Технические характеристики
Предохранители — это коммутационные электрические аппараты, предназначенныедля защиты электрических цепей от аварийных режимов, защиты электрических сетей,электрооборудования общепромышленных установок, вагонов метрополитена и др. оттоков перегрузки и коротких замыканий. Они отключают защищаемую цепь посредствомразрушения специально предусмотренных для этого токоведущих частей подвоздействием тока, превышающего определенное значение.
Низковольтныеплавкие
Предохранители низковольтныеплавкие – коммутационные электрическиеаппараты, предназначенные для отключения защищаемой цепи посредством разрушенияспециально предусмотренных для этого токоведущих частей (плавких вставок) подвоздействием тока, превышающего определенное значение.
Типа НПН2-60 Типа ПН2 Серии ПР-2 Серии ПП17 Серии ПП24 Серии ПП28 Серии ПП32-31 Серии ПП32-35 Серии ПП32-37 Серии ПП53 Серии ППН Серии ППТ-10 Типа ПТ23
Типа ПТ26
Быстродействующие
Быстродействующиепредохранители в основном применяются для защиты полупроводниковых приборов.Малая тепловая инерция, быстрый прогрев полупроводникового перехода крайнезатрудняют защиту мощных диодов, тиристоров и транзисторов при токовыхперегрузках.
Обычные типы предохранителей и автоматических выключателей из-заотносительно большого времени срабатывания не обеспечивают защитуполупроводниковых приборов при коротком замыкании.
Для выполнения этой задачиразработаны специальные быстродействующие предохранители: типа ППА; типа ПП.
Плавкие вставки
Плавкая вставка являетсясоставной съемной частью предохранителя. При срабатывании предохранителя (приотключении тока короткого замыкания) плавкая вставка перегорает и подлежитзамене.
Плавкая вставка в корпусном исполнении имеетфибровый или фарфоровый корпус, крепится на токоподводящие части основанияпредохранителя (как правило, из латуни).
На малые номинальные токи и в закрытыхраспредустройствах плавкая вставка может выполняться безкорпусной.
Основными параметрами плавких вставок являютсяноминальное напряжение, номинальный ток плавкой вставки и отключающаяспособность.
Серии ВТФМ Серии ВТФ Серии ПП32-31 Серии ПП32-35
Серии ПП32-37
Специальные
Примером специальногопредохранителя является пробивной предохранитель. Принцип действия основанна возникновении пробоя межэлектродного промежутка со слюдяной прокладкой,которая служит для создания точного искрового промежутка, обеспечивающегозаданную разрядную характеристику. В отверстиях прокладки происходит пробой повоздушному промежутку.
Предохранитель выбирается по номинальномунапряжению и пробивному напряжению.
Пробивные предохранители защищают цепь отпоявления в них высокого потенциала.
Серии ПП-А/3
Для транспортныхустановок
Предохранители, используемыена транспортных установках, обладают высокой способностью к выдерживаниювибрационных нагрузок, трясок и ударов. С этой целью патроны (плавкие вставки)крепятся в специальных замках, обеспечивающих необходимое контактное давление ипредотвращающих выпадание патрона при действии толчков и вибраций.
Как правило, подобные предохранители выполняютсяс наполнителем в виде кварцевого песка, в керамическом корпусе.
Крепятся на опорных изоляторах.
Серии ПКЖ106-3Серии ПП29Серии ПП36
Блоки предохранителей
Подробная информация о предохранителях
Назначение
Предохранители — этокоммутационные электрические аппараты, предназначенные для защиты электрическихцепей от аварийных режимов, защиты электрических сетей, электрооборудованияобщепромышленных установок, вагонов метрополитена и др. от токов перегрузки икоротких замыканий. Они отключают защищаемую цепь посредством разрушенияспециально предусмотренных для этого токоведущих частей под воздействием тока,превышающего определенное значение.
Предохранители находят самоеширокое применение при эксплуатации электрооборудования как бытового, так ипромышленного применения. Предохранители могут встраиваться в комплектныеустройства. Выпускаемые промышленностью предохранители рассчитаны на применениев различных климатических поясах, размещение в местах с разными условиямиэксплуатации, на работу в условиях, различных по механическим воздействиям, иобладают разной степенью защиты от прикосновения и от внешних воздействий.
Предохранители изготовляются дляразных рабочих напряжений, с плавкой вставкой, вставки могут быть неразборными,с различными наполнителями.
Общие требования
Предохранители выпускаются висполнениях с разной степенью защиты от прикосновений и внешних воздействий, какправило, — IP00, IP30 (ГОСТ 14254-96 и ГОСТ 14255-69).
Группы условий эксплуатацииэлектротехнических изделий в части воздействия механических факторов внешнейсреды определены ГОСТ 17516.1-90. В соответствии с данными каталоговпредохранители предназначены для эксплуатации в группах М2, М4, М6, М7, М25,М27, М39.
Источник: http://www.emna.ru/katalog/nva/predochr_vstav.htm
Особенности применения силовых индуктивностей | «ЛЭПКОС», ИЦ «Северо-Западная Лаборатория»
Поскольку технические параметры современных электронных устройств постоянно совершенствуются, для БИС, используемых в таких изделиях, характерно снижение напряжения питания. В этой связи, энергопотребление может уменьшаться, а скорость работы увеличиваться.
Однако снижение напряжения источника питания также предполагает более жесткие требования, учитывающие колебания напряжения, что вприводит к необходимости использования высокопроизводительных DC-DC преобразователей. Силовые индуктивности при этом являются важными компонентами, существенно влияющими на эффективность преобразователей.
Компания TDK выпускает широкую линейку силовых индуктивностей.
В данной статье рассмотрены эффективные способы применения данных компонентов, а также ключевые особенности при выборе катушек индуктивности в соответствии с требуемыми характеристиками преобразователей постоянного тока.
Силовые индуктивности являются важными компонентами, влияющими на производительность DC-DC- преобразователей
Несмотря на то, что катушка индуктивности может плавно пропускать постоянный ток, при любом изменении его величины она будет генерировать ЭДС, препятствующую этим колебаниям. Такое явление известно как самоиндукция. При подключении к источнику переменного тока катушка индуктивности оказывает сопротивление проходящему по ней переменному току.
Таким образом, если ток прошел через индуктивность, он будет накапливаться в виде энергии, а если процесс передачи тока нарушен, эта энергия будет разряжаться. Данная отличительная особенность эффективно используется в цепях источников питания, в преобразователях постоянного тока. На рисунке 1 представлена основная схема понижающего преобразователя постоянного тока (диодный выпрямитель).
Силовые индуктивности являются ключевыми компонентами, оказывающие существенное влияние на его производительность.
Параметры, связанные с характеристиками индуктивности, имеют сложную компромиссную связь друг с другом
Сложности в процессе разработки силовых индуктивностей обусловлены изменчивостью характеристик в зависимости от степени воздействия таких факторов как температура и величина тока. Так, например, индуктивность (L) имеет тенденцию к снижению, поскольку величина тока становится больше (характеристика наложения тока DC), а рост температуры, вызванный повышением силы тока, может вызвать изменение как магнитной проницаемости (μ) сердечника, так и индукции насыщения (Bs).
Даже при одинаковых значениях индуктивности сопротивление постоянному току (Rdc) будет меняться в зависимости от толщины обмотки и количества витков, вызывающих изменения в степени тепловыделения. Различия в структуре магнитного экрана также могут влиять на шумовые характеристики.
Эти параметры имеют сложную компромиссную взаимосвязь, поэтому крайне важно выбрать наиболее подходящую индуктивность для требуемой области применения с учетом эффективности, размеров и стоимости преобразователей постоянного тока.
Ключевой момент: Силовые индуктивности могут быть классифицированы на моточные, многослойные и тонкопленочные в зависимости от различий в методах изготовления, с сердечниками на основе феррита или порошкового сплава. Ферриты характеризуются высокими значениями проницаемости (μ) и индуктивности, в то время как сердечники на основе порошковых материалов имеют высокие значения индукции насыщения, что делает их подходящими для использования при больших величинах тока.
Ключевой момент: Выделяется два определения номинального тока для силовых индуктивностей: допустимый ток при суперпозиции DC и допустимый ток при возрастании температуры. Если сердечник войдет в насыщение, величина его индуктивности будет снижена.
Рекомендуемая величина максимального тока, который может быть передан без достижения магнитного насыщения, соответствует допустимому току при наложении постоянного тока (пример: падение на 40% от начального значения индуктивности).
Ток, определяемый тепловыделением в соответствии с электрическим сопротивлением обмоток, является допустимым током при повышении температуры (например, повышение температуры на 40 °С в результате тепловыделения). В качестве номинального обычно принимают значение тока, меньшее из рассмотренных выше двух типов допустимых токов.
Условия, при которых возникают потери, будут меняться в зависимости от размеров и частотного диапазона нагрузок
Ключевой момент: К основным типам потерь, которые могут вызвать скачок температуры можно отнести: потери в меди, появляющиеся из-за обмотки проводом, а также потери в магнитопроводе.
Потери в меди возникают из-за сопротивления DC (RDC) обмотки и увеличиваются пропорционально величине тока в квадрате. Кроме того, когда частота переменного тока становится выше, существует тенденция концентрации тока в области недалеко от поверхности проводника и увеличения эффективного значения сопротивления (скин-эффект). В высокочастотном диапазоне также добавляются потери в меди, возникающие в результате протекания переменного тока.
Потери в магнитопроводе соответствуют сумме потерь на вихревые токи и на гистерезис. Потери на вихревые токи пропорциональны квадрату частоты, поэтому в высокочастотных областях потери в сердечнике, вызванные потерями на вихревые токи, становятся больше. Одним из ключевых моментов для повышения эффективности является выбор материалов сердечника, характеризующихся низкими потерями даже в высокочастотном диапазоне.
Ключевой момент: Потери в меди становятся доминирующими в случае подключения умеренной или интенсивной нагрузки, в то время как вклад потерь в магнитопроводе становится существенным уже при включении небольшой нагрузки.
Для тока, протекающего через индуктивность при включении умеренной и большой нагрузки, вклад смещения (DC bias current) достаточно велик, в этой связи потери в меди, появляющиеся в результате сопротивления постоянному току (RDC), становятся доминирующими. С другой стороны, при подключении неполной нагрузки тока смещения (DC bias) практически нет.
В этой связи, уровень потерь в меди снижается, но поскольку операция переключения с постоянной частотой выполняется даже в режиме ожидания, потери в сердечнике из-за особенностей материала феррита становятся существенными , а эффективность значительно уменьшается (рисунок 3).
Важно установить соответствующие требованиям значения индуктивности с учетом таких факторов, как пульсирующий ток
Ключевой момент: использование компонентов в режиме прерывистого тока влияет на стабильность источников питания.
В силовых индуктивностях, применяемых в понижающих DC-DC преобразователях, будет протекать пульсирующий ток (ΔIL) с формой непрерывных треугольных волн в сочетании с операцией ВКЛ/ВЫКЛ для переключающих элементов (рисунок 4).
В ходе подключения нагрузки от умеренной до интенсивной ΔIL будет накладываться на смещение по постоянному току, поэтому ток индуктивности будет протекать непрерывно (режим непрерывного тока (Iвых > 1 / 2ΔIL)). Однако в преобразователях постоянного тока с диодным выпрямлением при подключении легкой нагрузки, где Iвых < 1/2ΔIL, будут периоды, когда ток индуктивности станет нулевым.
В этом состоянии (режим прерывистого тока) ток индуктивности будет периодически прерываться, что, в свою очередь, будет влиять на стабильность источника питания. Кроме того, если катушка индуктивности работает в режиме прерывистого тока, также будет возникать акустический шум.
В результате переключения будет генерироваться импульсный сигнал напряжения, что будет способствовать появлению шума.
Ключевой момент: Необходимо задавать такую величину индуктивности, чтобы вклад пульсирующего тока составлял 20-30% от номинального тока.
Величина пульсирующего тока связана с индуктивностью. В этой связи, преобразователи постоянного тока с диодным выпрямлением должны быть спроектированы таким образом, чтобы избежать проблем, связанных с работой в режиме прерывистого тока путем ограничения вклада пульсирующего тока. Если предпочтительно применение компонента с небольшим значением индуктивности из-за размеров или стоимости, величина пульсирующего тока станет больше.
И наоборот, если требуется уменьшить пульсирующий ток, необходима большая индуктивность, что может привести к недостаткам, связанным с размером или стоимостью, а также вызвать ухудшение характеристик переходного процесса при внезапных изменениях нагрузки.
Таким образом, обычно принято указывать такое значение индуктивности, при которой величина пульсирующего тока будет составлять 20-30% от номинального (прерывистый ток будет фиксироваться в области, когда пульсирующий ток будет составлять примерно 10% от номинального).
Ключевой момент: выбор правильного подхода при снижении значения индуктивности может улучшить характеристики отклика нагрузки . В случае, когда, например, отмечается внезапный рост нагрузки, будет происходить падение выходного напряжения.
В ходе последующего восстановления через индуктивность в течение короткого времени может протекать аномально большой пиковый ток для зарядки выходного конденсатора совместно с током нагрузки. Однако, если будет установлено небольшое значение пульсирующего тока, достичь требуемых характеристик переходного процесса для быстрого восстановления после внезапного падения выходного напряжения будет невозможно.
Одним из способов решения этой ситуации могло бы стать уменьшение значения индуктивности и, таким образом, увеличение величины пульсирующего тока. Как показано на рисунке 6, выходное напряжение существенно падает, если характеристики отклика нагрузки плохие.
В то же время, если значение индуктивности соответствующим образом снижается, и пульсирующий ток увеличивается, изменение величины тока индуктивности становится более существенным, что вызывает снижение вклада падения напряжения и способствует более быстрому восстановлению. Однако при понижении значения индуктивности важно использовать настройку, которая учитывает общий баланс системы.
Источник: http://ferrite.ru/publications/power_inductors_application/
Постоянный электрический ток: определение, механизм, характеристики
Определение 1
Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.
По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.
Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.
Необходимые условия существования электрического тока
Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.
Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.
Определение 2
Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.
Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.
Механизм осуществления постоянного тока
Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).
Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.
Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A, действующих на заряд, равна работе сторонних Ast. Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:
ε=Aq (1), где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε=В.
Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.
Основные характеристики электрического тока
Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.
Электрический ток обладает силой тока.
Определение 3
Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S:
I=dqdt (2).
Ток может быть постоянным и переменным. При неизменной силе тока с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:
I=qt (3), где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.
По системе СИ основная единица измерения силы тока – Ампер (А).
1 A=1 Кл1 с.
Определение 4
Плотность – это векторная локальная характеристика. Вектор плотности тока j→способен показывать, каким образом распределяется ток по сечению S. Его направление идет в сторону, куда движутся положительные заряды.
Значение вектора плотности тока по модулю равно:
Источник: https://zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/postojannyj-elektricheskij-tok-opredelenie/
Проверка АКБ: какие параметры аккумуляторных батарей нужно проверять и как это сделать?
При использовании аккумуляторных батарей на любых объектах, особенно в системах бесперебойного питания, за их состоянием нужно следить и регулярно проводить проверки. В этом материале мы рассмотрим основные параметры АКБ, а также рассмотрим, какими приборами и как можно провести их контроль и проверку!
Основная задача при проверке состояния любой аккумуляторной батареи – выяснить, обладает ли она достаточной емкостью, может ли обеспечить заявленные производителем характеристики в течение необходимого времени. Однако непосредственно средствами измерения определяются только несколько основных параметров – напряжение, сила тока. В обслуживаемых аккумуляторах можно также замерить плотность электролита.
Измерения можно проводить неоднократно, фиксируя изменение значений с течением времени. Все остальные параметры и характеристики не измеряются напрямую, а выводятся по разработанной изготовителем методике, причем она зависит и от типа АКБ, и от рекомендаций производителя, и от вида подключенной нагрузки. При этом необходимо учитывать, что многие зависимости, характеризующие работу АКБ, носят нелинейный характер.
Могут сказываться и другие факторы, например, влияние температуры.
При выполнении краткосрочных измерений при использовании даже самых совершенных методик тестирование носит не точный количественный, а качественный характер.
Единственный достоверный способ измерения емкости АКБ – его полная разрядка в течение многих часов с тщательной фиксацией параметров в ходе всего процесса. Но использовать столь продолжительную процедуру на практике можно далеко не всегда, особенно если батарей много.
Тем не менее, и краткосрочных оценочных измерений достаточно для того, чтобы отличить работоспособный аккумулятор от изношенного, утратившего емкость, и вовремя произвести замену АКБ.
1. Подключение нагрузки
К АКБ на некоторое время подключается рабочая или второстепенная нагрузка той или иной величины. Вольтметром или мультиметром измеряется падение напряжения. Если процедура выполняется несколько раз, между измерениями выжидается определенное время, чтобы батарея восстановилась. Полученные данные сопоставляются с параметрами, заявленными производителем АКБ для данного типа батареи и данной величины нагрузки.
2. Измерения при помощи нагрузочной вилки
Строение простейшей нагрузочной вилки показано на схеме:
Устройство оснащено вольтметром, параллельно которому установлен большой по мощности нагрузочный резистор, и имеет два щупа. В старых моделях вольтметры аналоговые; новые модели, как правило, оснащены ЖК-дисплеем и цифровым вольтметром.
Существуют нагрузочные вилки с усложненной схемой, использующие несколько нагрузочных спиралей (сменных сопротивлений), рассчитанные на разные диапазоны измерения напряжений, предназначенные для тестирования кислотных либо щелочных аккумуляторов. Есть даже вилки, которыми тестируют отдельные банки аккумуляторов.
В состав продвинутых устройств помимо вольтметра может входить амперметр.
Получаемые при измерениях данные также необходимо сопоставлять с параметрами, заявленными производителями для данного типа батарей и данного сопротивления.
Приборы Кулон
Принципиальным развитием идеи нагрузочной вилки можно считать семейство цифровых приборов-тестеров Кулон (Кулон-12/6f, Кулон-12m, Кулон-12n и другие) для проверки состояния свинцовых кислотных аккумуляторов, а также другие подобные устройства. Они позволяют проводить быстрые замеры напряжения, приближенно определять емкость АКБ без контрольного разряда и сохранять в памяти несколько сотен, а иногда и тысяч измерений.
Приборы Кулон питаются от аккумулятора, на котором проводятся измерения. Входящие в комплект провода с разъемами «крокодил» имеют части, изолированные друг от друга, что обеспечивает четырехзажимное подключение к аккумулятору и устраняет влияние на показания прибора сопротивления в точках подключения зажимов.
По заявлению разработчика, прибор анализирует отклик аккумулятора на тестовый сигнал специальной формы, при этом измеряемый параметр примерно пропорционален площади активной поверхности пластин аккумулятора и, таким образом, характеризует его емкость.
Фактически, точность показаний зависит от достоверности методики, разработанной производителем.
Емкость аккумулятора – электрический заряд, отдаваемый полностью заряженным аккумулятором – измеряется в ампер-часах и представляет собой произведение тока разряда на время.
Для точного определения емкости необходимо произвести разряд батареи (процесс длительный, многочасовой), постоянно фиксируя величину заряда, отдаваемого батареей. При этом относительная емкость АКБ в зависимости от времени изменяется нелинейно.
Например, для аккумуляторной батареи типа LCL-12V33AP относительная емкость меняется со временем следующим образом:
Время разряда, часы | Относительная емкость, % |
0,1 | 37 |
1,3 | 48 |
0,7 | 53 |
1,9 | 76 |
4,2 | 84 |
9,2 | 92 |
20 | 100 |
Прибор Кулон при помощи быстрого измерения ориентировочно определяет емкость полностью заряженного аккумулятора. Он не предназначен для оценки степени заряженности АКБ, все измерения необходимо проводить на полностью заряженной батарее.
Устройство кратковременно подает тестовый сигнал, регистрирует отклик от батареи и через несколько секунд выдает ориентировочную емкость АКБ в ампер-часах. Одновременно на экран выводится измеренное напряжение.
Полученные значения можно сохранять в памяти прибора.
Производитель подчеркивает, что устройство не является прецизионным измерителем, но позволяет оценочно определять емкость свинцовой кислотной батареи, особенно если пользователь самостоятельно откалибровал прибор при помощи аккумулятора такого же типа, что и тестируемый, но с известной емкостью. Процедура калибровки подробно изложена в инструкции к прибору.
Тестеры PITE
Следующая разновидность устройств для тестирования АКБ – тестеры PITE: модель PITE 3915 для измерения внутреннего сопротивления и модель PITE 3918 для оценки проводимости батарей.
Управление осуществляется при помощи цветного сенсорного экрана, но основные управляющие кнопки вынесены на клавиатуру в нижней части корпуса. Прибором можно тестировать батареи емкостью от 5 до 6000 А·ч, с элементами аккумулятора 1.2 В, 2 В, 6 В и 12 В. Диапазон измерения напряжения – от 0.000 В до 16 В, сопротивления – от 0.
00 до 100 мОм. Прибор позволяет задать тип проверяемых батарей, выполнить измерение напряжения и сопротивления (модель 3915) или напряжения и проводимости (модель 3918), и на их основании судить о том, соответствует емкость батареи заявленной производителем или нет. При этом параметр Capacity (емкость батареи) выводится в процентах.
Источник: https://skomplekt.com/proverka_akb_kakie_parametry_akkumulyatornyh_batarej_nuzhno_proveryat_i_kak_ehto_sdelat/
Параметры постоянного электрического тока
Из курса физики известно, что электрический ток представляет собой упорядоченное, т.е. организованное перемещение заряженных частиц, которыми являются электроны в свободном состоянии. Естественно это движение подчиняется определенным законам и характеризуется физическими параметрами.
Электрическое поле и свободные носители зарядов – это те обязательные факторы, которые необходимы для существования электрического тока. Базисными параметрами постоянного (не меняющего своего значения) электрического тока считаются: его сила, сопротивление, напряжение. Все они взаимосвязаны между собой.
Взаимосвязь параметров электрического тока
Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля.
Однако, этот перенос электронов не приводит к уравниванию потенциалов, т.к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту.
Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.
Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.
Последовательное соединение элементов электрической сети постоянного тока
Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности.
Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы.
Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).
Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.
Параметры электрической цепи. Параллельное соединение элементов
Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т.е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.
Параметры цепи при смешанном соединении в электрической цепи
Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения.
Очень полезная картинка, сохраните себе!
Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.
Понятие мощности электрического тока и ее параметры
Прохождение электротока по цепи, по своей сути, представляет собой работу (А) по перемещению свободного заряда от одного потенциала к другому. Чем больше электронов пересекает плоскость сечения электропроводящего элемента за единицу времени, тем выше мощность электрического тока. Общее количество работы можно определить по формуле – А=U∆q=IU∆t=I2R∆t.
Мощность электротока имеет обратно пропорциональную зависимость от отрезка времени за который была осуществлена работа – Р=A/∆t и прямо зависит от разности потенциалов и силы тока – Р=UxI.
В том случае, если на участке цепи не осуществляется механическая работа под воздействием электрического тока, энергия тратится только на нагрев токопроводящего элемента. Общее количество выделяемого тепла, в этом варианте, будет равно работе, которую совершает электрической ток.
Определить количество теплоты можно применив формулу Q=I2R∆t. Это соответствие было получено опытным путем Джоулем и Ленцем, а закон назван их именем.
Источник: http://podvi.ru/elektrotexnika/parametry-postoyannogo-elektricheskogo-toka.html
Военно-техническая подготовка
Реле — электрическое или электронное устройство (ключ), предназначенное для замыкания или размыкания электрической цепи при заданных изменениях электрических или неэлектрических входных воздействий.
Обычно под этим термином подразумевается электромагнитное реле — электромеханическое устройство, замыкающее и/или размыкающее механические электрические контакты при подаче в обмотку реле электрического тока, порождающего магнитное поле, которое вызывает перемещения ферромагнитного якоря реле, связанного механически с контактами и последующее перемещение контактов коммутирует внешнюю электрическую цепь.
Основные части электромагнитного реле: электромагнит, якорь и переключатель. Электромагнит представляет собой электрический провод, намотанный на катушку с ярмом из ферромагнитного магнитомягкого материала. Якорь это обычно пластина из магнитного материала, через толкатели воздействующая на контакты.
Рис 1. Принцип действия реле, сверху — нормальное (обесточенное) состояние реле, снизу — включённое состояние реле.
1 — электромагнит (обмотка с ферромагнитным сердечником); 2 — подвижный якорь; 3 — контактная система (переключатель).
1.11.2. Электромагнитное реле постоянного тока.
Электромагнитные реле являются наиболее распространенными из группы электромеханических реле и получили широкое применение в устройствах автоматики, телемеханики и в вычислительной технике.
Если реле используются для переключения мощных цепей тока, то они называются контакторами. Реле и контакторы являются устройствами прерывистого действия. Электромагнитные реле по роду используемого тока делятся:
- на реле постоянного тока;
- реле переменного тока.
Реле постоянного тока подразделяются:
- на нейтральные;
- поляризованные.
Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке (т. е. положение якоря не зависит от направления тока в обмотке реле). Поляризованное реле реагирует на полярность сигнала. По характеру движения якоря нейтральные электромагнитные реле подразделяются на два типа:
- с угловым движением якоря;
- с втяжным якорем.
На рисунке изображены реле с угловым перемещением якоря (а) и с втягивающим якорем (б).
Рис 2. Разновидности конструктивных схем реле:
1 – каркас с обмоткой; 2 – ярмо; 3 – выводы обмотки; 4 – колодка; 5 – контактные пружины;
6 – замыкающий контакт ЗК; 7 – подвижный контакт; 8 – размыкающий контакт РК; 9 – якорь; 10 – штифт отлипания; 11 – сердечник
При отсутствии управляющего сигнала якорь удален от сердечника на максимальное расстояние за счет возвратной пружины. В этом случае одна пара контактов замкнута (размыкающие контакты РК), а другая пара разомкнута (замыкающие контакты ЗК).
Принцип действия реле, изображенного на рисунке основан на следующем: при подаче тока в обмотку (катушку) создается магнитный поток, который, проходя через сердечник, ярмо, якорь и воздушный зазор δН(0), создает магнитное усилие, притягивающее якорь к сердечнику.
При этом якорь, воздействуя на колодку, перемещает ее таким образом, что контакты ЗК замыкаются, а РК размыкаются. В некоторых конструкциях реле якорь при выключении тока под действием собственного веса возвращается в исходное положение.
Таким образом, электромагнитное реле состоит из трех основных частей:
- контактной системы (контактные пружины выполнены из материала нейзильбера);
- магнитопровода (ярмо, сердечник, якорь, выполненные из мягкой стали);
- обмотки (катушки).
Магнитную цепь составляют сердечник, якорь, ярмо и воздушный зазор между якорем и сердечником.
При детальном рассмотрении работы реле в процессе срабатывания и отпускания наблюдаются четыре этапа.
Этап 1 — срабатывание реле . Длительность этого этапа — время полного срабатывания tcp , т, е.
от момента подачи напряжения на катушку реле до момента надежного замыкания контактов; Iтр — величина тока, при котором начинается движение якоря; tтр — время, за которое ток достигает это значение, т.
е, промежуток, соответствующий началу движения якоря; Iср — ток, при котором срабатывает реле; tдв — время движения якоря при срабатывании. Таким образом, время полного срабатывания, отвечающее окончанию движения якоря.
.
Этап 2 — работа реле ( tраб — время работы реле). После того, как реле сработает, ток в обмотке продолжит увеличиваться, пока не достигнет установившегося значения. Впоследствии величина тока в обмотке реле остается неизменной. Отношение установившегося тока Iуст к величине тока срабатывания Iср называется коэффициентом запаса реле по срабатыванию Кзап (т. е. Кзап показывает надежность работы реле).
.
Этап 3 — отпускание реле . Этот период начинается от момента прекращения подачи сигнала до момента, когда ток в обмотке реле уменьшится до значения Iот . Отношение тока отпускания к току срабатывания называется коэффициентом возврата.
.
Обычно Кв =0,4–0,8.
Этап 4 — покой реле . Это отрезок времени от момента размыкания контактов реле до момента поступления нового сигнала на обмотку реле. При быстром следовании управляющего сигнала друг за другом работа реле характеризуется максимальной частотой срабатывания (количество срабатываний реле в единицу времени).
1.11.3. Поляризованное реле.
В отличие от рассмотренных ранее нейтральных электромагнитных реле, у поляризованного реле направление электромагнитного усилия зависит от полярности сигнала постоянного тока в обмотке. Поляризация таких реле осуществляется при помощи постоянного магнита.
Существует много конструктивных разновидностей поляризованных реле, которые классифицируются по ряду признаков. По конструктивной схеме магнитной цепи различают реле с последовательной, параллельной (дифференциальной) и мостовой магнитными цепями, по числу обмоток управления – одно- и многообмоточные, по способу настройки контактов (по числу устойчивых положений якоря) различают двух- и трехпозиционные.
Поляризованные реле получили большое распространение в маломощной автоматике, особенно в следящих системах при управлении реверсивными двигателями.
К числу достоинств поляризованных реле относятся:
- высокая чувствительность, которая характеризуется мощностью срабатывания и составляет 10-5 Вт;
- большой коэффициент управления;
- малое время срабатывания (единицы миллисекунд).
К недостаткам по сравнению с нейтральными электромагнитными реле относятся:
- сложность конструкции;
- большие габариты, вес и стоимость.
В поляризованных реле, как было отмечено, используют дифференциальные и мостовые схемы магнитных цепей, которые имеют много разновидностей (название цепей связано с типом электрической схемы замещения электромагнитной системы). На рисунке изображено поляризованное реле с дифференциальной схемой магнитной цепи.
Рис 3. Поляризованное реле ( а ) и способы настройки контактов ( б, в ) : 1, 1’ – намагничивающие катушки; 2 – ярмо; 3 – постоянный магнит; 4 – якорь; 5, 5’ – контакты
На якорь реле действуют два не зависимых друг от друга потока: поток Фо(п) постоянного магнита, не зависящий от рабочего состояния схемы, в которую включено реле, и рабочий (управляющий) поток Фэ(р), определяемый намагничивающей силой катушки, т. е. величиной протекающего по обмотке тока.
Электромагнитное усилие, действующее на якорь, определяется, таким образом, в зависимости от суммарного действия обоих потоков — Фэ(р) и Фо(п) .
Изменение направления электромагнитного усилия при изменении полярности тока в рабочей обмотке происходит вследствие того, что изменяется направление рабочего потока относительно поляризующего Ф0(п).
Поляризующий поток Фо(п) проходит по якорю и разветвляется на две части — Ф01 и Ф02 — в соответствии с проводимостями воздушных зазоров слева и справа от якоря ( δл и δпр ). В зависимости от полярности управляющего сигнала рабочий поток Фэ(р) вычитается из потока Ф01 в зазоре слева от якоря и прибавляется к потоку Ф02 справа от якоря (как показано на рисунке а ), или наоборот.
В данном случае якорь перекинется из левого положения в правое. При выключении сигнала якорь будет находиться в том положении, которое он занимал до выключения сигнала. Таким образом, результирующее электромагнитное усилие, действующее на якорь, будет направлено в сторону того зазора, где магнитные потоки суммируются.
Источник: http://zrv.ivo.unn.ru/pages/vtp/1/1-11-elementy-kommutatsii.htm
Характеристики тока
Электрический ток сейчас используют в каждом здании, зная характеристики тока в электросети дома, следует всегда помнить, что он опасен для жизни.
Электрический ток являет собой эффект направленного движения электрических зарядов (в газах — ионы и электроны, в металлах — электроны), под воздействием электрического поля.
Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.
Обычно за направление электрического берут направление положительного заряда.
Далее мы рассмотрим такие характеристики тока, как:
- мощность тока;
- напряжение тока;
- сила тока;
- сопротивление тока.
Мощность тока
Мощностью электрического тока называют отношение произведенной током работы ко времени, в течение которого была выполнена это работа.
Мощность, которую развивает электрический ток на участке цепи, прямо пропорциональна величине тока и напряжению на данном участке. Мощность (электрическая и механическая) измеряется в Ваттах (Вт).
Мощность тока не зависит от времени протекания электрического тока в цепи, а определяется как произведение напряжения на силу тока.
Напряжение тока
Напряжением электрического тока называется величина, которая показывает, какую работу совершило электрическое поле при перемещении заряда от одной точки до другой. Напряжение при этом в различных участках цепи будет отличаться.
К примеру: напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет намного больше, и величина напряжения будет зависеть от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: U=A/q, где
- U — напряжение,
- A – работа, совершенная током по перемещению заряда q на некий участок цепи.
Сила тока
Силой тока называют количество заряженных частиц которые протекают через поперечное сечение проводника.
По определению сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
Сила электрического тока измеряется прибором, который называется Амперметром. Величина электрического тока (количество переносимого заряда) измеряется в амперах.
Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. К примеру: говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер.
Такие значения в повседневной жизни не используются. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.
Сопротивление тока
Электрическим сопротивлением называется физическая величина, которая характеризует свойства проводника, препятствующие прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.
Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивление тока (часто обозначается буквой R или r) считается сопротивление тока, в определённых пределах, постоянной величиной для данного проводника. Под электрическим сопротивлением понимают отношение напряжения на концах проводника к силе тока, текущего по проводнику.
Условия возникновения электрического тока в проводящей среде:
1) присутствие свободных заряженных частиц;
2) если есть электрическое поле (присутствует разность потенциала между двумя точками проводника).
Виды воздействия электрического тока на проводящий материал
1) химическое — изменение химического состава проводников (происходит в основном в электролитах);
2) тепловое — нагревается материал, по которому течет ток (в сверхпроводниках этот эффект отсутствует);
3) магнитное — появление магнитного поля (происходит у всех проводников).
Главные характеристики тока
1. Сила тока обозначатся буквой I — она равна количеству электричества Q, проходящему через проводник за время t.
I=Q/t
Сила тока определяется амперметром.
2. Напряжение U — равняется разности потенциалов на участке цепи.
Напряжение определяется вольтметром.
3. Сопротивление R проводящего материала.
Сопротивление зависит:
а) от сечения проводника S, от его длины l и материала (обозначается удельным сопротивлением проводника ρ);
R=pl/S
б) от температуры t°С (или Т): R = R0 (1 + αt),
- где R0 – сопротивление проводника при 0°С,
- α – температурный коэффициент сопротивления;
в) для получения различных эффектов, проводники могут соединяться как параллельно, так и последовательно.
Таблица характеристик тока.
Соединение | Последовательное | Параллельное |
Сохраняющаяся величина | I1 = I2 = = In I = const | U1 = U2 = Un U = const |
Суммируемая величина | напряжение | cила тока |
Результирующее сопротивление |
4. Плотность тока j — величина, которую можно определить, посчитав силу тока I протекающего через единицу площади поперечного сечения S проводника:
j=I/S
5. Электрическая сила (ЭДС) e — величина, которая определяется затраченными усилиями сторонних сил Аст по перемещению единичного положительного заряда q:
e=Aст/q
Величина, равная затраченной работе совершаемой сторонними силами по перемещению положительного заряда вдоль всей цепи, включая и источник тока, к заряду, имеет название электродвижущая сила источника тока (ЭДС):