из двух катушек, общая индуктив­ность которых может, по желанию, плавно изменяться в некоторых пределах. В радиотехнике вариометры применяются для настройки колебательных контуров приемников и передат­чиков.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/soedinenie-katushek.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]